Contents

Introduction to Host Utilities ... 5
 What the Host Utilities are ... 5
 What Windows Unified Host Utilities is ... 5
 Tasks required for installing the Host Utilities 5
 What the Host Utilities contain .. 6
 Windows configurations supported by the Host Utilities 6
 Protocols supported by the Host Utilities ... 7
 Dynamic disk support ... 7
 Multipathing options supported by the Host Utilities 7
 What Hyper-V is ... 8
 Methods for using storage with Hyper-V ... 8
 Methods for clustering Windows hosts with Hyper-V 9
 About SAN booting ... 9
 Support for non-English operating system versions 10
 Where to find more information .. 10

Installing and Configuring Host Utilities .. 11
 Installing and configuring the Host Utilities (high level) 11
 Verifying your host and storage system configuration 12
 Installing Windows hotfixes .. 12
 List of required hotfixes for Windows Server 13
 Confirming your storage system configuration 14
 Configuring FC HBAs and switches ... 14
 Configuring iSCSI initiators ... 15
 iSCSI software initiator options .. 15
 Installing the iSCSI HBA ... 16
 Options for iSCSI sessions ... 17
 Options for using CHAP with iSCSI initiators 17
 Using RADIUS for iSCSI authentication 17
 Installing multipath I/O software .. 18
 How to install a DSM multipath solution 18
 Configuring Hyper-V systems ... 19
 Adding virtual machines to a failover cluster 19
 Hyper-V VHD requires alignment for best performance 19
 Running the Host Utilities installation program 21
 Installing the Host Utilities interactively 21
 Installing the Host Utilities from a command line 22
 Repairing and removing Windows Host Utilities 23
 Repairing or removing Windows Host Utilities interactively 23
 Repairing or removing Windows Host Utilities from a command line 23
 Removing Windows Unified Host Utilities can affect DSM 23

Host configuration settings ... 25
What FC and iSCSI identifiers are ... 25
 Recording the WWPN ... 25
 Recording the iSCSI initiator node name ... 27
Overview of settings used by the Host Utilities .. 27
 Registry values set by Windows Unified Host Utilities 28
 FC HBA values set by Windows Host Utilities 33
Troubleshooting .. 35
 Different areas to identify the possible interoperability problems 35
 Displaying Host Utilities and HBA version information 36
 Updating the HBA software driver .. 36
 Understanding the Host Utilities changes to FC HBA driver settings 37
 Verifying the Emulex HBA driver settings on FC systems 37
 Verifying the QLogic HBA driver settings on FC systems 38
 Enabling logging on the Emulex HBA ... 39
 Enabling logging on the QLogic HBA .. 39
 FCoE troubleshooting overview ... 39
 Troubleshooting the FCoE initiator to switch connection 40
 Troubleshooting the FCoE switch ... 40
 Troubleshooting the FCoE switch to target connection 41
 Troubleshooting FCoE failover problems 41
About the OneCollect diagnostic program .. 42
Copyright ... 43
Trademark .. 44
How to send comments about documentation and receive update
 notifications .. 45
Index .. 46
Introduction to Host Utilities

This section introduces the Host Utilities and what they contain.

What the Host Utilities are

The Host Utilities are a set of software programs and documentation that enable you to connect host computers to virtual disks (LUNs) on NetApp storage systems.

The Host Utilities include the following components:

- An installation program that sets required parameters on the host computer and on certain host bus adapters (HBAs).
- This documentation, which describes how to install the Host Utilities and troubleshoot common problems.

What Windows Unified Host Utilities is

Windows Unified Host Utilities includes an installation program that sets the required Windows registry and HBA parameters so that the Windows host correctly handles the storage system behaviors for NetApp ONTAP and E-Series platforms.

Tasks required for installing the Host Utilities

Installing the Host Utilities involves performing a number of tasks on the host to enable the installation to complete successfully.

The required tasks are as follows:

1. Install the Host Utilities and other required and optional software.
2. Record the FC and iSCSI initiator identifiers.
3. Create LUNs and make them available as virtual disks on the host computer.
 For more information about setting up LUNs, see the *Using Windows Hosts with Data ONTAP Storage* for ONTAP storage systems.

Optionally, depending on your configuration, you can configure SAN booting of the host.

Related concepts

Host configuration settings on page 25

Related tasks

Installing and Configuring Host Utilities on page 11
What the Host Utilities contain

The Host Utilities include an installation program. When you install the Host Utilities software, the installer sets required Windows registry and HBA parameters.

The following programs and files are installed on the Windows host computer. The default directory is C:\Program Files\NetApp\Windows Host Utilities.

<table>
<thead>
<tr>
<th>Program</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>emulexhba.reg</td>
<td>Troubleshooting program; run this program only if instructed to do so by technical support personnel.</td>
</tr>
<tr>
<td>\NetAppQCLI\fcconfig.exe</td>
<td>Used by the installation program to set HBA parameters. Not installed if Data ONTAP DSM for Windows MPIO is detected on the host.</td>
</tr>
<tr>
<td>\NetAppQCLI\fcconfig.ini</td>
<td>Used by the installation program to set HBA parameters. Not installed if Data ONTAP DSM for Windows MPIO is detected on the host.</td>
</tr>
<tr>
<td>\NetAppQCLI*.*</td>
<td>Used by the installation program to set QLogic Fibre Channel HBA parameters.</td>
</tr>
<tr>
<td>san_version.exe</td>
<td>Displays the version of the Host Utilities and Fibre Channel HBAs.</td>
</tr>
</tbody>
</table>

Windows configurations supported by the Host Utilities

The Host Utilities support a number of different Windows host configurations.

Depending on your specific environment, the Host Utilities support the following Windows host configurations:

- iSCSI paths to the storage system
- Fibre Channel paths to the storage system
- Multiple paths to the storage system when a multipathing solution is installed
- SAN booting

You should use the Interoperability Matrix to find a supported combination of host and storage system components and software and firmware versions.

Related information

NetApp Interoperability Matrix Tool
Protocols supported by the Host Utilities

The Host Utilities provide support for Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI, and SAS connections to the storage system.

For more information about SAN protocols and supported configurations, see the SAN Configuration Guide for your version of ONTAP or the SANtricity Storage Manager 11.20 Configuration and Provisioning for Windows Express Guide that is appropriate for your protocol.

Related information

NetApp Documentation

Dynamic disk support

Windows dynamic disks are supported with specific configuration requirements.

When using the native Windows storage stack, all LUNs composing the dynamic volume must be located on the same storage system controller.

When using Veritas Storage Foundation for Windows, the LUNs composing the dynamic volume can span storage controllers in active/active configurations.

Multipathing options supported by the Host Utilities

You can use the Host Utilities to support multiple paths, including a combination of protocols. Configuring multiple paths can provide a highly available connection between the Windows host and storage system.

Multipath I/O (MPIO) software is required any time a Windows host has more than one path to the storage system. The MPIO software presents a single disk to the operating system for all paths, and a device-specific module (DSM) manages path failover. Without MPIO software, the operating system might see each path as a separate disk, which can lead to data corruption.

When you select MPIO support during Host Utilities installation, the Host Utilities installer enables the included MPIO feature on all supported Windows versions.

See the Interoperability Matrix for the DSM software currently supported.

The Microsoft Windows multipathing software uses a DSM to communicate with storage devices, such as NetApp storage systems. You must use only one DSM for a given storage vendor. More precisely, you can have only one DSM that claims the LUNs for a given vendor ID and product ID (VID/PID) pair. If you are using Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, the Host Utilities enable the Windows multipathing feature. See the installation documentation for the DSM version you are using.

A supported DSM is required for multipathing. The following DSMs are available for Windows hosts:

Data ONTAP DSM for Windows MPIO

Data ONTAP DSM for Windows MPIO is for use with Data ONTAP storage systems only. This multipathing software supports active/active and active/passive policies on Windows Server hosts.
DSM for SANtricity Storage Manager
DSM for SANtricity Storage Manager is for use with E-Series storage systems only. For more information, see the SANtricity Storage Manager 11.20 Multipath Drivers Guide.

Windows Multipath DSM
This is the native DSM provided with Microsoft Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016. It offers active/active and active/passive load balance policies for both the FC and iSCSI protocols. See the Interoperability Matrix to verify that you have a version of Data ONTAP or SANtricity Storage Manager software that is supported with this DSM.

Related information
NetApp Interoperability Matrix Tool

What Hyper-V is
Hyper-V is a Windows technology that enables you to create multiple virtual machines on a single physical x64 computer running certain versions of Microsoft Windows Server.

Hyper-V is a “role” available in the following versions of Microsoft Windows Server.

- Windows Server 2008
- Windows Server 2008 R2
- Windows Server 2012
- Windows Server 2012 R2
- Windows Server 2016

Each virtual machine runs its own operating system and applications. For a list of currently-supported operating systems on Hyper-V virtual machines, see the Windows Host Utilities Release Notes.

Methods for using storage with Hyper-V
Hyper-V enables you to provision storage using a virtual hard disk, an unformatted (raw) LUN, or an iSCSI LUN.

Virtual machines use storage on a storage system in the following ways:

- A virtual hard disk (IDE or SCSI) formatted as NTFS
 The virtual hard disk is stored on a LUN mapped to the Hyper-V parent system. The guest OS must boot from an IDE virtual hard disk.

- An unformatted (raw) LUN mapped to the Hyper-V parent system and provided to the virtual machine as a physical disk mapped through either the SCSI or IDE virtual adapter
 Note: You must not enable multipathing in Windows Host Utilities installed on a guest OS if you are using raw (pass-through) disks. The raw disks do not show up in the guest OS if multipathing is enabled.

