Cluster Management Using ONTAP® System Manager

May 2019 | 215-14128_A0
doccomments@netapp.com

Updated for ONTAP 9.6
Contents

Understanding System Manager ... 16
Icons used in the application interface ... 17
System Manager window layout ... 18
Window layout customization ... 19
ONTAP System Manager enhancements ... 20
Setting up your cluster environment ... 24
 Setting up the cluster by using ONTAP System Manager 24
 Setting up a cluster by using the template file ... 26
 Setting up the cluster manually .. 28
 Accessing a cluster by using the ONTAP System Manager browser-based
 graphic interface .. 33
Configuring System Manager options .. 34
Viewing ONTAP System Manager log files ... 35
 How system logging works .. 35
Configuring a cluster by using System Manager 36
 Accessing a cluster by using the ONTAP System Manager browser-
 based graphic interface ... 36
 Setting up the cluster ... 37
 Setting up the network .. 42
 Setting up physical storage .. 43
 Setting up logical storage .. 50
Setting up SAML authentication .. 69
 Enabling SAML authentication .. 70
 Disabling SAML authentication .. 71
Setting up peering .. 72
 Prerequisites for cluster peering .. 72
 Creating intercluster LIFs ... 73
 Creating cluster peer relationships ... 73
 Creating SVM peers ... 75
 What passphrases are ... 76
Managing clusters .. 77
 Understanding quorum and epsilon ... 77
 Dashboard window ... 78
 Monitoring a cluster using the dashboard ... 79
Applications ... 80
 Provisioning a basic template ... 80
 Storage service definitions .. 81
 Adding Microsoft SQL Server over SAN to System Manager 82
 Application provisioning settings ... 82
 Editing an application ... 87
 Deleting an application .. 88
SNMP

Enabling or disabling SNMP .. 123
Editing SNMP information .. 124
Enabling or disabling SNMP traps .. 124
Testing the trap host configuration .. 125
SNMP window .. 125

LDAP

Viewing the LDAP client configuration .. 126
Using LDAP services .. 126
LDAP window ... 127

Users

Adding a cluster user account .. 128
Editing a cluster user account ... 128
Changing passwords for cluster user accounts .. 128
Locking or unlocking cluster user accounts ... 129
User accounts (cluster administrators only) .. 129
Roles .. 129
Users window .. 129

Roles

Adding roles .. 130
Editing roles .. 130
Roles and permissions .. 131
Roles window ... 132

Managing the network .. 133

IPspaces

Editing IPspaces ... 133
Deleting IPspaces ... 133
Broadcast domains ... 134
Editing broadcast domain settings ... 134
Deleting broadcast domains ... 134
Subnets .. 135
Editing subnet settings .. 135
Deleting subnets .. 135
Network interfaces ... 136
Creating network interfaces ... 136
Editing network interface settings .. 138
Deleting network interfaces ... 138
Migrating a LIF .. 139
Ethernet ports ... 139
Creating interface groups .. 139
Creating VLAN interfaces .. 140
Editing Ethernet port settings .. 140
Editing interface group settings .. 141
Modifying the MTU size of a VLAN ... 141
Deleting VLANs ... 141
Considerations for adding SSDs to an existing storage pool versus creating a new one ... 177
Why you add disks to storage pools ... 177
How storage pool works .. 177
Storage Pools window .. 178
Disks .. 179
Reassigning disks to nodes ... 179
Viewing disk information ... 180
How ONTAP reports disk types .. 180
Minimum number of hot spares required for disks 181
Spare requirements for multi-disk carrier disks 182
Shelf configuration requirements for multi-disk carrier storage shelves 182
How to determine when it is safe to remove a multi-disk carrier 182
Considerations for sizing RAID groups ... 182
Disks window ... 183
Array LUNs .. 185
Assigning array LUNs ... 186
Reassigning spare array LUNs to nodes 186
Zeroing spare array LUNs ... 187
About disks and array LUNs ... 187
Array LUNs window ... 187
Nodes ... 188
Initializing the ComplianceClock time .. 188
Nodes window ... 189
Hardware Cache .. 190
Enabling or disabling Flash Cache modules 190
How Flash Cache modules work .. 190
Hardware Cache window ... 190
Events .. 191
Events window ... 191
System alerts .. 192
Acknowledging system health alerts .. 192
 Suppressing system health alerts .. 193
Deleting system health alerts ... 193
Available cluster health monitors .. 193
Ways to respond to system health alerts 194
System Alerts window .. 195
AutoSupport notifications .. 196
Setting up AutoSupport notifications 196
Enabling or disabling AutoSupport settings 196
Adding AutoSupport email recipients ... 197
Testing AutoSupport settings ... 197
Generating AutoSupport data .. 197
Viewing AutoSupport summary .. 198
AutoSupport severity types .. 198
Managing logical storage

Managing logical storage

Storage Virtual Machines

SVM Dashboard window
Monitoring SVMs
Editing SVM settings
Deleting SVMs
Starting SVMs
Stopping SVMs
Managing SVMs
Tracing file access to diagnose access errors on SVMs
Types of SVMs
Why you use SVMs
How ONTAP name service switch configuration works
Storage Virtual Machines window
Trace File Access window

