ONTAP® 9

iSCSI Configuration for Windows®
Express Guide

January 2019 | 215-11180_E0
doccomments@netapp.com
Updated for ONTAP 9.5
# Contents

Deciding whether to use this guide ......................................................... 4  
iSCSI configuration and provisioning workflow ......................................... 5  
  Verifying that the iSCSI configuration is supported .................................. 5  
  Completing the iSCSI configuration worksheet ....................................... 6  
  Recording the iSCSI initiator node name .............................................. 8  
  Installing the Data ONTAP DSM for Windows MPIO ................................ 8  
  Creating an aggregate ........................................................................ 9  
  Deciding where to provision the volume .............................................. 10  
    Verifying that the iSCSI service is running on an existing SVM ........ 10  
    Creating a LUN ............................................................................ 11  
    Configuring iSCSI on an existing SVM ........................................... 12  
    Creating a new SVM ..................................................................... 13  
  Starting iSCSI sessions with the target .............................................. 16  
  Discovering new disks ....................................................................... 17  
  Initializing and formatting the LUN .................................................... 18  
  Verifying that the host can write to and read from the LUN ................... 18  
Where to find additional information .................................................. 20  
Copyright ............................................................................................ 21  
Trademark .......................................................................................... 22  
How to send comments about documentation and receive update  
  notifications .................................................................................... 23  
Index .................................................................................................. 24
Deciding whether to use the iSCSI Configuration for Windows Express Guide

This guide describes how to quickly set up the iSCSI service on a storage virtual machine (SVM), provision a LUN, and make the LUN available using an iSCSI initiator on a Windows host computer.

This guide is based on the following assumptions:

• You want to use best practices, not explore every available option.
• You do not want to read a lot of conceptual background.
• You want to use OnCommand System Manager, not the ONTAP command-line interface or an automated scripting tool.
  
  **Cluster management using System Manager**

• You are using the Microsoft iSCSI software initiator on Windows Server 2008 or Windows Server 2012.
• Your network uses IPv4 addressing.
• You want to assign addresses to logical interfaces using any of the following methods:
  ◦ Automatically, from a subnet you define
  ◦ Manually, using an address selected from an existing subnet
  ◦ Manually, using an address that will be added to an existing subnet
• You are not configuring iSCSI SAN boot.

If these assumptions are not correct for your situation, you should see the following resources:

• *SAN administration*
• *SAN configuration*
• *NetApp Documentation: Host Utilities (current releases)* for your version of Windows Host Utilities
• *Data ONTAP DSM 4.1 For Windows MPIO Installation and Administration Guide*
• *NetApp Documentation: OnCommand Workflow Automation (current releases)*

OnCommand Workflow Automation enables you to run prepackaged workflows that automate management tasks such as the workflows described in Express Guides.
iSCSI configuration and provisioning workflow

When you make storage available to a host using iSCSI, you provision a volume and LUN on the storage virtual machine (SVM), and then connect to the LUN from the host.

Verifying that the iSCSI configuration is supported

For reliable operation, you must verify that the entire iSCSI configuration is supported.

Steps

1. Go to the Interoperability Matrix to verify that you have a supported combination of the following components:
   - ONTAP software
   - Host computer CPU architecture (for standard rack servers)
   - Specific processor blade model (for blade servers)
• Storage protocol (iSCSI)
• Windows operating system version
• Data ONTAP DSM for Windows MPIO

2. Click the configuration name for the selected configuration.
Details for that configuration are displayed in the Configuration Details window.

3. Review the information in the following tabs:
   • Notes
     Lists important alerts and information that are specific to your configuration.
     Review the alerts to identify the hotfixes that are required for your operating system.
   • Policies and Guidelines
     Provides general guidelines for all SAN configurations.

### Completing the iSCSI configuration worksheet

You require iSCSI identifiers, network addresses, and storage configuration information to perform iSCSI configuration tasks.

