FC Configuration for Red Hat®
Enterprise Linux® Express Guide

December 2017 | 215-11191_E0
doccomments@netapp.com
Updated for ONTAP 9.3
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciding whether to use this guide</td>
<td>4</td>
</tr>
<tr>
<td>FC configuration and provisioning workflow</td>
<td>5</td>
</tr>
<tr>
<td>Verifying that the FC configuration is supported</td>
<td>5</td>
</tr>
<tr>
<td>Completing the FC configuration worksheet</td>
<td>6</td>
</tr>
<tr>
<td>Installing the HBA utility from the HBA vendor</td>
<td>8</td>
</tr>
<tr>
<td>Updating the HBA driver, firmware, and BIOS</td>
<td>8</td>
</tr>
<tr>
<td>Installing Linux Unified Host Utilities and optimizing I/O performance</td>
<td>9</td>
</tr>
<tr>
<td>Recording the WWPN for each host FC port</td>
<td>9</td>
</tr>
<tr>
<td>Configuring DM-Multipath</td>
<td>11</td>
</tr>
<tr>
<td>Creating an aggregate</td>
<td>12</td>
</tr>
<tr>
<td>Deciding where to provision the volume</td>
<td>13</td>
</tr>
<tr>
<td>Verifying that the FC service is running on an existing SVM</td>
<td>13</td>
</tr>
<tr>
<td>Creating a LUN</td>
<td>14</td>
</tr>
<tr>
<td>Configuring FC on an existing SVM</td>
<td>15</td>
</tr>
<tr>
<td>Creating a new SVM</td>
<td>16</td>
</tr>
<tr>
<td>Zoning the FC switches by the host and LIF WWPNs</td>
<td>18</td>
</tr>
<tr>
<td>Discovering new SCSI devices (LUNs) and multipath devices</td>
<td>19</td>
</tr>
<tr>
<td>Configuring logical volumes on multipath devices and creating a file system</td>
<td>20</td>
</tr>
<tr>
<td>Verifying that the host can write to and read from a multipath device</td>
<td>21</td>
</tr>
<tr>
<td>Where to find additional information</td>
<td>23</td>
</tr>
<tr>
<td>Copyright information</td>
<td>24</td>
</tr>
<tr>
<td>Trademark information</td>
<td>25</td>
</tr>
<tr>
<td>How to send comments about documentation and receive update notifications</td>
<td>26</td>
</tr>
<tr>
<td>Index</td>
<td>27</td>
</tr>
</tbody>
</table>
This guide describes how to quickly set up the FC service on a Storage Virtual Machine (SVM), provision a LUN, and make the LUN available using an FC host bus adapter (HBA) on a Red Hat Enterprise Linux server.

This guide is based on the following assumptions:

- You want to use best practices, not explore every available option.
- You do not want to read a lot of conceptual background.
- You want to use OnCommand System Manager, not the ONTAP command-line interface or an automated scripting tool.

The UI navigation in OnCommand System Manager 9.3 is different from the UI navigation in previous releases. This guide provides the common steps that you must perform for completing a task in any ONTAP 9 release. If you want the exact steps for navigating to a particular screen or window, you should view the OnCommand System Manager Online Help for your version of ONTAP.

Cluster management using System Manager

- The host is running a supported version of Red Hat Enterprise Linux 6.4 or later.
- You are using traditional FC HBAs and switches.
- This guide does not cover Fibre Channel over Ethernet (FCoE).
- You have at least two FC target ports available on each node in the cluster.
- Onboard FC and UTA2 (also called “CNA”) ports, as well as some adapters, are configurable. Configuring those ports is done in the ONTAP command-line interface (CLI) and is not covered in this guide.
- You are not configuring FC SAN boot.

If these assumptions are not correct for your situation, you should see the following resources:

- SAN administration
- SAN configuration
- *Linux Unified Host Utilities 7.1 Installation Guide*
- *NetApp Documentation: OnCommand Workflow Automation (current releases)*

OnCommand Workflow Automation enables you to run prepackaged workflows that automate management tasks such as the workflows described in Express Guides.
FC configuration and provisioning workflow

When you make storage available to a host using FC, you provision a volume and LUN on the Storage Virtual Machine (SVM), and then connect to the LUN from the host.

Verifying that the FC configuration is supported

For reliable operation, you must verify that the entire FC configuration is supported.

Steps

1. Go to the Interoperability Matrix to verify that you have a supported combination of the following components:
 - ONTAP software
- Host computer CPU architecture (for standard rack servers)
- Specific processor blade model (for blade servers)
- FC host bus adapter (HBA) model and driver, firmware, and BIOS versions
- Storage protocol (FC)
- Linux operating system version
- DM-Multipath package
- Linux Unified Host Utilities

2. Click the configuration name for the selected configuration. Details for that configuration are displayed in the Configuration Details window.

