StorageGRID® Webscale NAS Bridge 2.1

Management API Guide

August 2019 | 215-12808_2019-08_en-us
doccomments@netapp.com

i NetApp-

Table of Contents | 3

Contents

Understanding the NAS Bridge management APl ... 4
RESTTul web services foundationccoeireineiineieneseeese e 4

How API session authentication WOIKSccccoeiriinnininesescee e 5
Understanding NAS Bridge resources and ODJECLScocervereerieininencnese e 6

How asynchronous Operation WOFKSccueiieriiirinenne s 7
Summary of resource types supported by the APl ..., 8
Accessing and USING tNE AP ..o 9
Accessing the Swagger AP WED PAJEcovoiiiriieiiere e 9
Understanding the details of an APL Callcoooiriiiniine e 10
Performing a simple task using the API ... 10
Obtaining an authentication tOKENccococirvirnineineie e 11

Creating a system event message to test the APlccccoveiiiiiiiiininicis 11

Resetting the authentication toKen ..o 16

(©0]0) Y/ o | | AR 17
LI =0 (=0 = PP 18

How to send comments about documentation and receive update
NOLITICALIONS ...t ne s 19

Understanding the NAS Bridge management API

The NetApp StorageGRID Webscale NAS Bridge management API provides access to the
functionality you need when administering and controlling a NAS Bridge node. The API is based on
RESTful web services. Before using the management API, you should understand its design,
architectural components, and limitations.

RESTful web services foundation

The NAS Bridge management API is implemented based on RESTful web services technology.
Representational State Transfer (REST) establishes a collection of technologies and design principles
for exposing server-based resources and managing their states. It uses mainstream standards, which
provide a flexible and extensible foundation for managing the NAS Bridge node.

Resources and state representation

The core aspects of the design of RESTful web services include the following:

» ldentification of system or server-based resources
Every system uses and maintains resources. A resource can be a file, business information, a
process, or an administrative entity. One of the first tasks in designing an application based on
RESTful web services is to identify the resources.

» Definition of resource states and associated state operations
Resources are always in one of a finite number of states. The states must be clearly defined, as
must be the operations used to affect the state changes.

Messages are exchanged between the client and server to access and change the state of the resources
according to the generic CRUD (Create, Read, Update, and Delete) model.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the specific protocol used by the web services client and
server to exchange request and response messages about the resources. During the RESTful web
services design, the HTTP verbs are mapped to the resources and the corresponding state
management actions.

The NAS Bridge management API relies on a subset of the HTTP protocol and uses the following
HTTP verbs:

- GET
. POST
« PATCH
. DELETE

HTTP is stateless. Therefore, to associate a set of related requests and responses under one identity,
additional information must be added to the data flows, including HTTP headers or cookies. Also
note that HTTP, and therefore a RESTful web services API, uses TCP port 80 by default.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme.
The endpoints where the resources are located and identified using a Uniform Resource Identifier
(URI). The URI provides the general framework for creating the unique name of a resource that can

Understanding the NAS Bridge management API | 5

be used in the network. The resources are exposed in a structure that is similar to a hierarchical
directory.

The Uniform Resource Locator (URL) is a type of URI adapted primarily for the web and used in the
design of RESTful web services. A URL is used to identify a resource and to access a representation
of the resource.

JSON formatting

While there are several possible ways that information can be transferred between the client and
server, the most popular option (and the one used with NAS Bridge) is JavaScript Object Notation
(JSON). JSON is a standard for representing simple data structures, including objects and arrays, in
plain text. JSON is used by the RESTful web services to represent and transfer state information
describing each resource.

Multiple access paths

Because of the inherent flexibility of RESTful web services, the management API can be accessed in
several different ways:

» NASBridge native user interface — The primary way you access the API is through the NAS
Bridge native web user interface. When you use a browser to access a node’s management IP
address, the initial page is displayed with administrative functions organized by category. The
browser accesses the management API and reformats the data according to the design of the user
interface.

» Swagger web page— The NAS Bridge management AP uses the Swagger open source API
platform to provide an alternative access point to a NAS Bridge node when using a browser.
Swagger allows both developers and non-developers to interact with the API in a user interface
that illustrates how the API responds to parameters and options.

