ONTAP® 9

Cluster and SVM Peering Power Guide

January 2019 | 215-12601_F0
doccomments@netapp.com
Updated for ONTAP 9.5
Contents

Deciding whether to use this guide ... 4

Preparing for cluster and SVM peering ... 5
 Peering basics ... 5
 Prerequisites for cluster peering ... 5
 Using shared or dedicated ports ... 6
 Using custom IPspaces to isolate replication traffic 7

Configuring intercluster LIFs .. 8
 Configuring intercluster LIFs on shared data ports 8
 Configuring intercluster LIFs on dedicated ports 9
 Configuring intercluster LIFs in custom IPspaces 12

Configuring peer relationships (starting with ONTAP 9.3) 16
 Creating a cluster peer relationship (ONTAP 9.3) 16
 Creating an intercluster SVM peer relationship (ONTAP 9.3) 19
 Adding an intercluster SVM peer relationship (ONTAP 9.3) 20

Configuring peer relationships (ONTAP 9.2 and earlier) 22
 Creating a cluster peer relationship (ONTAP 9.2 and earlier) 22
 Creating an intercluster SVM peer relationship (ONTAP 9.2 and earlier) 23

Where to find additional information .. 26

Copyright ... 27

Trademark ... 28

Index ... 29
Deciding whether to use the Cluster and SVM Peering Power Guide

This guide describes how to create peer relationships between source and destination clusters and between source and destination storage virtual machines (SVMs). You must create peer relationships between these entities before you can replicate Snapshot copies using SnapMirror.

ONTAP 9.3 offers enhancements that simplify the way you configure peer relationships between clusters and SVMs. This guide describes the cluster and SVMs peering procedure for all ONTAP 9 versions. You should use the appropriate procedure for your version of ONTAP.

You should use this guide under the following circumstance:

- You want to use the command-line interface (CLI), not OnCommand System Manager or an automated scripting tool.

 If you are creating peer relationships using System Manager, see the *Cluster and SVM Peering Express Guide*.

 Cluster and SVM peering express configuration

If you require additional configuration or conceptual information, you should choose among the following documentation:

- ONTAP conceptual background

 ONTAP concepts

- SnapMirror replication

 Data protection

- Command reference

 ONTAP 9 commands

- Automation of management tasks

 NetApp Documentation: OnCommand Workflow Automation (current releases)
Preparing for cluster and SVM peering

You must create peer relationships between source and destination clusters and between source and destination SVMs before you can replicate Snapshot copies using SnapMirror. A peer relationship defines network connections that enable clusters and SVMs to exchange data securely.

Peering basics

Clusters and SVMs in peer relationships communicate over the cluster network using intercluster logical interfaces (LIFs). You must create intercluster LIFs on every node in the clusters being peered.

Intercluster LIFs use routes that belong to the system SVM to which they are assigned. ONTAP automatically creates a system SVM for cluster-level communications within an IPspace.

Fan-out and cascade topologies are both supported. In a cascade topology, you need only create intercluster networks between the primary and secondary clusters and between the secondary and tertiary clusters. You need not create an intercluster network between the primary and the tertiary cluster.

Prerequisites for cluster peering

Before you set up cluster peering, you should confirm that the connectivity, port, IP address, subnet, firewall, and cluster-naming requirements are met.

Connectivity requirements

Intercluster LIFs must have pair-wise full-mesh connectivity: Every intercluster LIF on the local cluster must be able to communicate with every intercluster LIF on the remote cluster.

Although it is not required, it is typically simpler to configure the IP addresses used for intercluster LIFs in the same subnet. The IP addresses can reside in the same subnet as data LIFs, or in a different subnet. The subnet used in each cluster must meet the following requirements:

- The subnet must belong to the broadcast domain that contains the ports that are used for intercluster communication.
- The subnet must have enough IP addresses available to allocate to one intercluster LIF per node. For example, in a six-node cluster, the subnet used for intercluster communication must have six available IP addresses.

Each node must have an intercluster LIF with an IP address on the intercluster network.

Intercluster LIFs can have an IPv4 address or an IPv6 address.

Port requirements

You can use dedicated ports for intercluster communication, or share ports used by the data network. Ports must meet the following requirements:

- All ports that are used to communicate with a given remote cluster must be in the same IPspace. You can use multiple IPspaces to peer with multiple clusters. Pair-wise full-mesh connectivity is required only within an IPspace.
- The broadcast domain that is used for intercluster communication must include at least two ports per node so that intercluster communication can fail over from one port to another port. Ports added to a broadcast domain can be physical network ports, VLANs, or interface groups (ifgrps).
• All ports must be cabled.
• All ports must be in a healthy state.
• The MTU settings of the ports must be consistent.

Firewall requirements
Firewalls and the intercluster firewall policy must allow the following protocols:
• ICMP service
• TCP to the IP addresses of all the intercluster LIFs over the ports 10000, 11104, and 11105
• HTTPS
 Although HTTPS is not required when you set up cluster peering using the CLI, HTTPS is required later if you use OnCommand System Manager to configure data protection.

The default intercluster firewall policy allows access through the HTTPS protocol and from all IP addresses (0.0.0.0/0). You can modify or replace the policy if necessary.

Cluster requirements
Clusters must meet the following requirements:
• The time on the clusters in a cluster peering relationship must be synchronized within 300 seconds (5 minutes).
 Cluster peers can be in different time zones.
• A cluster cannot be in a peer relationship with more than 255 clusters.

Using shared or dedicated ports
You can use dedicated ports for intercluster communication, or share ports used by the data network. In deciding whether to share ports, you need to consider network bandwidth, the replication interval, and port availability.