Volumes

Editing volume properties
Editing data protection volumes
Deleting volumes
Creating FlexClone volumes
Creating FlexClone files
Splitting a FlexClone volume from its parent volume
Viewing the FlexClone volume hierarchy
Changing the status of a volume
Viewing the list of saved Snapshot copies
Creating Snapshot copies outside a defined schedule
Setting the Snapshot copy reserve
Hiding the Snapshot copy directory
Scheduling automatic creation of Snapshot copies
Restoring a volume from a Snapshot copy
Extending the expiry date of Snapshot copies
Renaming Snapshot copies
Deleting Snapshot copies
Resizing volumes
Enabling storage efficiency on a volume
Changing the deduplication schedule
Running deduplication operations
Moving FlexVol volumes between aggregates or nodes
Assigning volumes to Storage QoS
Creating a mirror relationship from a source SVM 232
Creating a vault relationship from a source SVM 234
Creating a mirror and vault relationship from a source SVM 236
Creating an NFS datastore for VMware .. 238
Changing the tiering policy of a volume .. 239
Creating FlexGroup volumes ... 239
Viewing FlexGroup volume information ... 240
Editing FlexGroup volumes ... 241
Specifying advanced options for a FlexGroup volume 242
Resizing FlexGroup volumes ... 243
Changing the status of a FlexGroup volume ... 243
Deleting FlexGroup volumes ... 244
Creating FlexCache volumes .. 244
Viewing FlexCache volume information .. 245
Editing FlexCache volumes .. 246
Specifying advanced options for a FlexCache volume 246
Resizing FlexCache volumes ... 247
Changing the status of a FlexCache volume ... 247
Deleting FlexCache volumes ... 248
What NetApp Volume Encryption is .. 248
Snapshot configuration ... 248
How volume guarantees work for FlexVol volumes 248
FlexClone volumes and space guarantees ... 249
Thin provisioning for greater efficiencies using FlexVol volumes 249
Using space reservations with FlexVol volumes 250
Benefits of storage efficiency .. 250
Data compression and deduplication ... 251
Guidelines for using deduplication .. 252
Options for resizing volumes .. 252
Considerations when moving volumes .. 253
Volumes window ... 253
Junction Path ... 260
Mounting volumes ... 260
Unmounting FlexVol volumes ... 260
Changing export policies ... 261
Junction Path window ... 261
Shares .. 262
Creating a CIFS share .. 262
Stopping share access .. 263
Creating home directory shares ... 263
Editing share settings .. 263
How ONTAP enables dynamic home directories 264
Shares window .. 265
LUNs .. 267
Creating FC SAN optimized LUNs .. 267
Application-specific LUN settings .. 268
Creating LUNs .. 271
Deleting LUNs .. 274
Creating initiator groups .. 275
Deleting initiator groups .. 275
Adding initiators .. 276
Deleting initiators from an initiator group .. 276
Creating port sets ... 276
Deleting port sets ... 277
Cloning LUNs ... 277
Editing LUNs .. 277
Bringing LUNs online .. 278
Taking LUNs offline .. 278
Moving LUNs ... 278
Assigning LUNs to storage QoS ... 280
Editing initiator groups .. 282
Editing initiators .. 283
Editing port sets ... 283
Viewing LUN information ... 283
Viewing initiator groups .. 284
Guidelines for working with FlexVol volumes that contain LUNs 284
Understanding space reservations for LUNs .. 285
Guidelines for using LUN multiprotocol type ... 285
Understanding LUN clones .. 286
Initiator hosts ... 287
igroup name ... 287
igroup type .. 287
igroup ostype ... 287
LUNs window ... 287
Qtrees .. 291
Creating qtrees .. 291
Deleting qtrees .. 292
Editing qtrees ... 292
Assigning export policies to qtrees ... 293
Viewing qtree information ... 293
Qtree options ... 293
Qtrees window ... 294
Quotas ... 295
Creating quotas ... 295
Deleting quotas ... 296
Editing quota limits .. 296
Activating or deactivating quotas ... 296
Resizing quotas .. 297
Viewing quota information .. 297
Types of quotas .. 298
Quota limits ... 298
Quota management .. 299
Quotas window .. 299
CIFS protocol .. 301
Setting up CIFS ... 301
Editing the general properties for CIFS .. 302
Adding home directory paths .. 302
Deleting home directory paths .. 303
Resetting CIFS domain controllers ... 303
Updating the CIFS group policy configuration ... 304
Enabling or disabling a CIFS group policy configuration 304
Reloading CIFS group policy ... 304
Setting up BranchCache .. 304
Modifying the BranchCache settings .. 305
Deleting the BranchCache configuration .. 306
Adding preferred domain controllers .. 306
Editing preferred domain controllers .. 306
Deleting preferred domain controllers .. 307
Viewing CIFS domain information ... 307
CIFS window ... 307
NFS protocol ... 309
Editing NFS settings .. 309
NFS window .. 310
NVMe protocol ... 310
Setting up NVMe .. 310
Creating an NVMe namespace .. 311
Editing an NVMe namespace ... 312
Cloning an NVMe namespace .. 312
Starting and stopping the NVMe service .. 313
What NVMe is .. 313
What an NVMe subsystem is .. 314
NVMe namespaces .. 317
NVMe namespaces window .. 318
iSCSI protocol .. 319
Creating iSCSI aliases ... 320
Enabling or disabling the iSCSI service on storage system interfaces 320
Adding the security method for iSCSI initiators ... 321
Editing default security settings ... 321
Editing initiator security .. 322
Changing the default iSCSI initiator authentication method 322
Setting the default security for iSCSI initiators ... 323
Starting or stopping the iSCSI service .. 323
Viewing initiator security information ... 323
iSCSI window .. 324
FC/FCoE protocol .. 324
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting or stopping the FC or FCoE service</td>
<td>325</td>
</tr>
<tr>
<td>Changing an FC or FCoE node name</td>
<td>325</td>
</tr>
<tr>
<td>The FCoE protocol</td>
<td>325</td>
</tr>
<tr>
<td>FC/FCoE window</td>
<td>326</td>
</tr>
<tr>
<td>Export policies</td>
<td>326</td>
</tr>
<tr>
<td>Creating an export policy</td>
<td>326</td>
</tr>
<tr>
<td>Renaming export policies</td>
<td>327</td>
</tr>
<tr>
<td>Deleting export policies</td>
<td>327</td>
</tr>
<tr>
<td>Adding rules to an export policy</td>
<td>327</td>
</tr>
<tr>
<td>Modifying export policy rules</td>
<td>328</td>
</tr>
<tr>
<td>Deleting export policy rules</td>
<td>329</td>
</tr>
<tr>
<td>How export policies control client access to volumes or qtrees</td>
<td>329</td>
</tr>
<tr>
<td>Export Policies window</td>
<td>329</td>
</tr>
<tr>
<td>Efficiency policies</td>
<td>331</td>
</tr>
<tr>
<td>Adding efficiency policies</td>
<td>331</td>
</tr>
<tr>
<td>Editing efficiency policies</td>
<td>331</td>
</tr>
<tr>
<td>Deleting efficiency policies</td>
<td>332</td>
</tr>
<tr>
<td>Enabling or disabling efficiency policies</td>
<td>332</td>
</tr>
<tr>
<td>What an efficiency policy is</td>
<td>332</td>
</tr>
<tr>
<td>Understanding predefined efficiency policies</td>
<td>332</td>
</tr>
<tr>
<td>Efficiency Policies window</td>
<td>333</td>
</tr>
<tr>
<td>Protection policies</td>
<td>334</td>
</tr>
<tr>
<td>Creating protection policies</td>
<td>334</td>
</tr>
<tr>
<td>Deleting protection policies</td>
<td>335</td>
</tr>
<tr>
<td>Editing protection policies</td>
<td>335</td>
</tr>
<tr>
<td>Protection Policies window</td>
<td>335</td>
</tr>
<tr>
<td>QoS policy groups</td>
<td>336</td>
</tr>
<tr>
<td>Creating QoS policy groups</td>
<td>336</td>
</tr>
<tr>
<td>Deleting QoS policy groups</td>
<td>337</td>
</tr>
<tr>
<td>Editing QoS policy groups</td>
<td>337</td>
</tr>
<tr>
<td>Managing workload performance by using Storage QoS</td>
<td>338</td>
</tr>
<tr>
<td>How Storage QoS works</td>
<td>339</td>
</tr>
<tr>
<td>How the maximum throughput limit works</td>
<td>339</td>
</tr>
<tr>
<td>Rules for assigning storage objects to policy groups</td>
<td>340</td>
</tr>
<tr>
<td>QoS Policy Groups window</td>
<td>341</td>
</tr>
<tr>
<td>NIS services</td>
<td>342</td>
</tr>
<tr>
<td>Adding NIS domains</td>
<td>342</td>
</tr>
<tr>
<td>Editing NIS domains</td>
<td>342</td>
</tr>
<tr>
<td>NIS window</td>
<td>343</td>
</tr>
<tr>
<td>LDAP client services</td>
<td>343</td>
</tr>
<tr>
<td>Adding an LDAP client configuration</td>
<td>343</td>
</tr>
<tr>
<td>Deleting an LDAP client configuration</td>
<td>344</td>
</tr>
<tr>
<td>Editing an LDAP client configuration</td>
<td>344</td>
</tr>
<tr>
<td>LDAP Client window</td>
<td>345</td>
</tr>
<tr>
<td>LDAP configuration services</td>
<td>345</td>
</tr>
</tbody>
</table>
Editing active LDAP clients ... 346
Deleting active LDAP clients .. 346
LDAP Configuration window ... 346