Attention: Any API operations you perform using the Swagger user interface are live
operations. Be careful not to create, update, or delete configuration or other data by mistake.

» Custom program — You can access the management API using one of several different
programming languages and tools. Popular choices include Python, Java, and cURL. A program,
script, or tool that uses the API acts as a RESTful web services client. Using a programming
language enables you to better understand the API as well as to possibly automate the
management and control of a NAS Bridge node.

Uploading data

When uploading files such as exported configuration files using the API, you must perform a POST
with the multipart content type. Otherwise the file will fail to be uploaded.

How API session authentication works

Authentication is a required part of issuing every API call. However, rather than providing the user
credentials on each call, you must first obtain an authentication token. This token is initially
generated based on a user name and password; the token must be supplied on all of the subsequent
API calls.

The management API can be accessed in several ways, including using the product's native browser
interface, Swagger page, or a programming language (such as Python). In each case, there is a
common logic flow or pattern of usage related to authentication. The general flow that you must use
when accessing the API is as follows:

1. Create an API session by providing a user name and password

6 | StorageGRID Webscale NAS Bridge 2.1 Management APl Guide

4.

Extract the authentication token and other information from the HTTP response

Optionally perform one or more additional API calls as needed to complete the desired task,
supplying the authentication token as well as other information on each call

Delete the session which resets the authentication token

Therefore, regardless of how the management API is accessed, using the API always begins by
generating an authentication token and ends with resetting the token.

Understanding NAS Bridge resources and objects

The NAS Bridge management API allows multiple instances of each REST resource type to exist
concurrently. Each instance can be viewed as a type of object. Therefore, for a given resource type,
you can consider the resource instances to be an array of one or more objects. This design gives you
better flexibility and control when accessing the resource instances through the API.

Object identifiers

Each resource instance or object is assigned a unique identifier. These object identifiers
(IDs) are integer values assigned to the new resource instances. The IDs are unique within
a specific resource type, but not within the system as a whole. For example, if you create a
DNS server, the first instance might be assigned 1D=1. Subsequently, you might create an
NTP server and the first instance might also be assigned ID=1. This is acceptable because
the resource instances are differentiated according to their type.

The identifiers are generally returned in the HTTP response after a successful add request.
You can extract and retain the IDs. An ID must be provided in the following situations:

* When getting the current status of a resource instance
« When linking resource instances where one object refers to another

* When deleting a resource instance

Summary of resource statuses

Each resource instance has an associated status. In general, a resource’s status can be
accessed and displayed through the management API.

The following status values are used for the NAS Bridge resources:

* NOTIFYING
The underlying services are being notified of the change.

« COMMITTING
The underlying services are coordinating the commitment of the change.

¢ ABORTING
The change has been rejected. Check the error log messages for more information.

* FAILED
The change failed and all services have completed a rollback. You should check the
system event log for more information.

« READY
The change has been successfully completed, and the resource is ready for use.

In most cases, the original request or action type is added to the beginning to create the
complete state description. For example, after issuing an add request, the new resource
might temporarily be in the state: ADDING / NOTIFYING. A similar construction applies
when removing resources.

Understanding the NAS Bridge management API | 7

How asynchronous operation works

Many of the API calls, particularly those that create or remove a resource, can take a longer time to
complete than most other API calls. NAS Bridge processes these types of requests asynchronously.
When issuing a call that operates asynchronously, you must check the status of the resource instance
to confirm that the request is complete.

With asynchronous processing, the initial successful HTTP response indicates that the request has
been accepted but not necessarily finished. Therefore, after making an asynchronous request to add
or remove a resource, you must test the resource instance for completion of the request.

Note: Refer to the Swagger web page for documentation to help determine whether a specific API
call operates asynchronously. The implementation notes section on the page (if present) contains
the details.

Checking a resour ce status after an add request

After issuing an API call that adds a resource instance, you should poll the status of the
resource to verify completion of the request. A request is complete when the new resource
reaches the READY state.