- An iSCSI LUN accessed by an iSCSI initiator running on the guest OS:
 - For Windows Vista, you must use the built-in iSCSI initiator; multipathing is not supported.
The guest OS supports the same iSCSI configurations as if it was not running on a virtual machine.

- For SUSE Linux Enterprise Server, you must use a supported iSCSI initiator and multipathing solution. The guest OS supports the same iSCSI configurations as if it was not running on a virtual machine.

Methods for clustering Windows hosts with Hyper-V

Hyper-V provides two ways to let you cluster Windows hosts.

- You can cluster the parent Hyper-V system with other parent systems using Windows failover clustering.
- You can cluster guest systems running in virtual machines with other guest systems using the clustering solution supported on the operating system. You must use an iSCSI software initiator on the guest system to access the quorum and shared disks.

About SAN booting

SAN booting is the general term for booting a Windows host from a storage system LUN instead of an internal hard disk. The host might or might not have any hard drives installed.

SAN booting offers many advantages. Because the system (C:\) drive is located on the storage system, all of the reliability and backup features of the storage system are available to the system drive. You can also clone system drives to simplify deploying many Windows hosts and to reduce the total storage needed. SAN booting is especially useful for blade servers.

The downside of SAN booting is that loss of connectivity between the host and storage system can prevent the host from booting. Be sure to use a reliable connection to the storage system.

There are two options for SAN booting a Windows host:

Fibre Channel HBA

- Requires one or more supported adapters. These same adapters can also be used for data LUNs. The Windows Host Utilities installer automatically configures required HBA settings.

iSCSI software boot

- Requires a supported network interface card (NIC) and a special version of the Microsoft iSCSI software initiator.

For information on iSCSI software boot, see the vendor (Intel or IBM) documentation for the iSCSI boot solution you choose. Also, see NetApp Technical Report 3644.

Related information

Support for non-English operating system versions

Windows Host Utilities are supported on all Language Editions of Windows Server. All product interfaces and messages are displayed in English. However, all variables accept Unicode characters as input.

Where to find more information

For additional information about host and storage system requirements, supported configurations, your operating system, and troubleshooting, you should refer to the appropriate documentation.

<table>
<thead>
<tr>
<th>If you need more information about...</th>
<th>Go to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known issues, system requirements, and last-minute updates</td>
<td>• The latest Host Utilities Release Notes</td>
</tr>
<tr>
<td>The latest supported configurations</td>
<td>• The Interoperability Matrix</td>
</tr>
<tr>
<td></td>
<td>• Hardware Universe</td>
</tr>
<tr>
<td>Configuring the storage system</td>
<td>• The Software Setup Guide for your version of ONTAP</td>
</tr>
<tr>
<td></td>
<td>• The SAN Administration Guide for your version of ONTAP</td>
</tr>
<tr>
<td></td>
<td>• SANtricity Storage Manager 11.20 Configuration and Provisioning for Windows Express Guide that is appropriate for your protocol</td>
</tr>
<tr>
<td>Supported SAN topologies</td>
<td>The SAN Configuration Guide for your version of ONTAP</td>
</tr>
<tr>
<td>Installing and configuring the HBA in your host</td>
<td>Your HBA vendor documentation</td>
</tr>
<tr>
<td>Installing and configuring MPIO using the Data ONTAP DSM</td>
<td>The Installation and Administration Guide for that version of Data ONTAP DSM for Windows MPIO</td>
</tr>
<tr>
<td>Installing and configuring MPIO using the DSM for SANtricity Storage Manager</td>
<td>The SANtricity Storage Manager 11.20 Multipath Drivers Guide</td>
</tr>
<tr>
<td>Installing and configuring a supported version of SnapDrive for Windows software</td>
<td>The Installation and Administration Guide for that version of SnapDrive for Windows</td>
</tr>
<tr>
<td>Managing SAN storage on the storage system</td>
<td>• The SAN Administration Guide for your version of ONTAP</td>
</tr>
<tr>
<td></td>
<td>• ONTAP man pages or the ONTAP Commands: Manual Page Reference for your version of ONTAP</td>
</tr>
</tbody>
</table>

Related information

NetApp Interoperability Matrix Tool
NetApp Documentation
Installing and Configuring Host Utilities

This section describes how to install and configure the Host Utilities and how to perform related tasks.

Steps

1. Installing and configuring the Host Utilities (high level) on page 11
2. Verifying your host and storage system configuration on page 12
3. Installing Windows hotfixes on page 12
4. Confirming your storage system configuration on page 14
5. Configuring FC HBAs and switches on page 14
6. Configuring iSCSI initiators on page 15
7. Installing multipath I/O software on page 18
8. Configuring Hyper-V systems on page 19
9. Running the Host Utilities installation program on page 21
10. Repairing and removing Windows Host Utilities on page 23

Installing and configuring the Host Utilities (high level)

The following steps provide a high-level overview of what is involved in installing the Host Utilities and configuring your system to work with that software.

About this task

This section is for people familiar with this operating system and storage systems. If you need more information, see the detailed instructions for the steps.

Steps

1. Verify your host and storage system configuration.
2. Confirm that your storage system is set up.
3. Configure FC HBAs and switches.
4. Check the media type setting of FC target ports.
5. For ONTAP, configure an iSCSI software initiator.
 For E-Series, see the SANtricity Storage Manager 11.20 Configuration and Provisioning for Windows Express Guide that is appropriate for your protocol.
6. Configure a multipathing solution.
7. Install the Host Utilities.
Verifying your host and storage system configuration

Before you install the Host Utilities, you must verify that the Host Utilities version supports your host and storage system configuration so that the software installs correctly.

About this task

The Interoperability Matrix lists all supported configurations. Individual computer models are not listed; Windows hosts are qualified based on their CPU chips. The following configuration items must be verified:

- Windows host CPU architecture
- Guest operating systems
- Windows operating system version, service pack level, and required hotfixes
- HBA model and firmware version
- Multipathing software
- Storage firmware version and cfmode setting
- Optional software such as SnapDrive for Windows

Step

1. Verify that your entire configuration is listed in the matrix.

Related information

NetApp Interoperability Matrix Tool

Installing Windows hotfixes

Obtain and install the required Windows hotfixes for your version of Windows.

Before you begin

Some of the hotfixes require a reboot of your Windows host. You can wait to reboot the host until after you install or upgrade the Host Utilities.

When you run the installer for the Windows Host Utilities, it lists any missing required hotfixes. You must add the required hotfixes before the installer will complete the installation process.

Note: Some hotfixes for Windows Server 2008 are not recognized unless the affected feature is enabled. If you are prompted to install a hotfix that is already installed, try enabling the affected Windows feature and then restarting the Host Utilities installation program.

Note: Some Server 2012 R2 hotfixes require a rollup package update. The section List of required hotfixes for Windows Server provides more information.

List of required hotfixes for Windows Server on page 13

Steps

1. Determine which hotfixes are required for your version of Windows.

2. Download hotfixes from the Microsoft support site.
Note: Some hotfixes must be requested from Microsoft support personnel. They are not available for direct download.

3. Follow the instructions provided by Microsoft to install the hotfixes.

Related information

Microsoft Support

NetApp Interoperability Matrix Tool

List of required hotfixes for Windows Server

Specific Windows Server hotfixes are required to successfully install or upgrade the Windows Unified Host Utilities.

The hotfixes that are listed in this section are the minimum requirement. The following tables specify the name and version of the file that is included in each required hotfix for Windows Unified Host Utilities. The specified file version is the minimum requirement.

The Interoperability Matrix lists updates to hotfix requirements when new hotfixes supersede older hotfixes.

Note: The product installer does not check for the hotfixes that are required for Windows Failover Clustering configurations. The installer checks for all other hotfixes.

Windows Server 2016

The following table lists the minimum required hotfixes for Windows Server 2016:

<table>
<thead>
<tr>
<th>Hotfix</th>
<th>When recommended</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3197954</td>
<td>Always</td>
<td>Cumulative update</td>
</tr>
</tbody>
</table>

Windows Server 2012 R2

<table>
<thead>
<tr>
<th>Hotfix</th>
<th>When recommended</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2990170</td>
<td>Always</td>
<td>mpi.o.sys</td>
</tr>
<tr>
<td>2908783</td>
<td>Always</td>
<td>storport.sys.msiscsi.sys</td>
</tr>
<tr>
<td>3036614</td>
<td>Always</td>
<td>msdsm.sys</td>
</tr>
</tbody>
</table>

Note: Hotfix package 2990170 for Windows Server 2012 R2 might require a Windows update download.

The hotfix 2908783 is required for Windows Server 2012 R2.

For more information, see the Microsoft Support site.

Windows Server 2012

The following table lists the minimum required hotfixes for Windows Server 2012:

<table>
<thead>
<tr>
<th>Hotfix</th>
<th>When required</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2908783</td>
<td>Always</td>
<td>msiscsi.sys</td>
</tr>
<tr>
<td>2990170</td>
<td>Always</td>
<td>mpi.o.sys</td>
</tr>
</tbody>
</table>

Note: For hotfix 2908783, install Windows update 2928678.
The following hotfix is not required for Windows Server 2012, but is recommended.

<table>
<thead>
<tr>
<th>Hotfix</th>
<th>When recommended</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2796995</td>
<td>Always</td>
<td>Csvfs.sys</td>
</tr>
</tbody>
</table>

Windows Server 2008

Note: Hotfixes for **Windows Server 2008** (R2 SP1, R2, and SP2) are handled in the Windows Rollup updates. For current updates, see the Microsoft support site.