Kerberos realm services ... 347
Creating a Kerberos realm configuration .. 347
Editing a Kerberos realm configuration ... 348
Deleting Kerberos realm configurations .. 348
Using Kerberos with NFS for strong security 349
Kerberos authentication for CIFS .. 349
Kerberos Realm window ... 349

Kerberos interface services ... 350
Editing Kerberos configuration ... 350
Kerberos Interface window .. 350

DNS/DDNS Services ... 351
Enabling or disabling DDNS ... 351
Editing DNS and DDNS settings ... 352
DNS/DDNS Services window .. 352

Users .. 353
Adding SVM user accounts ... 353
Changing the password for SVM user accounts 353
Editing SVM user accounts ... 353
Locking or unlocking SVM user accounts 354
Users window ... 354

Roles .. 355
Adding roles ... 355
Editing roles ... 355
Roles window .. 356

UNIX .. 356
UNIX window .. 356

Windows .. 357
Creating a local Windows group .. 357
Editing local Windows group properties .. 359
Adding user accounts to a Windows local group 360
Renaming a local Windows group .. 360
Deleting a local Windows group .. 361
Creating a local Windows user account .. 362
Editing the local Windows user properties 363
Assigning group memberships to a user account 363
Renaming a local Windows user .. 364
Resetting the password of a Windows local user 365
Deleting a local Windows user account .. 365
Windows window .. 366

Name mapping .. 368
Name mapping conversion rules .. 368
Name Mapping window ... 368
Managing data protection ... 371
Mirror relationships ... 371
Creating a mirror relationship from a destination SVM 371
Deleting mirror relationships .. 373
Editing mirror relationships ... 373
Initializing mirror relationships ... 374
Updating mirror relationships .. 375
Quiescing mirror relationships .. 376
Resuming mirror relationships .. 376
Breaking SnapMirror relationships .. 376
Resynchronizing mirror relationships .. 377
Reverse resynchronizing mirror relationships 378
Aborting a mirror transfer ... 379
Restoring a volume in a mirror relationship 379
How SnapMirror relationships work ... 381
Vault relationships ... 381
Creating a vault relationship from a destination SVM 381
Deleting vault relationships ... 383
Editing vault relationships ... 384
Initializing a vault relationship ... 385
Updating a vault relationship .. 385
Quiescing a vault relationship ... 386
Resuming a vault relationship .. 386
Aborting a Snapshot copy transfer .. 387
Restoring a volume in a vault relationship ... 387
What a SnapVault backup is ... 388
Mirror and vault relationships ... 389
Creating a mirror and vault relationship from a destination SVM 389
Deleting mirror and vault relationships ... 391
Editing mirror and vault relationships .. 391
Initializing mirror and vault relationships 393
Updating mirror and vault relationships .. 393
Quiescing mirror and vault relationships ... 394
Resuming mirror and vault relationships ... 394
Breaking mirror and vault relationships ... 394
Resynchronizing mirror and vault relationships 395
Reverse resynchronizing mirror and vault relationships 396
Aborting mirror and vault relationships .. 396
Restoring a volume in a mirror and vault relationship 397
What lag time is .. 398
Types of data protection relationships .. 398
Understanding workloads supported by StrictSync and Sync policies .. 400
SnapMirror licensing ... 400
Protection window ... 401
SVM Relationships .. 403
Understanding System Manager

System Manager is a graphical management interface that enables you to manage storage systems and storage objects (such as disks, volumes, and aggregates) and perform common management tasks related to storage systems from a web browser. As a cluster administrator, you can use System Manager to administer the entire cluster and its resources.

Important: System Manager is no longer available as an executable file and is now included with ONTAP software as a web service, enabled by default, and accessible by using a browser.

Note: The name of System Manager has changed from previous versions. Versions 9.5 and earlier were named OnCommand System Manager. Versions 9.6 and later are now called ONTAP System Manager.

System Manager enables you to perform many common tasks such as the following:

- Create a cluster, configure a network, and set up support details for the cluster.
- Configure and manage storage objects such as disks, aggregates, volumes, qtrees, and quotas.
- Configure protocols such as CIFS and NFS, and provision file sharing.
- Configure protocols such as FC, FCoE, NVMe, and iSCSI for block access.
- Create and configure network components such as subnets, broadcast domains, data and management interfaces, and interface groups.
- Set up and manage mirroring and vaulting relationships.
- Perform cluster management, storage node management, and storage virtual machine (SVM) management operations.
- Create and configure SVMs, manage storage objects associated with SVMs, and manage SVM services.
- Monitor and manage HA configurations in a cluster.
- Configure Service Processors to remotely log in, manage, monitor, and administer the node, regardless of the state of the node.
Icons used in the application interface

You can view the icons in the interface to get quick information about systems and operations.

Dashboard window icons
You might see the following icons when viewing the dashboard for the storage system:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨</td>
<td>Warning</td>
<td>There are minor issues, but none that require immediate attention.</td>
</tr>
<tr>
<td>🚨</td>
<td>Error</td>
<td>Problems that might eventually result in downtime and therefore require attention.</td>
</tr>
<tr>
<td>🚨</td>
<td>Critical</td>
<td>The storage system is not serving data or cannot be contacted. Immediate attention is required.</td>
</tr>
<tr>
<td>⬅️</td>
<td>Link arrow</td>
<td>If this is displayed next to a line item in a dashboard pane, clicking it links to another page from which you can get more information about the line item or make changes to the line item.</td>
</tr>
</tbody>
</table>
System Manager window layout

Understanding the typical window layout helps you to navigate and use System Manager effectively.

Typical layout of System Manager windows
Window layout customization

System Manager enables you to customize the window layouts. By customizing the windows, you can control which data is viewable and how the data is displayed.

Sorting

You can click the column header to change the sort order of the column entries. When you click the column header, the sort arrows (↑ and ↓) appear for that column.

Filtering

You can click the filter icon to display only those entries that match the conditions that are provided. You can then use the character filter (?) or string filter(*) to narrow your search. The filter icon is displayed when you move the mouse pointer over the column headings.

You can apply filters to one or more columns.

Note: When you apply filters to the physical size field or the usable size field, any value that you enter without the unit suffix in these fields is considered to be in bytes. For example, if you enter a value of 1000 without specifying the unit in the physical size field, the value is automatically considered as 1000 bytes.

Hiding or showing the columns

You can click the column display icon (Show/Hide) to select which columns you want to display. Once you have selected the appropriate columns you can re-order them by dragging them using your mouse.