3. Review the information in the following tabs:
 - Notes
 Lists important alerts and information that are specific to your configuration. Review the alerts to identify the packages that are required for your operating system.
 - Policies and Guidelines
 Provides general guidelines for all SAN configurations.

Completing the FC configuration worksheet

You require FC initiator and target WWPNs and storage configuration information to perform FC configuration tasks.

FC host WWPNs

<table>
<thead>
<tr>
<th>Port</th>
<th>WWPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator (host) port connected to FC switch 1</td>
<td></td>
</tr>
<tr>
<td>Initiator (host) port connected to FC switch 2</td>
<td></td>
</tr>
</tbody>
</table>

FC target WWPNs

You require two FC data LIFs for each node in the cluster. The WWPNs are assigned by ONTAP when you create the LIFs as part of creating the Storage Virtual Machine (SVM).
LIF	WWPN
Node 1 LIF with port connected to FC switch 1
Node 2 LIF with port connected to FC switch 1
Node 3 LIF with port connected to FC switch 1
Node 4 LIF with port connected to FC switch 1
Node 1 LIF with port connected to FC switch 2
Node 2 LIF with port connected to FC switch 2
Node 3 LIF with port connected to FC switch 2
Node 4 LIF with port connected to FC switch 2

Storage configuration
If the aggregate and SVM are already created, record their names here; otherwise, you can create them as required:

<table>
<thead>
<tr>
<th>Node to own LUN</th>
<th>Aggregate name</th>
<th>SVM name</th>
</tr>
</thead>
</table>

LUN information

<table>
<thead>
<tr>
<th>LUN size</th>
<th>LUN name (optional)</th>
<th>LUN description (optional)</th>
</tr>
</thead>
</table>

SVM information
If you are not using an existing SVM, you require the following information to create a new one:

| SVM name | SVM IPspace | Aggregate for SVM root volume | SVM user name (optional) | SVM password (optional) | SVM management LIF (optional) | Subnet: | IP address: | Network mask: | Gateway: | Home node: | Home port: |
Installing the HBA utility from the HBA vendor

The HBA utility enables you to view the worldwide port name (WWPN) of each FC port. The utility is also useful for troubleshooting FC issues.

About this task

Each HBA vendor offers an HBA utility for their FC HBAs. You must download the correct version for your host operating system and CPU.

The following is a partial list of HBA utilities:

- Emulex OneCommand Manager for Emulex HBAs
- QLogic QConvergeConsole for QLogic HBAs

Steps

1. Download the appropriate utility from your HBA vendor's web site.
2. Run the installation program and follow the prompts to complete the installation.

Related information

- Emulex Downloads and Documentation
- QLogic: NetApp Downloads

Updating the HBA driver, firmware, and BIOS

If the FC host bus adapters (HBAs) in the Linux host are not running supported driver, firmware, and BIOS versions, you must update them.

Before you begin

You must have identified the supported driver, firmware, and BIOS versions for your configuration from the Interoperability Matrix tool.

NetApp Interoperability Matrix Tool

About this task

Drivers, firmware, BIOS, and HBA utilities are provided by the HBA vendors.

Steps

1. List the installed HBA driver, firmware, and BIOS versions by using the HBA utility from your HBA vendor.
2. Download and install the new driver, firmware, and BIOS as needed from the HBA vendor's support site.
 Installation instructions and any required installation utilities are available with the download.
Installing Linux Unified Host Utilities and optimizing I/O performance

Linux Unified Host Utilities software includes the `sanlun` utility, a NetApp LUN reporting tool that you can use to display information about storage cluster nodes and Host Bus Adapters (HBAs) that are on the Linux host. You must also enable the correct server profile on the Linux host to optimize NetApp storage performance.

Before you begin

You must have identified the supported Linux Unified Host Utilities version for your configuration by using the Interoperability Matrix. You must also have the `tuned` package, which is part of your Linux OS distribution and contains the `tuned-adm` command, which you use to set the server profile on the host.

Steps

1. Download the supported Linux Unified Host Utilities version from the NetApp Support Site.

 NetApp Downloads: Software

2. Install Linux Unified Host Utilities software by following the instructions in the installation documentation.

3. If the `tuned` package is not installed, enter the following command:

 `yum install tuned`

4. For a physical host, ensure that you have set the `enterprise-storage` profile:

 `tuned-adm profile enterprise-storage`

5. For a virtual host, ensure that you have set the `virtual-guest` profile:

 `tuned-adm profile virtual-guest`

 Linux Unified Host Utilities 7.1 Installation Guide

Recording the WWPN for each host FC port

The worldwide port name (WWPN) is required to zone the FC switches and to create the igroups that allow the host to access its LUN.

