Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciding whether to use this guide</td>
<td>4</td>
</tr>
<tr>
<td>NFS configuration workflow</td>
<td>5</td>
</tr>
<tr>
<td>Creating an aggregate</td>
<td>5</td>
</tr>
<tr>
<td>Deciding where to provision the new volume</td>
<td>6</td>
</tr>
<tr>
<td>Creating a new NFS-enabled SVM</td>
<td>7</td>
</tr>
<tr>
<td>Creating a new SVM with an NFS volume and export</td>
<td>7</td>
</tr>
<tr>
<td>Opening the export policy of the SVM root volume (Creating a new NFS-enabled SVM)</td>
<td>7</td>
</tr>
<tr>
<td>Configuring LDAP (Creating a new NFS-enabled SVM)</td>
<td>11</td>
</tr>
<tr>
<td>Verifying NFS access from a UNIX administration host</td>
<td>12</td>
</tr>
<tr>
<td>Configuring and verifying NFS client access (Creating a new NFS-enabled SVM)</td>
<td>14</td>
</tr>
<tr>
<td>Configuring NFS access to an existing SVM</td>
<td>17</td>
</tr>
<tr>
<td>Adding NFS access to an existing SVM</td>
<td>17</td>
</tr>
<tr>
<td>Opening the export policy of the SVM root volume (Configuring NFS access to an existing SVM)</td>
<td>19</td>
</tr>
<tr>
<td>Configuring LDAP (Configuring NFS access to an existing SVM)</td>
<td>20</td>
</tr>
<tr>
<td>Verifying NFS access from a UNIX administration host</td>
<td>23</td>
</tr>
<tr>
<td>Configuring and verifying NFS client access (Configuring NFS access to an existing SVM)</td>
<td>24</td>
</tr>
<tr>
<td>Adding an NFS volume to an NFS-enabled SVM</td>
<td>26</td>
</tr>
<tr>
<td>Creating and configuring a volume</td>
<td>26</td>
</tr>
<tr>
<td>Creating an export policy for the volume</td>
<td>27</td>
</tr>
<tr>
<td>Verifying NFS access from a UNIX administration host</td>
<td>29</td>
</tr>
<tr>
<td>Configuring and verifying NFS client access (Adding an NFS volume to an NFS-enabled SVM)</td>
<td>30</td>
</tr>
<tr>
<td>Where to find additional information</td>
<td>32</td>
</tr>
<tr>
<td>Copyright</td>
<td>33</td>
</tr>
<tr>
<td>Trademark</td>
<td>34</td>
</tr>
<tr>
<td>How to send comments about documentation and receive update notifications</td>
<td>35</td>
</tr>
<tr>
<td>Index</td>
<td>36</td>
</tr>
</tbody>
</table>
Deciding whether to use the NFS Configuration Express Guide

This guide describes how to quickly set up NFS access to a new volume on either a new or existing storage virtual machine (SVM).

You should use this guide if you want to configure access to a volume in the following way:

• NFS access will be through NFSv3, not NFSv4 or NFSv4.1.
• You want to use best practices, not explore every available option.
• You do not want to read a lot of conceptual background.
• You want to use OnCommand System Manager, not the ONTAP command-line interface or an automated scripting tool.

Cluster management using System Manager

• Your data network uses the default IPspace, the default broadcast domain, and the default failover group.
 If your data network is flat, using these default objects ensures that LIFs will fail over correctly in the event of a link failure. If you are not using the default objects, you should refer to the Network Management Guide for information on how to configure LIF path failover.
• UNIX file permissions will be used to secure the new volume.
• LDAP, if used, is provided by Active Directory.

If this guide is not suitable for your situation, you should see the following documentation instead:

• NFS management
• NetApp Technical Report 4073: Secure Unified Authentication
• NetApp Documentation: OnCommand Workflow Automation (current releases)

OnCommand Workflow Automation enables you to run prepackaged workflows that automate management tasks such as the workflows described in Express Guides.
NFS configuration workflow

Configuring NFS involves optionally creating an aggregate and then choosing a workflow that is specific to your goal—creating a new NFS-enabled SVM, configuring NFS access to an existing SVM, or simply adding an NFS volume to an existing SVM that is already fully configured for NFS access.

1. **Creating an aggregate**

 If you do not want to use an existing aggregate, you can create a new aggregate to provide physical storage to the volume which you are provisioning.

 About this task

 If you have an existing aggregate that you want to use for the new volume, you can skip this procedure.