Customizing the layout

You can drag the bottom of the list of objects area up or down to resize the main areas of the window. You can also display or hide the list of related objects and list of views panels. You can drag the vertical dividers to resize the width of the columns or other areas of the window.

Searching

You can use the search box to search for volumes, LUNs, qtrees, network interfaces, storage virtual machines (SVMs), aggregates, disks, or Ethernet ports, or all of these objects. You can click the results to navigate to the exact location of the object.

Notes:

- When you search for objects that contain one or more of the { \ ? ^ > | characters, the results are displayed correctly, but they do not navigate to the correct row in the page.
- You must not use the question mark (?) character to search for an object.
ONTAP System Manager enhancements

You should be aware of the features that have been added or changed in this release of System Manager.

Features and enhancements added in ONTAP 9.6

Note: OnCommand System Manager is now known as ONTAP System Manager.

- **MetroCluster switchover and switchback operations**
 Starting with System Manager 9.6, you can use MetroCluster switchover and switchback operations to allow one cluster site to take over the tasks of another cluster site. This capability allows you to facilitate maintenance or recovery from disasters.

- **Trace file access**
 A new Trace File Access window allows you to diagnose issues when users have problems accessing files and shares on an SVM using the CIFS or NFS protocol.

- **Encrypted SnapMirror**
 Starting with System Manager 9.6, you can generate a passphrase for the local cluster IPspace and use the same passphrase in the remote cluster when creating peering relationships. For security reasons, the passphrase can be modified.

- **FlexCache capabilities**
 System Manager now provides the capability to create, edit, view, and delete FlexCache volumes.

- **Fabric Pool enhancements**
 You can now use Alibaba Cloud and Google Cloud as object stores for use as a cloud tier. Also, System Manager now supports the “All” tiering policy, which allows you to specify that all data should be tiered to the cloud. Enhancements were made to the Volume Performance tab of the Volume 360 page to show cloud latency of the volume.

- **FlexGroup enhancements**
 Starting with System Manager 9.6, you can edit the properties of an existing FlexGroup volume, such as renaming or resizing the volume.

- **SnapLock volume enhancements**
 When creating or modifying a storage QoS policy group, you can set the minimum throughput limit for an ONTAP Select Premium system in addition to a performance-based All Flash Optimized personality.

Features and enhancements added in ONTAP 9.5

- **Volume encryption**
 You can now enable volume encryption while editing a FlexVol volume or a FlexGroup volume. Also, this feature is enhanced to support the Rekey option to change the data encryption key of the volume.

- **Cluster update**
 Beginning with System Manager 9.5, you can update a cluster in MetroCluster configurations. You must perform each operation on both the clusters except for updating the cluster.

- **Volume replication policies**
 Two new policies, StrictSync and Sync, are added in System Manager 9.5. You can use these to policies to provide zero RPO replication with and without primary IO restriction during replication failures. You can also enable volume protection using the protection tab.
• Cloud Registration
You can use System Manager to register the ONTAP cluster with NetApp Data Availability Services to save data in the cloud.

• SVM DR
Storage virtual machine (SVM) disaster recovery (DR) provides disaster recovery capability at the SVM level by enabling the recovery of the data that is present in the constituent volumes of the SVM and the recovery of the SVM configuration. You can use System Manager to create and manage mirror relationships and mirror and vault relationships between SVMs.

• L2/L3 applications displayed
Starting with ONTAP 9.5, System Manager lists L2/L3 applications on the Applications page under different host names. Clicking on the host name opens a new window in the L2 Cockpit interface. For each application, System Manager also lists IOPs and latency measurements.

• Virtual IP support
Starting with ONTAP 9.5, System Manager displays information about Virtual IP (VIP) LIFs; however, you cannot create, delete, or manage VIP LIFs from System Manager.

• NVMe subsystems licensing requirement
Starting with ONTAP 9.5, NVMe is licensed. System Manager supports the licensing requirement.

• Support for NVMeoF subsystems
System Manager supports the use of an NVMe over Fabric (NVMeoF) subsystem, which is a separate kernel object that resides in the FreeBSD kernel. NVMeoF is a specification-defined extension to NVMe that enables NVMe-based communication over connections other than PCIe. This interface allows for external storage enclosures to be connected to a server, either directly or through a switch, while still using NVMe as the fundamental communication mechanism. An NVMeoF subsystem interfaces with SAN components, WAFL, and RAS components.

• NVMe multipath support
Starting with ONTAP 9.5, at least one LIF must be configured for each node in an HA pair using the NVMe protocol. You can also define two LIFs for a node. When you upgrade to ONTAP 9.5, you must ensure that a minimum of one LIF is defined for each node in an HA pair using the NVMe protocol.

• FlexGroup eligible aggregates
When you create a FlexGroup, aggregates are selected by default according to best practices. For All-Flash Optimized storage systems, thin provisioning is enabled by default, and for other storage systems, thick provisioning is enabled by default. You can override the best practices defaults and select your choices from a list of eligible FabricPool aggregates.

• Public SSL Certificate authentication
Starting with System Manager 9.5, you can view a public SSL certificate associated with an SVM. You can view the certificate details, the serial number, the start date, and the expiration date. You can also copy the certificate to the clipboard, and email the certificate details. Additionally, when you add the vsadmin user account to an SVM, a login method is automatically included that uses HTTP as the application and is authenticated with a certificate.

• Qtrees appearing as directories on a FlexVol
If a FlexVol contains both qtrees and volumes, the qtrees appear as directories.

• FlexCache volumes
FlexCache volumes are displayed in System Manager as a FlexGroup. The parent volume details are shown in the 360 page.

• Deprecation of infinite volumes
Starting with ONTAP 9.5, infinite volumes are deprecated and no longer supported.
Features and enhancements added in ONTAP 9.4

- NVMe protocol
 The NVM Express (NVMe) protocol is now supported by ONTAP and can be configured in System Manager. NVMe is an alternative protocol for block access, similar to the existing iSCSi or FC protocols.

- Aggregate recommender
 You can create an aggregate based on storage recommendations. System Manager analyzes the configuration of your storage system and provides storage recommendations such as the number of aggregates that will be created, the available nodes, and the available spare disks.

- FabricPool-enabled aggregates enhancements
 FabricPool-enabled aggregates have been enhanced to support the following features and functionalities:
 - New UI navigation for the external capacity tier menu
 - New “Auto” caching policy
 - Support for inactive (cold) data
 - Support for object store certificate for StorageGRID external capacity tier
 - Support for Microsoft Azure Blob storage external capacity tier
 - More information in the capacity tab of the cluster dashboard
 - Support ONTAP Select
 - Support for viewing external capacity tier, other than StorageGRID, Amazon AWS S3, and Microsoft Azure Blob storage, created using the command-line interface (CLI).

- FlexGroup volumes enhancements
 FlexGroup volumes include the following enhancements and new features:
 - Support for advanced options such as volume encryption, storage efficiency, and QoS
 - Protect volumes
 - More information in the protection tab of the cluster dashboard

- Support for updating single-node clusters disruptively
 Starting with System Manager 9.4, you can update single-node clusters. Updating single-node clusters is disruptive, and client data will not be available while the update is in progress.