Before you begin

You must have installed the vendor’s HBA utility for the HBAs in your host and verified HBAs are running supported driver, firmware, and BIOS versions for your configuration.

About this task

The WWPN is used for all configuration. You do not have to record the worldwide node name (WWNN).

Steps

1. Run the HBA utility for your FC HBA type.

2. Select the HBA.
3. Record the WWPN of each port.

Example

The following example shows Emulex OneCommand Manager.

Other utilities, such as QLogic QConvergeConsole, provide the equivalent information.

4. Repeat the previous step for each FC HBA in the host.

In Linux, you can also obtain the WWPN by running the `sanlun` utility.

Example

The following example shows output from the `sanlun` command.

```
# sanlun fcp show adapter -v

adapter name: host0
WWPN: 10000000c9813a14
WWNN: 20000000c9813a14
driver name: lpfc
model: LPe12002-M8
model description: Emulex LPe12002-M8 8Gb 2-port PCIe Fibre Channel Adapter
serial number: VM84364896
hardware version: 31004549
driver version: 8.3.7.34.3p; HBAAPI(I) v2.3.b, 07-12-10
firmware version: 2.01A12 (U3D2.01A12)
Number of ports: 1
port type: Fabric
port state: Operational
supported speed: 2 GBit/sec, 4 GBit/sec, 8 GBit/sec
negotiated speed: 8 GBit/sec
OS device name: /sys/class/scsi_host/host0

adapter name: host5
WWPN: 10000000c9813a15
WWNN: 20000000c9813a15
driver name: lpfc
model: LPe12002-M8
model description: Emulex LPe12002-M8 8Gb 2-port PCIe Fibre Channel Adapter
serial number: VM84364896
hardware version: 31004549
driver version: 8.3.7.34.3p; HBAAPI(I) v2.3.b, 07-12-10
firmware version: 2.01A12 (U3D2.01A12)
Number of ports: 1
port type: Fabric
```
Configuring DM-Multipath

DM-Multipath manages multiple paths between the Linux host and the storage cluster. Configuring DM-Multipath on a LUN, which appears to the Linux host as a SCSI device, enables your Linux host to access its LUN on the storage cluster if a path or component fails.

Before you begin

You must have identified the required version of DM-Multipath from the Interoperability Matrix tool.

NetApp Interoperability Matrix Tool

Steps

1. Edit the /etc/multipath.conf file as follows:

a. Determine whether there are non-NetApp SCSI devices to exclude (blacklist).
 These are devices that are not displayed when you enter the `sanlun lun show` command.

 • If there are non-NetApp SCSI devices to exclude, enter the WWID for the devices in the blacklist section of the `multipath.conf` file.

 To display the WWID of a non-NetApp SCSI device, enter the following command on the device that you want to exclude, where `$SCSI_device_name` is a device that you specify:

   ```sh
   /lib/udev/scsi_id -gud /dev/$SCSI_device_name
   ```

 For example, if `/dev/sda` is the non-NetApp SCSI device that you want to exclude, you would enter the following:

   ```sh
   /lib/udev/scsi_id -gud /dev/sda
   ```

 This displays the WWID of the device, which you can copy and paste in the `multipath.conf` file.

 Example

 In the following example showing the blacklist section of the `multipath.conf` file, the non-NetApp SCSI device with WWID `3600508e000000000753250f933cc4606` is excluded:

   ```conf
   blacklist {
     wwid       3600508e000000000753250f933cc4606
     devnode    "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode    "^hd[a-z]"
     devnode     "^cciss.*"
   }
   ```

 • If there are no devices to exclude, remove the `wwid` line from the `multipath.conf` file.

 b. Enable NetApp recommended DM-Multipath settings by appending the following string to the end of the kernel line in the boot loader:

   ```sh
   rdloaddriver=scsi_dh_alua
   ```

2. Start the DM-Multipath daemon:

   ```sh
   /etc/init.d/multipathd start
   ```
3. Add the multipath service to the boot sequence so that the multipath daemon always starts during system boot:

   ```plaintext
   chkconfig multipathd on
   ```

4. Reboot the Linux host.

5. Verify that the `rdloaddriver` setting appears in the output when you run `cat /proc/cmdline`.

 The `rdloaddriver` setting appears as one of several boot options that are passed to the kernel:

   ```plaintext
   # cat /proc/cmdline
   ro root=/dev/mapper/vg_ibmx3650210104-lv_root rd_NO_LUKS
   LANG=en_US.UTF-8 rd_NO_MD rd_LVM_LV=vg_ibmx3650210104/lv_root
   SYSFONT=latarcyrheb-sun16 rd_LVM_LV=vg_ibmx3650210104/lv_swap
   crashkernel=129M@0M KEYBOARDTYPE=pc KEYTABLE=us rd_NO_DM rhgb quiet
   rdloaddriver=scsi_dh_alua
   ```

Creating an aggregate

If you do not want to use an existing aggregate, you can create a new aggregate to provide physical storage to the volume which you are provisioning.

Steps

1. Enter the URL `https://IP-address-of-cluster-management-LIF` in a web browser and log in to System Manager using your cluster administrator credential.

2. Navigate to the **Aggregates** window.

3. Click **Create**.

4. Follow the instructions on the screen to create the aggregate using the default RAID-DP configuration, and then click **Create**.

Result

The aggregate is created with the specified configuration and added to the list of aggregates in the Aggregates window.
Deciding where to provision the volume

Before you provision a volume to contain your LUNs, you need to decide whether to add the volume to an existing Storage Virtual Machine (SVM) or to create a new SVM for the volume. You might also need to configure FC on an existing SVM.

About this task

If an existing SVM is already configured with the needed protocols and has LIFs that can be accessed from the host, it is easier to use the existing SVM.

You can create a new SVM to separate data or administration from other users of the storage cluster. There is no advantage to using separate SVMs just to separate different protocols.

Choices

- If you want to provision volumes on an SVM that is already configured for FC, you must verify that the FC service is running and then create a LUN on the SVM.

 Verifying that the FC service is running on an existing SVM

 Creating a LUN

- If you want to provision volumes on an existing SVM that has FC enabled but not configured, configure iSCSI on the existing SVM.

 Configuring FC on an existing SVM

 This is the case when you followed another Express Guide to create the SVM while configuring a different protocol.

- If you want to provision volumes on a new SVM, create the SVM.

 Creating a new SVM

Verifying that the FC service is running on an existing SVM

If you choose to use an existing Storage Virtual Machine (SVM), you must verify that the FC service is running on the SVM by using OnCommand System Manager. You must also verify that FC logical interfaces (LIFs) are already created.

Before you begin

You must have selected an existing SVM on which you plan to create a new LUN.

Steps

1. Navigate to the SVMs window.
2. Click the SVM Settings tab.
3. In the Protocols pane, click FC/FCoE.
4. Verify that the FC service is running.
If the FC service is not running, start the FC service or create a new SVM.

5. Verify that there are at least two FC LIFs listed for each node.
 If there are fewer than two FC LIFs per node, update the FC configuration on the SVM or create a new SVM for FC.

Creating a LUN

You use the Create LUN wizard to create a LUN. The wizard also creates the igroup and maps the LUN to the igroup, which enables the specified host to access the LUN.

Before you begin

- There must be an aggregate with enough free space to contain the LUN.
- There must be a Storage Virtual Machine (SVM) with the FC protocol enabled and the appropriate logical interfaces (LIFs) created.
- You must have recorded the worldwide port names (WWPNs) of the host FC ports.

About this task

If your organization has a naming convention, you should use names for the LUN, volume, and so on that fit your convention. Otherwise, you should accept the default names.

Steps

1. Navigate to the LUNs window.

2. Click Create.

3. Browse and select an SVM in which you want to create the LUNs.
 The Create LUN Wizard is displayed.

4. On the General Properties page, select the LUN type Linux for LUNs used directly by the Linux host.
 Leave the Thin Provisioned check box unselected.
5. On the LUN Container page, select an existing FlexVol volume. You must ensure that there is enough space in the volume. If sufficient space is not available in the existing volumes, you can create a new volume.

6. On the Initiators Mapping page, click Add Initiator Group, enter the required information on the General tab, and then on the Initiators tab, enter all the WWPNs of the host FC ports that you recorded.

7. Confirm the details, and then click Finish to complete the wizard.

Related information

System administration

Configuring FC on an existing SVM

You can configure FC on an existing Storage Virtual Machine (SVM) and create a LUN and its containing volume with a single wizard. The FC protocol must already be enabled but not configured on the SVM. This information is intended for SVMs for which you are configuring multiple protocols, but have not yet configured FC.

Before you begin

Your FC fabric must be configured and the desired physical ports must be connected to the fabric.