 Steps

 1. Enter the URL `https://IP-address-of-cluster-management-LIF` in a web browser and log in to System Manager using your cluster administrator credential.
2. Navigate to the Aggregates window.
3. Click Create.
4. Follow the instructions on the screen to create the aggregate using the default RAID-DP configuration, and then click Create.

Result
The aggregate is created with the specified configuration and added to the list of aggregates in the Aggregates window.

Deciding where to provision the new volume
Before you create a new NFS volume, you must decide whether to place it in an existing storage virtual machine (SVM), and, if so, how much configuration the SVM requires. This decision determines your workflow.

Choices
• If you want to provision a volume on a new SVM, create a new NFS-enabled SVM.

 Creating a new NFS-enabled SVM

 You must choose this option if NFS is not enabled on an existing SVM.

• If you want to provision a volume on an existing SVM on which NFS is enabled but not configured, configure NFS access on the existing SVM.

 Configuring NFS access on an existing SVM

 You should choose this option if you created the SVM for SAN access by using the relevant Express Guide.

• If you want to provision a volume on an existing SVM that is fully configured for NFS access, add an NFS volume to the NFS-enabled SVM.

 Adding an NFS volume to an NFS-enabled SVM
Creating a new NFS-enabled SVM

Setting up an NFS-enabled SVM involves creating the new SVM with an NFS volume and export, opening the default export policy of the SVM root volume and then verifying NFS access from a UNIX administration host. You can then configure NFS client access.

Steps
1. Creating a new SVM with an NFS volume and export on page 7
2. Opening the export policy of the SVM root volume (Creating a new NFS-enabled SVM) on page 11
3. Configuring LDAP (Creating a new NFS-enabled SVM) on page 12
4. Verifying NFS access from a UNIX administration host on page 14
5. Configuring and verifying NFS client access (Creating a new NFS-enabled SVM) on page 15

Creating a new SVM with an NFS volume and export

You can use a wizard that guides you through the process of creating the storage virtual machine (SVM), configuring Domain Name System (DNS), creating a data logical interface (LIF), enabling NFS, optionally configuring NIS, and then creating and exporting a volume.

Before you begin
• Your network must be configured and the relevant physical ports must be connected to the network.
• You must know which of the following networking components the SVM will use:
 ◦ The node and the specific port on that node where the data logical interface (LIF) will be created
 ◦ The subnet from which the data LIF’s IP address will be provisioned, or optionally the specific IP address you want to assign to the data LIF
 ◦ NIS information, if your site uses NIS for name services or name mapping
• The subnet must be routable to all external servers required for services such as Network Information Service (NIS), Lightweight Directory Access Protocol (LDAP), Active Directory (AD), and DNS.
• Any external firewalls must be appropriately configured to allow access to network services.
• The time on the AD domain controllers, clients, and SVM must be synchronized to within five minutes of each other.

Steps
1. Navigate to the SVMs window.
2. Click Create.
3. In the Storage Virtual Machine (SVM) Setup dialog box, create the SVM:
 a. Specify a unique name for the SVM.
 The name must either be a fully qualified domain name (FQDN) or follow another convention that ensures unique names across a cluster.
b. Select all the protocols that you have licenses for and that you will eventually use on the SVM, even if you do not want to configure all the protocols immediately.

If CIFS access is required eventually, you must select **CIFS** now so that CIFS and NFS clients can share the same data LIF.

c. Keep the default language setting, C.UTF-8.

This language is inherited by the volume that you create later, and a volume's language cannot be changed.

d. Optional: If you enabled the CIFS protocol, change the security style to **UNIX**.

Selecting the CIFS protocol sets the security style to NTFS by default.

e. Optional: Select the root aggregate to contain the SVM root volume.

The aggregate that you select for the root volume does not determine the location of the data volume. The aggregate for the data volume is selected automatically when you provision storage in a later step.

f. Optional: In the **DNS Configuration** area, ensure that the default DNS search domain and name servers are the ones that you want to use for this SVM.

g. Click **Submit & Continue**.

The SVM is created, but protocols are not yet configured.
4. In the **Data LIF Configuration** section of the **Configure CIFS/NFS protocol** page, specify the details of the LIF that clients will use to access data:

 a. Assign an IP address to the LIF automatically from a subnet you specify or manually enter the address.

 b. Click **Browse** and select a node and port that will be associated with the LIF.

 ![Data LIF Configuration](image)

5. If the **NIS Configuration** area is collapsed, expand it.

6. If your site uses NIS for name services or name mapping, specify the domain and IP addresses of the NIS servers.

 ![NIS Configuration (Optional)](image)

7. Create and export a volume for NFS access:

 a. For **Export Name**, type a name that will be both the export name and the beginning of the volume name.

 b. Specify a size for the volume that will contain the files.