#### iSCSI identifiers

<table>
<thead>
<tr>
<th>Initiator (host) iSCSI node name (IQN)</th>
<th>Target alias (optional)</th>
</tr>
</thead>
</table>

#### Target network addresses

The storage virtual machine (SVM) is the iSCSI target.

You require a subnet with two IP addresses for iSCSI data LIFs for each node in the cluster. There should be two separate networks for high availability. The specific IP addresses are assigned by ONTAP when you create the LIFs as part of creating the SVM.

If possible, separate iSCSI traffic on separate physical networks or on VLANs.

Subnet for LIFs: _________________________
<table>
<thead>
<tr>
<th>Node or LIF with port to switch</th>
<th>IP address</th>
<th>Network mask</th>
<th>Gateway</th>
<th>VLAN ID</th>
<th>Home port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1 / LIF to switch 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 2 / LIF to switch 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 3 / LIF to switch 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 4 / LIF to switch 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 1 / LIF to switch 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 2 / LIF to switch 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 3 / LIF to switch 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 4 / LIF to switch 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Storage configuration**

If the aggregate and SVM are already created, record their names here; otherwise, you can create them as required:

- Node to own LUN
- Aggregate name
- SVM name

**LUN information**

- LUN size
- Host operating system
- LUN name (optional)
- LUN description (optional)

**SVM information**

If you are not using an existing SVM, you require the following information to create a new one:

- SVM name
- SVM IP space
- Aggregate for SVM root volume
- SVM user name (optional)
- SVM password (optional)
<table>
<thead>
<tr>
<th>SVM management LIF (optional)</th>
<th>Subnet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address:</td>
<td></td>
</tr>
<tr>
<td>Network mask:</td>
<td></td>
</tr>
<tr>
<td>Gateway:</td>
<td></td>
</tr>
<tr>
<td>Home node:</td>
<td></td>
</tr>
<tr>
<td>Home port:</td>
<td></td>
</tr>
</tbody>
</table>

**Recording the iSCSI initiator node name**

You must record the iSCSI initiator node name from the iSCSI initiator program on the Windows host.

**Steps**

1. **Open the iSCSI Initiator Properties dialog box:**

   **If you are using...** | **Navigate to...**  
   Windows Server 2012 or Windows Server 2012 R2 or Windows Server 2016 | Server Manager > Dashboard > Tools > iSCSI Initiator > Configuration  

2. **Copy the Initiator Name or Initiator Node Name value to a text file or write it down.**

   The exact label in the dialog box differs depending on the Windows version. The iSCSI initiator node name should look like the following example:


**Installing the Data ONTAP DSM for Windows MPIO**

The Data ONTAP DSM for Windows MPIO manages multiple paths between the Windows host and the storage cluster. Multiple paths are required so that your host can access its LUN if a path or component fails. The Data ONTAP DSM sets the required timeout values and storage parameters on the host.

**Before you begin**

You must have completed the following tasks:

- Identified the required version of the Data ONTAP DSM for Windows MPIO from the Interoperability Matrix  
  *NetApp Interoperability Matrix Tool*

- Identified any required Windows hotfixes from the Interoperability Matrix  
  *NetApp Interoperability Matrix Tool*

The *Data ONTAP DSM for Windows MPIO Installation and Administration Guide* lists the basic hotfix requirements. The specific row in the Interoperability Matrix for your configuration lists the latest hotfix requirements.

*Data ONTAP DSM 4.1 For Windows MPIO Installation and Administration Guide*
• Obtained a license key for the Data ONTAP DSM for Windows MPIO

About this task
This task requires rebooting the Windows host.
Detailed installation information is available in the Data ONTAP DSM for Windows MPIO Installation and Administration Guide, available with the software download.

Steps
1. Download the appropriate version of the Data ONTAP DSM from the NetApp Support Site.

   NetApp Support

2. Install any required Windows hotfixes.
   The Data ONTAP DSM installer will not proceed until the required hotfixes have been installed.