Steps

1. Navigate to the SVMs window.

2. Select the SVM that you want to configure.

3. In the SVM Details pane, verify that FC/FCoE is displayed with a gray background, which indicates that the protocol is enabled but not fully configured.

 If FC/FCoE is displayed with a green background, the SVM is already configured.

4. Click the FC/FCoE protocol link with the gray background.

 The Configure FC/FCoE Protocol window is displayed.

5. Configure the FC service and LIFs from the Configure FC/FCoE protocol page:

 a. Select the Configure Data LIFs for FC check box.

 b. Enter 2 in the LIFs per node field.

 Two LIFs are required for each node, to ensure availability and data mobility.
c. Click **Submit & Close**.

Example

Configure FC/FCoE protocol

Data interface (LIF) Configuration

Both FC and FCoE enabled hardware found. Click on the appropriate checkbox to configure the FC and/or FCoE LIFs.

- [] Configure Data LIFs for FC
- [] Configure Data LIFs for FCoE

6. Review the **Summary** page, record the LIF information, and then click **OK**.

Creating a new SVM

The Storage Virtual Machine (SVM) provides the FC target through which a host accesses LUNs. When you create the SVM, you also create logical interfaces (LIFs) and the LUN and its containing volume. You can create an SVM to separate the data and administration functions of a user from those of the other users in a cluster.

Before you begin

- Your FC fabric must be configured and the desired physical ports must be connected to the fabric.

Steps

1. Navigate to the SVMs window.
2. Click **Create**.
3. In the **Storage Virtual Machine (SVM) Setup** window, create the SVM:
a. Specify a unique name for the SVM.
 The name must either be a fully qualified domain name (FQDN) or follow another convention
 that ensures unique names across a cluster.

b. Select the IPspace that the SVM will belong to.
 If the cluster does not use multiple IPspaces, the “Default” IPspace is used.

c. Keep the default volume type selection.
 Only FlexVol volumes are supported with SAN protocols.

d. Select all of the protocols that you have licenses for and that you might use on the SVM, even
 if you do not want to configure all of the protocols immediately.
 Selecting both NFS and CIFS when you create the SVM enables these two protocols to share
 the same LIFs. Adding these protocols later does not allow them to share LIFs.
 If CIFS is one of the protocols you selected, then the security style is set to NTFS. Otherwise,
 the security style is set to UNIX.

e. Keep the default language setting C.UTF-8.

f. Select the desired root aggregate to contain the SVM root volume.
 The aggregate for the data volume is selected separately in a later step.

g. Click Submit & Continue.
 The SVM is created, but protocols are not yet configured.

4. If the Configure CIFS/NFS protocol page appears because you enabled CIFS or NFS, click Skip
 and then configure CIFS or NFS later.

5. If the Configure iSCSI protocol page appears because you enabled iSCSI, click Skip and then
 configure iSCSI later.
6. Configure the FC service and create LIFs, and the LUN and its containing volume from the Configure FC/FCoE protocol page:
 a. Select the Configure Data LIFs for FC check box.
 b. Enter 2 in the LIFs per node field.
 Two LIFs are required for each node to ensure availability and data mobility.
 c. In the Provision a LUN for FCP storage area, enter the desired LUN size, host type, and WWPNs of the host initiators.
 d. Click Submit & Continue.

Example

![Configure FC/FCoE protocol](image)

7. When the SVM Administration appears, configure or defer configuring a separate administrator for this SVM:
 • Click Skip and configure an administrator later if desired.
 • Enter the requested information, and then click Submit & Continue.

8. Review the Summary page, record the LIF information, and then click OK.

Zoning the FC switches by the host and LIF WWPNs

Zoning the FC switches enables the hosts to connect to the storage and limits the number of paths. You zone the switches using the management interface of the switches.

Before you begin

- You must have administrator credentials for the switches.
- You must know the WWPN of each host initiator port and of each FC LIF for the Storage Virtual Machine (SVM) in which you created the LUN.

About this task

For details about zoning your switches, see the switch vendor’s documentation.

You must zone by WWPN, not by physical port. Each initiator port must be in a separate zone with all of its corresponding target ports.
LUNs are mapped to a subset of the initiators in the igroup to limit the number of paths from the host to the LUN.

- By default, ONTAP uses Selective LUN Map to make the LUN accessible only through paths on the node owning the LUN and its HA partner.
- You still must zone all of the FC LIFs on every node for LUN mobility in case the LUN is moved to another node in the cluster.
- When moving a volume or a LUN, you must modify the Selective LUN Map reporting-nodes list before moving.

The following illustration shows a host connected to a four-node cluster. There are two zones, one zone indicated by the solid lines and one zone indicated by the dashed lines. Each zone contains one initiator from the host and a LIF from each storage node.