 ![Provision a volume for NFS storage](image)

 You do not have to specify the aggregate for the volume because it is automatically located on the aggregate with the most available space.

 c. In the **Permission** field, click **Change**, and specify an export rule that gives NFSv3 access to a UNIX administration host, including Superuser access.
Create Export Rule

Client Specification: admin_host

Access Protocols:
- NFS
- NFSv3
- NFSv4
- Flexcache

Access Details:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Read-Only</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Kerberos 5</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Kerberos 5i</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Kerberos 5p</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>NTLM</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

If you do not select any protocol, access is provided through any of the above protocols (CIFS, NFS, or FlexCache) configured on the Storage Virtual Machine (SVM).

Example
You can create a 10 GB volume named Eng, export it as Eng, and add a rule that gives the “admin_host” client full access to the export, including Superuser access.

8. Click **Submit & Continue**.

The following objects are created:

- A data LIF named after the SVM with the suffix “_nfs_lif1”
- An NFS server
- A volume that is located on the aggregate with the most available space and has a name that matches the name of the export and ends in the suffix “_NFS_volume”
- An export for the volume
- An export policy with the same name as the export

9. For all other protocol configuration pages that are displayed, click **Skip** and configure the protocol later.

10. When the SVM Administration page is displayed, configure or defer configuring a separate administrator for this SVM:

 - Click **Skip** and configure an administrator later if required.
 - Enter the requested information and then click **Submit & Continue**.

11. Review the Summary page, record any information you might require later and then click OK.

 NFS clients need to know the IP address of the data LIF.
Result
A new SVM is created with an NFS server containing a new volume that is exported for an administrator.

Opening the export policy of the SVM root volume (Creating a new NFS-enabled SVM)

You must add a rule to the default export policy to allow all clients access through NFSv3. Without such a rule, all NFS clients are denied access to the storage virtual machine (SVM) and its volumes.

About this task
You should specify all NFS access as the default export policy, and later restrict access to individual volumes by creating custom export policies for individual volumes.

Steps
1. Navigate to the SVMs window.
2. Click the SVM Settings tab.
3. In the Policies pane, click Export Policies.
4. Select the export policy named default, which is applied to the SVM root volume.
5. In the lower pane, click Add.
6. In the Create Export Rule dialog box, create a rule that opens access to all clients for NFS clients:
 a. In the Client Specification field, enter 0.0.0.0/0 so that the rule applies to all clients.
 b. Retain the default value as 1 for the rule index.
 c. Select NFSv3.
 d. Clear all the check boxes except the UNIX check box under Read-Only.
 e. Click OK.
Result
NFSv3 clients can now access any volumes created on the SVM.

Configuring LDAP (Creating a new NFS-enabled SVM)

If you want the storage virtual machine (SVM) to get user information from Active Directory-based Lightweight Directory Access Protocol (LDAP), you must create an LDAP client, enable it for the SVM, and give LDAP priority over other sources of user information.

Before you begin

- The LDAP configuration must be using Active Directory (AD).
 If you use another type of LDAP, you must use the command-line interface (CLI) and other documentation to configure LDAP.
 NetApp Technical Report 4073: Secure Unified Authentication

- You must know the AD domain and servers, as well as the following binding information: the authentication level, the Bind user and password, the base DN, and the LDAP port.

Steps

1. Navigate to the SVMs window.
2. Select the required SVM
3. Click the SVM Settings tab.
4. Set up an LDAP client for the SVM to use:
 a. In the Services pane, click LDAP Client.
 b. In the LDAP Client Configuration window, click Add.
 c. In the General tab of the Create LDAP Client window, type the name of the LDAP client configuration, such as `vs0client1`.
 d. Add either the AD domain or the AD servers.
 e. Click Binding, and specify the authentication level, the Bind user and password, the base DN, and the port.
f. Click **Save and Close**.

A new client is created and available for the SVM to use.

5. Enable the new LDAP client for the SVM:
 a. In the navigation pane, click **LDAP Configuration**.
 b. Click **Edit**.
 c. Ensure that the client you just created is selected in **LDAP client name**.
 d. Select **Enable LDAP client**, and click **OK**.

 The SVM uses the new LDAP client.

6. Give LDAP priority over other sources of user information, such as Network Information Service (NIS) and local users and groups:
 a. Navigate to the **SVMs** window.
 b. Select the SVM and click **Edit**.
 c. Click the **Services** tab.
 d. Under **Name Service Switch**, specify **LDAP** as the preferred name service switch source for the database types.
 e. Click **Save and Close**.
Verifying NFS access from a UNIX administration host

After you configure NFS access to storage virtual machine (SVM), you should verify the configuration by logging in to an NFS administration host and reading data from and writing data to the SVM.