- Support for configuring Snapshot copies
 You can configure Snapshot copies by setting a schedule to an existing Snapshot policy. Beginning with ONTAP 9.4, you can have fewer than 1024 Snapshot copies of a FlexVol volume.

- Storage efficiency enhancements
 The percentage of logical space used and the status of logical space reporting is now displayed in the System Manager Volumes window.

- Removed partial support for infinite volumes
 You cannot create infinite volumes and protect infinite volumes by using System Manager.

- Support for SMB Multichannel
 You can enable SMB protocol to establish multiple channels between a SMB3.0 session and transport connections, specifically for higher performance and fault tolerance and resiliency.
Features and enhancements added in ONTAP 9.3

- Support for SAML authentication for web services
 Beginning with ONTAP 9.3, you can configure multifactor authentication (MFA) for web services by using Security Assertion Markup Language (SAML) authentication. You can use SAML authentication for Service Processor Infrastructure (SPI), ONTAP APIs, and System Manager.

- Application Aware Data Management
 Application aware data management simplifies storage setup and enables you to serve data in minutes for key applications by providing inputs relevant to the application.

- Modified GUI and navigation
 The graphical user interface (GUI) has been revamped to provide users with a more intuitive experience.

- Support for breaking protection relationships between ONTAP and SolidFire systems
 Beginning with ONTAP 9.3, you can use System Manager to break SnapMirror relationships between ONTAP systems and SolidFire storage systems.

- Support for simplified cluster peering and SVM peering
 System Manager offers enhancements that simplify how you configure peer relationships between clusters and between SVMs.

- Support for provisioning an SVM by using a preconfigured template
 Beginning with ONTAP 9.3, you can create and provision an SVM by using a preconfigured template.

- Enhanced cluster dashboard
 The cluster dashboard has been enhanced and made responsive for handheld devices to view different information.
Setting up your cluster environment

You can create a cluster by using System Manager or the command-line interface (CLI). To create a cluster by using System Manager, you must set up the node management IP address on any node in the cluster network. If you have created a cluster by using the CLI, you can configure the cluster by using System Manager.

Setting up the cluster by using ONTAP System Manager

Beginning with ONTAP 9.1, you can use ONTAP System Manager to set up a cluster by creating a cluster, setting up the node management network and cluster management network, and then setting up event notifications.

Before you begin

- You must have configured the node management IP addresses for at least one node.
- Nodes must be in the default mode of HA.
- Nodes must be running ONTAP 9.1 or later.
- Nodes must be of the same version.
• All of the nodes must be healthy, and cabling for the nodes must be set up.
• Cabling and connectivity must be in place for your cluster configuration.
• You must have sufficient cluster management, node management, Service Processor IP addresses, and gateway and netmask details.
• If the cluster interface is present on a port, then that port must be present in the cluster IPspace.

About this task
To create a cluster, you have to log in through the console, and configure the node management IP address on any node in the cluster network. After you have configured the node management IP address on a node, you can add other nodes and create a cluster by using ONTAP System Manager.

The cluster setup operation is not supported on MetroCluster configurations for ONTAP software.

You can set up the cluster by using a template file or by manually entering the values in the cluster setup wizard.
Choices

- Setting up a cluster by using the template file on page 26
- Setting up the cluster manually on page 28

Setting up a cluster by using the template file

You can use the template file that is provided in System Manager to set up a cluster by creating a cluster, setting up the node management and cluster management networks, and then setting up event
notifications. (Starting with ONTAP System Manager 9.6, AutoSupport is not supported.) You can
download the template file in .xlsx format or .csv format.

About this task
• If the cluster supports ONTAP 9.1 or later, you can add only storage systems that are running
ONTAP 9.1 or later.
• All fields are not automatically populated when you upload the file.
 You must manually enter the value of some fields such as password and cluster management port.

Steps
1. Open the web browser, and then enter the node management IP address that you have configured:
 https://node-management-IP
 • If you have set up the credentials for the cluster, the Login page is displayed.
 You must enter the credentials to log in.
 • If you have not set up the credentials for the cluster, the Guided Setup window is displayed.
2. Download the .xlsx template file or the .csv template file.
3. Provide all the required values in the template file, and save the file.
 Note:
 • Do not edit any other column in the template other than Value.
 • Do not change the version of the template file.
4. Click Browse, and select the updated template file.
 • You can upload the template file only in the .csv format. If you have downloaded the
 template file in .xlsx format, you must save the file as a .csv file, and then upload the file.
 • You must ensure that the encoding used for this file is UTF8. If not, the values will not be read.
5. Click Upload.
 The details that you have provided in the template file are used to complete the cluster setup
 process.
6. Click the Guided Setup icon to view the details for the cluster.
7. Verify the details in the Cluster window, and then click Submit and Continue.
 You can edit the cluster details, if required.
 If you log in to the Cluster window for the second time, the Feature Licenses field is enabled by
default. You can add new feature license keys or retain the pre-populated license keys.
8. Verify the details in the Network window, and then click Submit and Continue.
 You can edit the network details, if required.
9. Verify the details in the Support window, and then click Submit and Continue.
 You can edit the support details, if required.
10. Verify the details in the Storage window, and then create aggregates or exit the cluster setup:
If you want to... | Then...
---|---
Exit cluster setup without provisioning storage and creating an SVM | Click **Skip this step**.

Provision storage using aggregates and create an SVM | Click **Submit and Continue**.

You can edit the support details, if required.

11. Verify the details in the **Create Storage Virtual Machine (SVM)** window, and then click **Submit and Continue**.

You can edit the SVM name, select a different data protocol, and modify the Network Interface and Adapter Details, if required.

12. If you have clicked **Skip this step** on the **Storage** window, view the details on the **Summary** window, and then click **Manage your Cluster** to launch System Manager.

13. If you have clicked **Submit and Continue** on the **Storage** window, verify the details in the SVM window, and then click **Submit and Continue**.

You can edit the SVM details, if required.

14. Verify all the details in the **Summary** window, and then click **Provision an Application** to provision storage for applications, or click **Manage your Cluster** to complete the cluster setup process and launch System Manager, or click **Export Configuration** to download the configuration file.

Related information

NetApp Knowledgebase Answer 1073985: System Manager Cluster Guided Setup Templates

Setting up the cluster manually

You can use System Manager to manually setup the cluster by creating a cluster, setting up the node management and cluster management networks, and setting up event notifications.

Creating a cluster

You can use ONTAP System Manager to create and set up a cluster in your data center.

About this task

If the cluster supports ONTAP 9.1 or later, you can add only those storage systems that are running ONTAP 9.1 or later.

Steps

1. Open the web browser, and then enter the node management IP address that you have configured: `https://node-management-IP`

 - If you have set up the credentials for the cluster, the Login page is displayed. You must enter the credentials to log in.
 - If you have not set up the credentials for the cluster, the Guided Setup window is displayed. Click the **Guided Setup** icon to set up a cluster.

2. In the **Cluster** page, enter a name for the cluster.

 Note: If all the nodes are not discovered, click **Refresh**.
The nodes in that cluster network are displayed in the Nodes field.

