Replacing Cisco® Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches

You must be aware of certain configuration information, port connections and cabling requirements when you are replacing Cisco Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches.

• The following cluster switches are supported:
 ◦ Nexus 5596
 ◦ Nexus 5020
 ◦ Nexus 5010
 ◦ Nexus 3132Q-V

• The cluster switches use the following ports for connections to nodes:
 ◦ Ports e1/1-40 (10 GbE): Nexus 5596
 ◦ Ports e1/1-32 (10 GbE): Nexus 5020
 ◦ Ports e1/1-12, e2/1-6 (10 GbE): Nexus 5010
 ◦ Ports e1/1-30 (10/40 GbE): Nexus 3132Q-V

• The cluster switches use the following Inter-Switch Link (ISL) ports:
 ◦ Ports e1/41-48 (10 GbE): Nexus 5596
 ◦ Ports e1/33-40 (10 GbE): Nexus 5020
 ◦ Ports e1/13-20 (10 GbE): Nexus 5010
 ◦ Ports e1/31-32 (40 GbE): Nexus 3132Q-V

• The Hardware Universe contains information about supported cabling to Nexus 3132Q-V switches:
 ◦ Nodes with 10 GbE cluster connections require QSFP to SFP+ optical fiber breakout cables or QSFP to SFP+ copper breakout cables.
 ◦ Nodes with 40 GbE cluster connections require supported QSFP optical modules with fiber cables or QSFP copper direct-attach cables.

• The cluster switches use the appropriate ISL cabling:
 ◦ Beginning: Nexus 5596, 5020, or 5010 to Nexus 5596, 5020, or 5010 (SFP+ to SFP+)
 • 8x SFP+ fiber or copper direct-attach cables
 ◦ Interim: Nexus 5596, 5020, or 5010 to Nexus 3132Q-V (QSFP to 4xSFP+ break-out)
 • 1x QSFP to SFP+ fiber break-out or copper break-out cables
 ◦ Final: Nexus 3132Q-V to Nexus 3132Q-V (QSFP to QSFP)
 • 2x QSFP fiber or copper direct-attach cables
• On Nexus 3132Q-V switches, you can operate QSFP ports as either 40 Gigabit Ethernet or 4 x10 Gigabit Ethernet modes. By default, there are 32 ports in the 40 Gigabit Ethernet mode. These 40 Gigabit Ethernet ports are numbered in a 2-tuple naming convention. For example, the second 40 Gigabit Ethernet port is numbered as 1/2. The process of changing the configuration from 40 Gigabit Ethernet to 10 Gigabit Ethernet is called breakout and the process of changing the configuration from 10 Gigabit Ethernet to 40 Gigabit Ethernet is called breakin. When you break out a 40 Gigabit Ethernet port into 10 Gigabit Ethernet ports, the resulting ports are numbered using a 3-tuple naming convention. For example, the break-out ports of the second 40 Gigabit Ethernet port are numbered as 1/2/1, 1/2/2, 1/2/3, and 1/2/4.

• On the left side of Nexus 3132Q-V switches is a set of 4 SFP+ ports multiplexed to that QSFP port. By default, the RCF is structured to use the QSFP port.

 Note: You can make 4x SFP+ ports active instead of a QSFP port for Nexus 3132Q-V switches by using the hardware profile front portmode sfp-plus command. Similarly, you can reset Nexus 3132Q-V switches to use a QSFP port instead of 4x SFP+ ports by using the hardware profile front portmode qsfp command.

• You have configured some of the ports on Nexus 3132Q-V switches to run at 10 GbE or 40 GbE.

 Note: You can break out the first six ports into 4x10 GbE mode by using the interface breakout module 1 port 1-6 map 10g-4x command. Similarly, you can regroup the first six QSFP+ ports from breakout configuration by using the no interface breakout module 1 port 1-6 map 10g-4x command.

• You have done planning, migration, and documentation on 10 GbE and 40 GbE connectivity from nodes to Nexus 3132Q-V cluster switches.

• The ONTAP and NX-OS versions supported in this procedure are on the Cisco Ethernet Switches page.

Cisco Ethernet Switches

Replacing Cisco® Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches

To replace an existing Nexus 5596, 5020, or 5010 cluster switches in a cluster with Nexus 3132Q-V cluster switches, you must perform a specific sequence of tasks.

About this task
The examples in this procedure use the following switch and node nomenclature:
• The command outputs might vary depending on different releases of ONTAP.
• The Nexus 5596 switches to be replaced are CL1 and CL2.
• The Nexus 3132Q-V switches to replace the Nexus 5596 switches are C1 and C2.
• The procedure is identical for Nexus 5596, Nexus 5020, and Nexus 5010 switches except for the ISL ports, which may differ slightly.
• n1_clus1 is the first cluster logical interface (LIF) connected to cluster switch 1 (CL1 or C1) for node n1.
• n1_clus2 is the first cluster LIF connected to cluster switch 2 (CL2 or C2) for node n1.
• n1_clus3 is the second LIF connected to cluster switch 2 (CL2 or C2) for node n1.
• n1_clus4 is the second LIF connected to cluster switch 1 (CL1 or C1) for node n1.
• The number of 10 GbE and 40 GbE ports are defined in the following RCFs:
 • The NX3132_RCF_v1.1_24p10g_26p40g.txt RCF has e1/1/1-4 to e1/6/1-4: 24x 10 GbE ports and e1/7 to e1/32: 26x 40 GbE ports.
The NX3132_RCF_v1.1_72p10g_14p40g.txt RCF has e1/1/1-4 to e1/18/1-4: 72x 10 GbE ports and e1/19 to e1/32: 14x 40 GbE ports.