3. For Windows Server 2008, install Windows PowerShell 2.0 or later.
   Installing PowerShell is not required for Windows Server 2008 R2 or later.
   Note: However, in certain configurations of Windows Server 2008 R2 or later, you must have enabled PowerShell 2.0 even if PowerShell 3.0 is enabled.

4. Run the Data ONTAP DSM installation program and follow the prompts.
   For an iSCSI-only configuration, the installation program displays an error message that no HBAs were found in the host. You can ignore this message.

5. Reboot the Windows host when prompted.

Creating an aggregate
If you do not want to use an existing aggregate, you can create a new aggregate to provide physical storage to the volume which you are provisioning.

Steps
1. Enter the URL https://IP-address-of-cluster-management-LIF in a web browser and log in to System Manager using your cluster administrator credential.

2. Navigate to the Aggregates window.

3. Click Create.

4. Follow the instructions on the screen to create the aggregate using the default RAID-DP configuration, and then click Create.
Deciding where to provision the volume

Before you provision a volume to contain your LUNs, you need to decide whether to add the volume to an existing storage virtual machine (SVM) or to create a new SVM for the volume. You might also need to configure iSCSI on an existing SVM.

About this task

If an existing SVM is already configured with the needed protocols and has LIFs that can be accessed from the host, it is easier to use the existing SVM.

You can create a new SVM to separate data or administration from other users of the storage cluster. There is no advantage to using separate SVMs just to separate different protocols.

Choices

- If you want to provision volumes on an SVM that is already configured for iSCSI, you must verify that the iSCSI service is running and then create a LUN on the SVM.

  Verifying that the iSCSI service is running on an existing SVM

  Creating a LUN

- If you want to provision volumes on an existing SVM that has iSCSI enabled but not configured, configure iSCSI on the existing SVM.

  Configuring iSCSI on an existing SVM

  This is the case when you followed another Express Guide to create the SVM while configuring a different protocol.

- If you want to provision volumes on a new SVM, create the SVM.

  Creating a new SVM

Verifying that the iSCSI service is running on an existing SVM

If you choose to use an existing storage virtual machine (SVM), you must verify that the iSCSI service is running on the SVM.

Before you begin

You must have selected an existing SVM on which you plan to create a new LUN.

Steps

1. Navigate to the SVMs window.
2. Click the SVM Settings tab.
3. In the Protocols pane, click iSCSI.
4. Verify that the iSCSI service is running.
5. Record the iSCSI interfaces listed for the SVM.

**After you finish**

If the iSCSI service is not running, start the iSCSI service or create a new SVM.

If there are fewer than two iSCSI interfaces per node, update the iSCSI configuration on the SVM or create a new SVM for iSCSI.

**Creating a LUN**

You use the Create LUN wizard to create a LUN. The wizard also creates the igroup and maps the LUN to the igroup, which enables the specified host to access the LUN.

**Before you begin**

- There must be an aggregate with enough free space to contain the LUN.
- There must be a storage virtual machine (SVM) with the iSCSI protocol enabled and the appropriate logical interfaces (LIFs) created.
- You must have recorded the iSCSI initiator node name of the host.

LUNs are mapped to a subset of the initiators in the igroup to limit the number of paths from the host to the LUN.

- By default, ONTAP uses Selective LUN Map (SLM) to make the LUN accessible only through paths on the node owning the LUN and its high-availability (HA) partner.
- You still must configure all of the iSCSI LIFs on every node for LUN mobility in case the LUN is moved to another node in the cluster.
- When moving a volume or a LUN, you must modify the SLM reporting-nodes list before moving.

**About this task**

If your organization has a naming convention, you should use names for the LUN, volume, and so on that fit your convention. Otherwise, you should accept the default names.

**Steps**

1. Navigate to the LUNs window.
2. Click Create.
3. Browse and select an SVM in which you want to create the LUNs. The Create LUN Wizard is displayed.