After creating the required authentication token, you should use the following high level
process when asynchronously adding a resource:

1. Issue the API call to add a resource.
2. Receive an HTTP response indicating successful acceptance of the request.
3. Extract the resource 1D from the HTTP response.
4. Within a timed loop, perform the following steps in each loop cycle:
a. Get the current status of the resource based on the ID.
b. If the resource is not in the READY state, perform the loop again.

c. If the resource is in the FAILED state, abort the operation, fix the problem (for
example, remove the failed resource), and perform the loop again.

5. When the resource reaches the READY state, you can stop.

6. If the polling loop times out (according to your arbitrary timeout value) before the
resource reaches the READY state, report an error.

Checking for resource removal after a delete request

After issuing an API call that deletes a resource instance, you should poll the resource to
verify that it has been removed. A request is complete when the resource no longer exists.

After creating the required authentication token, you should use the following high-level
process when asynchronously removing a resource:

1. Issue the API call to delete a resource.
2. Receive an HTTP response indicating successful acceptance of the request.
3. Within a timed loop, perform the following in each cycle:

a. Get the current status of the resource based on the ID.

b. If resource is located (HTTP code 200), perform the loop again.

»

When the get request is not found (HTTP code 404), you can stop.

8| StorageGRID Webscale NAS Bridge 2.1 Management APl Guide

5. If the polling loop times out (according to your arbitrary timeout value) and the
resource still exists, report an error.

Summary of resource types supported by the API

As part of planning to use the management API, you should be aware of the RESTful resource types
that are supported. The API calls are organized under the various resource types.

You must refer to the Swagger web page for a complete list of the API calls, as well as the details of
each call. Also refer to the release notes publication for information regarding updates or changes to
the management API.

The management API calls are organized according to the following resource types:
» Active Directory controllers
e Alert configuration

» AutoSupport (ASUP) service
» Cache devices

« Configuration exports

* Debug

» Decommissions

» Disks

e DNS servers

» File systems

* Metrics

* Network interfaces

» Network logical interfaces (LIFs)
» Network routes

e NTP servers

» Obiject stores

» Passwords

* Reboot

* Sessions

e SMTP servers

e System events

e System information

e Upgrades

e Users

Accessing and using the API

You can access the NAS Bridge management API using the Swagger user interface on a web
browser, or you can use a programming language or other command-line tool.

About this task

You can use either of the following methods to access the NAS Bridge management API:

* You can use the Swagger web page from a NAS Bridge node. The API calls are organized on the
page according to resource type and displayed in a consistent format. This method for accessing
the API is described in this document. Using this method requires that you understand how to
interpret the API documentation on the Swagger page and how to issue API calls.

* You can use a programming language or other command-line tool, such as Python. By accessing
the management API programmatically, you can gain a deeper understanding of the API. This
document does not describe this method for accessing the API.

Note: While there are many options when choosing a programming language or tool to access
the management API, Python is a widely available scripting language. In many cases, you can
easily integrate Python scripts into the automation processes typically used in most IT
environments.

Accessing the Swagger APl web page
You must access the Swagger web page to display the API documentation, as well as to manually

issue an API call.

Before you begin

You must have the management IP address or domain name of the NAS Bridge node.

Steps

1. Construct the URL for the Swagger page by concatenating the management IP address or domain
name of the NAS Bridge node and the string / api _docs.

For example: ht t p: // 10. 63. 65. 121/ api _docs

2. Type the new URL into your browser and press Enter.

Result

The main Swagger page is displayed with the calls organized by resource category.

Related references

Summary of resource types supported by the AP/l on page 8

10| StorageGRID Webscale NAS Bridge 2.1 Management APl Guide

Understanding the details of an API call

The details of all the API calls are included on the Swagger web page. All of the API calls are
documented and displayed using a common format. By understanding a single API call, you can
access and interpret the details of all the API calls.

Steps
1. On the main Swagger page, click sessions.

2. Click POST to display the details of the API call used to request an authentication token.

sessions Show/Hide | List Operations =~ Expand Operations =~ Raw
Bl sign_injson 4—— HTTP verb and API URL Returns an authorization token
Implementation Notes APl description

Use the authorization token and user email in HTTP headers X-API-EMAIL and X-API-TOKEN fo authenticate requests.