Related information

- *Microsoft Support*
- *NetApp Interoperability Matrix Tool*

Confirming your storage system configuration

You must make sure that your storage system is properly cabled, that the protocol services are licensed, if required, and that the services are started. Proper configuration ensures that the storage system is accessible to host systems.

Steps

1. Add the iSCSI or FCP license and start the target service.

 The Fibre Channel and iSCSI protocols are licensed features of ONTAP software. If you need to purchase a license, you should contact your NetApp or sales partner representative. The Fibre Channel and iSCSI protocols do not require licenses on E-Series storage systems using SANtricity Storage Manager.

2. Verify your cabling.

 See the *SAN Configuration Guide* for your version of ONTAP or the *Hardware Cabling Guide* for your E-Series storage system for detailed cabling and configuration information.

Related information

- *NetApp Documentation*

Configuring FC HBAs and switches

Install and configure one or more supported Fibre Channel host bus adapters (HBAs) for Fibre Channel connections to the storage system.

About this task

The Windows Host Utilities installer sets the required Fibre Channel HBA settings.

Note: Do not change HBA settings manually.

Steps

1. Install one or more supported Fibre Channel host bus adapters (HBAs) according to the instructions provided by the HBA vendor.

2. Obtain the supported HBA drivers and management utilities and install them according to the instructions provided by the HBA vendor.
The supported HBA drivers and utilities are available from the following locations:

Emulex HBAs
Emulex support page for NetApp.

QLogic HBAs
QLogic support page for NetApp.

3. Connect the HBAs to your Fibre Channel switches or directly to the storage system.

4. Create zones on the Fibre Channel switch according to your Fibre Channel switch documentation.
 For ONTAP, zone the switch by WWPN. Be sure to use the WWPN of the logical interfaces (LIFs) and not of the physical ports on the storage controllers.

Related information

Emulex: NetApp Qualified Downloads and Documentation
QLogic: NetApp Downloads

Configuring iSCSI initiators

See the Interoperability Matrix for initiators supported with iSCSI configurations.

An iSCSI software initiator uses the Windows host CPU for most processing and Ethernet network interface cards (NICs) or TCP/IP offload engine (TOE) cards for network connectivity. An iSCSI HBA offloads most iSCSI processing to the HBA card, which also provides network connectivity.

Note: You configure iSCSI paths differently for ONTAP. You need to create one or more iSCSI paths to each storage controller that can access a given LUN. Unlike earlier versions of ONTAP software, the iSCSI ports on a partner node do not assume the IP addresses of the failed partner. Instead, the MPIO software on the host is responsible for selecting the new paths. This behavior is very similar to Fibre Channel path failover.

Related information

NetApp Interoperability Matrix Tool

iSCSI software initiator options

You should select the appropriate iSCSI software initiator for your host configuration.

The following is a list of operating systems and their iSCSI software initiator options.

Windows Server 2008
The iSCSI initiator is built into the operating system. The iSCSI Initiator Properties dialog box can be accessed from the Administrative Tools.

Windows Server 2008 R2
The iSCSI initiator is built into the operating system. The iSCSI Initiator Properties dialog box is available from Server Manager > Dashboard > Tools > iSCSI Initiator.

Windows Server 2012
The iSCSI initiator is built into the operating system. The iSCSI Initiator Properties dialog box is available from Server Manager > Dashboard > Tools > iSCSI Initiator.
Windows Server 2016

The iSCSI initiator is built into the operating system. The iSCSI Initiator Properties dialog box is available from the Administrative Tools.

Windows Vista guest systems on Hyper-V

For Windows Vista guest systems on Hyper-V virtual machines that access storage directly (not as a virtual hard disk mapped to the parent system), the iSCSI initiator is built into the operating system. The iSCSI Initiator Properties dialog box is available from Administrative Tools.

Note: A Windows Vista iSCSI connection to NetApp storage is supported only on Hyper-V virtual machines.

Linux guest systems on Hyper-V

For Linux guest systems on Hyper-V virtual machines that access storage directly (not as a virtual hard disk mapped to the parent system), you must use an iSCSI initiator solution on a Hyper-V guest that is supported for stand-alone hardware. A supported version of Linux Host Utilities is required.

Installing the iSCSI HBA

If your configuration uses an iSCSI HBA, you must make sure that the HBA is installed and configured correctly.

About this task

You can optionally boot your Windows host from a storage system LUN using a supported HBA.

Steps

1. Install one or more supported iSCSI host bus adapters according to the instructions provided by the HBA vendor.
2. Obtain the supported HBA drivers and management utilities, and install them according to the instructions provided by the HBA vendor.
3. Manually set the required QLogic iSCSI HBA settings.
 a. Start the QConvergeConsole program on the Windows host and select the iSCSI HBA. See the QConvergeConsole online Help for more information.
 b. Specify an IP address for each HBA port.
 c. Set the Connection KeepAliveTO value to 180.
 d. Enable ARP Redirect.
 e. Set the iSCSI node name of all iSCSI HBA ports to the same name as shown in the iSCSI initiator GUI on the Windows host.
 f. Save the HBA settings and reboot the Windows host.
4. Connect the iSCSI HBA to your Ethernet switches or directly to the storage system. Avoid routing if possible.
5. Using the iSCSI initiator GUI, configure the iSCSI target addresses of your storage system. If you are using more than one path, select the initiator and target for each path when you log on.

After you finish

If you are SAN booting from an iSCSI HBA, you must also manually set the boot BIOS on the HBA.
Related information

QLogic: NetApp Downloads

Options for iSCSI sessions

The iSCSI initiator does not automatically create multiple sessions. You must create each additional session by using the iSCSI initiator GUI.

By default, ONTAP enables a single connection per iSCSI session. For E-Series storage systems, SANtricity Storage Manager enables a single connection per iSCSI session.

Options for using CHAP with iSCSI initiators

You can use one-way or mutual (bidirectional) authentication with the challenge handshake authentication protocol (CHAP).

For one-way CHAP, the target authenticates only the initiator. For mutual CHAP, the initiator authenticates the target also.

The iSCSI initiator sets strict limits on the length of both the initiator’s and the target’s CHAP passwords.

- For Windows Server 2008 or Windows Server 2008 R2, see the “Manage iSCSI Security” topic in Help.

There are two types of CHAP user names and passwords. These types indicate the direction of authentication, relative to the storage system.

Inbound

The storage system authenticates the iSCSI initiator. Inbound settings are required if you are using CHAP authentication.

Outbound

The iSCSI initiator authenticates the storage system using CHAP. Outbound values are used only with mutual CHAP.

You can specify the iSCSI initiator CHAP settings by using the iSCSI Initiator Properties dialog box on the host.

For Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016, you must click Server Manager > Dashboard > Tools > iSCSI Initiator > Targets > Discovery > Advanced to specify the inbound values for each storage system when you add a target portal. You must click Configuration > CHAP in the iSCSI Initiator Properties dialog box to specify the outbound value (mutual CHAP only).

By default, the iSCSI initiator uses its iSCSI node name as its CHAP user name.

You must always use ASCII text passwords; you must not use hexadecimal passwords. For mutual (bidirectional) CHAP, the inbound and outbound passwords cannot be the same.

Using RADIUS for iSCSI authentication

You can optionally use a RADIUS (Remote Authentication Dial-in User Service) server to centrally manage passwords for iSCSI authentication. Using RADIUS simplifies password management, increases security, and offloads authentication processing from ONTAP storage systems only.

Support for RADIUS is available starting with Data ONTAP 8.0 for the iSCSI target and the following versions of Windows Server, which include a RADIUS server.
• Windows Server 2008
• Windows Server 2008 R2
• Windows Server 2012
• Windows Server 2012 R2
• Windows Server 2016

You can configure either one-way authentication (the target authenticates the initiator), or mutual authentication (the initiator also authenticates the target).

There are three parts to enabling RADIUS authentication for iSCSI initiators:

• Set up a RADIUS server.
• Configure the storage system to use RADIUS.
• Configure iSCSI initiators to use RADIUS.

For information about configuring this RADIUS server, see the Windows online Help.

For information about configuring the storage system to use RADIUS, see the SAN Administration Guide for your version of ONTAP.

Installing multipath I/O software

You must install MPIO software and have multipathing set up if your Windows host has more than one path to the storage system. Without MPIO software, the operating system might see each path as a separate disk, which can lead to data corruption.

The MPIO software presents a single disk to the operating system for all paths, and a device-specific module (DSM) manages path failover.

On a Windows system, the two main components to any MPIO solution are a DSM and the Windows MPIO.

Install a supported DSM after you install the Windows Unified Host Utilities. Choices include the Data ONTAP DSM for Windows MPIO and the DSM for SANtricity Storage Manager. The Microsoft msdsm is included with Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2 and Windows Server 2016. It is available by default when the MPIO feature is enabled. If you use the Data ONTAP DSM, installation of the Host Utilities is optional.

MPIO is not supported for Windows XP and Windows Vista running in a Hyper-V virtual machine.

How to install a DSM multipath solution

If your environment uses DSM as its multipathing solution, see the appropriate DSM documentation for instructions to install a DSM multipath solution.

The various procedures to install a DSM multipath solution are as follows:

• You can install Data ONTAP DSM for Windows MPIO by following the instructions that are provided in the Installation and Administration Guide for your version of DSM.
• You can install DSM for SANtricity Storage Manager by following the instructions that are provided in the Configuration and Installation documentation for your version of SANtricity Storage Manager.
The Microsoft Device Specific Module (MSDSM) is included with Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016. No additional installation is required if you selected MPIO support when you installed Windows Host Utilities. If you did not originally select MPIO support, you should run the Repair option of the Windows Unified Host Utilities installer, and select MPIO support.