4. On the General Properties page, select the LUN type Windows 2008 or later for LUNs used directly by the Windows host, or select Hyper-V for LUNs containing virtual hard disks (VHDs) for Hyper-V virtual machines. Leave the Thin Provisioned check box unselected.

5. On the LUN Container page, select an existing FlexVol volume. You must ensure that there is enough space in the volume. If sufficient space is not available in the existing volumes, you can create a new volume.

6. On the Initiators Mapping page, click Add Initiator Group, enter the required information on the General tab, and then on the Initiators tab, enter the iSCSI initiator node name of the host that you recorded.

7. Confirm the details, and then click Finish to complete the wizard.

Related information

System administration

Configuring iSCSI on an existing SVM

You can configure iSCSI on an existing storage virtual machine (SVM) and create a LUN and its containing volume with a single wizard. The iSCSI protocol must already be enabled but not configured on the SVM. This information is intended for SVMs for which you are configuring multiple protocols, but have not yet configured iSCSI.

Before you begin
You must have enough network addresses available to create two LIFs for each node.

About this task
LUNs are mapped to a subset of the initiators in the igroup to limit the number of paths from the host to the LUN.

- ONTAP uses Selective LUN Map (SLM) to make the LUN accessible only through paths on the node owning the LUN and its HA partner.
- You still must configure all of the iSCSI LIFs on every node for LUN mobility in case the LUN is moved to another node in the cluster.
- You must modify the SLM reporting-nodes list before moving a volume or a LUN.

Steps
1. Navigate to the SVMs window.
2. Select the SVM that you want to configure.

3. In the SVM Details pane, verify that iSCSI is displayed with a gray background, which indicates that the protocol is enabled but not fully configured.

   If iSCSI is displayed with a green background, the SVM is already configured.

```
| Protocols: | NFS | CIFS | FC/FCoE | iSCSI |
```

4. Click the iSCSI protocol link with the gray background.

   The Configure iSCSI Protocol window is displayed.

5. Configure the iSCSI service and LIFs from the Configure iSCSI protocol page:

   a. Optional: Enter a target alias name.

   b. Enter 2 in the LIFs per node field.

      Two LIFs are required for each node to ensure availability and data mobility.

   c. Assign IP addresses for the LIFs either with a subnet or without a subnet.

   d. In the Provision a LUN for iSCSI storage area, enter the desired LUN size, host type, and iSCSI initiator name of the host.

   e. Click Submit & Close.

6. Review the Summary page, record the LIF information, and then click OK.

**Creating a new SVM**

The storage virtual machine (SVM) provides the iSCSI target through which a host accesses LUNs. When you create the SVM, you also create logical interfaces (LIFs) and the LUN and its containing
volume. You can create an SVM to separate the data and administration functions of a user from those of the other users in a cluster.

**Before you begin**

- You must have enough network addresses available to create two LIFs for each node.

**About this task**

LUNs are mapped to a subset of the initiators in the igroup to limit the number of paths from the host to the LUN.

- By default, ONTAP uses Selective LUN Map (SLM) to make the LUN accessible only through paths on the node owning the LUN and its HA partner.
- You still must configure all of the iSCSI LIFs on every node for LUN mobility in case the LUN is moved to another node in the cluster.
- When moving a volume or a LUN, you must modify the SLM-reporting-nodes list before moving.

**Steps**

1. Navigate to the **SVMs** window.
2. Click **Create**.
3. In the **Storage Virtual Machine (SVM) Setup** window, create the SVM:

   ![Storage Virtual Machine (SVM) Setup](image)

   **SVM Details**

   - Specify a unique name and the data protocols for the SVM
     - **SVM Name:** `vsl.example.com`
     - **IPspace:** `Default`
     - **Data Protocols:** `CIFS` (Checked), `NFS` (Checked), `iSCSI` (Checked), `FC/FCoE`, `NVMe`
     - **Default Language:** `en-US`
     - **Security Style:** `NTFS`
     - **Root Aggregate:** `data_CTL_aggr`

   a. Specify a unique name for the SVM.
      The name must either be a fully qualified domain name (FQDN) or follow another convention that ensures unique names across a cluster.
   b. Select the IPspace that the SVM will belong to.
      If the cluster does not use multiple IPspaces, the “Default” IPspace is used.
   c. Keep the default volume type selection.
      Only FlexVol volumes are supported with SAN protocols.
d. Select all of the protocols that you have licenses for and that you might use on the SVM, even if you do not want to configure all of the protocols immediately.