3. Optional: If desired, update the node names in the **Nodes** field.

4. Enter the password for the cluster.

5. Optional: Enter the feature license keys.

6. Click **Submit**.

After you finish

Enter the network details in the Network page to continue with the cluster setup.

Related references

- *Licenses window* on page 104
- *Configuration Updates window* on page 91

Setting up a network

By setting up a network, you can manage your cluster, nodes, and Service Processors. You can also set up DNS and NTP details by using the network window.

Before you begin

You must have set up the cluster.

About this task

- Only those nodes that are up and running are listed for cluster creation.

 You can create LIFs for those nodes.

- You can disable IP address range and enter individual IP addresses for cluster management, node management, and Service Processor management networks.

Setting up a network when an IP address range is enabled

You can set up a network by enabling an IP address range. The IP address range enables you to enter IP addresses that are in the same netmask range or in the different netmask range.

Steps

1. Enter a range of IP addresses in the **IP Address Range** field, and then click **Apply**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>You have a range of IP addresses in the same netmask</td>
<td>Enter the IP address range, and then click Apply. IP addresses are applied to cluster management, node management, and Service Processor management networks sequentially.</td>
</tr>
<tr>
<td>You have a range of IP addresses in different netmasks</td>
<td>Enter each IP address range on a separate line, and then click Apply. The first IP address applied to cluster management and other IP addresses are applied to node management and Service Processor management networks sequentially.</td>
</tr>
</tbody>
</table>

Note: After entering the IP address range for cluster management, node management, and Service Processor management, you must not manually modify the IP address values in these fields. You must ensure that all the IP addresses are IPv4 addresses.

2. Enter the netmask and gateway details.
3. Select the port for cluster management in the **Port** field.

4. If the **Port** field in the node management is not populated with **e0M**, enter the port details.

 Note: By default, the Port field displays e0M.

5. For Service Processor management, if you are overriding the default values, ensure that you have entered the mandatory gateway details.

6. If you have enabled the **DNS Details** field, enter the DNS server details.

7. If you have enabled the **NTP Details** field, enter the NTP server details.

 Note: Providing alternative NTP server details is optional.

8. Click **Submit**.

After you finish

Enter event notifications in the Support page to continue with the cluster setup.

Related information

- NetApp Knowledgebase Answer 1001063: What is a Service Processor and how do I use it?
- NetApp Knowledgebase Answer 1030530: How to configure and troubleshoot NTP on clustered Data ONTAP 8.2 and later using CLI
- ONTAP 9 Documentation Center

Setting up a network when an IP address range is disabled

You can set up a network by disabling an IP address range and entering individual IP addresses for cluster management, node management, and service provider networks.

About this task

In the Networks page, if the **IP Address Range** is disabled, enter individual IP addresses for cluster management, node management, and service processor networks.

Steps

1. Enter the cluster management IP address in the **Cluster Management IP Address** field.

2. Enter the netmask details for cluster management.

3. Optional: Enter the gateway details for cluster management.

4. Select the port for cluster management in the **Port** field.

5. If you want to provide netmask and gateway details to manage your nodes, clear the **Retain Netmask and Gateway configuration of the Cluster Management** check box, and then enter the netmask and gateway details.

6. Enter the node management IP addresses in the **Node Management** field.

7. If the **Port** field in the node management is not populated with **e0M**, enter the port details.

 Note: By default, the Port field displays e0M.

8. Enter the Service Processor management netmask and gateway details.

9. Enter the Service Processor IP management addresses in the **Service Processor Management** field.
10. If you have enabled the **DNS Details** field, enter the DNS server details.

11. If you have enabled the **NTP Details** field, enter the NTP server details.

 Note: Providing alternative NTP server details is optional.

12. Click **Submit**.

After you finish

Enter event notifications in the Support page to continue with the cluster setup.

Related references

- *Network window* on page 142
- *Configuration Updates window* on page 91
- *Date and Time window* on page 123
- *Service Processors window* on page 94

Related information

- *NetApp Knowledgebase Answer 1001063: What is a Service Processor and how do I use it?*
- *NetApp Knowledgebase Answer 1030530: How to configure and troubleshoot NTP on clustered Data ONTAP 8.2 and later using CLI*
- *ONTAP 9 Documentation Center*

Setting up a support page

Setting up the support page completes the cluster setup, and involves setting up event notifications, and for single-node clusters, configuring system backup.

Before you begin

You must have set up the cluster and network.

Steps

1. Set up the event notifications by using the mailhost, or SNMP trap host, or Syslog server.

 Note: You must set up at least one event notification system.

2. If you have a single-node cluster, configure a system backup on an FTP server or on an HTTP server.

 Note: System backup is applicable only for single-node clusters.

3. Click **Submit and continue**.

After you finish

View the storage recommendations and create SVMs to continue with the cluster setup.

Reviewing storage recommendations

Using the Storage window, you can review the storage recommendations that are provided for creating aggregates.

Before you begin

You must have set up the cluster, network, and the support details.
About this task
You can create data aggregates per the storage recommendations or you can skip this step and create data aggregates at a later time using System Manager.

Choices
• To create data aggregates as per the storage recommendations, click Submit and Continue.
• To create data aggregates at a later time using System Manager, click Skip this step.

After you finish
If you opted to create aggregates per the storage recommendations, you must create a storage virtual machine (SVM) to continue with the cluster setup.

Creating an SVM
You can use the Storage Virtual Machine (SVM) window to create fully configured SVMs. The SVMs serve data after storage objects are created on these SVMs.

Before you begin
• You must have created an aggregate and the aggregate must be online.
• You must have ensured that the aggregate has sufficient space for the SVM root volume.

Steps
1. Enter a name for the SVM.
2. Select data protocols for the SVM:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Enable CIFS protocol by configuring the CIFS server using an Active Directory | a. Select the Active Directory box.
b. Enter the Active Directory administrator name.
c. Enter the Active Directory administrator password.
d. Enter a name for the CIFS server.
e. Enter a name for the Active Directory domain.
f. Depending on your requirements, select the One data LIF on this SVM or One data LIF per node on this SVM box.
g. Provide data LIF details such as IP address, netmask, gateway, and port.
h. Provide DNS details. |
| Enable CIFS protocol by configuring the CIFS server using a workgroup | a. Select the Workgroup box.
b. Enter a name for the workgroup.
c. Enter a name for the CIFS server.
d. Depending on your requirements, select the One data LIF on this SVM or One data LIF per node on this SVM check box.
e. Provide data LIF details such as IP address, netmask, gateway, and port. |
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Enable NFS protocol | a. Select the NFS box.
b. Depending on your requirements, select the **One data LIF on this SVM** or **One data LIF per node on this SVM** check box.
c. Provide data LIF details such as IP address, netmask, gateway, and port. |
| Enable iSCSI protocol | a. Select the iSCSI box.
b. Provide data LIF details such as IP address, netmask, gateway, and port. |
| Enable FC/FCoE protocol | a. Select the FC/FCoE box.
b. Select the FC/FCoE ports for FC or FCoE protocols.
 Note: Each node must have at least one correctly configured port for each protocol (FC and FCoE). |
| Enable NVMe protocol | a. Select the NVMe box.
b. Select the NVMe ports for NVMe protocols.
 Note: At least one NVMe capable adapter must be available in one of the nodes to configure NVMe.
 Also, starting with ONTAP 9.5, at least one NVMe LIF must be configured for each node of a HA pair associated with the SVM.
 You can create a maximum of two NVMe LIFs for each node in the pair. |

3. Optional: Click the **Advanced Options** icon and provide details to configure advanced options such as the default language, security style, CIFS server details, and NFS details.