Before you begin

- The client system must have an IP address that is allowed by the export rule you specified earlier.
- You must have the login information for the root user.

Steps

1. Log in as the root user to the client system.
2. Enter `cd /mnt/` to change the directory to the mount folder.
3. Create and mount a new folder using the IP address of the SVM:
 a. Enter `mkdir /mnt/folder` to create a new folder.
 b. Enter `mount -t nfs -o nfsvers=3,hard IPAddress:/volume_name /mnt/folder` to mount the volume at this new directory.
 c. Enter `cd folder` to change the directory to the new folder.
Example

The following commands create a folder named test1, mount the vol1 volume at the 192.0.2.130 IP address on the test1 mount folder, and change to the new test1 directory:

```
host# mkdir /mnt/test1
host# mount -t nfs -o nfsvers=3,hard 192.0.2.130:/vol1 /mnt/test1
host# cd /mnt/test1
```

4. Create a new file, verify that it exists, and write text to it:
 a. Enter `touch filename` to create a test file.
 b. Enter `ls -l filename` to verify that the file exists.
 c. Enter `cat >filename`, type some text, and then press Ctrl+D to write text to the test file.
 d. Enter `cat filename` to display the content of the test file.
 e. Enter `rm filename` to remove the test file.
 f. Enter `cd ..` to return to the parent directory.

Example

```
host# touch myfile1
host# ls -l myfile1
-rw-r--r-- 1 root root 0 Sep 18 15:58 myfile1
host# cat >myfile1
This text inside the first file
host# cat myfile1
This text inside the first file
host# rm -r myfile1
host# cd ..
```

Result

You have confirmed that you have enabled NFS access to the SVM.

Configuring and verifying NFS client access (Creating a new NFS-enabled SVM)

When you are ready, you can give select clients access to the share by setting UNIX file permissions on a UNIX administration host and adding an export rule in System Manager. Then you should test that the affected users or groups can access the volume.

Steps

1. Decide which clients and users or groups will be given access to the share.
2. On a UNIX administration host, use the root user to set UNIX ownership and permissions on the volume.
3. In System Manager, add rules to the export policy to permit NFS clients to access the share.
 a. Select the storage virtual machine (SVM), and click SVM Settings.
 b. In the Policies pane, click Export Policies.
 c. Select the export policy with the same name as the volume.
d. In the Export Rules tab, click Add, and specify a set of clients.

e. Select 2 for the Rule Index so that this rule executes after the rule that allows access to the administration host.

f. Select NFSv3.

g. Specify the access details that you want, and click OK.

Example

You can give full read/write access to clients by typing the subnet 10.1.1.0/24 as the Client Specification, and selecting all the access check boxes except Allow Superuser Access.

4. On a UNIX client, log in as one of the users who now has access to the volume, and verify that you can mount the volume and create a file.
Configuring NFS access to an existing SVM

Adding access for NFS clients to an existing SVM involves adding NFS configurations to the SVM, opening the export policy of the SVM root volume, optionally configuring LDAP, and verifying NFS access from a UNIX administration host. You can then configure NFS client access.

Steps

1. Adding NFS access to an existing SVM on page 17
2. Opening the export policy of the SVM root volume (Configuring NFS access to an existing SVM) on page 19
3. Configuring LDAP (Configuring NFS access to an existing SVM) on page 20
4. Verifying NFS access from a UNIX administration host on page 23
5. Configuring and verifying NFS client access (Configuring NFS access to an existing SVM) on page 24

Adding NFS access to an existing SVM

Adding NFS access to an existing SVM involves creating a data LIF, optionally configuring NIS, provisioning a volume, exporting the volume, and configuring the export policy.

Before you begin

- You must know which of the following networking components the SVM will use:
 - The node and the specific port on that node where the data logical interface (LIF) will be created
 - The subnet from which the data LIF’s IP address will be provisioned, or optionally the specific IP address you want to assign to the data LIF

- Any external firewalls must be appropriately configured to allow access to network services.

- The NFS protocol must be allowed on the SVM. This is the case if you created the SVM while following another Express Guide to configure a SAN protocol.

Steps

1. Navigate to the area where you can configure the protocols of the SVM:
 a. Select the SVM that you want to configure.
 b. In the Details pane, next to Protocols, click NFS.