Configuring Hyper-V systems

Hyper-V systems require special configuration steps for some virtual machines.

Adding virtual machines to a failover cluster

Hyper-V virtual machines stored on the same LUN can be added to a cluster only if all of the virtual machine resources are in the same storage resource group.

About this task

When you have more than one virtual machine (configuration files and boot.vhd file) stored on the same LUN, and you are adding the virtual machines to a failover cluster, you must put all of the virtual machine resources in the same storage resource group. Otherwise, adding virtual machines to the cluster fails.

Steps

1. Move the available storage resource group to the node on which you are creating and adding virtual machines. (The available storage resource group in a Windows Server 2008, 2008 R2, 2012, 2012 R2 or 2016 the Windows failover cluster is hidden.)
 - For Windows Server 2008, enter the following command at a Windows command prompt on the cluster node:

     ```
     c:\cluster group "Available Storage" /move:node_name
     ```

 node_name is the host name of the cluster node from which you are adding virtual machines.
 - For Windows Server 2008 R2, 2012, 2012 R2 or 2016 enter the following command at a Windows command prompt on the cluster node:

     ```
     c:\PS>Move-ClusterGroup "Available Storage" -Node node_name
     ```

 node_name is the host name of the cluster node from which you are adding virtual machines.

2. Move all of the virtual machine resources to the same failover cluster resource group.

3. Create the virtual machines and then add them to the failover cluster. Be sure that the resources for all virtual machines are configured as dependent on the disk mapped to the LUN. For Windows Server 2012 and later, virtual machines should be created using Cluster Manager.

Hyper-V VHD requires alignment for best performance

On Windows Server 2008 R2 or later versions or a Linux virtual machine, a Hyper-V virtual hard drive (VHD) partitioned with a master boot record (MBR) must be aligned with the underlying LUN for best performance. You must use the ONTAP PowerShell Toolkit to check and correct MBR partition alignment on VHDs.

If the data block boundaries of a disk partition do not align with the block boundaries of the underlying LUN, the storage system often has to complete two block reads or writes for every operating system block read or write. The additional block reads and writes that are caused by the misalignment can cause serious performance problems.

Misalignment is caused by the location of the starting sector for each partition defined by the master boot record. Partitions created by Windows Server 2008 R2 and Linux are usually not aligned with

You must use the Get-NaVirtualDiskAlignment cmdlet in the ONTAP PowerShell Toolkit to check whether partitions are aligned with underlying LUNs. If the partitions are incorrectly aligned, you must use the Repair-NaVirtualDiskAlignment cmdlet to create a new VHD file with the correct alignment. This cmdlet copies all of the partitions to the new file. The original VHD file is not modified or deleted. The virtual machine must be shut down while the data is copied.

You can download the ONTAP PowerShell Toolkit at NetApp Communities. You must unzip the DataONTAP.zip file into the location specified by the environment variable %PSModulePath% (or use the Install.ps1 script to do it for you). Once you have completed the installation, you can use the Show-NaHelp cmdlet to get help for the cmdlets.

Note: The PowerShell Toolkit supports only fixed-size VHD files with MBR-type partitions. VHDs using Windows dynamic disks or GPT partitions are not supported.

The PowerShell Toolkit requires a minimum partition size of 4 GB. Smaller partitions cannot be correctly aligned.

For Linux virtual machines using the GRUB boot loader on a VHD, you must update the boot configuration after running the PowerShell Toolkit.

Related information

NetApp Communities

Reinstalling GRUB for Linux guests after correcting MBR alignment with PowerShell Toolkit

After running mbralign on disks for correcting MBR alignment with PowerShell Toolkit on Linux guest operating systems using the GRUB boot loader, you must reinstall GRUB to ensure that the guest operating system boots correctly.

Before you begin

The PowerShell Toolkit cmdlet has completed on the VHD file for the virtual machine.

About this task

This topic applies only to Linux guest operating systems using the GRUB boot loader and SystemRescueCd.

Steps

1. Mount the ISO image of Disk 1 of the installation CDs for the correct version of Linux for the virtual machine.

2. Open the console for the virtual machine in Hyper-V Manager.

3. If the VM is running and hung at the GRUB screen, click in the display area to make sure it is active, then click the Ctrl-Alt/Delete toolbar icon to reboot the VM. If the VM is not running, start it, and then immediately click in the display area to make sure it is active.

4. As soon as you see the VMware BIOS splash screen, press the Esc key once.

The boot menu is displayed.

5. At the boot menu, select CD-ROM.

6. At the Linux boot screen, enter:

 `linux rescue`
7. Take the defaults for Anaconda (the blue/red configuration screens). Networking is optional.

8. Launch GRUB by entering:

 grub

9. If there is only one virtual disk in this VM, or if there are multiple disks, but the first is the boot disk, run the following GRUB commands:

 root (hd0,0)
 setup (hd0)
 quit

 If you have multiple virtual disks in the VM, and the boot disk is not the first disk, or you are fixing GRUB by booting from the misaligned backup VHD, enter the following command to identify the boot disk:

 find /boot/grub/stage1
 Then run the following commands:

 root (boot_disk,0)
 setup (boot_disk)
 quit

 boot_disk is the disk identifier of the boot disk.

10. Press Ctrl-D to log out.

 Linux rescue shuts down and then reboots.

Running the Host Utilities installation program

The installation program installs the Host Utilities package and sets the Windows registry and HBA settings.

You must specify whether to include multipathing support when you install the Windows Unified Host Utilities software package. The installer prompts you for the following choice. You can also run a quiet (unattended) installation from a Windows command prompt.

Multipathing support

Choose MPIO if you have more than one path from the Windows host or virtual machine to the storage system. Choose no MPIO only if you are using a single path to the storage system.

The MPIO selection is not available for Windows XP and Windows Vista systems; multipath I/O is not supported on these guest operating systems.

For Hyper-V guests, raw (pass-through) disks do not appear in the guest OS if you choose multipathing support. You can either use raw disks, or you can use MPIO, but you cannot use both in the guest OS.

Installing the Host Utilities interactively

To install the Host Utilities software package interactively, you must run the Host Utilities installation program and follow the prompts.

Steps

1. Change to the directory to which you downloaded the executable file.

2. Run the executable file and follow the instructions on the screen.
3. Reboot the Windows host when prompted.

Related tasks

Installing the Host Utilities from a command line on page 22

Installing the Host Utilities from a command line

You can perform a quiet (unattended) installation of the Host Utilities by entering the appropriate commands at a Windows command prompt.

Before you begin

The Host Utilities installation package must be in a path that is accessible by the Windows host. Follow the instructions for installing the Host Utilities interactively to obtain the installation package.

About this task

The system automatically reboots when the installation is complete.

If a required Windows hotfix is missing, the installation fails with a message in the event log saying the installation failed, but not why. Problems with hotfixes are logged to the msiexec log file. It is recommended that you enable logging in the `msiexec` command to record the cause of this and other possible installation failures.

Note: For Windows Server 2008 or later, if the Hyper-V role is not enabled, the installation program sets the SAN Policy on the Windows host to “Online All”.

Step

1. Enter the following command at a Windows command prompt:

   ```cmd
   msiexec /i installer.msi /quiet
   MULTIPATHING={0 | 1}
   [INSTALLDIR=inst_path]
   
   where `installer` is the name of the `.msi` file for your CPU architecture;
   MULTIPATHING specifies whether MPIO support is installed. Allowed values are 0 for no, 1 for yes
   `inst_path` is the path where the Host Utilities files are installed. The default path is C:\Program Files\NetApp\Windows Host Utilities\.
   ```

 Note: To see the standard Microsoft Installer (MSI) options for logging and other functions, enter `msiexec /help` at a Windows command prompt. For example:

   ```cmd
   msiexec /i install.msi /quiet /l*v <install.log> LOGVERBOSE=1
   ```

Related tasks

Installing the Host Utilities interactively on page 21
Repairing and removing Windows Host Utilities

You can use the Repair option of the Host Utilities installation program to update HBA and Windows registry settings. You can remove the Host Utilities entirely, either interactively or from the Windows command line.

Note: Removing the Host Utilities affects installed DSMs.

Repairing or removing Windows Host Utilities interactively

The Repair option updates the Windows registry and Fibre Channel HBAs with the required settings. You can also remove the Host Utilities entirely.

Steps

3. Click Change.
4. Click Repair or Remove, as needed.
5. Follow the instructions on the screen.

Repairing or removing Windows Host Utilities from a command line

The Repair option updates the Windows registry and Fibre Channel HBAs with the required settings. You can also remove the Host Utilities entirely from a Windows command line.

Step

1. Enter the following command on the Windows command line to repair Windows Host Utilities:
   ```cmd
   msiexec /uninstall | /f installer.msi [/quiet]
   /uninstall removes the Host Utilities entirely
   /f repairs the installation
   installer.msi is the name of the Windows Host Utilities installation program on your system
   /quiet suppresses all feedback and reboots the system automatically without prompting when the command completes
   ```

Removing Windows Unified Host Utilities can affect DSM

Removing Windows Unified Host Utilities can remove the registry settings needed by DSMs.

The registry settings for Windows Unified Host Utilities affect device-specific modules (DSMs) that claim NetApp LUNs. This includes the Data ONTAP DSM for Windows MPIO and the DSM for SANtricity Storage Manager. Removing Windows Unified Host Utilities removes the registry settings needed by these DSMs to claim the LUNs.