4. Click **Submit and Continue** to create the SVM.

After you finish

If you have clicked **Submit and Continue**, you must verify the details that you have provided in the Summary window, and then click **Manage your Cluster** to launch System Manager, or click **Provision an Application** to provision storage applications, or click **Export Configuration** to download the configuration file.

Accessing a cluster by using the ONTAP System Manager browser-based graphic interface

If you prefer to use a graphic interface instead of the command-line interface for accessing and managing a cluster, you can do so by using ONTAP System Manager, which is included with ONTAP as a web service, is enabled by default, and is accessible by using a browser.

Before you begin

- You must have a cluster user account that is configured with the **admin** role and the **http**.
 ontapi, and **console** application types.
- You must have enabled cookies and site data in the browser.
About this task

You can use a cluster management LIF or node management LIF to access ONTAP System Manager. For uninterrupted access to ONTAP System Manager, you should use a cluster management LIF.

Steps

1. Point the web browser to the IP address of the cluster management LIF:
 - If you are using IPv4: https://cluster-mgmt-LIF
 - If you are using IPv6: https://[cluster-mgmt-LIF]

 Only HTTPS is supported for browser access of ONTAP System Manager.

 If the cluster uses a self-signed digital certificate, the browser might display a warning indicating that the certificate is not trusted. You can either acknowledge the risk to continue the access or install a Certificate Authority (CA) signed digital certificate on the cluster for server authentication.

2. Optional: If you have configured an access banner by using the CLI, then read the message that is displayed in the Warning dialog box, and choose the required option to proceed.

 This option is not supported on systems on which Security Assertion Markup Language (SAML) authentication is enabled.
 - If you do not want to continue, click Cancel, and close the browser.
 - If you want to continue, click OK to navigate to the ONTAP System Manager login page.

3. Log in to ONTAP System Manager by using your cluster administrator credentials.

Configuring System Manager options

You can enable logging and specify the inactivity timeout value for System Manager.

About this task

You can configure the options from the System Manager login window. However, you must log in to the application to specify the inactivity timeout value.

Steps

1. Click 🌟.

2. In the Setup pane, click General.

3. Specify a log level.

4. Specify the inactivity timeout value in minutes.

 Note: This option is not available if you have enabled Security Assertion Markup Language (SAML) authentication.

5. Click OK.
Viewing ONTAP System Manager log files

If you encounter any issues when using System Manager, you can send the log files to technical support to help troubleshoot the issues. The System Manager log files are located in the mlog directory along with the ONTAP log files.

Steps

1. Identify the node that hosts the cluster management LIF.
2. Enter the following URL in a web browser:
 https://cluster-mgmt-LIF/spi
 cluster-mgmt-LIF is the IP address of the cluster management LIF.
3. Type your cluster administrator credentials, and then click OK.
4. In the Data ONTAP - Root Volume File Access window, click the logs link for the node that hosts the cluster management LIF.
5. Navigate to the mlog directory to access the System Manager log files.
 You might require the following log files, depending on the type of issue that you encountered:
 - `sysmgr.log`
 This file contains the latest logs for System Manager.
 - `mgwd.log`
 - `php.log`
 - `apache_access.log`
 - `messages.log`

How system logging works

System logging is an essential tool for application troubleshooting. You should enable system logging so that if there is a problem with an application, the problem can be located. You can enable System Manager logging at runtime without modifying the application binary.

Log output can be voluminous and therefore can become difficult to manage. System Manager enables you to refine the logging output by selecting which type of log statements are output. By default, system logging is set to INFO. You can choose one of the following log levels:

- OFF
- ERROR
- WARN
- INFO
- DEBUG

These levels function hierarchically. A log level set to OFF indicates no logging of messages.
Configuring a cluster by using System Manager

Certain prerequisites must be met before you configure a cluster using System Manager.

- You must have created a cluster.
- You must have not configured the cluster.

Accessing a cluster by using the ONTAP System Manager browser-based graphic interface

If you prefer to use a graphic interface instead of the command-line interface for accessing and managing a cluster, you can do so by using ONTAP System Manager, which is included with ONTAP as a web service, is enabled by default, and is accessible by using a browser.

Before you begin

- You must have a cluster user account that is configured with the **admin** role and the **http**, **ontapi**, and **console** application types.
- You must have enabled cookies and site data in the browser.

About this task

You can use a cluster management LIF or node management LIF to access ONTAP System Manager. For uninterrupted access to ONTAP System Manager, you should use a cluster management LIF.

Steps

1. Point the web browser to the IP address of the cluster management LIF:
 - If you are using IPv4: https://cluster-mgmt-LIF
 - If you are using IPv6: https://[cluster-mgmt-LIF]

 Only HTTPS is supported for browser access of ONTAP System Manager.

 If the cluster uses a self-signed digital certificate, the browser might display a warning indicating that the certificate is not trusted. You can either acknowledge the risk to continue the access or install a Certificate Authority (CA) signed digital certificate on the cluster for server authentication.

2. Optional: If you have configured an access banner by using the CLI, then read the message that is displayed in the **Warning** dialog box, and choose the required option to proceed.

 This option is not supported on systems on which Security Assertion Markup Language (SAML) authentication is enabled.
 - If you do not want to continue, click **Cancel**, and close the browser.
 - If you want to continue, click **OK** to navigate to the ONTAP System Manager login page.

3. Log in to ONTAP System Manager by using your cluster administrator credentials.

Related tasks

- [Enabling SAML authentication](#) on page 70
- [Disabling SAML authentication](#) on page 71
Setting up the cluster

Setting up the cluster involves gathering the configuration information, creating cluster-management and node-management interfaces, adding licenses, setting up the cluster time, and monitoring HA pairs.

Updating the cluster name

You can use System Manager to modify the name of a cluster when required.

Steps
1. Click Configuration > Cluster > Configuration Updates.
2. In the Cluster Details pane, click Update Cluster Name.
3. In the Update Cluster Name dialog box, specify a new name for the cluster, and then click Submit.

Changing the cluster password

You can use System Manager to reset the password of a cluster.

Steps
1. Click Configuration > Cluster > Configuration Updates.
2. In the Cluster Details pane, click Change Password.
3. In the Change Password dialog box, specify a new password, confirm the new password, and then click Change.

Editing DNS configurations

You can use System Manager to add host information to centrally manage DNS configurations. You can modify the DNS details when you want to change the domain names or IP addresses.