 Note: You can share ports on one peered cluster while using dedicated ports on the other.

Network bandwidth
If you have a high-speed network, such as 10 GbE, you might have enough local LAN bandwidth to perform replication using the same 10 GbE ports used for data access.

Even then, you should compare your available WAN bandwidth to your LAN bandwidth. If the available WAN bandwidth is significantly less than 10 GbE, you might need to use dedicated ports.

 Tip: The one exception to this rule might be when all or many nodes in the cluster replicate data, in which case bandwidth utilization is typically spread across nodes.

If you are not using dedicated ports, the maximum transmission unit (MTU) size of the replication network should typically be the same as the MTU size of the data network.

Replication interval
If replication takes place in off-peak hours, you should be able to use data ports for replication even without a 10-GbE LAN connection.

If replication takes place during normal business hours, you need to consider the amount of data that will be replicated and whether it requires so much bandwidth that it could cause contention with data protocols. If network utilization by data protocols (SMB, NFS, iSCSI) is above 50%, you should use dedicated ports for intercluster communication, to allow for non-degraded performance if node failover occurs.
Port availability

If you determine that replication traffic is interfering with data traffic, you can migrate intercluster LIFs to any other intercluster-capable shared port on the same node.

You can also dedicate VLAN ports for replication. The bandwidth of the port is shared between all VLANs and the base port.

Related tasks

- Configuring intercluster LIFs on shared data ports on page 8
- Configuring intercluster LIFs on dedicated ports on page 9

Using custom IPspaces to isolate replication traffic

You can use custom IPspaces to separate the interactions that a cluster has with its peers. Called designated intercluster connectivity, this configuration allows service providers to isolate replication traffic in multitenant environments.

Suppose, for example, that you want replication traffic between Cluster A and Cluster B to be separated from replication traffic between Cluster A and Cluster C. To accomplish this, you can create two IPspaces on Cluster A.

One IPspace contains the intercluster LIFs that you use to communicate with Cluster B. The other contains the intercluster LIFs that you use to communicate with Cluster C, as shown in the following illustration.

For custom IPspace configuration, see the Network Management Guide.

Related tasks

- Configuring intercluster LIFs in custom IPspaces on page 12
Configuring intercluster LIFs

You can use dedicated ports for intercluster communication, or share ports used by the data network. If you need to isolate replication traffic, you can configure intercluster LIFs in custom IPspaces.

Related tasks

- Configuring intercluster LIFs on shared data ports on page 8
- Configuring intercluster LIFs on dedicated ports on page 9
- Configuring intercluster LIFs in custom IPspaces on page 12

Configuring intercluster LIFs on shared data ports

You can configure intercluster LIFs on ports shared with the data network. Doing so reduces the number of ports you need for intercluster networking.

Steps

1. List the ports in the cluster:

 `network port show`

 For complete command syntax, see the man page.

 Example

 The following example shows the network ports in `cluster01`:

   ```
   cluster01::> network port show
   +--------+---------+-------+-----------+-------+-------+-----------+
   | Node   | Port    | IPspace| Broadcast | Domain| Link | Speed (Mbps) | Admin/Oper |
   |--------+---------+-------+-----------+-------+-------+-----------+-----------+
   | cluster01-01 | e0a    | Cluster| Cluster   | up    | 1500  | auto/1000  |           |
   |        | e0b    | Cluster| Cluster   | up    | 1500  | auto/1000  |           |
   |        | e0c    | Default| Default   | up    | 1500  | auto/1000  |           |
   |        | e0d    | Default| Default   | up    | 1500  | auto/1000  |           |
   | cluster01-02 | e0a    | Cluster| Cluster   | up    | 1500  | auto/1000  |           |
   |        | e0b    | Cluster| Cluster   | up    | 1500  | auto/1000  |           |
   |        | e0c    | Default| Default   | up    | 1500  | auto/1000  |           |
   |        | e0d    | Default| Default   | up    | 1500  | auto/1000  |           |
   ```

2. Create intercluster LIFs on the system SVM:

 `network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home-port port -address port_IP -netmask netmask`

 For complete command syntax, see the man page.

 Example

 The following example creates intercluster LIFs `cluster01_icl01` and `cluster01_icl02`:

   ```
   cluster01::> network interface create -vserver cluster01 -lif cluster01_icl01 -role intercluster -home-node cluster01-01 -home-port e0c -address 192.168.1.201 -netmask 255.255.255.0
   cluster01::> network interface create -vserver cluster01 -lif cluster01_icl02 -role intercluster -home-node cluster01-02 -home-port e0c -address 192.168.1.202 -netmask 255.255.255.0
   ```
3. Verify that the intercluster LIFs were created:

 network interface show -role intercluster

For complete command syntax, see the man page.

Example

```
cluster01::> network interface show -role intercluster

Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
cluster01   cluster01_icl01 up/up      192.168.1.201/24   cluster01-01  e0c     true
cluster01   cluster01_icl02 up/up      192.168.1.202/24   cluster01-02  e0c     true
```

4. Verify that the intercluster LIFs are redundant:

 network interface show -role intercluster -failover

For complete command syntax, see the man page.