ST Parameter descriptions ~a

Parameter Value Description Parameter Type Data Type
email (required) User's email form email
password (required) User's password form password

Error Status Codes
HTTP Status Code Reason

4e1 Invalid email or password

Tryitout! | <¢——— Run the call

3. Examine the entire page to understand the API call and what you must enter.

You should note the HTTP verb and URL, required input parameters, the HT TP status codes
used, and any implementation notes.

Performing a simple task using the API

To better understand the API, you should perform a simple task using the Swagger web page.
Creating a test event in the system event log is a good task to begin with.

Before you begin

You must be familiar with how to access the Swagger web page using a browser. In addition, you
must have the credentials for an administrator account, including the user name and password.

Attention: Any API operations you perform using the Swagger user interface are live operations.
Be careful not to create, update, or delete configuration or other data by mistake.

Steps

1. Obtaining an authentication token on page 11
2. Creating a system event message to test the API on page 11
3. Resetting the authentication token on page 16

Related tasks

Accessing the Swagger API web page on page 9

Accessing and using the API | 11

Obtaining an authentication token

To use the management API, you must first obtain an authentication token. This token, along with
other information, must be supplied on all API calls.

Steps
1. On the Swagger page, click sessions.
2. Click POST to display the API call used to return an authentication token.
3. Type the email address (that is, user name) and password for your administrator account.
4. Click Try it out.

G sign_injson Returns an authorization token

Implementation Notes
Use the authorization token and user email in HTTP headers X-API-EMAIL and X-API-TOKEN to authenticate requests.

Parameters

Parameter Value Description Parameter Type Data Type
email admin@example.com User's email form email
password password User's password form password

Error Status Codes
HTTP Status Code Reason

4e1 Invalid email or passward

Try it Eutl

If the user name and password are valid, you should receive the HTTP status code 201, indicating
success.

5. Copy the authentication token (without the quotes) returned in the response body.

Response Body

{
"user™: {
"email™: "admin@example.com”,
"name”: "Admin Users”,
"role”: "admin",
"auth_token™: "DntLMILSSCYHjEYMteDwYywvMojajlBZ2Q"
¥
}

6. Use this token as the X- API - Token parameter when making future API calls.

Creating a system event message to test the API

You can use Swagger to create a message in the system event log. This is a simple way to test the
management API. After the event has been created, you can display the message using the GET
function on the Swagger page or using the NAS Bridge user interface.

Before you begin

You must have the following parameters:

12| StorageGRID Webscale NAS Bridge 2.1 Management APl Guide

» A valid authentication token (the token can be copied from the result of a previous session POST

call)

» The administrator email address (that is, user account) that was used to create the authentication
token

Steps

1. On the Swagger page, click system_events.
2. Click POST to display the API call used to create a new system event.

3. Type the version (which must always be 2), email address (that is, user account), and the
authentication token.

If you copied the authentication token after previously creating a new session, you can paste the
token into the field on the page.

4. Type atest message, severity (from the list of allowed values), and test facility:

{version}/api/system_events.json Create a new system event
Parameters
Parameter Value Description Parameter Type Data Type
version 2 Version path integer
X-API-EMAIL changeme@netapp.com User's email header email
passed as X-
API-EMAIL
X-API-TOKEN xZuQBWRe2EE_N3jy6UY SwWRBH_VRN1XsVTA Token retrieved header password
from session
login
system_event[message] This is a test message Message form string
describing the
event
system_event[severity] |debug One of the form string
following:
debug info

notice warning
error critical
alert
emergency

system_event[facility] mymodule Facility, form string
component or
module
reporting the
event

5. Click Try it out.

Accessing and using the API | 13

Request URL

https://18.96.104.166:443/2/api/system_events.json

Response Body

{
"response": {
"id": 48,
"severity": "debug",
"facility": "mymodule",
"message": "This is a test message",
"created at": "2817-11-1@T22:39:23.117",
"updated_at": "2017-11-10T22:39:23.1107",
"config": null,
"config_id": null
¥
¥

Response Code

280

The response code 200 indicates success.
To verify the new message was created:

» On the Swagger page, click system_events> GET, enter an email address and the
authentication token. Use the q parameter to limit the results to those messages that include all
or part of your message text. Then, click Try it out to list the message you created.