- The nodes are n1, n2, n3, and n4.

Note: The examples in this procedure use four nodes: Two nodes use four 10 GbE cluster interconnect ports: e0a, e0b, e0c, and e0d. The other two nodes use two 40 GbE cluster interconnect ports: e4a, e4e. The *Hardware Universe* lists the actual cluster ports on your platforms.

This procedure covers the following scenarios:

- The cluster starts with two nodes connected and functioning in a 2 Nexus 5596 cluster switches.
- The cluster switch CL2 to be replaced by C2 (steps 1 to 19):
 - Traffic on all cluster ports and LIFs on all nodes connected to CL2 are migrated onto the first cluster ports and LIFs connected to CL1.
 - Disconnect cabling from all cluster ports on all nodes connected to CL2, and then use supported break-out cabling to reconnect the ports to new cluster switch C2.
 - Disconnect cabling between ISL ports between CL1 and CL2, and then use supported break-out cabling to reconnect the ports from CL1 to C2.
 - Traffic on all cluster ports and LIFs connected to C2 on all nodes is reverted.
- The cluster switch CL2 to be replaced by C2 (steps 20 to 33)
 - Traffic on all cluster ports or LIFs on all nodes connected to CL1 are migrated onto the second cluster ports or LIFs connected to C2.
 - Disconnect cabling from all cluster port on all nodes connected to CL1 and reconnect, using supported break-out cabling, to new cluster switch C1.
 - Disconnect cabling between ISL ports between CL1 and C2, and reconnect using supported cabling, from C1 to C2.
 - Traffic on all cluster ports or LIFs connected to C1 on all nodes is reverted.
- Two FAS9000 nodes have been added to cluster with examples showing cluster details (steps 34 to 37).

Steps

1. Display information about the devices in your configuration:
   ```
   network device-discovery show
   ```

Example

The following example shows how many cluster interconnect interfaces have been configured in each node for each cluster interconnect switch:

<table>
<thead>
<tr>
<th>Node</th>
<th>Port</th>
<th>Device</th>
<th>Interface</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>/cdp</td>
<td>CL1</td>
<td>Ethernet1/1</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td></td>
<td>e0a</td>
<td>CL1</td>
<td>Ethernet1/1</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td></td>
<td>e0b</td>
<td>CL2</td>
<td>Ethernet1/2</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td></td>
<td>e0c</td>
<td>CL2</td>
<td>Ethernet1/2</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td></td>
<td>e0d</td>
<td>CL1</td>
<td>Ethernet1/2</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td>n2</td>
<td>/cdp</td>
<td>CL1</td>
<td>Ethernet1/3</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td></td>
<td>e0a</td>
<td>CL1</td>
<td>Ethernet1/3</td>
<td>N5K-C5596UP</td>
</tr>
<tr>
<td></td>
<td>e0b</td>
<td>CL2</td>
<td>Ethernet1/3</td>
<td>N5K-C5596UP</td>
</tr>
</tbody>
</table>

Replacing Cisco® Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches
2. Determine the administrative or operational status for each cluster interface:
 a. Display the network port attributes:

   ```
   network port show
   ```

 Example

 The following example displays the network port attributes on a system:

   ```
   cluster::*> network port show -role cluster
   (network port show)
   Node: n1
   
   Port          IPspace     Broadcast Domain Link  MTU  Speed(Mbps)  Health Ignore
   Status        Status
   --------       ------------ ---------------- ---- ---- ----------- -------- ------
   e0a           Cluster     Cluster          up   9000  auto/10000 -        -
   e0b           Cluster     Cluster          up   9000  auto/10000 -        -
   e0c           Cluster     Cluster          up   9000  auto/10000 -        -
   e0d           Cluster     Cluster          up   9000  auto/10000 -        -
   
   Node: n2
   
   Port          IPspace     Broadcast Domain Link  MTU  Speed(Mbps)  Health Ignore
   Status        Status
   --------       ------------ ---------------- ---- ---- ----------- -------- ------
   e0a           Cluster     Cluster          up   9000  auto/10000 -        -
   e0b           Cluster     Cluster          up   9000  auto/10000 -        -
   e0c           Cluster     Cluster          up   9000  auto/10000 -        -
   e0d           Cluster     Cluster          up   9000  auto/10000 -        -
   
   8 entries were displayed.
   ```

 b. Display information about the logical interfaces:

   ```
   network interface show
   ```

 Example

 The following example displays the general information about all of the LIFs on your system:

   ```
   cluster::*> network interface show -role cluster
   (network interface show)
   Logical Vserver Interface Status Network Address/Mask Current Node Current Is Port Home
   --------- ---------- ---------- ------------------ ------------- ------- ----
   Cluster  n1_clus1  up/up      10.10.0.1/24       n1            e0a     true
   n1_clus2  up/up      10.10.0.2/24       n1            e0b     true
   n1_clus3  up/up      10.10.0.3/24       n1            e0c     true
   n1_clus4  up/up      10.10.0.4/24       n1            e0d     true
   n2_clus1  up/up      10.10.0.5/24       n2            e0a     true
   n2_clus2  up/up      10.10.0.6/24       n2            e0b     true
   n2_clus3  up/up      10.10.0.7/24       n2            e0c     true
   n2_clus4  up/up      10.10.0.8/24       n2            e0d     true
   
   8 entries were displayed.
   ```

 c. Display information about the discovered cluster switches:

   ```
   system cluster-switch show
   ```

 4 Replacing Cisco® Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches
Example
The following example displays the cluster switches that are known to the cluster, along with their management IP addresses:

```
cluster::*> system cluster-switch show
```

<table>
<thead>
<tr>
<th>Switch</th>
<th>Type</th>
<th>Address</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1</td>
<td>cluster-network</td>
<td>10.10.1.101</td>
<td>NX5596</td>
</tr>
<tr>
<td></td>
<td>Serial Number: 01234567</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is Monitored: true</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reason:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Version:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NX-OS) Software,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version 7.1(1)N1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL2</td>
<td>cluster-network</td>
<td>10.10.1.102</td>
<td>NX5596</td>
</tr>
<tr>
<td></td>
<td>Serial Number: 01234568</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is Monitored: true</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reason:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Version:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NX-OS) Software,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version 7.1(1)N1(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 entries were displayed.

3. Set the `-auto-revert` parameter to `false` on cluster LIFs clus1 and clus2 on both nodes: `network interface modify`

```
cluster::*> network interface modify -vserver node1 -lif clus1 -auto-revert false
cluster::*> network interface modify -vserver node1 -lif clus2 -auto-revert false
cluster::*> network interface modify -vserver node2 -lif clus1 -auto-revert false
cluster::*> network interface modify -vserver node2 -lif clus2 -auto-revert false
```

4. Verify that the appropriate RCF and image are installed on the new 3132Q-V switches as necessary for your requirements, and make the essential site customizations, such as users and passwords, network addresses, and so on.

You must prepare both switches at this time. If you need to upgrade the RCF and image, follow these steps:

a. Go to the *Cisco Ethernet Switches* page on the NetApp Support Site.

Cisco Ethernet Switches

b. Note your switch and the required software versions in the table on that page.

c. Download the appropriate version of the RCF.

d. Click **CONTINUE** on the **Description** page, accept the license agreement, and then follow the instructions on the **Download** page to download the RCF.

e. Download the appropriate version of the image software.

See the *ONTAP 8.x or later Cluster and Management Network Switch Reference Configuration Files Download* page, and then click the appropriate version.

To find the correct version, see the *ONTAP 8.x or later Cluster Network Switch Download* page.

5. Migrate the LIFs associated with the second Nexus 5596 switch to be replaced: `network interface migrate`

Example
The following example shows n1 and n2, but LIF migration must be done on all of the nodes:
6. Verify the cluster's health:

```
network interface show
```

Example

The following example shows the result of the previous `network interface migrate` command:

```
cluster::*> network interface show -role cluster
(network interface show)
Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
Cluster
n1_clus1   up/up      10.10.0.1/24       n1            e0a     true
n1_clus2   up/up      10.10.0.2/24       n1            e0a     false
n1_clus3   up/up      10.10.0.3/24       n1            e0d     false
n1_clus4   up/up      10.10.0.4/24       n1            e0d     true
n2_clus1   up/up      10.10.0.5/24       n2            e0a     true
n2_clus2   up/up      10.10.0.6/24       n2            e0a     false
n2_clus3   up/up      10.10.0.7/24       n2            e0d     false
n2_clus4   up/up      10.10.0.8/24       n2            e0d     true
8 entries were displayed.
```

7. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message: `system node autosupport invoke -node * -type all -message MAINT=xh`

 \(x \) is the duration of the maintenance window in hours.

 Note: The message notifies technical support of this maintenance task so that automatic case creation is suppressed during the maintenance window.

 Example

 The following command suppresses automatic case creation for two hours:

   ```
   cluster::*> system node autosupport invoke -node * -type all -message MAINT=2h
   ```

8. Shut down the cluster interconnect ports that are physically connected to switch CL2:

```
network port modify
```

Example

The following commands shut down the specified ports on n1 and n2, but the ports must be shut down on all nodes:

```
cluster::*> network port modify -node n1 -port e0b -up-admin false
cluster::*> network port modify -node n1 -port e0c -up-admin false
cluster::*> network port modify -node n2 -port e0b -up-admin false
cluster::*> network port modify -node n2 -port e0c -up-admin false
```