Selecting both NFS and CIFS when you create the SVM enables these two protocols to share the same LIFs. Adding these protocols later does not allow them to share LIFs.

If CIFS is one of the protocols you selected, then the security style is set to NTFS. Otherwise, the security style is set to UNIX.

e. Keep the default language setting C.UTF-8.

f. Select the desired root aggregate to contain the SVM root volume.

The aggregate for the data volume is selected separately in a later step.

g. Click **Submit & Continue**.

The SVM is created, but protocols are not yet configured.

4. If the **Configure CIFS/NFS protocol** page appears because you enabled CIFS or NFS, click **Skip** and then configure CIFS or NFS later.

5. Configure the iSCSI service and create LIFs, and the LUN and its containing volume from the **Configure iSCSI protocol** page:

a. Optional: Enter a target alias name.

b. Assign IP address for the LIFs either by using a subnet or without a subnet.

c. Enter 2 in the **LIFs per node** field.

   Two LIFs are required for each node to ensure availability and data mobility.

d. In the **Provision a LUN for iSCSI storage** area, enter the desired LUN size, host type, and iSCSI initiator name of the host.

e. Click **Submit & Continue**.

Example

**Configure iSCSI protocol**

- **Target Alias:** vs1_alias
- **LIFs Per Node:** 2
- **Assign IP Address:** Without a subnet
- **Broadcast Domain:** Default
- **Adapter Type:** NIC

**Provision a LUN for iSCSI storage (Optional):**
- **LUN Size:** 50 GB
- **LUN OS Type:** Windows 2008 or later
- **Host Initiator:** iqn.2001-04.com.example:si

6. If the **Configure FC/FCoE protocol** page appears because you enabled FC, click **Skip** and then configure FC later.
7. When the **SVM Administration** appears, configure or defer configuring a separate administrator for this SVM:
   - Click **Skip** and configure an administrator later if desired.
   - Enter the requested information, and then click **Submit & Continue**.

8. Review the **Summary** page, record the LIF information, and then click **OK**.

**Starting iSCSI sessions with the target**

The Windows host must have an iSCSI connection to each node in the cluster. You establish the sessions from the host by using the iSCSI Initiator Properties dialog box on the host.

**Before you begin**

You must know the IP address of an iSCSI data LIF on the storage virtual machine (SVM) that contains the LUN you are accessing.

**About this task**

In ONTAP, the iSCSI host must have paths to each node in the cluster. The Data ONTAP DSM selects the best paths to use. If paths fail, the Data ONTAP DSM selects alternate paths.

The buttons and labels in the iSCSI Initiator Properties dialog box vary between versions of Windows. Some of the steps in the task include more than one button or label name; you should pick the name that matches the version of Windows you are using.

**Steps**

1. Open the **iSCSI Initiator Properties** dialog box:

<table>
<thead>
<tr>
<th>For...</th>
<th>Click...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2012</td>
<td>Server Manager &gt; Dashboard &gt; Tools &gt; iSCSI Initiator</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>Start &gt; Administrative Tools &gt; iSCSI Initiator</td>
</tr>
</tbody>
</table>

2. On the **Discovery** tab, click **Discover Portal** or **Add Portal**, and then enter the IP address of the iSCSI target port.

3. On the **Targets** tab, select the target you discovered, and then click **Log on** or **Connect**.

4. Select **Enable multi-path**, select **Automatically restore this connection when the computer starts** or **Add this connection to the list of Favorite Targets**, and then click **Advanced**.