Example

The following example shows that the intercluster LIFs `cluster01_icl01` and `cluster01_icl02` on the e0c port will fail over to the e0d port.

```
cluster01::> network interface show -role intercluster -failover

Logical    Home                  Failover        Failover
Vserver    Interface       Node:Port             Policy          Group
----------- --------------- --------------------- --------------- --------
cluster01   cluster01_icl01 cluster01-01:e0c   local-only      192.168.1.201/24
            Failover Targets: cluster01-01:e0c,
            cluster01-01:e0d
cluster01   cluster01_icl02 cluster01-02:e0c   local-only      192.168.1.201/24
            Failover Targets: cluster01-02:e0c,
            cluster01-02:e0d
```

Related concepts

Using shared or dedicated ports on page 6

Configuring intercluster LIFs on dedicated ports

You can configure intercluster LIFs on dedicated ports. Doing so typically increases the available bandwidth for replication traffic.

Steps

1. List the ports in the cluster:

 `network port show`

 For complete command syntax, see the man page.

Example

The following example shows the network ports in `cluster01`:

```
cluster01::> network port show

Node  Port  IPSpace  Broadcast  Domain  Link  MTU     Speed (Mbps) Admin/Oper
-----  ------  --------  --------  -------  ----  ------  --------------
cluster01-01
    e0a    Cluster  Cluster  up       1500   auto/1000
    e0b    Cluster  Cluster  up       1500   auto/1000
```
2. Determine which ports are available to dedicate to intercluster communication:

network interface show -fields home-port, curr-port

For complete command syntax, see the man page.

Example

The following example shows that ports e0e and e0f have not been assigned LIFs:

```bash
cluster01::> network interface show -fields home-port, curr-port
vserver lif                  home-port curr-port
----------------- --------- ---------
Cluster cluster01-01_clus1   e0a       e0a
Cluster cluster01-01_clus2   e0b       e0b
Cluster cluster01-02_clus1   e0a       e0a
Cluster cluster01-02_clus2   e0b       e0b
cluster01
    cluster_mgmt         e0c       e0c
cluster01
    cluster01-01_mgmt1   e0c       e0c
cluster01
    cluster01-02_mgmt1   e0c       e0c
```

3. Create a failover group for the dedicated ports:

network interface failover-groups create -vserver system_SVM -failover-group failover_group -targets physical_or_logical_ports

Example

The following example assigns ports e0e and e0f to the failover group intercluster01 on the system SVM cluster01:

```bash
cluster01::> network interface failover-groups create -vserver cluster01 -failover-group intercluster01 -targets cluster01-01:e0e, cluster01-01:e0f, cluster01-02:e0e, cluster01-02:e0f
```

4. Verify that the failover group was created:

network interface failover-groups show

For complete command syntax, see the man page.

Example

```
cluster01::> network interface failover-groups show
Failover
Vserver       Group        Targets
------------------- ------------------
Cluster       cluster01-01:e0a, cluster01-01:e0b, cluster01-02:e0a, cluster01-02:e0b
cluster01
    cluster01-01:e0c, cluster01-01:e0d, cluster01-02:e0c, cluster01-02:e0d, cluster01-01:e0e, cluster01-01:e0f cluster01-02:e0e, cluster01-02:e0f
    intercluster01
        cluster01-01:e0e, cluster01-01:e0f cluster01-02:e0e, cluster01-02:e0f
```

5. Create intercluster LIFs on the system SVM and assign them to the failover group:

```
network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home-port port -address port_IP -netmask netmask -failover-group failover_group
```

For complete command syntax, see the man page.

Example

The following example creates intercluster LIFs `cluster01_icl01` and `cluster01_icl02` in the failover group `intercluster01`:

```
cluster01::> network interface create -vserver cluster01 -lif cluster01_icl01 -role intercluster -home-node cluster01-01 -home-port e0e -address 192.168.1.201 -netmask 255.255.255.0 -failover-group intercluster01
cluster01::> network interface create -vserver cluster01 -lif cluster01_icl02 -role intercluster -home-node cluster01-02 -home-port e0e -address 192.168.1.202 -netmask 255.255.255.0 -failover-group intercluster01
```

6. Verify that the intercluster LIFs were created:

```
network interface show -role intercluster
```

For complete command syntax, see the man page.

Example

```
cluster01::> network interface show -role intercluster
Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
cluster01   cluster01_icl01 up/up      192.168.1.201/24   cluster01-01  e0e     true
cluster01   cluster01_icl02 up/up      192.168.1.202/24   cluster01-02  e0f     true
```

7. Verify that the intercluster LIFs are redundant:

```
network interface show -role intercluster -failover
```

For complete command syntax, see the man page.

Example

The following example shows that the intercluster LIFs `cluster01_icl01` and `cluster01_icl02` on the SVM `e0e` port will fail over to the `e0f` port.

```
cluster01::> network interface show -role intercluster -failover
Logical         Home                  Failover        Failover
Vserver  Interface       Node:Port             Policy          Group
-------- --------------- --------------------- --------------- --------
cluster01-01     cluster01-01_icl01 cluster01-01:e0e   local-only      intercluster01
Failover Targets:  cluster01-01:e0e,
                   cluster01-01:e0f
cluster01-01     cluster01-01_icl02 cluster01-02:e0e   local-only      intercluster01
Failover Targets:  cluster01-02:e0e,
                   cluster01-02:e0f
```

Related concepts

Using shared or dedicated ports on page 6
Configuring intercluster LIFs in custom IPspaces

You can configure intercluster LIFs in custom IPspaces. Doing so allows you to isolate replication traffic in multitenant environments.

About this task

Note: When you create a custom IPspace, the system creates a system storage virtual machine (SVM) to serve as a container for the system objects in that IPspace. You can use the new SVM as the container for any intercluster LIFs in the new IPspace. The new SVM has the same name as the custom IPspace.