9. Ping the remote cluster interfaces and perform an RPC server check:

```
cluster ping-cluster
```
Example

The following example shows how to ping the remote cluster interfaces:

```bash
cluster::*> cluster ping-cluster -node n1
Host is n1
Getting addresses from network interface table...
Cluster n1_clus1 n1 e0a 10.10.0.1
Cluster n1_clus2 n1 e0b 10.10.0.2
Cluster n1_clus3 n1 e0c 10.10.0.3
Cluster n1_clus4 n1 e0d 10.10.0.4
Cluster n2_clus1 n2 e0a 10.10.0.5
Cluster n2_clus2 n2 e0b 10.10.0.6
Cluster n2_clus3 n2 e0c 10.10.0.7
Cluster n2_clus4 n2 e0d 10.10.0.8

Local = 10.10.0.1 10.10.0.2 10.10.0.3 10.10.0.4
Remote = 10.10.0.5 10.10.0.6 10.10.0.7 10.10.0.8
Cluster Vserver Id = 4294967293
Ping status:
....
Basic connectivity succeeds on 16 path(s)
Basic connectivity fails on 0 path(s)
............
Detected 1500 byte MTU on 16 path(s):
  Local 10.10.0.1 to Remote 10.10.0.5
  Local 10.10.0.1 to Remote 10.10.0.6
  Local 10.10.0.1 to Remote 10.10.0.7
  Local 10.10.0.1 to Remote 10.10.0.8
  Local 10.10.0.2 to Remote 10.10.0.5
  Local 10.10.0.2 to Remote 10.10.0.6
  Local 10.10.0.2 to Remote 10.10.0.7
  Local 10.10.0.2 to Remote 10.10.0.8
  Local 10.10.0.3 to Remote 10.10.0.5
  Local 10.10.0.3 to Remote 10.10.0.6
  Local 10.10.0.3 to Remote 10.10.0.7
  Local 10.10.0.3 to Remote 10.10.0.8
  Local 10.10.0.4 to Remote 10.10.0.5
  Local 10.10.0.4 to Remote 10.10.0.6
  Local 10.10.0.4 to Remote 10.10.0.7
  Local 10.10.0.4 to Remote 10.10.0.8
Larger than PMTU communication succeeds on 16 path(s)
RPC status:
  4 paths up, 0 paths down (tcp check)
  4 paths up, 0 paths down (udp check)
```

10. Shut down the ISL ports 41 through 48 on the active Nexus 5596 switch CL1:

Example

The following example shows how to shut down ISL ports 41 through 48 on the Nexus 5596 switch CL1:

```bash
(CL1)# configure
(CL1)(Config)# interface e1/41-48
(CL1)(config-if-range)# shutdown
(CL1)(config-if-range)# exit
(CL1)(Config)# exit
(CL1)#
```

If you are replacing a Nexus 5010 or 5020, specify the appropriate port numbers for ISL from page 1.

11. Build a temporary ISL between CL1 and C2.
Example

The following example shows a temporary ISL being set up between CL1 and C2:

```
C2# configure
C2(config)# interface port-channel 2
C2(config-if)# switchport mode trunk
C2(config-if)# spanning-tree port type network
C2(config-if)# mtu 9216
C2(config-if)# interface breakout module 1 port 24 map 10g-4x
C2(config-if)# interface e1/24/1-4
C2(config-if-range)# switchport mode trunk
C2(config-if-range)# mtu 9216
C2(config-if-range)# channel-group 2 mode active
C2(config-if-range)# exit
C2(config-if)# exit
```

12. On all nodes, remove all cables attached to the Nexus 5596 switch CL2. With supported cabling, reconnect disconnected ports on all nodes to the Nexus 3132Q-V switch C2.

13. Remove all the cables from the Nexus 5596 switch CL2. Attach the appropriate Cisco QSFP to SFP+ break-out cables connecting port 1/24 on the new Cisco 3132Q-V switch, C2, to ports 45 to 48 on existing Nexus 5596, CL1.

14. Verify that interfaces eth1/45-48 already have `channel-group 1 mode active` in their running configuration.

15. Bring up ISLs ports 45 through 48 on the active Nexus 5596 switch CL1.

Example

The following example shows ISLs ports 45 through 48 being brought up:

```
(CL1)# configure
(CL1)(Config)# interface e1/45-48
(CL1)(config-if-range)# no shutdown
(CL1)(config-if-range)# exit
(CL1)(Config)# exit
(CL1)#
```

16. Verify that the ISLs are up on the Nexus 5596 switch CL1:

```
show port-channel summary
```

Example

Ports eth1/45 through eth1/48 should indicate (P) meaning that the ISL ports are up in the port-channel:

```
Example
CL1# show port-channel summary
Flags: D - Down    P - Up in port-channel (members)
I - Individual    H - Hot-standby (LACP only)
s - Suspended    r - Module-removed
S - Switched    R - Routed
U - Up (port-channel)
M - Not in use. Min-links not met
---------------------------------------------------------------------
Group       Port- Type  Protocol Member Ports
Channel       Channel
---------------------------------------------------------------------
1     Po1(SU)  Eth  LACP  Eth1/41(D) Eth1/42(D) Eth1/43(D) Eth1/44(D) Eth1/45(P) Eth1/46(P) Eth1/47(P) Eth1/48(P)
```
17. Verify that the ISLs are **up** on the 3132Q-V switch C2:

 `show port-channel summary`

Example

Ports eth1/24/1, eth1/24/2, eth1/24/3, and eth1/24/4 should indicate (P) meaning that the ISL ports are **up** in the port-channel:

```
C2# show port-channel summary
Flags: D - Down         P - Up in port-channel (members)  
   I - Individual   H - Hot-standby (LACP only)  
   s - Suspended    r - Module-removed  
   U - Up (port-channel)  
   M - Not in use. Min-links not met
--------------------------------------------------------------------------------
Group  Port-        Type   Protocol  Member Ports
      Channel
--------------------------------------------------------------------------------
  1  Po1(SU)      Eth    LACP      Eth1/31(D)   Eth1/32(D)  
  2  Po2(SU)      Eth    LACP      Eth1/24/1(P)  Eth1/24/2(P)  Eth1/24/3(P)  Eth1/24/4(P)
--------------------------------------------------------------------------------
```