If you remove Windows Unified Host Utilities, you can restore the Data ONTAP DSM registry settings by running the Repair option of the Data ONTAP DSM installation program.
Note: Windows Unified Host Utilities is currently required for all supported configurations of Windows hosts that use NetApp LUNs except if the host is running Data ONTAP DSM 3.5 for Windows MPIO or later.
Host configuration settings

You need to collect some host configuration settings as part of the installation process. The Host Utilities installer modifies other host settings based on your installation choices.

What FC and iSCSI identifiers are

The storage system identifies hosts that are allowed to access LUNs based on the FC worldwide port names (WWPNs) or iSCSI initiator node name on the host.

Each Fibre Channel port has its own WWPN. A host has a single iSCSI node name for all iSCSI ports. You need these identifiers when manually creating initiator groups (igroups) on the storage system.

Note: If you use SnapDrive for Windows software on the host, it automatically collects the FC and iSCSI identifiers it needs to create igroups on the storage system. You do not need to collect these identifiers manually.

The storage system also has WWPNs and an iSCSI node name, but you do not need them for configuring the host.

Recording the WWPN

You must record the worldwide port names (WWPN) of all FC ports that connect to the storage system.

About this task

Each HBA port has its own WWPN. For a dual-port HBA, you need to record two values; for a quad-port HBA, you record four values.

The following is an example of a WWPN:

```
WWPN: 10:00:00:00:c9:73:5b:90
```

Steps

1. Display the WWPNs.

<table>
<thead>
<tr>
<th>For</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2012 or Windows Server 2012 R2 or Windows Server 2016</td>
<td>The HBA manufacturer's management software, such as OnCommand Manager for Emulex HBAs or QConvergeConsole for QLogic HBAs.</td>
</tr>
<tr>
<td>Windows Server 2008 or Windows Server 2008 R2</td>
<td>The Storage Explorer application or the HBA manufacturer's management software, such as OnCommand Manager for Emulex HBAs or QConvergeConsole for QLogic HBAs.</td>
</tr>
</tbody>
</table>

OnCommand Manager is the successor to HBAnyware. QConvergeConsole is the successor to SANsurfer.

2. Obtain the WWPNs using the boot BIOS if the system is SAN-booted and not yet running an operating system, or if the HBA management software is not available.
Obtaining the WWPN using Storage Explorer

For hosts running Windows Server 2008 or Windows Server 2008 R2, you can obtain the Fibre Channel Worldwide Port Name (WWPN) using the Storage Explorer application.

Steps

2. Expand the Servers node of the Storage Explorer console tree and locate the HBAs.
3. Record the value of the Port WWN field for each HBA port.

Obtaining the WWPN using Microsoft fcinfo.exe

If your host OS supports fcinfo.exe, then you can obtain the Fibre Channel Worldwide Port Name (WWPN) using the Microsoft fcinfo.exe.

Steps

1. If it is not already installed, download and install the fcinfo.exe program from the Microsoft Download Center. Search the Download Center for “Fibre Channel Information Tool (fcinfo)”.
 A reboot is not required.
2. Open a command prompt and enter the following command: fcinfo /ports /details
 For more options, run the fcinfo /?? command.
3. Record the value of the Port WWN field for each HBA port.

Related information

Microsoft Download Center

Obtaining the WWPN using Emulex BootBIOS

For SAN-booted systems with Emulex HBAs that do not yet have an operating system, you can get the WWPNs from the boot BIOS.

Steps

1. Restart the host.
2. During startup, press Alt-E to access BootBIOS.
3. Select the menu entry for the Emulex HBA.
 BootBIOS displays the configuration information for the HBA, including the WWPN.
4. Record the WWPN for each HBA port.

Obtaining the WWPN using QLogic BootBIOS

For SAN-booted systems with QLogic HBAs that do not yet have an operating system, you can get the WWPNs from the boot BIOS.

Steps

1. Restart the host.
2. During startup, press Ctrl-Q to access BootBIOS.

3. Select the appropriate HBA and press Enter.
 The Fast!UTIL options are displayed.

4. Select Configuration Settings and press Enter.

5. Select Adapter Settings and press Enter.

6. Record the WWPN for each HBA port from the Adapter Port Name field.

Recording the iSCSI initiator node name

You must record the iSCSI initiator node name from the iSCSI initiator program on the Windows host.

Steps

1. Open the iSCSI Initiator Properties dialog box:

<table>
<thead>
<tr>
<th>If you are using...</th>
<th>Navigate to...</th>
</tr>
</thead>
</table>
 | Windows Server 2012 or
 Windows Server 2012 R2 or
 Windows Server 2016 | Server Manager > Dashboard > Tools > iSCSI Initiator |
 | Windows Server 2008, Start > Administrative Tools > iSCSI Initiator |
 Windows Server 2008 R2 |

2. Copy the Initiator Name or Initiator Node Name value to a text file or write it down.
 The exact label in the dialog box differs depending on the Windows version. The iSCSI initiator node name looks like this:

Overview of settings used by the Host Utilities

The Host Utilities require certain registry and parameter settings to ensure the Windows host correctly handles the storage system behavior.

Windows Host Utilities sets the parameters that affect how the Windows host responds to a delay or loss of data. The particular values have been selected to ensure that the Windows host correctly handles events such as the failover of one controller in the storage system to its partner controller. Not all the values apply for the DSM for SANtricity Storage Manager; however, any overlap of values set by the Host Utilities and those set by the DSM for SANtricity Storage Manager do not result in conflicts.

Fibre Channel and iSCSI host bus adapters (HBAs) also have parameters that must be set to ensure the best performance and to successfully handle storage system events.

The installation program supplied with Windows Unified Host Utilities sets the Windows and Fibre Channel HBA parameters to the supported values. You must manually set iSCSI HBA parameters.

 Note: Starting with Windows Host Utilities 5.3, the installation program skips most settings if it detects the Data ONTAP DSM for Windows MPIO software on the host. It instead relies on the values set by the DSM installation program.

The installer sets different values depending on whether you specify multipath I/O (MPIO) support when running the installation program, whether you enable the Microsoft DSM on Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, or Windows Server 2012 R2, and which
protocols you select (iSCSI, Fibre Channel, both, or none). You should not change these values unless technical support directs you to do so.

Registry values set by Windows Unified Host Utilities

The Windows Unified Host Utilities installer automatically sets registry values that are based on the choices that you make during installation. You should be aware of these registry values, the operating system version, and whether Data ONTAP DSM for Windows multipath I/O (MPIO) is installed.

The following values are set by the Windows Unified Host Utilities installer. All values are decimal unless otherwise noted. **HKLM** is the abbreviation for HKEY_LOCAL_MACHINE.

<table>
<thead>
<tr>
<th>Registry key</th>
<th>Value</th>
<th>When set</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm \Parameters\DsmMaximumRetryTimeDuringStateTransition</td>
<td>120</td>
<td>When MPIO support is specified and your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm \Parameters\DsmMaximumStateTransitionTime</td>
<td>120</td>
<td>When MPIO support is specified and your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm \Parameters\DsmSupportedDeviceList</td>
<td>"NETAPP LUN"</td>
<td>When MPIO support is specified</td>
</tr>
<tr>
<td></td>
<td>"NETAPP LUN", "NETAPP LUN C-Mode"</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Control\Class{iSCSI_driver_GUID}\instance_ID\Parameters\IPSecConfigTimeout</td>
<td>60</td>
<td>Always, except when Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Control\Class{iSCSI_driver_GUID}\instance_ID\Parameters\LinkDownTime</td>
<td>10</td>
<td>Always</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\ClusDisk \Parameters\ManageDisksOnSystemBuses</td>
<td>1</td>
<td>Always, except when Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Registry key</td>
<td>Value</td>
<td>When set</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Control\Class\ {iSCSI_driver_GUID}\ instance_ID\Parameters\MaxRequestHoldTime</td>
<td>120</td>
<td>When no MPIO support is selected</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Always, except when Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Control\MPDEV\MPISupportedDeviceList</td>
<td>"NETAPP LUN"</td>
<td>When MPIO support is specified</td>
</tr>
<tr>
<td></td>
<td>"NETAPP LUN", "NETAPP LUN C-Mode"</td>
<td>When MPIO is support specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\mpio\Parameters\PathRecoveryInterval</td>
<td>40</td>
<td>When your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016 only</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\mpio\Parameters\PathVerifyEnabled</td>
<td>0</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm\Parameters\PathVerifyEnabled</td>
<td>0</td>
<td>When MPIO support is specified and your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msiscdsm\Parameters\PathVerifyEnabled</td>
<td>0</td>
<td>When MPIO support is specified and your server is Windows Server 2003, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\vnetapp\Parameters\PathVerifyEnabled</td>
<td>0</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\mpio\Parameters\PDORemovePeriod</td>
<td>130</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Registry key</td>
<td>Value</td>
<td>When set</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm</td>
<td>130</td>
<td>When MPIO support is specified and your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\PDORemovePeriod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msiscdsm</td>
<td>130</td>
<td>When MPIO support is specified and your server is Windows Server 2003, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\PDORemovePeriod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\vnetapp</td>
<td>130</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\PDORemovePeriod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\mpio</td>
<td>6</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\RetryCount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm</td>
<td>6</td>
<td>When MPIO support is specified and your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\RetryCount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msiscdsm</td>
<td>6</td>
<td>When MPIO support is specified and your server is Windows Server 2003, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\RetryCount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\vnetapp</td>
<td>6</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\RetryCount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\mpio</td>
<td>1</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>Parameters\RetryInterval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registry key</td>
<td>Value</td>
<td>When set</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\msdsm \Parameters\RetryInterval</td>
<td>1</td>
<td>When MPIO support is specified and your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\vnetapp \Parameters\RetryInterval</td>
<td>1</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\disk \TimeOutValue</td>
<td>120</td>
<td>When no MPIO support is selected, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>When MPIO support is specified, except if Data ONTAP DSM is detected</td>
</tr>
<tr>
<td>HKLM\SYSTEM\CurrentControlSet\Services\mpio \Parameters\UseCustomPathRecoveryInterval</td>
<td>1</td>
<td>When your server is Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016 only</td>
</tr>
</tbody>
</table>

DsmMaximumStateTransitionTime and DsmMaximumRetryTimeDuringStateTransition settings

The **DsmMaximumStateTransitionTime** and the **DsmMaximumRetryTimeDuringStateTransition** settings specify the time that the Windows Server 2008, Windows Server 2008 R2, or Windows Server 2012 msdsm waits for an ALUA path transition before returning an I/O error to the layer above it in the stack.