2. In the Configure NFS protocol dialog box, create a data LIF.
 a. Assign an IP address to the LIF automatically from a subnet you specify or manually enter the address.
 b. Click Browse and select a node and port that will be associated with the LIF.
3. If your site uses NIS for name services or name mapping, specify the domain and IP addresses of the NIS servers and select the database types for which you want to add the NIS name service source.

 NIS Configuration (Optional)

 Configure NIS domain on the SVM to authorize NFS users.

 - **Domain Names:** example.com
 - **IP Addresses:** 192.0.2.145, 192.0.2.146, 192.0.2.147

 Database Type: group, passwd, netgroup

 If NIS services are not available, do not attempt to configure it. Improperly configured NIS services can cause datastore access issues.

4. Create and export a volume for NFS access:
 a. For **Export Name**, type a name that will be both the export name and the beginning of the volume name.
 b. Specify a size for the volume that will contain the files.

 You do not have to specify the aggregate for the volume because it is automatically located on the aggregate with the most available space.
 c. In the **Permission** field, click **Change**, and specify an export rule that gives NFSv3 access to a UNIX administration host, including Superuser access.
Example

You can create a 10 GB volume named Eng, export it as Eng, and add a rule that gives the “admin_host” client full access to the export, including Superuser access.

5. Click Submit & Close, and then click OK.

Opening the export policy of the SVM root volume (Configuring NFS access to an existing SVM)

You must add a rule to the default export policy to allow all clients access through NFSv3. Without such a rule, all NFS clients are denied access to the storage virtual machine (SVM) and its volumes.

About this task

You should specify all NFS access as the default export policy, and later restrict access to individual volumes by creating custom export policies for individual volumes.

Steps

1. Navigate to the SVMs window.
2. Click the SVM Settings tab.
3. In the Policies pane, click Export Policies.
4. Select the export policy named default, which is applied to the SVM root volume.
5. In the lower pane, click Add.
6. In the **Create Export Rule** dialog box, create a rule that opens access to all clients for NFS clients:

 a. In the **Client Specification** field, enter `0.0.0.0/0` so that the rule applies to all clients.

 b. Retain the default value as `1` for the rule index.

 c. Select **NFSv3**.

 d. Clear all the check boxes except the **UNIX** check box under **Read-Only**.

 e. Click **OK**.

![Create Export Rule dialog box](image)

Result

NFSv3 clients can now access any volumes created on the SVM.

Configuring LDAP (Configuring NFS access to an existing SVM)

If you want the storage virtual machine (SVM) to get user information from Active Directory-based Lightweight Directory Access Protocol (LDAP), you must create an LDAP client, enable it for the SVM, and give LDAP priority over other sources of user information.

Before you begin

- The LDAP configuration must be using Active Directory (AD).

 If you use another type of LDAP, you must use the command-line interface (CLI) and other documentation to configure LDAP.

 NetApp Technical Report 4073: Secure Unified Authentication

- You must know the AD domain and servers, as well as the following binding information: the authentication level, the Bind user and password, the base DN, and the LDAP port.

Steps

1. Navigate to the **SVMs** window.
2. Select the required SVM
3. Click the SVM Settings tab.
4. Set up an LDAP client for the SVM to use:
 a. In the Services pane, click LDAP Client.
 b. In the LDAP Client Configuration window, click Add.
 c. In the General tab of the Create LDAP Client window, type the name of the LDAP client configuration, such as vs0client1.
 d. Add either the AD domain or the AD servers.
 e. Click Binding, and specify the authentication level, the Bind user and password, the base DN, and the port.
 f. Click Save and Close.
 A new client is created and available for the SVM to use.
5. Enable the new LDAP client for the SVM:
 a. In the navigation pane, click LDAP Configuration.
 b. Click Edit.
 c. Ensure that the client you just created is selected in LDAP client name.
d. Select **Enable LDAP client**, and click **OK**.

The SVM uses the new LDAP client.

6. Give LDAP priority over other sources of user information, such as Network Information Service (NIS) and local users and groups:

a. Navigate to the **SVMs** window.

b. Select the SVM and click **Edit**.

c. Click the **Services** tab.

d. Under **Name Service Switch**, specify **LDAP** as the preferred name service switch source for the database types.

e. Click **Save and Close**.

LDAP is the primary source of user information for name services and name mapping on this SVM.
Verifying NFS access from a UNIX administration host

After you configure NFS access to storage virtual machine (SVM), you should verify the configuration by logging in to an NFS administration host and reading data from and writing data to the SVM.

Before you begin

• The client system must have an IP address that is allowed by the export rule you specified earlier.
• You must have the login information for the root user.