5. For **Local adapter**, select **Microsoft iSCSI Initiator**.
   
   The following example is from Windows Server 2008:
6. For **Source IP** or **Initiator IP**, select the IP address of a port on the same subnet or VLAN as one of the iSCSI target LIFs.

7. Retain the default values for the remaining check boxes, and then click **OK**.

8. On the **Targets** tab, select the same target again, and then click **Log on** or **Connect**.

9. Select **Enable multi-path**, select **Automatically restore this connection when the computer starts** or **Add this connection to the list of Favorite Targets**, and then click **Advanced**.

10. For **Source IP** or **Initiator IP**, select the IP address of a different port on the subnet or VLAN of a different iSCSI target LIF.

11. For **Target portal**, select the IP address of the iSCSI target LIF that corresponds to the port you just selected for **Source IP**.

12. Retain the default values for the remaining check boxes, and then click **OK**.

13. Repeat steps 8 through 12 to connect to each target LIF that is available.

### Discovering new disks

LUNs on your storage virtual machine (SVM) appear as disks to the Windows host. Any new disks for LUNs you add to your system are not automatically discovered by the host. You must manually rescan disks to discover them.

**Steps**

1. Open the Windows Computer Management utility:

<table>
<thead>
<tr>
<th>If you are using...</th>
<th>Navigate to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2012</td>
<td>Tools &gt; Computer Management</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>Start &gt; Administrative Tools &gt; Computer Management</td>
</tr>
<tr>
<td>If you are using...</td>
<td>Navigate to...</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Windows Server 2016</td>
<td>Start &gt; Administrative Tools &gt; Computer Management</td>
</tr>
</tbody>
</table>

2. Expand the **Storage** node in the navigation tree.
3. Click **Disk Management**.
4. Click **Action > Rescan Disks**.

### Initializing and formatting the LUN

When a new LUN is first accessed by the Windows host, it has no partition or file system. You must initialize the LUN, and optionally format it with a file system.

**Before you begin**

The LUN must have been discovered by the Windows host.

**About this task**

LUNs appear in Windows Disk Management as disks.

You can initialize the disk as a basic disk with a GPT or MBR partition table.

You typically format the LUN with a file system such as NTFS, but some applications use raw disks instead.

**Steps**

2. Right-click the LUN, and then select the required disk or partition type.
3. Follow the instructions in the wizard.

   If you choose to format the LUN as NTFS, you must select the **Perform a quick format** check box.

### Verifying that the host can write to and read from the LUN

Before using the LUN, you should verify that the host can write data to the LUN and read it back.

**Before you begin**

The LUN must be initialized and formatted with a file system.

**About this task**

If the storage cluster node on which the LUN is created can be failed over to its partner node, you should verify reading the data while the node is failed over. This test might not be possible if the storage cluster is in production use.

If any of the tests fail, you should verify that the iSCSI service is running and check the iSCSI paths to the LUN.

**Steps**

1. On the host, copy one or more files to the LUN.
2. Copy the files back to a different folder on the original disk.

3. Compare the copied files to the original.
   You can use the `comp` command at the Windows command prompt to compare two files.

4. Optional: Fail over the storage cluster node containing the LUN and verify that you can still access the files on the LUN.

5. Use the Data ONTAP DSM to view the paths to the LUN and verify that you have the expected number of paths.
   You should see two paths to the storage cluster node on which the LUN is created, and two paths to the partner node.
Where to find additional information

There are additional documents to help you learn more about iSCSI configuration.

All of the following documentation is available:

- **SAN configuration**
  Describes supported FC, iSCSI, and FCoE topologies for connecting host computers to storage controllers in clusters.

- **SAN administration**
  Describes how to configure and manage the iSCSI, FCoE, and FC protocols for clustered SAN environments, including configuration of LUNs, igroups, and targets.

- **Data ONTAP DSM 4.1 For Windows MPIO Installation and Administration Guide**
  Describes how to install and use the Data ONTAP DSM for Windows MPIO software.