The **DsmMaximumStateTransitionTime** and **DsmMaximumRetryTimeDuringStateTransition** settings allow time for a path state transition to complete after a storage system failover or other event. These settings are used for MPIO configurations on Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

DsmSupportedDeviceList setting

The **DsmSupportedDeviceList** setting specifies that a DSM should claim storage devices with the specified vendor identifier and product identifier (VID/PID).

This setting is set for the msdsm included in Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012. The msdsm always gives priority to other DSMs. If another DSM is installed and configured to claim all LUNs with a specified VID/PID, that other DSM would handle the specified LUNs, even though the msdsm has this parameter set.
IPSecConfigTimeout setting

The IPSecConfigTimeout parameter specifies how long the iSCSI initiator waits for the discovery service to configure or release ipsec for an iSCSI connection.

The supported value enables the initiator service to start correctly on slow-booting systems that use CHAP.

LinkDownTime setting

For iSCSI only, the LinkDownTime setting specifies the maximum time in seconds that requests are held in the device queue and retried if the connection to the target is lost.

If MPIO is installed, this value is used. If MPIO is not installed, MaxRequestHoldTime is used instead.

ManageDisksOnSystemBuses setting

The ManageDisksOnSystemBuses parameter is used by SAN-booted systems to ensure that the startup disk, pagefile disks, and cluster disks are all on the same SAN fabric.

MaxRequestHoldTime setting

The MaxRequestHoldTime setting specifies the maximum time in seconds that requests are queued if connection to the target is lost and the connection is being retried.

After this hold period, requests are failed with "error no device" and the disk is removed from the system. The supported setting enables the connection to survive the maximum expected storage failover time.

MPIOSupportedDeviceList

The MPIOSupportedDeviceList setting specifies that the Windows MPIO component should claim storage devices with the specified vendor identifier and product identifier (VID/PID).

This parameter does not determine which DSM handles the claimed devices; the DsmSupportedDeviceList setting specifies the DSM to use.

PathRecoveryInterval setting

The PathRecoveryInterval setting specifies how long in seconds the MPIO component waits before retrying a lost path.

The PathRecoveryInterval setting causes the MPIO component to try to recover a lost path that had a transient error before it decides the disk device is no longer available.

Note that this parameter affects all DSMs on the system.

PathVerifyEnabled setting

The PathVerifyEnabled parameter specifies whether the Windows MPIO driver periodically requests that the DSM check its paths.

Note that this parameter affects all DSMs on the system.
PDORemovePeriod setting

This parameter specifies the amount of time that the multipath pseudo-LUN stays in system memory after all paths to the device are lost.

RetryCount setting

The RetryCount parameter specifies the number of times the current path to a LUN is retried before failing over to an alternate path.

The RetryCount setting enables recovery from a transient path problem. If the path is not recovered after the specified number of retries, it is probably a more serious network problem.

RetryInterval setting

The RetryInterval parameter specifies the amount of time to wait between retries of a failed path. This setting gives the path a chance to recover from a transient problem before trying again.

TimeOutValue setting

The disk TimeOutValue parameter specifies how long an I/O request is held at the SCSI layer before timing out and passing a timeout error to the application above.

UseCustomPathRecoveryInterval setting

The UseCustomPathRecoveryInterval setting enables or disables use of the PathRecoveryInterval setting.

Note that this parameter affects all DSMs on the system.

FC HBA values set by Windows Host Utilities

On systems using FC, the Host Utilities installer sets the required timeout values for Emulex and QLogic FC HBAs. If Data ONTAP DSM for Windows MPIO is detected on the host, the Host Utilities installer does not set any HBA values.

For Emulex Fibre Channel HBAs, the installer sets the following parameters when MPIO is selected, unless the Data ONTAP DSM for Windows MPIO is detected:

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinkTimeOut</td>
<td>1</td>
</tr>
<tr>
<td>NodeTimeOut</td>
<td>10</td>
</tr>
</tbody>
</table>

For Emulex Fibre Channel HBAs, the installer sets the following parameters when no MPIO is selected:

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinkTimeOut</td>
<td>30</td>
</tr>
<tr>
<td>NodeTimeOut</td>
<td>120</td>
</tr>
</tbody>
</table>

For QLogic Fibre Channel HBAs, the installer sets the following parameters when MPIO is selected, unless the Data ONTAP DSM for Windows MPIO is detected:

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinkDownTimeOut</td>
<td>1</td>
</tr>
</tbody>
</table>
For QLogic Fibre Channel HBAs, the installer sets the following parameters when no MPIO is selected:

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortDownRetryCount</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinkDownTimeOut</td>
<td>30</td>
</tr>
<tr>
<td>PortDownRetryCount</td>
<td>120</td>
</tr>
</tbody>
</table>

Note: The names of the parameters might vary slightly depending on the program. For example, in the QLogic QConvergeConsole program, the parameter is displayed as Link Down Timeout. The Host Utilities fcconfig.ini file displays this parameter as either LinkDownTimeOut or MpioLinkDownTimeOut, depending on whether MPIO is specified. However, all of these names refer to the same HBA parameter.

Emulex HBA LinkTimeOut setting

The LinkTimeOut parameter specifies the interval after which a link that is down stops issuing a BUSY status for requests and starts issuing SELECTION_TIMEOUT error status. This LinkTimeOut includes port login and discovery time.

This LinkTimeOut includes port login and discovery time.

Emulex HBA NodeTimeOut setting

The NodeTimeOut parameter specifies the interval after which a formerly logged-in node issues SELECTION_TIMEOUT error status to an I/O request.

This setting causes the system to wait for a node that might reenter the configuration soon before reporting a failure. The timer starts after port discovery is completed and the node is no longer present.

QLogic HBA LinkDownTimeOut setting

The LinkDownTimeOut parameter specifies the interval after which a link that is down stops issuing a BUSY status for requests and starts issuing SELECTION_TIMEOUT error status.

This LinkDownTimeOut includes port login and discovery time.

QLogic HBA PortDownRetryCount setting

The PortDownRetryCount parameter specifies the number of times the I/O request is re-sent to a port that is not responding in one second intervals.
Troubleshooting

This section describes general troubleshooting techniques for Windows Host Utilities.

Be sure to check the latest Release Notes for known problems and solutions.

Different areas to identify the possible interoperability problems

To identify potential interoperability problems, you must confirm that the Host Utilities support your combination of host operating system software, host hardware, ONTAP software, and storage system hardware.

- You must check the Interoperability Matrix.
- You must verify that you have the correct iSCSI configuration. If iSCSI LUNs are not available after a reboot, you must verify that the target is listed as persistent on the Persistent Targets tab of the Microsoft iSCSI initiator GUI. If applications using the LUNs display errors on startup, you must verify that the applications are configured to depend on the iSCSI service.
- For Fibre Channel paths to storage controllers running ONTAP, you must verify that the FC switches are zoned using the WWPNs of the target logical interfaces (LIFs), not the WWPNs of the physical ports on the node.
- You must review the Release Notes for Windows Host Utilities to check for known problems. The Release Notes include a list of known problems and limitations.
- You must review the troubleshooting information in the SAN Administration Guide for your version of ONTAP.
- You must search Bugs Online for recently discovered problems. In the Bug Types field under Advanced Search, you should select iSCSI - Windows and then click Go. You should repeat the search for Bug Type FCP -Windows.
- You must collect information about your system:
 - Record any error messages that are displayed on the host or storage system console.
 - Collect the host and storage system log files.
 - Record the symptoms of the problem and any changes made to the host or storage system just before the problem appeared.
- If you are unable to resolve the problem, then you can contact NetApp technical support.

Related information

NetApp Interoperability Matrix Tool
NetApp Documentation
NetApp Bugs Online
Contacting NetApp Global Services
Displaying Host Utilities and HBA version information

Use the `san_version.exe` command to display the Windows Host Utilities version and the firmware and driver versions of HBAs installed in the host.

About this task

HBA information is displayed only for Emulex and QLogic FC and FCoE adapters detected in the host. Version information for other supported adapters is not displayed.

Step

1. Enter the following command at a Windows command prompt:

 `san_version`

   ```
   C:\>san_version
   Windows(R) Host Utilities *10420_1405
   HBA com.qlogic-QLE8152-0:  
     Manufacturer: QLogic Corporation  
     Model: QLE8152  
     Model Description: QLogic QLE8152 Fibre Channel Adapter  
     Firmware: 5.01.03  
     Driver (qlfcoe.sys): 9.1.8.25  
     Hardware version:  
     SerialNumber: RFC0922L02901
   ```

After you finish

Verify the reported versions are supported, and update the driver and firmware versions if needed.