Steps

1. Log in as the root user to the client system.
2. Enter `cd /mnt/` to change the directory to the mount folder.
3. Create and mount a new folder using the IP address of the SVM:
 a. Enter `mkdir /mnt/folder` to create a new folder.
 b. Enter `mount -t nfs -o nfsvers=3,hard IPAddress:/volume_name /mnt/folder` to mount the volume at this new directory.
 c. Enter `cd folder` to change the directory to the new folder.

Example

The following commands create a folder named test1, mount the vol1 volume at the 192.0.2.130 IP address on the test1 mount folder, and change to the new test1 directory:

```
host# mkdir /mnt/test1
host# mount -t nfs -o nfsvers=3,hard 192.0.2.130:/vol1 /mnt/test1
host# cd /mnt/test1
```

4. Create a new file, verify that it exists, and write text to it:
 a. Enter `touch filename` to create a test file.
 b. Enter `ls -l filename` to verify that the file exists.
 c. Enter `cat >filename`, type some text, and then press Ctrl+D to write text to the test file.
 d. Enter `cat filename` to display the content of the test file.
 e. Enter `rm filename` to remove the test file.
 f. Enter `cd ..` to return to the parent directory.

Example

```
host# touch myfile1
host# ls -l myfile1
-rw-r--r-- 1 root root 0 Sep 18 15:58 myfile1
host# cat >myfile1
This text inside the first file
```
host# cat myfile1
This text inside the first file
host# rm -r myfile1
host# cd ..

Result
You have confirmed that you have enabled NFS access to the SVM.

Configuring and verifying NFS client access (Configuring NFS access to an existing SVM)

When you are ready, you can give select clients access to the share by setting UNIX file permissions on a UNIX administration host and adding an export rule in System Manager. Then you should test that the affected users or groups can access the volume.

Steps
1. Decide which clients and users or groups will be given access to the share.
2. On a UNIX administration host, use the root user to set UNIX ownership and permissions on the volume.
3. In System Manager, add rules to the export policy to permit NFS clients to access the share.
 a. Select the storage virtual machine (SVM), and click SVM Settings.
 b. In the Policies pane, click Export Policies.
 c. Select the export policy with the same name as the volume.
 d. In the Export Rules tab, click Add, and specify a set of clients.
 e. Select 2 for the Rule Index so that this rule executes after the rule that allows access to the administration host.
 f. Select NFSv3.
 g. Specify the access details that you want, and click OK.

Example
You can give full read/write access to clients by typing the subnet 10.1.1.0/24 as the Client Specification, and selecting all the access check boxes except Allow Superuser Access.
4. On a UNIX client, log in as one of the users who now has access to the volume, and verify that you can mount the volume and create a file.
Adding an NFS volume to an NFS-enabled SVM

Adding an NFS volume to an NFS-enabled SVM involves creating and configuring a volume, creating an export policy, and verifying access from a UNIX administration host. You can then configure NFS client access.

Before you begin
NFS must be completely set up on the SVM.

Steps
1. Creating and configuring a volume on page 26
2. Creating an export policy for the volume on page 27
3. Verifying NFS access from a UNIX administration host on page 29
4. Configuring and verifying NFS client access (Adding an NFS volume to an NFS-enabled SVM) on page 30

Creating and configuring a volume

You must create a FlexVol volume to contain your data. You can optionally change the volume's default security style, which is inherited from the security style of the root volume. You can also optionally change the volume's default location in the namespace, which is at the root volume of the storage virtual machine (SVM).

Steps
1. Navigate to the Volumes window.
2. Click Create > Create FlexVol.
 The Create Volume dialog box is displayed.
3. If you want to change the default name, which ends in a date and time stamp, specify a new name, such as vol1.
4. Select an aggregate for the volume.
5. Specify the size of the volume.
6. Click Create.
 Any new volume created in System Manager is mounted by default at the root volume using the volume name as the junction name. NFS clients use the junction path and the junction name when mounting the volume.
7. Optional: If you do not want the volume to be located at the root of the SVM, modify the place of the new volume in the existing namespace:
 a. Navigate to the Namespace window.
 b. Select the SVM from the drop-down menu.
 c. Click Mount.
 d. In the Mount Volume dialog box, specify the volume, the name of its junction path, and the junction path on which you want the volume mounted.
e. Verify the new junction path in the **Namespace** window.

Example

If you want to organize certain volumes under a main volume named “data”, you can move the new volume “vol1” from the root volume to the “data” volume.