Steps

1. List the ports in the cluster:
   ```
   network port show
   ```
 For complete command syntax, see the man page.

 Example

 The following example shows the network ports in `cluster01`:

   ```
   cluster01::> network port show
   
   Node  Port  IPspace  Broadcast Domain Link  MTU   Admin/Oper
   ------ --------- ------------ ---------------- ----- ------- ------------
   cluster01-01  e0a  Cluster  Cluster          up     1500   auto/1000
   e0b  Cluster  Cluster          up     1500   auto/1000
   e0c  Default  Default          up     1500   auto/1000
   e0d  Default  Default          up     1500   auto/1000
   e0e  Default  Default          up     1500   auto/1000
   e0f  Default  Default          up     1500   auto/1000
   cluster01-02  e0a  Cluster  Cluster          up     1500   auto/1000
   e0b  Cluster  Cluster          up     1500   auto/1000
   e0c  Default  Default          up     1500   auto/1000
   e0d  Default  Default          up     1500   auto/1000
   e0e  Default  Default          up     1500   auto/1000
   e0f  Default  Default          up     1500   auto/1000
   ```

2. Create custom IPspaces on the cluster:
   ```
   network ipspace create -ipspace ipspace
   ```
 Example

 The following example creates the custom IPspace `ipspace-IC1`:

   ```
   cluster01::> network ipspace create -ipspace ipspace-IC1
   ```

3. Determine which ports are available to dedicate to intercluster communication:
   ```
   network interface show -fields home-port,curr-port
   ```
 For complete command syntax, see the man page.

 Example

 The following example shows that ports `e0e` and `e0f` have not been assigned LIFs:
4. Remove the available ports from the default broadcast domain:

```
network port broadcast-domain remove-ports -broadcast-domain Default -ports ports
```

A port cannot be in more than one broadcast domain at a time. For complete command syntax, see the man page.

Example

The following example removes ports `e0e` and `e0f` from the default broadcast domain:

```
cluster01::> network port broadcast-domain remove-ports -broadcast-domain Default -ports cluster01-01:e0e,cluster01-01:e0f,cluster01-02:e0e,cluster01-02:e0f
```

5. Verify that the ports have been removed from the default broadcast domain:

```
network port show
```

For complete command syntax, see the man page.

Example

The following example shows that ports `e0e` and `e0f` have been removed from the default broadcast domain:

```
cluster01::> network port show
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Admin/Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster01-01</td>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-01</td>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-01</td>
<td>e0c</td>
<td>Default</td>
<td>Default</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-01</td>
<td>e0d</td>
<td>Default</td>
<td>Default</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-01</td>
<td>e0e</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-01</td>
<td>e0f</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-01</td>
<td>e0g</td>
<td>Default</td>
<td>Default</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0c</td>
<td>Default</td>
<td>Default</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0d</td>
<td>Default</td>
<td>Default</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0e</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0f</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td>cluster01-02</td>
<td>e0g</td>
<td>Default</td>
<td>Default</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
</tbody>
</table>

6. Create a broadcast domain in the custom IPspace:

```
network port broadcast-domain create -ipspace ipspace -broadcast-domain broadcast_domain -mtu MTU -ports ports
```

Example

The following example creates the broadcast domain `ipspace-IC1-bd` in the IPspace `ipspace-IC1`:
7. Verify that the broadcast domain was created:

```bash
network port broadcast-domain show
```

For complete command syntax, see the man page.

Example

```bash
cluster01::> network port broadcast-domain show
```

<table>
<thead>
<tr>
<th>IPspace Broadcast Name</th>
<th>Domain Name</th>
<th>MTU</th>
<th>Port List</th>
<th>Update Status Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Cluster</td>
<td></td>
<td>9000</td>
<td>cluster01-01:e0a</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-01:e0b</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0a</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0b</td>
<td>complete</td>
</tr>
<tr>
<td>Default Default</td>
<td></td>
<td>1500</td>
<td>cluster01-01:e0c</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-01:e0d</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-01:e0f</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-01:e0g</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0c</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0d</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0f</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0g</td>
<td>complete</td>
</tr>
<tr>
<td>ipspace-IC1</td>
<td></td>
<td>1500</td>
<td>cluster01-01:e0e</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-01:e0f</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0e</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cluster01-02:e0f</td>
<td>complete</td>
</tr>
</tbody>
</table>

8. Create intercluster LIFs on the system SVM and assign them to the broadcast domain:

```bash
network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home-port port -address port_IP -netmask netmask -failover-group failover_group
```

The broadcast domain has a default failover group with the same name as the broadcast domain. For complete command syntax, see the man page.

Example

The following example creates intercluster LIFs `cluster01_icl01` and `cluster01_icl02` in the broadcast domain `ipspace-IC1-bd`:

```bash
cluster01::> network interface create -vserver ipspace-IC1 -lif cluster01_icl01 -role intercluster -home-node cluster01-01 -home-port e0e -address 192.168.1.201 -netmask 255.255.255.0 -failover-group ipspace-IC1-bd
cluster01::> network interface create -vserver ipspace-IC1 -lif cluster01_icl02 -role intercluster -home-node cluster01-02 -home-port e0e -address 192.168.1.202 -netmask 255.255.255.0 -failover-group ipspace-IC1-bd
```

9. Verify that the intercluster LIFs were created:

```bash
network interface show -role intercluster
```

For complete command syntax, see the man page.

Example

```bash
cluster01::> network interface show -role intercluster
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Interface Logical Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Port</th>
<th>Current Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipspace-IC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Verify that the intercluster LIFs are redundant:

 network interface show -role intercluster -failover

 For complete command syntax, see the man page.