Updating the HBA software driver

Check the version of the HBA software driver and determine whether it needs to be upgraded.

Before you begin

Current driver requirements are in the Interoperability Matrix.

About this task

To see if you have the latest driver, complete the following steps.

Steps

1. Open the Computer Management window.

<table>
<thead>
<tr>
<th>For</th>
<th>Click</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2012</td>
<td>Server Manager > Dashboard > Tools > Computer Management</td>
</tr>
<tr>
<td>Windows Server 2012 R2 and</td>
<td></td>
</tr>
<tr>
<td>Windows Server 2016</td>
<td></td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>My Computer on your desktop, then right-click and select Manage</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td></td>
</tr>
</tbody>
</table>
2. Double-click Device Manager.

A list of installed devices displays. Previously installed drivers are listed under SCSI and RAID controller. One installed driver appears for each port on the HBA.

Note: If you uninstalled a device driver, a FC controller (HBA) appears under Other devices.

3. Expand Storage controllers and double-click the appropriate HBA.

The Properties dialog box for the HBA is displayed.

4. Click Driver.

 • If the driver version is correct, then you do not need to do anything else and can stop now.

 • If the version is not correct, proceed to the next step.

5. Obtain the latest supported version from the Emulex or QLogic website.

Related information

- *NetApp Interoperability Matrix Tool*
- *Emulex: NetApp Qualified Downloads and Documentation*
- *QLogic: NetApp Downloads*

Understanding the Host Utilities changes to FC HBA driver settings

During the installation of the required Emulex or QLogic HBA drivers on an FC system, several parameters are checked and, in some cases, modified.

The Host Utilities set values for the following parameters if Data ONTAP DSM for Windows MPIO is not detected:

- **LinkTimeOut** – defines the length of time in seconds that the host port waits before resuming I/O after a physical link is down.
- **NodeTimeOut** – defines the length of time in seconds before the host port recognizes that a connection to the target device is down.

When troubleshooting HBA issues, check to make sure these settings have the correct values. The correct values depend on two factors:

- The HBA vendor
- Whether you are using multipathing software (MPIO)

You can correct the HBA settings by running the Repair option of the Windows Host Utilities installer.

Verifying the Emulex HBA driver settings on FC systems

If you have a Fibre Channel system, you must verify the Emulex HBA driver settings. These settings must exist for each port on the HBA.

Steps

1. Open OnCommand Manager.

 OnCommand Manager is the successor to HBAware.

2. Select the appropriate HBA from the list and click the **Driver Parameters** tab.
The driver parameters appear.

3. If you are using MPIO software, ensure that you have the following driver settings:
 - LinkTimeOut - 1
 - NodeTimeOut - 10

 If Data ONTAP DSM for Windows MPIO is installed on the host, the DSM installation program sets the HBA values. Check the DSM documentation for the values set by the version of DSM installed on your host.

4. If you are not using MPIO software, ensure that you have the following driver settings:
 - LinkTimeOut - 30
 - NodeTimeOut - 120

Related references

FC HBA values set by Windows Host Utilities on page 33

Verifying the QLogic HBA driver settings on FC systems

On FC systems, you need to verify the QLogic HBA driver settings. These settings must exist for each port on the HBA.

Steps

1. Open QConvergeConsole, and then click **Connect** on the toolbar.
 The **Connect to Host** dialog box appears.

2. Select the appropriate host from the list, and then click **Connect**.
 A list of HBAs appears in the FC HBA pane.

3. Select the appropriate HBA port from the list, and then click the **Settings** tab.

4. Select **Advanced HBA Port Settings** from the **Select Settings** section.

5. If you are using MPIO software, ensure you have the following driver settings:
 - Link Down Timeout (linkdwnto) - 1
 - Port Down Retry Count (portdwnrc) - 10

 If Data ONTAP DSM for Windows MPIO is installed on the host, the DSM installation program sets the HBA values. Check the DSM documentation for the values set by the version of DSM installed on your host.

6. If you are not using MPIO software, ensure you have the following driver settings:
 - Link Down Timeout (linkdwnto) - 30
 - Port Down Retry Count (portdwnrc) - 120

Related references

FC HBA values set by Windows Host Utilities on page 33
Enabling logging on the Emulex HBA

In some unusual circumstances, your technical support engineer might request that you enable error logging on the Emulex HBA miniport driver.

Steps

1. Open OnCommand Manager.

 OnCommand Manager is the successor to HBAnyware.

2. In OnCommand Manager, select the appropriate HBA from the list and click the **Driver Parameters** tab.

3. Select the **LogErrors** parameter and change its value to the desired severity level.

4. Click **Apply**.

Enabling logging on the QLogic HBA

In some unusual circumstances, your technical support engineer might request that you enable error logging on the QLogic HBA miniport driver.

Steps

1. Open QConvergeConsole.

2. Open the **Settings** menu and select **Options**.

3. Ensure **Log Informational Events, Warning Events**, and **Enable Warning display** are selected.

4. Click **OK**.

FCoE troubleshooting overview

Fibre Channel over Ethernet (FCoE) troubleshooting is similar to traditional Fibre Channel (FC) troubleshooting, with a few specific changes for this new protocol.

FCoE encapsulates FC frames within Ethernet packets. Unlike iSCSI, FCoE does not use TCP/IP. Troubleshooting FCoE problems should be divided into several distinct areas:

- Initiator to FCoE switch connection
- FCoE switch
- Switch to target connection

In the SAN context, the initiator is always in the Windows host, and the target is always a component of the NetApp storage system.
Troubleshooting the FCoE initiator to switch connection

To troubleshoot the FCoE initiator to FCoE switch connection, check the link lights, cabling, firmware versions, and switch port configuration.

Before you begin

You should have the manufacturer's documentation for your FCoE initiator (converged network adapter or CNA) and for your FCoE switch.

Steps

1. Verify that your CNA model is listed in the Interoperability Matrix as supported for your configuration. Note the required FCoE firmware and host operating system versions.
2. Check the link lights on the card.
 See the manufacturer's documentation for the location and meaning of each light.
 a. If the lights indicate that there is no Ethernet link, check the cables and optical module and that the card is correctly installed.
 For copper cables, be sure to use copper cables supplied by the FCoE switch manufacturer.
 For optical cables, be sure to use an optical modules supplied by the CNA manufacturer in the CNA and an optical module supplied by the switch manufacturer in the switch. These items are NOT interchangeable between different switch and CNA brands. An FCoE component disables its port if it does not recognize the cable or optical module.
 b. Verify the CNA is cabled directly to a port on a supported FCoE switch.
 c. Verify the firmware version for the NIC function of the CNA.
 The NIC firmware version can be found in Windows Device Manager under Network adapter in the properties for the CNA. Note that a CNA has two firmware versions, one for its FCoE function and one for its NIC function. Check the CNA manufacturer's support site to see if updated NIC firmware is available; if so, download and install it.
 d. If the lights indicate that there is an Ethernet link but no FCoE connection, verify the firmware version of the CNA installed on the Windows host computer.
 The FCoE firmware version can be found in Windows Device Manager under Storage controllers in the properties for the CNA. Note that a CNA has two firmware versions, one for its FCoE function and one for its NIC function. If needed, download and install a supported FCoE firmware version.

Related information

NetApp Interoperability Matrix Tool

Troubleshooting the FCoE switch

You should use the manufacturer's documentation for FCoE switch troubleshooting. However, a few high-level troubleshooting steps are listed here for your convenience.

Steps

1. Verify that the switch model and its firmware version are listed on the Interoperability Matrix.
 Note that an FCoE switch, with an integrated FC name server is required. A standard data center bridging (DCB) Ethernet switch is not sufficient.
2. Verify the switch zoning. Each initiator should be in a separate zone with one or more target ports.
3. If you are also using the CNA port as a NIC for other Ethernet traffic (iSCSI, NFS, CIFS), be sure the switch port is configured for trunking. FCoE and other Ethernet traffic should be separated onto different VLANs.

Related information

NetApp Interoperability Matrix Tool

Troubleshooting the FCoE switch to target connection

To troubleshoot the FCoE switch to target connection, you should check the link lights, ONTAP software version, and storage system configuration.

Steps

1. Check the Interoperability Matrix Tool to verify that you have a supported version of ONTAP software and a supported FC or FCoE target adapter.

 Data ONTAP 7.3.2 was required for an FCoE target adapter when this document was written. If you are using an FC target adapter, ONTAP 7.2.6.1 or later was required when this document was written.

2. Verify that the Fibre Channel protocol is licensed on the storage system.

3. On the console of a storage controller running Data ONTAP operating in 7-Mode, execute the following command:

   ```bash
   fcp show adapter -v
   ```

 On the console of a storage controller running ONTAP, execute the following command:

   ```bash
   network fcp adapter show -instance
   ```

 The target adapter is listed and is brought online.

4. On the console of a storage controller running Data ONTAP operating in 7-Mode, execute the following command:

   ```bash
   fcp show initiator -v
   ```

 On the console of a storage controller running ONTAP, execute the following command:

   ```bash
   vserver fcp initiator show
   ```

 The FCoE initiator is listed.

5. If the FCoE initiator is not listed, check the initiator group (igroup) on the storage controller, and verify that the initiator's world wide port name (WWPN) is configured correctly.