![Namespace window showing new junction path](image)

8. Review the volume's security style and change it, if necessary:

a. In the **Volume** window, select the volume you just created, and click **Edit**.

 The Edit Volume dialog box is displayed, showing the volume’s current security style, which is inherited from the security style of the SVM root volume.

b. Make sure the security style is UNIX.

[![Edit Volume dialog box](image)](image)

Creating an export policy for the volume

Before any NFS clients can access a volume, you must create an export policy for the volume, add a rule that permits access by an administration host, and apply the new export policy to the volume.

Steps

1. Navigate to the **SVMs** window.
2. Click the **SVM Settings** tab.
3. Create a new export policy:
 a. In the **Policies** pane, click **Export Policies** and then click **Create**.
 b. In the **Create Export Policy** window, specify a policy name.
 c. Under **Export Rules**, click **Add** to add a rule to the new policy.
4. In the **Create Export Rule** dialog box, create a rule that allows an administrator full access to the export through all protocols:

 a. Specify the IP address or client name, such as admin_host, from which the exported volume will be administered.

 b. Select **NFSv3**.

 c. Ensure that all **Read/Write** access details are selected, as well as **Allow Superuser Access**.

 d. Click **OK** and then click **Create**.

 The new export policy is created, along with its new rule.

5. Apply the new export policy to the new volume so that the administrator host can access the volume:

 a. Navigate to the **Namespace** window.

 b. Select the volume and click **Change Export Policy**.

 c. Select the new policy and click **Change**.

Related tasks

Verifying NFS access from a UNIX administration host on page 14
Verifying NFS access from a UNIX administration host

After you configure NFS access to storage virtual machine (SVM), you should verify the configuration by logging in to an NFS administration host and reading data from and writing data to the SVM.

Before you begin

- The client system must have an IP address that is allowed by the export rule you specified earlier.
- You must have the login information for the root user.

Steps

1. Log in as the root user to the client system.
2. Enter `cd /mnt/` to change the directory to the mount folder.
3. Create and mount a new folder using the IP address of the SVM:
 a. Enter `mkdir /mnt/folder` to create a new folder.
 b. Enter `mount -t nfs -o nfsvers=3,hard IPAddress:/volume_name /mnt/folder` to mount the volume at this new directory.
 c. Enter `cd folder` to change the directory to the new folder.

Example

The following commands create a folder named test1, mount the vol1 volume at the 192.0.2.130 IP address on the test1 mount folder, and change to the new test1 directory:

```bash
host# mkdir /mnt/test1
host# mount -t nfs -o nfsvers=3,hard 192.0.2.130:/vol1 /mnt/test1
host# cd /mnt/test1
```

4. Create a new file, verify that it exists, and write text to it:
 a. Enter `touch filename` to create a test file.
 b. Enter `ls -l filename` to verify that the file exists.
 c. Enter `cat >filename`, type some text, and then press Ctrl+D to write text to the test file.
 d. Enter `cat filename` to display the content of the test file.
 e. Enter `rm filename` to remove the test file.
 f. Enter `cd ..` to return to the parent directory.

Example

```bash
host# touch myfile1
host# ls -l myfile1
-rw-r--r-- 1 root root 0 Sep 18 15:58 myfile1
host# cat >myfile1
This text inside the first file
```
host# cat myfile1
This text inside the first file
host# rm -r myfile1
host# cd ..

Result
You have confirmed that you have enabled NFS access to the SVM.

Configuring and verifying NFS client access (Adding an NFS volume to an NFS-enabled SVM)

When you are ready, you can give select clients access to the share by setting UNIX file permissions on a UNIX administration host and adding an export rule in System Manager. Then you should test that the affected users or groups can access the volume.

Steps
1. Decide which clients and users or groups will be given access to the share.
2. On a UNIX administration host, use the root user to set UNIX ownership and permissions on the volume.
3. In System Manager, add rules to the export policy to permit NFS clients to access the share.
 a. Select the storage virtual machine (SVM), and click SVM Settings.
 b. In the Policies pane, click Export Policies.
 c. Select the export policy with the same name as the volume.
 d. In the Export Rules tab, click Add, and specify a set of clients.
 e. Select 2 for the Rule Index so that this rule executes after the rule that allows access to the administration host.
 f. Select NFSv3.
 g. Specify the access details that you want, and click OK.

Example
You can give full read/write access to clients by typing the subnet 10.1.1.0/24 as the Client Specification, and selecting all the access check boxes except Allow Superuser Access.
4. On a UNIX client, log in as one of the users who now has access to the volume, and verify that you can mount the volume and create a file.
Where to find additional information

After you have successfully tested NFS client access, you can perform advanced NFS configuration or add SAN access. When protocol access is complete, you should protect the root volume of SVM. There are express guides, comprehensive guides, and technical reports to help you achieve these goals.