18. On all nodes, bring up all the cluster interconnect ports connected to the 3132Q-V switch C2:

 `network port modify`

Example

The following example shows the specified ports being brought up on nodes n1 and n2:

```
cluster::*> network port modify -node n1 -port e0b -up-admin true
cluster::*> network port modify -node n1 -port e0c -up-admin true
cluster::*> network port modify -node n2 -port e0b -up-admin true
cluster::*> network port modify -node n2 -port e0c -up-admin true
```

19. On all nodes, revert all of the migrated cluster interconnect LIFs connected to C2:

 `network interface revert`

Example

The following example shows the migrated cluster LIFs being reverted to their home ports on nodes n1 and n2:

```
cluster::*> network interface revert -vserver Cluster -lif n1_clus2
cluster::*> network interface revert -vserver Cluster -lif n1_clus3
cluster::*> network interface revert -vserver Cluster -lif n2_clus2
cluster::*> network interface revert -vserver Cluster -lif n2_clus3
```

20. Verify all the cluster interconnect ports are now reverted to their home:

 `network interface show`

Example

The following example shows that the LIFs on clus2 reverted to their home ports and shows that the LIFs are successfully reverted if the ports in the Current Port column have a status of **true** in the Is Home column. If the Is Home value is **false**, the LIF has not been reverted.
21. Verify that the clustered ports are connected:

```
network port show
```

Example

The following example shows the result of the previous `network port modify` command, verifying that all the cluster interconnects are **up**:

```
cluster::*> network port show -role cluster
(network port show)
Node: n1

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Health</th>
<th>Health Status</th>
<th>Ignore Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0c</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0d</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Node: n2

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Health</th>
<th>Health Status</th>
<th>Ignore Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0c</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0d</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

8 entries were displayed.

22. Ping the remote cluster interfaces and perform an RPC server check:

```
cluster ping-cluster
```

Example

The following example shows how to ping the remote cluster interfaces:

```
cluster::*> cluster ping-cluster -node n1
Host is n1
Getting addresses from network interface table...
Cluster n1_clus1 n1 e0a 10.10.0.1
Cluster n1_clus2 n1 e0b 10.10.0.2
Cluster n1_clus3 n1 e0c 10.10.0.3
Cluster n1_clus4 n1 e0d 10.10.0.4
Cluster n2_clus1 n2 e0a 10.10.0.5
Cluster n2_clus2 n2 e0b 10.10.0.6
Cluster n2_clus3 n2 e0c 10.10.0.7
Cluster n2_clus4 n2 e0d 10.10.0.8
Local = 10.10.0.1 10.10.0.2 10.10.0.3 10.10.0.4
```
Remote = 10.10.0.5 10.10.0.6 10.10.0.7 10.10.0.8
Cluster Vserver Id = 4294967293
Ping status:
....
Basic connectivity succeeds on 16 path(s)
Basic connectivity fails on 0 path(s)

Detected 1500 byte MTU on 16 path(s):
 Local 10.10.0.1 to Remote 10.10.0.5
 Local 10.10.0.1 to Remote 10.10.0.6
 Local 10.10.0.1 to Remote 10.10.0.7
 Local 10.10.0.1 to Remote 10.10.0.8
 Local 10.10.0.2 to Remote 10.10.0.5
 Local 10.10.0.2 to Remote 10.10.0.6
 Local 10.10.0.2 to Remote 10.10.0.7
 Local 10.10.0.2 to Remote 10.10.0.8
 Local 10.10.0.3 to Remote 10.10.0.5
 Local 10.10.0.3 to Remote 10.10.0.6
 Local 10.10.0.3 to Remote 10.10.0.7
 Local 10.10.0.3 to Remote 10.10.0.8
 Local 10.10.0.4 to Remote 10.10.0.5
 Local 10.10.0.4 to Remote 10.10.0.6
 Local 10.10.0.4 to Remote 10.10.0.7
 Local 10.10.0.4 to Remote 10.10.0.8
Larger than PMTU communication succeeds on 16 path(s)

RPC status:
4 paths up, 0 paths down (tcp check)
4 paths up, 0 paths down (udp check)

23. On each node in the cluster, migrate the interfaces associated with the first Nexus 5596 switch, CL1, to be replaced:

 network interface migrate

Example
The following example shows the ports or LIFs being migrated on nodes n1 and n2:

cluster::*> network interface migrate -vserver Cluster -lif n1_clus1 -source-node n1 -destination-node n1 -destination-port e0b
cluster::*> network interface migrate -vserver Cluster -lif n1_clus4 -source-node n1 -destination-node n1 -destination-port e0c
cluster::*> network interface migrate -vserver Cluster -lif n2_clus1 -source-node n2 -destination-node n2 -destination-port e0b
cluster::*> network interface migrate -vserver Cluster -lif n2_clus4 -source-node n2 -destination-node n2 -destination-port e0c

24. Verify the cluster status:

 network interface show

Example
The following example shows that the required cluster LIFs have been migrated to appropriate cluster ports hosted on cluster switch C2:

```
(network interface show)

Vserver  Logical Interface     Status     Admin/Oper Network Address/Mask  Current Node  Current Is Port  Home
--------  -------------------     --------   -----------   ------------------    ----------  ----------  -----  ----
Cluster   n1_clus1             up/up     10.10.0.1/24  n1          e0b      false
         n1_clus2             up/up     10.10.0.2/24  n1          e0b      true
         n1_clus3             up/up     10.10.0.3/24  n1          e0c      true
         n1_clus4             up/up     10.10.0.4/24  n1          e0c      false
         n2_clus1             up/up     10.10.0.5/24  n2          e0b      false
         n2_clus2             up/up     10.10.0.6/24  n2          e0b      true
         n2_clus3             up/up     10.10.0.7/24  n2          e0c      true
         n2_clus4             up/up     10.10.0.8/24  n2          e0c      false
```
25. On all the nodes, shut down the node ports that are connected to CL1:

```
network port modify
```

Example

The following example shows the specified ports being shut down on nodes n1 and n2:

```
cluster::*> network port modify -node n1 -port e0a -up-admin false
cluster::*> network port modify -node n1 -port e0d -up-admin false
cluster::*> network port modify -node n2 -port e0a -up-admin false
cluster::*> network port modify -node n2 -port e0d -up-admin false
```

26. Shut down the ISL ports 24, 31, and 32 on the active 3132Q-V switch C2: `shutdown`

Example

The following example shows how to shut down ISLs 24, 31, and 32:

```
C2# configure
C2(Config)# interface e1/24/1-4
C2(config-if-range)# shutdown
C2(config-if-range)# exit
C2(Config)# interface 1/31-32
C2(config-if-range)# shutdown
C2(config-if-range)# exit
C2(config-if)# exit
C2#
```

27. On all nodes, remove all cables attached to the Nexus 5596 switch CL1.

With supported cabling, reconnect disconnected ports on all nodes to the Nexus 3132Q-V switch C1.

28. Remove the QSFP breakout cable from Nexus 3132Q-V C2 ports e1/24.

Connect ports e1/31 and e1/32 on C1 to ports e1/31 and e1/32 on C2 using supported Cisco QSFP optical fiber or direct-attach cables.

29. Restore the configuration on port 24 and remove the temporary Port Channel 2 on C2.

Example

```
C2# configure
C2(config)# no interface breakout module 1 port 24 map 10g-4x
C2(config)# no interface port-channel 2
C2(config-if)# int e1/24
C2(config-if)# description 40GbE Node Port
C2(config-if)# spanning-tree port type edge
C2(config-if)# spanning-tree bpduguard enable
C2(config-if)# mtu 9216
C2(config-if-range)# exit
C2(config)# exit
C2# copy running-config startup-config
[########################################] 100%
Copy Complete.
```

30. Bring up ISL ports 31 and 32 on C2, the active 3132Q-V switch: `no shutdown`
Example

The following example shows how to bring up ISLs 31 and 32 on the 3132Q-V switch C2:

```
C2# configure
C2(config)# interface ethernet 1/31-32
C2(config-if-range)# no shutdown
C2(config-if-range)# exit
C2(config)# exit
C2# copy running-config startup-config
Copy Complete.
```

31. Verify that the ISL connections are **up** on the 3132Q-V switch C2: **show port-channel summary**

Example

Ports Eth1/31 and Eth1/32 should indicate (P), meaning that both the ISL ports are **up** in the port-channel:

```
C1# show port-channel summary
Flags: D - Down         P - Up in port-channel (members)
I - Individual   H - Hot-standby (LACP only)
s - Suspended r - Module-removed
S - Switched     R - Routed
U - Up (port-channel)
M - Not in use. Min-links not met
--------------------------------------------------------------------------------
Group Port- Type   Protocol Member Ports
Channel
--------------------------------------------------------------------------------
1     Po1(SU)      Eth    LACP      Eth1/31(P)   Eth1/32(P)
```

32. On all nodes, bring up all the cluster interconnect ports connected to the new 3132Q-V switch C1: **network port modify**

Example

The following example shows all the cluster interconnect ports being brought up for n1 and n2 on the 3132Q-V switch C1:

```
cluster::*> network port modify -node n1 -port e0a -up-admin true
cluster::*> network port modify -node n1 -port e0d -up-admin true
cluster::*> network port modify -node n2 -port e0a -up-admin true
cluster::*> network port modify -node n2 -port e0d -up-admin true
```

33. Verify the status of the cluster node port: **network port show**

Example

The following example verifies that all cluster interconnect ports on all nodes on the new 3132Q-V switch C1 are **up**:

```
cluster::*> network port show -role cluster
            (network port show)
            Node: n1

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast</th>
<th>Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Speed(Mbps)</th>
<th>Health</th>
<th>Ignore</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td></td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td></td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0c</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td></td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0d</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td></td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```
34. On all nodes, revert the specific cluster LIFs to their home ports:

```
network interface revert
```

Example

The following example shows the specific cluster LIFs being reverted to their home ports on nodes n1 and n2:

```
cluster::*> network interface revert -vserver Cluster -lif n1_clus1
cluster::*> network interface revert -vserver Cluster -lif n1_clus4
cluster::*> network interface revert -vserver Cluster -lif n2_clus1
cluster::*> network interface revert -vserver Cluster -lif n2_clus4
```