 Example

 The following example shows that the intercluster LIFs `cluster01_icl01` and `cluster01_icl02` on the SVM `e0e` port fail over to the `e0f` port:

   ```
   cluster01::> network interface show -role intercluster -failover
   Logical | Home | Failover Targets | Failover Targets
   -------- --------------- --------------------- --------------- --------
   vserver | Interface       | Node:Port             | Policy          | Group
   -------- --------------- --------------------- --------------- --------
   ipspace-IC1
   cluster01-01_icl01 cluster01-01:e0e   local-only      intercluster01
   Failover Targets:  cluster01-01:e0e,
                       cluster01-01:e0f
   cluster01-01_icl02 cluster01-02:e0e   local-only      intercluster01
   Failover Targets:  cluster01-02:e0e,
                       cluster01-02:e0f
   ```

 Related concepts

 Using custom IPspaces to isolate replication traffic on page 7
Configuring peer relationships (starting with ONTAP 9.3)

A peer relationship defines the network connections that enable clusters and SVMs to exchange data securely. ONTAP 9.3 simplifies the way that you configure peer relationships between clusters and between SVMs.

Creating a cluster peer relationship (ONTAP 9.3)

You can use the cluster peer create command to create a peer relationship between a local and remote cluster. After the peer relationship has been created, you can run cluster peer create on the remote cluster to authenticate it to the local cluster.

Before you begin

• You must have created intercluster LIFs on every node in the clusters that are being peered.
• The clusters must be running ONTAP 9.3.

About this task

In previous ONTAP releases, you needed to know in advance the intercluster LIF IP addresses of the remote cluster with which you wanted to peer. Both clusters needed to agree on the passphrase used for authentication, and each needed to authenticate itself to the other with the passphrase.

Starting in ONTAP 9.3, you can use the generate passphrase feature to create a peer relationship with a cluster whose intercluster LIF IP addresses you do not know in advance. The generated passphrase is more secure than the human-created passphrase used in previous releases, and eliminates the need for the initiating cluster to authenticate itself to the remote cluster.

In a typical scenario, the administrator at the data protection destination cluster runs cluster peer create with the -generate-passphrase option, sending a copy of the output to the administrator at the data protection source cluster:

```
cluster02::> cluster peer create -generate-passphrase -offer-expiration 2days -initial-allowed-vserver-peers vs1,vs2
Passphrase: UCa+6lRVICXeL/gq1WrK7ShR
Expiration Time: 6/7/2017 08:16:10 EST
Initial Allowed Vserver Peers: vs1,vs2
Intercluster LIF IP: 192.140.112.101
Peer Cluster Name: Clus_7ShR (temporary generated)
```

The source cluster can then use the generated password to authenticate itself to the destination cluster, as long as it does so within the specified expiration period. The passphrase can be used by one cluster only.

ONTAP 9.3 also includes SVM peering enhancements. Previous releases let you authorize a peer relationship for only one SVM at a time. You needed to run the vserver peer accept command each time you authorized a pending SVM peer relationship.

Starting in ONTAP 9.3, you can “pre-authorize” peer relationships for multiple SVMs on the initiating cluster by listing the SVMs in the -initial-allowed-vserver option when you create a cluster peer relationship. You can specify “*” to pre-authorize all of the SVMs on the initiating cluster.

Note: You still need to create the actual peer relationships for the pre-authorized SVMs.
Steps

1. On the data protection destination cluster, create a peer relationship with the data protection source cluster:

 cluster peer create -generate-passphrase -offer-expiration MM/DD/YYYY HH:MM:SS [1...7days][1...16hours] -peer-addrs peer_LIF_IPs -initial-allowed-vserver-peers svm_name,... |* -ipspace ipspace

 If you specify both -generate-passphrase and -peer-addrs, only the cluster whose intercluster LIFs are specified in -peer-addrs can use the generated password.

 You can ignore the -ipspace option if you are not using a custom IPspace. For complete command syntax, see the man page.

 Note: If you use a custom IPspace, you cannot later move the relationship into the default IPspace.

Example

The following example creates a cluster peer relationship with an unspecified remote cluster, and pre-authorizes peer relationships with SVMs vs1 and vs2 on the local cluster:

```
cluster02::> cluster peer create -generate-passphrase -offer-expiration 2days -initial-allowed-vserver-peers vs1,vs2
```

```
Passphrase: UCa+6lRVICXeL/gq1WrK7ShR
Expiration Time: 6/7/2017 08:16:10 EST
Initial Allowed Vserver Peers: vs1,vs2
Intercluster LIF IP: 192.140.112.101
Peer Cluster Name: Clus_7ShR (temporary generated)
Warning: make a note of the passphrase - it cannot be displayed again.
```

Example

The following example creates a cluster peer relationship with the remote cluster at intercluster LIF IP addresses 192.140.112.103 and 192.140.112.104, and pre-authorizes a peer relationship with any SVM on the local cluster:

```
cluster02::> cluster peer create -generate-passphrase -peer-addrs 192.140.112.103,192.140.112.104 -offer-expiration 2days -initial-allowed-vserver-peers *
```

```
Passphrase: UCa+6lRVICXeL/gq1WrK7ShR
Expiration Time: 6/7/2017 08:16:10 EST
Initial Allowed Vserver Peers: vs1,vs2
Intercluster LIF IP: 192.140.112.101,192.140.112.102
Peer Cluster Name: Clus_7ShR (temporary generated)
Warning: make a note of the passphrase - it cannot be displayed again.
```

Example

The following example creates a cluster peer relationship with an unspecified remote cluster, and pre-authorizes peer relationships with SVMs vs1 and vs2 on the local cluster:

```
cluster02::> cluster peer create -generate-passphrase -offer-expiration 2days -initial-allowed-vserver-peers vs1,vs2
```

```
Passphrase: UCa+6lRVICXeL/gq1WrK7ShR
Expiration Time: 6/7/2017 08:16:10 EST
Initial Allowed Vserver Peers: vs1,vs2
Intercluster LIF IP: 192.140.112.101
```
2. On the data protection source cluster, authenticate the source cluster to the destination cluster:

```
cluster peer create -peer-addrs peer_LIF_IPs -ipspace ipspace
```

For complete command syntax, see the man page.