You must use the WWPNs of the target LIFs, not the WWPNs of the physical FC ports on the storage nodes. The LIF WWPNs are all in the range `2x:xx:00:a0:98:xx:xx:xx`, where `x` is any hexadecimal digit. The physical port WWPNs are all in the range `50:0a:09:8x:xx:xx:xx:xx`.

Steps

1. Log in to the FC switch administration program, and then select the zoning configuration option.
2. Create a new zone that includes the first initiator and all of the FC LIFs that connect to the same FC switch as the initiator.
3. Create additional zones for each FC initiator in the host.
4. Save the zones, and then activate the new zoning configuration.

Discovering new SCSI devices (LUNs) and multipath devices

LUNs on the storage cluster appear to the Linux host as SCSI devices, which are I/O paths that DM-Multipath aggregates into a new device, called a multipath device. The host does not automatically
discover new SCSI devices (LUNs) that you add to your system. You must manually rescan them to
discover them.

Before you begin
You must have a copy of the rescan script, which is in the sg3-utils package that is part of your
Linux OS distribution.

Steps
1. Discover new SCSI devices (LUNs) and create the corresponding multipath devices for the
LUNs:

 /usr/bin/rescan-scsi-bus.sh

2. Verify DM-Multipath configuration:

 multipath -ll

Example
This displays the following type of output, listing the recommended settings for each NetApp
LUN:

```
3600a0980324666546e2b44325165177 dm-2 NETAPP,LUN C-Mode
size=10G features='4 queue_if_no_path pg_init_retries 50
retain_attached_hw_handle' hwhandler='1 alua' wp=rw
  +-- policy='round-robin 0' prio=50 status=active
    - 0:0:1:0 sdb 8:16 active ready running
    - 0:0:0:0 sda 8:0 active ready running
    - 1:0:0:0 sde 8:64 active ready running
    - 1:0:1:0 sdf 8:80 active ready running
  `-+- policy='round-robin 0' prio=10 status=enabled
    - 0:0:3:0 sdd 8:48 active ready running
    - 1:0:3:0 sdh 8:112 active ready running
    - 0:0:2:0 sdc 8:32 active ready running
    `- 1:0:2:0 sdg 8:96 active ready running
```

Configuring logical volumes on multipath devices and creating a file system

When the Linux host first accesses a new SCSI device (LUN), there is no partition or file system. If
you want to use a partitioned multipath device, you must first partition the underlying SCSI devices.
You might also want to create logical volumes on multipath devices, and optionally create a file
system.

Before you begin
SCSI devices and corresponding multipath devices must have been discovered by the Linux host.

About this task
At a minimum DM-Multipath should be configured on the SCSI devices. Any configuration beyond
DM-Multipath is optional. The following steps are general guidelines if you wish to perform
additional configuration, such as partitioning, configuring logical volumes on multipath devices, and
creating a file system. For details on Linux commands, refer to Red Hat Enterprise Linux
documentation and man pages.
Steps
1. To use a partitioned multipath device, first partition the underlying SCSI devices using the fdisk or parted utility.
2. Create corresponding multipath partitions using the kpartx utility.
3. Create logical volumes on corresponding multipath devices using Logical Volume Manager (LVM) commands.
4. Create a file system, such as Ext4 or XFS, on logical volumes or multipath devices using the mkfs utility.

Verifying that the host can write to and read from a multipath device

Before using a multipath device, you should verify that the host can write data to the multipath device and read it back.

Before you begin
DM-Multipath must be configured on the Linux host for the storage cluster nodes you are accessing.

About this task
If the storage cluster node that the multipath device corresponds to can be failed over to its partner node, you should verify reading the data while the node is failed over. This verification might not be possible if the storage cluster is in production use.

Steps
1. Run some I/O on the specified multipath device:

 `dd if=/dev/zero of=<multipath_device_name>`

2. Verify that I/O is running on the multipath device, specifying the number of seconds to refresh statistics (for example, every two seconds, as shown):

 `iostat 2`

Example

When I/O is running on the multipath device, you can see the various I/O counters output change dynamically, indicating that I/O is running successfully on the multipath device.