 You can view the WWPN of the initiator on the Windows host by running the `hba_info.exe` command from Windows Host Utilities.

Related information

NetApp Interoperability Matrix Tool

Troubleshooting FCoE failover problems

FCoE connections in a high availability configuration should fail over to paths during an outage. Verify CNA and host timeout settings if failover is not working correctly.

Steps

1. Verify you have a supported version of Windows Host Utilities installed. If you installed the CNA after installing Windows Host Utilities, run the Windows Host Utilities **Repair** option from Windows **Programs and Features**.
2. Verify you have supported multipathing software installed and that two or more paths are shown from the host to each LUN.

About the OneCollect diagnostic program

You can use the OneCollect program to collect diagnostic data about your NetApp storage and connected switches and hosts. OneCollect replaces the nSANity program that was previously used to collect SAN diagnostic data.

Previous versions of the Host Utilities also included diagnostics programs. These programs have been replaced by the OneCollect program, which is used to collect diagnostic data about your NetApp storage and connected switches and hosts. OneCollect replaces the nSANity program that was previously used to collect SAN diagnostic data. OneCollect compiles data about all the host operating systems, switches, storage arrays and other devices. Supported systems include the following:

• VMware
• FreeBSD
• Cisco
 ◦ IOS
 ◦ NX-OS
 ◦ SAN-OS
 ◦ UCS
• Brocade
• NetApp
 ◦ ONTAP
 ◦ SolidFire
 ◦ E-Series

OneCollect uses native administrative methods, including SSH, HTTPS, and Windows Management Instrumentation (WMI) protocols to communicate with systems and devices.

To perform data collection against remote hosts, you must provide administrative credentials. If you decide to store credentials, OneCollect provides password-protected encryption (pass phrase) to keep your credentials confidential. The credentials are stored in a database and encrypted using the Advanced Encryption Standard (AES).

You can download the OneCollect program and documentation from the ToolChest on the NetApp Support Site.

NetApp Support Site

You can install OneCollect on Windows and OS X (Mac) workstations.
Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).
Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

How to send comments about documentation and receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

- NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
- Telephone: +1 (408) 822-6000
- Fax: +1 (408) 822-4501
- Support telephone: +1 (888) 463-8277
Index

A
alignment
 VHD partition 19

B
block alignment
 VHD partition 19
boot loader
 reinstalling for Linux after running mbralign 20
BootBIOS
 displaying FC WWPN 26

C
cabling, storage system
 ensuring proper 14
CHAP
 security options for iSCSI 17
clustering
 with Hyper-V 9
command line
 repairing or removing Host Utilities 23
comments
 how to send feedback about documentation 45
configuration, Host Utilities
 high-level overview 11
configuration, storage system
 confirming proper cabling and licensing 14
configurations
 supported by the Host Utilities 7

d
Data ONTAP DSM for Windows MPIO
 effect of removing Host Utilities 23
 installing 18
device-specific module
 choices 7
diagnostics
 role of OneCollect in 42
documentation
 finding more information 10
 how to receive automatic notification of changes to 45
 how to send feedback about 45
driver
 displaying HBA version 36
 verifying HBA version 36
DSM
 choices 7
DSM for SANtricity Storage Manager
 installing 18
DSM multipath solution
 installing 18
DsmMaximumRetryTimeDuringStateTransition setting 31
DsmSupportedDeviceList setting 31
dynamic disk support 7

E
Emulex BootBIOS
 displaying FC WWPN 26
Emulex HBA
 configuring 14
 enabling logging 39
 settings for Host Utilities 33
 verifying driver version 36
Emulex HBA driver settings
 verifying on FC systems 37
emulexhba.reg 6
error recovery level
 for iSCSI 17

F
failover cluster
 adding Hyper-V VM 19
failover problems 41
FC zoning
 troubleshooting 35
fcconfig.exe 6
fcconfig.ini 6
fcinfo.exe
 using to obtain WWPN 26
FCoE switch to target connection
 troubleshooting 41
feedback
 how to send comments about documentation 45
Fibre Channel
 configuring HBAs 14
 configuring switch 14
 supported protocols and configurations 7
Fibre Channel over Ethernet
 supported protocols and configurations 7
Fibre Channel ports
 recording WWPNs 25
finding more information
 documentation sources 10

G
GRUB
 reinstalling for Linux after running mbralign 20

H
HBA
 configuring 14
 configuring iSCSI 15
 displaying driver and firmware version 36
 enabling logging on Emulex 39
 enabling logging on QLogic 39
installing iSCSI 16
settings changed by Host Utilities 37
settings for Host Utilities 33
verifying driver version 36
HBAnyware
enabling logging on Emulex HBA 39
verifying Emulex HBA settings 37
HBAs
recording FC WWPNs 25
host configuration
verifying before installing Host Utilities 12
Host Utilities
components 5
components of Host Utilities 5
displaying version 36
high-level description of installing and configuring 11
installation overview 21
installing from a command line 22
installing interactively 21
installing overview 5
introduction 5
programs included 6
repairing and removing 23
repairing or removing from command line 23
repairing or removing interactively 23
settings 27
supported Windows configurations 6
hotfixes
installing 12, 21
required Windows Server for Windows Unified Host Utilities 13
how to install
DSM software 18
Hyper-V
adding VM to failover cluster 19
align partitions for best performance 19
clustering 9
configuring virtual machines 19
overview 8
storage options 8
I
information
finding more 10
how to send feedback about improving documentation 45
initiator
iSCSI configuring 15
iSCSI options 15
initiator node names
recording iSCSI 27
initiators
recording the node name, iSCSI 27
installing
Host Utilities 21
Host Utilities from a command line 22
Host Utilities interactively 21
MPIO software 18
installing and configuring Host Utilities
high-level overview 11
IPSecConfigTimeout setting 32
IQN
recording iSCSI 27
iSCSI
authentication using RADIUS 17
CHAP security options 17
configuring HBA 15
configuring initiator 15
error recovery level 17
initiator service for HBA 16
installing HBA 16
node name overview 25
options for iSCSI session 17
recording the initiator node name 27
supported protocols and configurations 7
iSCSI initiator
options 15
iSCSI LUN
using to provision storage for Hyper-V 8
L
language versions of Windows supported 10
licenses
required for ONTAP 14
LinkDownTime setting 32
LinkDownTimeout setting
verifying for QLogic HBA 38
LinkDownTimeOut setting 33, 34
LinkTimeOut setting 33, 34
Linux
reinstalling GRUB after running mbralign 20
M
ManageDisksOnSystemBuses setting 32
MaxRequestHoldTime setting 32
Microsoft fcinfo.exe
using to obtain WWPN 26
Microsoft iSCSI DSM
installing 18
misalignment
VHD partition 19
MPIO
installing software 18
overview 7
MPIOSupportedDeviceList setting 32
msiexec command
repairing or removing Host Utilities 23
using to install Host Utilities 22
multipathing
installing software 18
options supported by the Host Utilities 7
N
NodeTimeOut settings 33, 34
non-English versions of Windows supported 10
O
OneCollect
description of as diagnostic program 42
ONTAP
 licenses required 14

P
 pass-through disk
 using to provision storage for Hyper-V 8
 PathVerifyEnabled setting 32
 PDORemovePeriod setting 33
 performance
 align VHD partitions 19
 PortDownRetryCount setting
 verifying for QLogic HBA 38
 programs included in Host Utilities 6
 protocols
 supported by the Host Utilities 7
 publications
 finding more information 10

Q
 QConvergeConsole
 enabling logging on QLogic HBA 39
 QLogic BootBIOS
 displaying FC WWPN 26
 QLogic HBA
 configuring 14
 enabling logging 39
 installing iSCSI 16
 settings for Host Utilities 33
 verifying driver version 36
 QLSDM.DLL 6

R
 RADIUS
 for iSCSI authentication 17
 raw disk
 using to provision storage for Hyper-V 8
 references
 finding more information 10
 registry
 settings for Host Utilities 27
 registry values
 set by Windows Unified Host Utilities installer 28
 removing
 Host Utilities from command line 23
 Host Utilities interactively 23
 removing Host Utilities
 affect on DSM 23
 Repair
 option of Host Utilities installation program 23
 repairing
 Host Utilities from command line 23
 Host Utilities interactively 23
 RetryCount setting 33
 RetryInterval setting 33

S
 SAN booting
unformatted LUN
using to provision storage for Hyper-V 8
uninstalling
 Host Utilities 23
uninstalling Host Utilities
 affect on DSM 23
UseCustomPathRecoveryInterval 32, 33

Veritas Storage Foundation
 dynamic disk support 7
VHD
 See virtual hard disk
virtual hard disk
 using to provision storage for Hyper-V 8
virtual hard disk (VHD)
 align partitions for best performance 19

Windows
 dynamic disk support 7
 registry settings for Host Utilities 27
 support for non-English language versions 10
 Windows configurations
 supported 6
 Windows failover cluster
 adding Hyper-V VM 19
 Windows hotfixes
 installing 12, 21
 Windows Server hotfixes
 listed for Windows Unified Host Utilities 13
 Windows Storage Explorer
 using to obtain WWPN 26
 Windows Unified Host Utilities
 what it is 5
 Windows Server hotfixes for 13
 Windows Unified Host Utilities installer
 registry values set by 28
 WWPN
 displaying using Emulex BootBIOS 26
 displaying using QLogic BootBIOS 26
 obtaining using Microsoft fcinfo.exe 26
 obtaining using Windows Storage Explorer 26
 overview 25
 WWPNs
 recording for FC ports 25

zoning
 troubleshooting 35