Example

The following example authenticates the local cluster to the remote cluster at intercluster LIF IP addresses 192.140.112.101 and 192.140.112.102:

```
cluster01::> cluster peer create -peer-addrs 192.140.112.101,192.140.112.102
```

Notice: Use a generated passphrase or choose a passphrase of 8 or more characters.

To ensure the authenticity of the peering relationship, use a phrase or sequence of characters that would be hard to guess.

Enter the passphrase:

Confirm the passphrase:

Clusters cluster02 and cluster01 are peered.

Enter the passphrase for the peer relationship when prompted.

3. Verify that the cluster peer relationship was created:

```
cluster peer show -instance
```

Example

```
cluster01::> cluster peer show -instance

Peer Cluster Name: cluster02
Remote Intercluster Addresses: 192.140.112.101, 192.140.112.102
Availability of the Remote Cluster: Available
Remote Cluster Name: cluster2
Active IP Addresses: 192.140.112.101, 192.140.112.102
Cluster Serial Number: 1-80-123456
Address Family of Relationship: ipv4
Authentication Status Administrative: no-authentication
Authentication Status Operational: absent
Last Update Time: 02/05 21:05:41
IPspace for the Relationship: Default
```

4. Check the connectivity and status of the nodes in the peer relationship:

```
cluster peer health show
```

Example

```
cluster01::> cluster peer health show

Node       cluster-Name                Node-Name       Ping-Status       RDB-Health   Cluster-Health
-------- ------------------------------- -------------- -------------- -------------- --------------
cluster01-01  cluster02                  cluster02-01  Avail...        --------------   --------------
```

Peer Cluster Name: Clus_7ShR (temporary generated)

Warning: make a note of the passphrase - it cannot be displayed again.
Creating an intercluster SVM peer relationship (ONTAP 9.3)

You can use the `vserver peer create` command to create a peer relationship between SVMs on local and remote clusters.

Before you begin

- The source and destination clusters must be peered.
- The clusters must be running ONTAP 9.3.
- You must have “pre-authorized” peer relationships for the SVMs on the remote cluster.
 For more information, see *Creating a cluster peer relationship (ONTAP 9.3)* on page 16.

About this task

Previous releases of ONTAP let you authorize a peer relationship for only one SVM at a time. You needed to run the `vserver peer accept` command each time you authorized a pending SVM peer relationship.

Starting in ONTAP 9.3, you can “pre-authorize” peer relationships for multiple SVMs by listing the SVMs in the `-initial-allowed-vserver` option when you create a cluster peer relationship. For more information, see *Creating a cluster peer relationship (ONTAP 9.3)* on page 16.

Steps

1. On the data protection destination cluster, display the SVMs that are pre-authorized for peering:

 `vserver peer permission show`

 Example

<table>
<thead>
<tr>
<th>Peer Cluster</th>
<th>Vserver</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster02</td>
<td>vs1,vs2</td>
<td>snapmirror</td>
</tr>
</tbody>
</table>

2. On the data protection source cluster, create a peer relationship to a pre-authorized SVM on the data protection destination cluster:

 `vserver peer create -vserver local_SVM -peer-vserver remote_SVM`

 For complete command syntax, see the man page.

 Example

 The following example creates a peer relationship between the local SVM `pvs1` and the pre-authorized remote SVM `vs1`:

 `cluster01::> vserver peer create -vserver pvs1 -peer-vserver vs1`
3. Verify the SVM peer relationship:

   ```
   vserver peer show
   ```

 Example

   ```
   cluster01::> vserver peer show
   Vserver   Peer Vserver State Peer Cluster Applications Vserver
   pvs1      vs1   peered cluster02 snapmirror vs1
   ```

Adding an intercluster SVM peer relationship (ONTAP 9.3)

If you create an SVM after configuring a cluster peer relationship, you will need to add a peer relationship for the SVM manually. You can use the `vserver peer create` command to create a peer relationship between SVMs. After the peer relationship has been created, you can run `vserver peer accept` on the remote cluster to authorize the peer relationship.

Before you begin

The source and destination clusters must be peered.

About this task

You can create a peer relationships between SVMs in the same cluster for local data backup. For more information, see the `vserver peer create` man page.

Administrators occasionally use the `vserver peer reject` command to reject a proposed SVM peer relationship. If the relationship between SVMs is in the rejected state, you must delete the relationship before you can create a new one. For more information, see the `vserver peer delete` man page.