<table>
<thead>
<tr>
<th>Device</th>
<th>tps</th>
<th>Blk_read/s</th>
<th>Blk_wrtn/s</th>
<th>Blk_read</th>
<th>Blk_wrtn</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>0.18</td>
<td>1.34</td>
<td>2.29</td>
<td>832606</td>
<td>1428026</td>
</tr>
<tr>
<td>dm-0</td>
<td>0.37</td>
<td>1.29</td>
<td>2.29</td>
<td>801530</td>
<td>1427984</td>
</tr>
<tr>
<td>dm-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2576</td>
<td>0</td>
</tr>
<tr>
<td>dm-2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1770</td>
<td>24</td>
</tr>
<tr>
<td>sdd</td>
<td>0.17</td>
<td>1.18</td>
<td>17.87</td>
<td>734688</td>
<td>11128584</td>
</tr>
<tr>
<td>sde</td>
<td>0.17</td>
<td>1.18</td>
<td>18.01</td>
<td>734560</td>
<td>11219016</td>
</tr>
<tr>
<td>sdf</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1344</td>
<td>0</td>
</tr>
<tr>
<td>sdg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1344</td>
<td>0</td>
</tr>
<tr>
<td>dm-3</td>
<td>0.68</td>
<td>4.71</td>
<td>71.96</td>
<td>2932496</td>
<td>44816008</td>
</tr>
<tr>
<td>sdh</td>
<td>0.17</td>
<td>1.18</td>
<td>18.22</td>
<td>734360</td>
<td>11343920</td>
</tr>
</tbody>
</table>
3. If possible, run the `takeover` command on the storage cluster node:

   ```
   storage failover takeover -ofnode <node_name>
   ```

4. Verify that I/O is still running on the multipath device by re-running the `iostat` command.

5. Run the `giveback` command on the storage cluster node:

   ```
   storage failover giveback -ofnode <node_name>
   ```

6. Check `iostat` output to verify that I/O is still running.

After you finish

If any of the tests fail, verify that the FC service is running and re-check the DM-Multipath configuration and the FC paths to the multipath device.
Where to find additional information

After you have successfully tested FC, you can perform advanced FC configuration or add SAN or NAS protocols. There are express guides, comprehensive guides, and technical reports to help you achieve these goals.

SAN configuration

All of the following documentation is available:

• SAN configuration
 Describes supported FC, iSCSI, and FCoE topologies for connecting host computers to storage controllers in clusters.

• SAN administration
 Describes how to configure and manage the iSCSI, FCoE, and FC protocols for clustered SAN environments, including configuration of LUNs, iGroups, and targets.

• Linux Unified Host Utilities 7.1 Installation Guide
 Describes how to install Linux Unified Host Utilities software and configure DM-Multipath.

 Describes the current best practices for Red Hat virtualized environments.

• Red Hat Enterprise Linux 6 documentation and man pages
 Provides instructions for managing storage devices, file systems, and Linux commands.

Additional protocol configuration

If you want to provide additional SAN or NAS access to the SVM, you can use any of the protocol configuration express guides.

NetApp Documentation: ONTAP 9
Copyright information

Copyright © 1994–2017 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).
Trademark information

Active IQ, AltaVault, Arch Design, ASUP, AutoSupport, Campaign Express, Clustered Data ONTAP, Customer Fitness, Data ONTAP, DataMotion, Element, Fitness, Flash Accel, Flash Cache, Flash Pool, FlexArray, FlexCache, FlexClone, FlexPod, FlexScale, FlexShare, FlexVol, FPolicy, Fueled by SolidFire, GetSuccessful, Helix Design, LockVault, Manage ONTAP, MetroCluster, MultiStore, NetApp, NetApp Insight, OnCommand, ONTAP, ONTAPI, RAID DP, RAID-TEC, SANscreen, SANshare, SANtricity, SecureShare, Simplicity, Simulate ONTAP, Snap Creator, SnapCenter, SnapCopy, SnapDrive, SnapIntegrator, SnapLock, SnapManager, SnapMirror, SnapMover, SnapProtect, SnapRestore, Snapshot, SnapValidator, SnapVault, SolidFire, SolidFire Helix, StorageGRID, SyncMirror, Tech OnTap, Unbound Cloud, and WAFL and other names are trademarks or registered trademarks of NetApp, Inc., in the United States, and/or other countries. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such. A current list of NetApp trademarks is available on the web.