35. Verify that the interface is home:

```
network interface show
```

Example

The following example shows the status of cluster interconnect interfaces is **up** and **Is home** for n1 and n2:

```
cluster::*> network interface show -role cluster

Logical       Status     Network            Current       Current Is Home
Vserver       Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
Cluster       n1_clus1 up/up      10.10.0.1/24       n1            e0a     true
Cluster       n1_clus2 up/up      10.10.0.2/24       n1            e0b     true
Cluster       n1_clus3 up/up      10.10.0.3/24       n1            e0c     true
Cluster       n1_clus4 up/up      10.10.0.4/24       n1            e0d     true
Cluster       n2_clus1 up/up      10.10.0.5/24       n2            e0a     true
Cluster       n2_clus2 up/up      10.10.0.6/24       n2            e0b     true
Cluster       n2_clus3 up/up      10.10.0.7/24       n2            e0c     true
Cluster       n2_clus4 up/up      10.10.0.8/24       n2            e0d     true
8 entries were displayed.
```

36. Ping the remote cluster interfaces and then perform a remote procedure call server check:

```
cluster ping-cluster
```

Example

The following example shows how to ping the remote cluster interfaces:

```
cluster::*> cluster ping-cluster -node n1
Host is n1
Getting addresses from network interface table...
Cluster n1_clus1 n1 e0a 10.10.0.1
Cluster n1_clus2 n1 e0b 10.10.0.2
Cluster n1_clus3 n1 e0c 10.10.0.3
Cluster n1_clus4 n1 e0d 10.10.0.4
Cluster n2_clus1 n2 e0a 10.10.0.5
Cluster n2_clus2 n2 e0b 10.10.0.6
Cluster n2_clus3 n2 e0c 10.10.0.7
Cluster n2_clus4 n2 e0d 10.10.0.8
```
Local = 10.10.0.1 10.10.0.2 10.10.0.3 10.10.0.4
Remote = 10.10.0.5 10.10.0.6 10.10.0.7 10.10.0.8
Cluster Vserver Id = 4294967293

Ping status:
....
Basic connectivity succeeds on 16 path(s)
Basic connectivity fails on 0 path(s)
..............

Detected 1500 byte MTU on 16 path(s):
 Local 10.10.0.1 to Remote 10.10.0.5
 Local 10.10.0.1 to Remote 10.10.0.6
 Local 10.10.0.1 to Remote 10.10.0.7
 Local 10.10.0.1 to Remote 10.10.0.8
 Local 10.10.0.2 to Remote 10.10.0.5
 Local 10.10.0.2 to Remote 10.10.0.6
 Local 10.10.0.2 to Remote 10.10.0.7
 Local 10.10.0.2 to Remote 10.10.0.8
 Local 10.10.0.3 to Remote 10.10.0.5
 Local 10.10.0.3 to Remote 10.10.0.6
 Local 10.10.0.3 to Remote 10.10.0.7
 Local 10.10.0.3 to Remote 10.10.0.8
 Local 10.10.0.4 to Remote 10.10.0.5
 Local 10.10.0.4 to Remote 10.10.0.6
 Local 10.10.0.4 to Remote 10.10.0.7
 Local 10.10.0.4 to Remote 10.10.0.8

Larger than PMTU communication succeeds on 16 path(s)
RPC status:
 4 paths up, 0 paths down (tcp check)
 4 paths up, 0 paths down (udp check)

37. Expand the cluster by adding nodes to the Nexus 3132Q-V cluster switches.

38. Display the information about the devices in your configuration:

 • network device-discovery show
 • network port show -role cluster
 • network interface show -role cluster
 • system cluster-switch show

Example

The following examples show nodes n3 and n4 with 40 GbE cluster ports connected to ports e1/7 and e1/8, respectively on both the Nexus 3132Q-V cluster switches, and both nodes have joined the cluster. The 40 GbE cluster interconnect ports used are e4a and e4e.

```
cluster::> network device-discovery show
            Local    Port      Device            Interface        Platform
            ------ ------ ------------------- --------------------
            n1/    /cdp   e0a    C1                 Ethernet1/1/1    N3K-C3132Q-V
                     e0b    C2                 Ethernet1/1/1    N3K-C3132Q-V
                     e0c    C2                 Ethernet1/1/2    N3K-C3132Q-V
                     e0d    C1                 Ethernet1/1/2    N3K-C3132Q-V
            n2/    /cdp   e0a    C1                 Ethernet1/1/3    N3K-C3132Q-V
                     e0b    C2                 Ethernet1/1/3    N3K-C3132Q-V
                     e0c    C2                 Ethernet1/1/4    N3K-C3132Q-V
                     e0d    C1                 Ethernet1/1/4    N3K-C3132Q-V
            n3/    /cdp   e4a    C1                 Ethernet1/7     N3K-C3132Q-V
                     e4e    C2                 Ethernet1/7     N3K-C3132Q-V
```
cluster::*> network port show -role cluster
(network port show)
Node: n1

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Speed(Mbps)</th>
<th>Health Status</th>
<th>Ignore Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0c</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0d</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Node: n2

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Speed(Mbps)</th>
<th>Health Status</th>
<th>Ignore Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0c</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e0d</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Node: n3