NFS configuration

You can further configure NFS access using the following comprehensive guides and technical reports:

- **NFS management**
 Describes how to configure and manage file access using the NFS protocol.

 Serves as an NFSv3 and NFSv4 operational guide and provides an overview of ONTAP operating system with a focus on NFSv4.

 Provides a comprehensive list of best practices, limits, recommendations, and considerations when configuring LDAP, NIS, DNS, and local user and group files for authentication purposes.

 Explains how to configure ONTAP for use with UNIX-based Kerberos version 5 (krb5) servers for NFS storage authentication and Windows Server Active Directory (AD) as the KDC and Lightweight Directory Access Protocol (LDAP) identity provider.

 Describes the best practices that should be followed while implementing NFSv4 components on AIX, Linux, or Solaris clients attached to systems running ONTAP.

Root volume protection

After configuring protocols on the SVM, you should ensure that its root volume is protected:

- **Data protection**
 Describes how to create a load-sharing mirror to protect the SVM root volume, which is a NetApp best practice for NAS-enabled SVMs. Also describes how to quickly recover from volume failures or losses by promoting the SVM root volume from a load-sharing mirror.
Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).
Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

How to send comments about documentation and receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
• Telephone: +1 (408) 822-6000
• Fax: +1 (408) 822-4501
• Support telephone: +1 (888) 463-8277
Index

A
access
 additional documentation 32
 verifying NFS access by administrators 14, 23, 29
 verifying NFS access by clients 15, 24, 30
Adding an NFS volume 30
aggregates
 creating new when provisioning a volume 5
 selecting for new volumes 26

C
clients
 adding an LDAP configuration. Configuring NFS access to an existing SVM 20
 adding an LDAP configuration. Creating a new NFS-enabled SVM 12
comments
 how to send feedback about documentation 35
configuring
 NFS access 5, 17, 26
Creating a new
 NFS-enabled SVM 15, 24, 30

D
documentation
 additional information about protocol access 32
 how to receive automatic notification of changes to 35
 how to send feedback about 35

E
export policies
 allowing NFS access to volumes on existing SVMs 27
 defining for root volumes 11, 19
exports
 setting UNIX file permissions 15, 24, 30
 verifying administrator access to 14, 23, 29
 verifying client access 15, 24, 30
express guides
 additional documentation 32
 NFS configuration workflow 5, 17, 26

F
feedback
 how to send comments about documentation 35
file permissions
 setting for UNIX 15, 24, 30
files
 controlling access to, using UNIX permissions 15, 24, 30

I
information
 how to send feedback about improving documentation 35

L
LDAP
 configuring 12, 20

N
name services
 giving LDAP priority, Configuring NFS access to an existing SVM 20
 giving LDAP priority, Creating a new NFS-enabled SVM 12
NFS
 additional documentation 32
 deciding whether to use this guide to set up NFS 4
 setup overview 5
NFS access to an existing SVM
 Configuring NFS access 24
NFS exports 15, 24, 30
 See also exports
NFS volume to an NFS-enabled SVM 30

P
permissions
 configuring export policy rules to allow NFS clients access to volumes on existing SVMs 27
 setting UNIX file permissions 15, 24, 30
policies
 adding export rules 15, 24, 30
 Configuring NFS access to an existing SVM 19
 Creating a new NFS-enabled SVM 11
 provisioning volume
 deciding where to 6
 requirements 6

R
root volumes
 opening the export policies of 11, 19

S
security style
 changing 26
setup
 NFS, overview of 5, 17, 26
suggestions
 how to send feedback about documentation 35
SVMs
 adding LDAP clients, Configuring NFS access to an existing SVM 20
adding LDAP clients, Creating a new NFS-enabled SVM 12
creating export policies to allow NFS client access to existing volumes 27
creating NFS volumes on 26
creating to support NFS 7
provisioning volumes on new 7

T

technical reports
 additional information about file access 32
testing 15, 24, 30
 See also verifying
Twitter
 how to receive automatic notification of documentation changes 35

U

UNIX

setting file permissions 15, 24, 30
setting security style 26

V

verifying
 NFS access by administrators 14, 23, 29
 NFS access by clients 15, 24, 30
volumes
 creating new aggregates to provide physical storage 5
 creating on existing SVMs 26
 modifying junction path of 26
 provisioning on new SVMs 7

W

workflows
 NFS configuration 5, 17, 26