How to send comments about documentation and receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.
• Telephone: +1 (408) 822-6000
• Fax: +1 (408) 822-4501
• Support telephone: +1 (888) 463-8277
Index

A
additional information, where to find FC configuration 23
aggregates
creating new when provisioning a volume 12

B
BIOS
updating FC HBA, in Linux hosts 8

C
comments
how to send feedback about documentation 26
configuration
FC workflow 5
where to find information about FC 23
configuring
DM-Multipath 11
FC on existing SVMs 15
FC worksheet for 6
creating
a file system 20
logical volumes on multipath devices 20

D
discovering
new SCSI devices and multipath devices 19
DM-Multipath
configuring on Red Hat Enterprise Linux hosts 11
documentation
how to receive automatic notification of changes to 26
how to send feedback about 26
drivers
updating FC HBA in Linux hosts 8

E
Emulex HBAs
recording the WWPN with OneCommand Manager 9

F
FC
configuration workflow 5
configuration worksheet for 6
configuring on existing SVMs 15
deciding whether to use the FC Configuration for Red Hat Enterprise Linux Express Guide 4
updating HBA driver, firmware, and BIOS in Linux hosts 8
verifying that configuration is supported 5
where to find additional information about configuring 23
FC ports
recording the WWPN 9
FC service
verifying it is running on SVM 13
FC switches
zoning by host and LIF WWPNs 18
FC targets
creating as part of configuring SVMs 15
creating as part of creating SVMs 16
feedback
how to send comments about documentation 26
file system
creating on new multipath devices 20
firmware
updating FC HBA, in Linux hosts 8
flowcharts
FC configuration 5
formatting
a new SCSI device (LUN) 20

H
HBA utilities
installing 8
HBAs
recording the WWPN 9
updating driver, firmware, and BIOS of FC, in Linux hosts 8
hosts
installing host utilities on 9
recording the WWPN of FC ports 9
setting the server profile 9
verifying writing to and reading from multipath devices 21

I
igroups
creating and mapping the LUN to 14
information
how to send feedback about improving documentation 26
where to find additional FC configuration 23
installing
host utilities 9
Interoperability Matrix
verifying supported FC configurations using 5

L
LIFs
creating as part of configuring SVMs 15
creating as part of creating SVMs 16
zoning FC switches by WWPNs of host and 18
Linux hosts, Red Hat
packages required for DM-Multipath 5, 19
updating FC HBA driver, firmware, and BIOS in Linux hosts, Red Hat Enterprise

verifying supported FC configurations

Linux hosts, Red Hat Enterprise

configuring DM-Multipath on

LUNs

creating using the wizard

deciding where to provision the containing volume on a new or existing SVM

deciding whether to use the FC Configuration for Red Hat Enterprise Linux Express Guide

discovering and creating multipath devices on

See also SCSI devices (LUNs)

discovering new

enabling access to, with DM-Multipath

how they appear to a Linux host

mapping to an igroup

partitioning and creating a file system on

multipath devices

creating logical volumes and a file system on

verifying that the host can write to and read from

OneCommand Manager

installing for Emulex HBAs

recording the WWPN for Emulex HBAs

packages

required for DM-Multipath

required to set the server profile

partitions

creating for new SCSI devices (LUN)

provisioning

FC workflow

FC worksheet for

where to find information about FC

QConvergeConsole

installing for QLogic HBAs

recording the WWPN for QLogic HBAs

QLogic HBAs

recording the WWPN with QConvergeConsole

read/write

verifying that the host can write to and read from multipath devices

Red Hat Enterprise Linux hosts

deciding whether to use the FC Configuration for Red Hat Enterprise Linux Express Guide

Red Hat hosts

See Linux hosts, Red Hat

requirements

verifying supported FC configurations

S

sanlun utility

using to record the WWPN

SCSI devices (LUNs)

discovering and creating multipath devices on

See also LUNs

discovering new

partitioning and creating a file system on

server profile

setting

storage configurations

FC configuration worksheet

suggestions

how to send feedback about documentation

supported configurations

verifying FC

SVMs

configuring FC on existing

creating new SVMs

deciding whether to provision a volume on a new or existing

verifying FC service is running

switches

zoning FC, by host and LIF WWPNs

T

targets

creating FC as part of configuring SVMs

creating FC as part of creating SVMs

Twitter

how to receive automatic notification of documentation changes

U

updates, Linux

See packages

updating

FC HBA driver, firmware, and BIOS in Linux hosts

utilities

installing HBA

sanlun

V

volumes

creating new aggregates to provide physical storage

deciding whether to provision on a new or existing SVM

W

wizards

using to create LUNs
<table>
<thead>
<tr>
<th>workflows</th>
<th>FC configuration 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>worksheets</td>
<td>FC configuration 6</td>
</tr>
<tr>
<td>write/read</td>
<td>verifying that the host can write to and read from multipath devices 21</td>
</tr>
<tr>
<td>WWPNs</td>
<td>FC configuration worksheet for 6</td>
</tr>
<tr>
<td></td>
<td>recording 9</td>
</tr>
<tr>
<td></td>
<td>zoning FC switches by host and LIF WWPNs 18</td>
</tr>
</tbody>
</table>