Steps

1. On the data protection source cluster, create a peer relationship with an SVM on the data protection destination cluster:

   ```
   vserver peer create -vserver local_SVM -peer-vserver remote_SVM -applications snapmirror|file-copy|lun-copy -peer-cluster remote_cluster
   ```

 Example

 The following example creates a peer relationship between the local SVM `pvs1` and the remote SVM `vs1`:

   ```
   cluster01::> vserver peer create -vserver pvs1 -peer-vserver vs1 -applications snapmirror -peer-cluster cluster02
   ```

 If the local and remote SVMs have the same names, you must use a *local name* to create the SVM peer relationship:

   ```
   cluster01::> vserver peer create -vserver vs1 -peer-vserver vs1 -applications snapmirror -peer-cluster cluster01 -local-name cluster1vs1LocallyUniqueName
   ```

2. On the data protection source cluster, verify that the peer relationship has been initiated:

   ```
   vserver peer show-all
   ```

 For complete command syntax, see the man page.
Example
The following example shows that the peer relationship between SVM pvs1 and SVM vs1 has been initiated:

```
cluster01::> vserver peer show-all
Vserver  Peer       Peer          Peering
----------  --------  -------------  ------------
pvs1       vs1      initiated     Cluster02
```

3. On the data protection destination cluster, display the pending SVM peer relationship:

```
vserver peer show
```

For complete command syntax, see the man page.

Example
The following example lists the pending peer relationships for cluster02:

```
cluster02::> vserver peer show
Vserver  Peer       Peer
----------  --------  -------------
vs1        pvs1      pending
```

4. On the data protection destination cluster, authorize the pending peer relationship:

```
vserver peer accept -vserver local_SVM -peer-vserver remote_SVM
```

For complete command syntax, see the man page.

Example
The following example authorizes the peer relationship between the local SVM vs1 and the remote SVM pvs1:

```
cluster02::> vserver peer accept -vserver vs1 -peer-vserver pvs1
```

5. Verify the SVM peer relationship:

```
vserver peer show
```

Example
The following example verifies the peer relationship between the local SVM vs1 and the remote SVM pvs1:

```
cluster01::> vserver peer show
Vserver  Peer        Peer       Peer Cluster     Peering    Remote
----------  --------  -----------  -------------  ----------  --------
pvs1       vs1      peered      cluster02      snapmirror vs1
```
Configuring peer relationships (ONTAP 9.2 and earlier)

A peer relationship defines network connections that enable clusters and SVMs to exchange data securely. You must create a cluster peer relationship before you can create an SVM peer relationship.

Creating a cluster peer relationship (ONTAP 9.2 and earlier)

You can use the `cluster peer create` command to create a peer relationship between a local and remote cluster. After the peer relationship has been created, you can run `cluster peer create` on the remote cluster to authenticate it to the local cluster.

Before you begin

- You must have created intercluster LIFs on every node in the clusters being peered.
- The cluster administrators must have agreed on the passphrase each cluster will use to authenticate itself to the other.

Steps

1. On the data protection destination cluster, create a peer relationship with the data protection source cluster:

   ```
   cluster peer create -peer-addrs peer_LIF_IPs -ipspace ipspace
   ```
 You can ignore the `-ipspace` option if you are not using a custom IPspace. For complete command syntax, see the man page.

 Example
 The following example creates a cluster peer relationship with the remote cluster at intercluster LIF IP addresses 192.168.2.201 and 192.168.2.202:
   ```
   cluster02::> cluster peer create -peer-addrs 192.168.2.201,192.168.2.202
   Please type the passphrase:
   Please type the passphrase again:
   ```
 Enter the passphrase for the peer relationship when prompted.

2. On the data protection source cluster, authenticate the source cluster to the destination cluster:

   ```
   cluster peer create -peer-addrs peer_LIF_IPs -ipspace ipspace
   ```
 For complete command syntax, see the man page.

 Example
 The following example authenticates the local cluster to the remote cluster at intercluster LIF IP addresses 192.140.112.203 and 192.140.112.204:
   ```
   cluster01::> cluster peer create -peer-addrs 192.168.2.203,192.168.2.204
   Please type the passphrase:
   Please type the passphrase again:
   ```
 Enter the passphrase for the peer relationship when prompted.

3. Verify that the cluster peer relationship was created:

   ```
   cluster peer show -instance
   ```
For complete command syntax, see the man page.

Example

```bash
cluster01::> cluster peer show -instance
Peer Cluster Name: cluster01
Remote Intercluster Addresses: 192.168.2.201,192.168.2.202
Availability: Available
Remote Cluster Name: cluster02
Active IP Addresses: 192.168.2.201,192.168.2.202
Cluster Serial Number: 1-80-000013
```

4. Check the connectivity and status of the nodes in the peer relationship:

`cluster peer health show`

For complete command syntax, see the man page.

Example

```bash
cluster01::> cluster peer health show
Node       cluster-Name                Node-Name
---------- --------------------------- ---------  --------------- --------
cluster01-01  cluster02               cluster02-01
              Data: interface_reachable
              ICMP: interface_reachable true       true            true
cluster01-02  cluster02               cluster02-02
              Data: interface_reachable
              ICMP: interface_reachable true       true            true
```

Creating an intercluster SVM peer relationship (ONTAP 9.2 and earlier)

You can use the `vserver peer create` command to create a peer relationship between SVMs on local and remote clusters. After the peer relationship has been created, you can run `vserver peer accept` on the remote cluster to authorize the peer relationship.

Before you begin

The source and destination clusters must be peered.

About this task

You can create a peer relationships between SVMs in the same cluster for local data backup. For more information, see the `vserver peer create` man page.

Administrators occasionally use the `vserver peer reject` command to reject a proposed SVM peer relationship. If the relationship between SVMs is in the `rejected` state, you must delete the relationship before you can create a new one. For more information, see the `vserver peer delete` man page.