14| StorageGRID Webscale NAS Bridge 2.1 Management APl Guide

{version}/api/system_events.json List the system events recorded in the system

Parameters

Parameter Value Description Parameter Type Data Type

version 2 Version path integer

X-API-EMAIL changeme@netapp.com User's email passed as header email
X-API-EMAIL

X-API-TOKEN xZuQBWRe2EE_N3jy6UYSwWRBH_VRN1XsVTA Token retrieved from header password
session login

page Page of results to return query integer

limit ltems per page query integer

q test String to query messages query string

sort v Column to sort by query string

order v Direction of search query string

Error Status Codes
HTTP Status Code Reason

400 Bad Request

401 Unauthorized

403 Forbidden

500 Internal Server Errar
500 Invalid Resource

Try it outl

Accessing and using the API | 15

Request URL

https://16.96.1684.166:443/2/api/system_events. json?q=test

Response Body

{
"id": 48,
"severity": "debug",
"facility": "mymodule",
"message": "This is a test message",
"created_at": "20817-11-18T22:39:23.800Z",
"updated_at™: "2617-11-18T22:39:23.000Z",
"config": null,
"config_id": null

}

1,

“count": 8,

"pagination": {
"current": 1,
"previous": null,
"next": null,
"per_page": 25,
"pages": 1,

“count": 8

Response Code

200

« From the NAS Bridge user interface, click Maintenance > Events, and filter or sort the
events for the message you posted.

16 | StorageGRID Webscale NAS Bridge 2.1 Management APl Guide

Events Filter: test message

Date | Severity | Message |
11-10-2017 22:39:23 UTC DEBUG This is a test message
<< Prev | Page 1of 1 Next == | kems per page:

Resetting the authentication token
You should reset the authentication token after completing your API calls. This improves the security
of the system by preventing the token from being reused.

Before you begin

You must have the following parameters:

» A valid authentication token (the token can be copied from the result of a previous session POST
call)

» The administrator email address (that is, user account) that was used to create the authentication
token

Steps

1. On the Swagger page, click sessions.

2. Click DELETE to display the API call used to reset an authentication token.

3. Type the email address (that is, user account) and authentication token.

If you copied the authentication token after previously creating a new session, you can paste the
token into the field on the page.

4. Click Try it out!

The response code 204 indicates the token was deleted.

17

Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—
graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an
electronic retrieval system—uwithout prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and
disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein,
except as expressly agreed to in writing by NetApp. The use or purchase of this product does not
convey a license under any patent rights, trademark rights, or any other intellectual property rights of
NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents,
or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to
NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable,
worldwide, limited irrevocable license to use the Data only in connection with and in support of the
U.S. Government contract under which the Data was delivered. Except as provided herein, the Data
may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written
approval of NetApp, Inc. United States Government license rights for the Department of Defense are
limited to those rights identified in DFARS clause 252.227-7015(b).

18

Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

http.//wwwi.netapp.comy/us/legal/netapptmlist.aspx

http://www.netapp.com/us/legal/netapptmlist.aspx

19

How to send comments about documentation and
receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can
receive automatic notification when production-level (GA/FCS) documentation is initially released or
important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.
doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name,
version, and operating system.

If you want to be notified automatically when production-level documentation is released or
important changes are made to existing production-level documents, follow Twitter account
@NetAppDoc.

You can also contact us in the following ways:

e NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
» Telephone: +1 (408) 822-6000

« Fax: +1 (408) 822-4501

e Support telephone: +1 (888) 463-8277

mailto:doccomments@netapp.com

	Contents
	Understanding the NAS Bridge management API
	RESTful web services foundation
	How API session authentication works
	Understanding NAS Bridge resources and objects
	How asynchronous operation works
	Summary of resource types supported by the API

	Accessing and using the API
	Accessing the Swagger API web page
	Understanding the details of an API call
	Performing a simple task using the API
	Obtaining an authentication token
	Creating a system event message to test the API
	Resetting the authentication token

	Copyright
	Trademark
	How to send comments about documentation and receive update notifications