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Speed(Mbps)</th>
<th>Health Status</th>
<th>Ignore Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e4a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/40000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e4e</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/40000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Node: n4

<table>
<thead>
<tr>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Speed(Mbps)</th>
<th>Health Status</th>
<th>Ignore Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e4a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/40000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e4e</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/40000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12 entries were displayed.

cluster::*> network interface show -role cluster
(network interface show)

<table>
<thead>
<tr>
<th>Logical Vserver</th>
<th>Status</th>
<th>Network Interface</th>
<th>Current Address/Mask</th>
<th>Current Node</th>
<th>Current Is Port Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1_clus1</td>
<td>up/up</td>
<td>10.10.0.1/24</td>
<td>n1</td>
<td>e0a</td>
<td>true</td>
</tr>
<tr>
<td>n1_clus2</td>
<td>up/up</td>
<td>10.10.0.2/24</td>
<td>n1</td>
<td>e0b</td>
<td>true</td>
</tr>
<tr>
<td>n1_clus3</td>
<td>up/up</td>
<td>10.10.0.3/24</td>
<td>n1</td>
<td>e0c</td>
<td>true</td>
</tr>
<tr>
<td>n1_clus4</td>
<td>up/up</td>
<td>10.10.0.4/24</td>
<td>n1</td>
<td>e0d</td>
<td>true</td>
</tr>
<tr>
<td>n2_clus1</td>
<td>up/up</td>
<td>10.10.0.5/24</td>
<td>n2</td>
<td>e0a</td>
<td>true</td>
</tr>
<tr>
<td>n2_clus2</td>
<td>up/up</td>
<td>10.10.0.6/24</td>
<td>n2</td>
<td>e0b</td>
<td>true</td>
</tr>
<tr>
<td>n2_clus3</td>
<td>up/up</td>
<td>10.10.0.7/24</td>
<td>n2</td>
<td>e0c</td>
<td>true</td>
</tr>
<tr>
<td>n2_clus4</td>
<td>up/up</td>
<td>10.10.0.8/24</td>
<td>n2</td>
<td>e0d</td>
<td>true</td>
</tr>
<tr>
<td>n3_clus1</td>
<td>up/up</td>
<td>10.10.0.9/24</td>
<td>n3</td>
<td>e4a</td>
<td>true</td>
</tr>
<tr>
<td>n3_clus2</td>
<td>up/up</td>
<td>10.10.0.10/24</td>
<td>n3</td>
<td>e4e</td>
<td>true</td>
</tr>
<tr>
<td>n4_clus1</td>
<td>up/up</td>
<td>10.10.0.11/24</td>
<td>n4</td>
<td>e4a</td>
<td>true</td>
</tr>
<tr>
<td>n4_clus2</td>
<td>up/up</td>
<td>10.10.0.12/24</td>
<td>n4</td>
<td>e4e</td>
<td>true</td>
</tr>
</tbody>
</table>

12 entries were displayed.

cluster::*> system cluster-switch show
(system cluster-switch show)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Type</th>
<th>Address</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>cluster-network</td>
<td>10.10.1.103</td>
<td>NX3132V</td>
</tr>
</tbody>
</table>

Serial Number: FOX0000001
Is Monitored: true
Reason:

Replacing Cisco® Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches
39. Remove the replaced Nexus 5596 if they are not automatically removed: `system cluster-switch delete`

Example

The following example shows how to remove the Nexus 5596:

```
cluster::> system cluster-switch delete -device CL1
cluster::> system cluster-switch delete -device CL2
```

40. Configure clusters clus1 and clus2 to auto revert on each node and confirm:

Example

```
cluster::*> network interface modify -vserver node1 -lif clus1 -auto-revert true
cluster::*> network interface modify -vserver node1 -lif clus2 -auto-revert true
cluster::*> network interface modify -vserver node2 -lif clus1 -auto-revert true
cluster::*> network interface modify -vserver node2 -lif clus2 -auto-revert true
```

41. Verify that the proper cluster switches are monitored: `system cluster-switch show`

Example

```
cluster::> system cluster-switch show

<table>
<thead>
<tr>
<th>Switch</th>
<th>Type</th>
<th>Address</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>cluster-network</td>
<td>10.10.1.103</td>
<td>NX3132V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>cluster-network</td>
<td>10.10.1.104</td>
<td>NX3132V</td>
</tr>
</tbody>
</table>
```

Replacing Cisco® Nexus 5596, 5020, or 5010 cluster switches with Cisco Nexus 3132Q-V cluster switches 17
Serial Number: FOX000002
Is Monitored: true
Reason:
Software Version: Cisco Nexus Operating System (NX-OS) Software, Version 7.0(3)I4(1)
Version Source: CDP
2 entries were displayed.

42. If you suppressed automatic case creation, reenable it by invoking an AutoSupport message: `system node autosupport invoke -node * -type all -message MAINT=END`

Example

```
cluster::*> system node autosupport invoke -node * -type all -message MAINT=END
```

Related information

- [Cisco Ethernet Switch description page](#)
- [Hardware Universe](#)

How to send comments about documentation and receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

`doccomments@netapp.com`

To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

- NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
- Telephone: +1 (408) 822-6000
- Fax: +1 (408) 822-4501
- Support telephone: +1 (888) 463-8277

Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.