Steps

1. On the data protection source cluster, create a peer relationship with an SVM on the data protection destination cluster:

   ```bash
   vserver peer create -vserver local_SVM -peer-vserver remote_SVM -applications snapmirror|file-copy|lun-copy -peer-cluster remote_cluster
   ```
Example
The following example creates a peer relationship between the local SVM `pvs1` and the remote SVM `vs1`:

```
cluster01::> vserver peer create -vserver pvs1 -peer-vserver vs1 -applications snapmirror -peer-cluster cluster02
```

If the local and remote SVMs have the same names, you must use a `local name` to create the SVM peer relationship:

```
cluster01::> vserver peer create -vserver vs1 -peer-vserver vs1 -applications snapmirror -peer-cluster cluster01 -local-name cluster1vs1LocallyUniqueName
```

2. On the data protection source cluster, verify that the peer relationship has been initiated:

```
vserver peer show-all
```
For complete command syntax, see the man page.

Example
The following example shows that the peer relationship between SVM `pvs1` and SVM `vs1` has been initiated:

```
cluster01::> vserver peer show-all
Peer              Peer                        Peering
Vserver            Vserver           State       Peer Cluster    Applications
-----------        -----------       ----------  --------------  ------------
pvs1               vs1               initiated   Cluster02       snapmirror
```

3. On the data protection destination cluster, display the pending SVM peer relationship:

```
vserver peer show
```
For complete command syntax, see the man page.

Example
The following example lists the pending peer relationships for `cluster02`:

```
cluster02::> vserver peer show
Peer               Peer
Vserver            Vserver            State
-----------        -----------        -------------
vs1                pvs1               pending
```

4. On the data protection destination cluster, authorize the pending peer relationship:

```
vserver peer accept -vserver local_SVM -peer-vserver remote_SVM
```
For complete command syntax, see the man page.

Example
The following example authorizes the peer relationship between the local SVM `vs1` and the remote SVM `pvs1`:

```
cluster02::> vserver peer accept -vserver vs1 -peer-vserver pvs1
```

5. Verify the SVM peer relationship:

```
vserver peer show
```
Example

```bash
cluster01::> vserver peer show
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Peer</th>
<th>Peer</th>
<th>Peer Cluster</th>
<th>Peering Applications</th>
<th>Remote Vserver</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvs1</td>
<td>vsl</td>
<td>peered</td>
<td>cluster02</td>
<td>snapmirror</td>
<td>vs1</td>
</tr>
</tbody>
</table>
Where to find additional information

You can learn more about tasks related to cluster and SVM peering in NetApp's extensive documentation library.

- **ONTAP concepts**
 Describes the concepts that inform ONTAP data management software, including data protection and transfer.

- **Data protection**
 Describes how to use the ONTAP CLI to perform SnapMirror replication.

- **Cluster management using System Manager**
 Describes how to use OnCommand System Manager to perform SnapMirror replication.

- **Volume disaster recovery express preparation**
 Describes how to use OnCommand System Manager to quickly configure a destination volume for disaster recovery.

- **Volume disaster recovery express preparation**
 Describes how to use OnCommand System Manager to quickly recover a destination volume after a disaster.

- **Volume express backup using SnapVault**
 Describes how to use OnCommand System Manager to quickly configure a SnapVault relationship between volumes.

- **Volume restore express management using SnapVault**
 Describes how to use OnCommand System Manager to quickly restore files from a destination volume in a SnapVault relationship.

- **Archive and compliance using SnapLock technology**
 Describes how to replicate WORM files in a SnapLock volume.
Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).
Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

Index

A
additional information
about tasks related to cluster and SVM peering 26
allowed SVMs
specifying when creating intercluster peer relationships 19

C
cluster and SVM peer relationships
necessity of intercluster LIFs for managing communications 5
cluster and SVM peering
preparing 5
Cluster and SVM Peering Power Guide
deciding whether to use 4
cluster peer relationships
configuring intercluster LIFs to isolate replication traffic in multitenant environments 12
creating 22
creating relationships between clusters using passphrases 16
prerequisites for 5
specifying allowed SVMs when creating 19
configuring peer relationships (ONTAP 9.2 and earlier) 22
custom IPspaces
configuring intercluster LIFs 12
role in isolating replication traffic in multitenant environments 7

D
dedicated ports
configuring intercluster LIFs to use 8, 9
considerations when using 6
designated intercluster connectivity
role in isolating replication traffic in multitenant environments 7
destination clusters
creating relationships with source clusters using passphrases 16

F
find additional information
about tasks related to cluster and SVM peering 26

I
intercluster LIFs
configuring 8
configuring in custom IPspaces 12
configuring to share data ports 8
configuring to use dedicated intercluster ports 9
necessity of in cluster and SVM peer relationships 5
using to create cluster peer relationships 22
intercluster networks
configuring intercluster LIFs to share data ports 8
configuring intercluster LIFs to use dedicated intercluster ports 8, 9
intercluster SVM peer relationships
creating and accepting 20, 23
role of local and remote cluster administrators in creating 20, 23
specifying allowed SVMs when creating intercluster peer relationships 19
local and remote administrators
role in creating intercluster SVM peer relationships 20, 23

P
peer relationships
configuring 22
configuring (ONTAP 9.3) 16
deciding whether to use the Cluster and SVM Peering Power Guide when creating 4
preparing for
cluster and SVM peering 5

R
requirements for cluster peering relationships
listed 5

S
shared ports
configuring intercluster LIFs for intercluster networking 8
considerations when using 6
source clusters
creating relationships with destination clusters using passphrases 16