**Microsoft documentation**

Documentation about the Microsoft iSCSI software initiator is available directly from Microsoft.

- **Microsoft iSCSI Software Initiator Version 2.X Users Guide**
  Describes the Microsoft iSCSI software initiator for Windows Server 2008. It is included with the iSCSI software initiator download files.

- **Microsoft iSCSI Initiator Overview**
  Online Help for the Windows Server 2012 iSCSI initiator (available from within the initiator). Describes the software initiator and includes links to the Microsoft web site for further information.

**Related information**

*Microsoft*
Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).
Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

How to send comments about documentation and receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

- NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
- Telephone: +1 (408) 822-6000
- Fax: +1 (408) 822-4501
- Support telephone: +1 (888) 463-8277
Index

A
additional information
  where to find iSCSI configuration 20
aggregates
  creating new when provisioning a volume 9

C
clusters
  starting iSCSI sessions with 16
comments
  how to send feedback about documentation 23
configuration
  iSCSI workflow 5
  where to find information about iSCSI 20
configuring
  iSCSI on existing SVMs 12
  iSCSI worksheet for 6

D
Data ONTAP DSM for Windows MPIO
  installing on Windows host 8
discovering
  new disks 17
disks
  discovering new 17
  initializing and formatting 18
documentation
  how to receive automatic notification of changes to 23
  how to send feedback about 23
DSM
  installing Data ONTAP DSM on Windows host 8

F
feedback
  how to send comments about documentation 23
file system
  creating for new LUN 18
flowcharts
  iSCSI configuration and provisioning 5
formatting
  a new LUN 18

H
hosts
  verifying writing to and reading from LUNs 18
hotfixes
  required for ONTAP DSM 5

I
igroups
  creating and mapping the LUN to 11
information
  how to send feedback about improving documentation 23
  where to find additional iSCSI configuration 20
initiator node names
  recording for iSCSI 8
initiators
  starting sessions with targets 16
Interoperability Matrix
  verifying supported iSCSI configurations using 5
IQN
iSCSI configuration worksheet for 6
iSCSI
  configuration and provisioning workflow 5
  configuration worksheet for 6
  configuring on existing SVMs 12
  connecting initiators to targets 16
  deciding whether to use SCSI Configuration and Provisioning Express Guide to provide LUNs to Windows servers 4
  recording the initiator node name 8
  starting sessions with targets 16
  verifying that configuration is supported 5
  where to find additional information about configuring 20
iSCSI service
  verifying it is running on an SVM 10
iSCSI targets
  creating as part of configuring SVMs 12
  creating as part of creating SVMs 13

L
LIFs
  creating as part of configuring SVMs 12
  creating as part of creating SVMs 13
LUNs
  creating using the wizard 11
  deciding to use the iSCSI Configuration and Provisioning Express Guide to provide to Windows servers 4
  deciding where to provision the containing volume on a new or existing SVM 10
  discovering new 17
  initializing and formatting 18
  mapping to an igroup 11
  verifying host can write to and read from 18

M
MPIO
  installing Data ONTAP DSM to support 8
multipath I/O
  See MPIO

N
network addresses
iSCSI configuration worksheet for 6
nodes
starting iSCSI sessions with 16

creating iSCSI as part of configuring SVMs 12
creating iSCSI as part of creating SVMs 13
starting iSCSI sessions with 16

Twitter
how to receive automatic notification of
documentation changes 23

virtual disks
discovering new 17
initializing and formatting 18

volumes
creating new aggregates to provide physical storage 9
deciding whether to provision on a new or existing SVM 10

Windows hosts
hotfixes required for ONTAP DSM 5
installing Data ONTAP DSM for Windows MPIO 8
starting iSCSI sessions with targets 16
verifying supported iSCSI configurations 5

wizards
using to create LUNs 11

workflows
iSCSI configuration and provisioning 5

worksheets

write/read
verifying host can write to and read from LUNs 18

targets