Steps
1. Click Configuration > Cluster > Configuration Updates.
2. In the Cluster Details pane, click Edit DNS Configuration.
3. In the DNS Domains area, add or modify the DNS domain names.
4. In the Name Servers area, add or modify the IP addresses.
5. Click OK.

Creating a cluster management logical interface

You can use System Manager to create a cluster management logical interface (LIF) to provide a single management interface for a cluster. You can use this LIF to manage all of the activities of the cluster.

Steps
1. Click Configuration > Cluster > Configuration Updates.
2. In the Cluster Details pane, click Create Cluster-management LIF.
3. In the Create Cluster-Management LIF dialog box, specify a name for the cluster management LIF.

4. Assign an IP address to the cluster management LIF:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Specify the IP address by using a subnet | a. Select Using a subnet.
 b. In the Add Details dialog box, select the subnet from which the IP address should be assigned.
 For an intercluster LIF, only the subnets that are associated with the selected IPspace are displayed.
 c. If you want to assign a specific IP address to the LIF, select Use a specific IP address, and then type the IP address.
 The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
 d. Click OK. |

| Specify the IP address manually without using a subnet | a. Select Without a subnet.
 b. In the Add Details dialog box, perform the following steps:
 i. Specify the IP address and the network mask or prefix.
 ii. Optional: Specify the gateway.
 iii. If you do not want to use the default value for the Destination field, specify a new destination value.
 If you do not specify a value, the Destination field is populated with the default value based on the family of the IP address.
 If a route does not exist, a new route is automatically created based on the gateway and destination.
 c. Click OK. |

5. Select the required ports from the Port details area.

6. Click Create.

Editing the node name

You can use System Manager to modify the name of a node when required.

Steps

1. Click Configuration > Cluster > Configuration Updates.
2. In the Nodes tab, select the node that you want to rename, and then click Edit Node Name.
3. In the Edit Node Name dialog box, type the new name for the node, and then click Submit.
Creating a node management logical interface

You can use System Manager to create a dedicated node management logical interface (LIF) for managing a particular node in a cluster. You can use this LIF to manage the system maintenance activities of the node.

Steps

1. Click **Configuration > Cluster > Configuration Updates**.
2. In the **Nodes** tab, select the node for which you want to create a node management LIF, and then click **Create Node-Management LIF**.
3. In the **Create Node-Management LIF** dialog box, specify a name for the node management LIF.
4. Assign the IP address to the node management LIF:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Specify the IP address by using a subnet | a. Select **Using a subnet**.
 b. In the Add Details dialog box, select the subnet from which the IP address should be assigned.
 For an intercluster LIF, only the subnets that are associated with the selected IPspace are displayed.
 c. If you want to assign a specific IP address to the LIF, select **Use a specific IP address**, and then type the IP address.
 The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
 d. Click **OK**. |
| Specify the IP address manually without using a subnet | a. Select **Without a subnet**.
 b. In the Add Details dialog box, perform the following steps:
 i. Specify the IP address and the network mask or prefix.
 ii. Optional: Specify the gateway.
 iii. If you do not want to use the default value for the Destination field, specify a new destination value.
 If you do not specify a value, the Destination field is populated with the default value based on the family of the IP address.
 If a route does not exist, a new route is automatically created based on the gateway and destination.
 c. Click **OK**. |
5. Select the required ports from the **Ports details** area.
6. Click **Create**.

After you finish

If you want to delete an existing node management LIF, you must use the command-line interface (CLI).
Editing AutoSupport settings

You can use System Manager to modify your AutoSupport settings to specify an email address from which email notifications are sent and to add multiple email host names.

Steps

1. Click 👉 AutoSupport.
2. Select the node for which you want to modify AutoSupport settings, and then click Edit.
3. In the Email Recipient tab, type the email address from which email notifications are sent, specify the email recipients and the message content for each email recipient, and then add the mail hosts.

 You can add up to five email addresses for each host.
4. In the Others tab, select a transport protocol for delivering the email messages, and then specify the HTTP or HTTPS proxy server details.
5. Click OK.

Adding licenses

If your storage system software was installed at the factory, System Manager automatically adds the software to its list of licenses. If the software was not installed at the factory or if you want to add additional software licenses, you can add the software license by using System Manager.

Before you begin

The software license code for the specific ONTAP service must be available.

About this task

- When you add a new license in a MetroCluster configuration, it is a best practice to add the license on the surviving site cluster as well.

- You cannot use System Manager to add the Cloud Volumes ONTAP license.
 The Cloud Volumes ONTAP license is not listed in the license page. System Manager does not raise any alert about the entitlement risk status of the Cloud Volumes ONTAP license.

- You can upload only capacity-based licenses.
 The capacity-based licenses are of “json” type.

Steps

1. Click Configuration > Cluster > Licenses.
2. Click Add.
3. In the Add License dialog box, perform the appropriate steps:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
</table>
| Add a license for a specific ONTAP service | a. Enter the software license key.
You can add multiple licenses by entering the software license keys separated by commas.

b. Click Add. |
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a capacity based license</td>
<td>a. Click Browse, and then select the capacity based license file.</td>
</tr>
<tr>
<td></td>
<td>b. Click Add.</td>
</tr>
<tr>
<td>Add a license for a specific ONTAP service and add a</td>
<td>a. Enter the software license key. You can add multiple licenses by entering the software</td>
</tr>
<tr>
<td>capacity-based license</td>
<td>license keys separated by commas.</td>
</tr>
<tr>
<td></td>
<td>b. Click Browse, and then select the capacity based license file.</td>
</tr>
<tr>
<td></td>
<td>c. Click Add.</td>
</tr>
</tbody>
</table>

The new license is added.

The Add License Status dialog box displays the list of licenses that were added successfully. The dialog box also displays the license keys of the licenses that were not added and the reason why the licenses were not added.

4. Click Close.

Result

The software license is added to your storage system and is displayed in the list of licenses in the Licenses window.

Related references

Licenses window on page 104

Setting the time zone for a cluster

You can manually set or modify the time zone for a cluster by using the Edit Date and Time dialog box in System Manager. You can also add time servers to the cluster.

About this task

Network Time Protocol (NTP) is always enabled on a cluster. You can disable NTP by contacting technical support. However, disabling NTP is not recommended.

You can add the IP addresses of the NTP server at your site. This server is used to synchronize the time across the cluster.

You can specify either an IPv4 address or an IPv6 address for the time server.

Steps

1. Click 🕒.
2. In the Setup panel, click Date and Time.
3. Click Edit.
4. In the Edit Date and Time dialog box, select the time zone.
5. Specify the IP address of the time servers, and then click Add.
6. Click OK.
7. Verify the changes that you made to the time settings in the Date and Time window.
Monitoring HA pairs

You can use System Manager to monitor the node status and interconnect status of all of the high-availability (HA) pairs in a cluster. You can also verify whether takeover or giveback is enabled or has occurred, and view the reasons why takeover or giveback is not currently possible.

Steps

1. Click Configuration > Cluster > High Availability.
2. In the High Availability window, click the HA pair image to view details such as the cluster HA status, node status, interconnect status, and hardware model of each node.
 If the cluster management LIF or the data LIFs of a node are not in their home node, a warning message is displayed indicating that the node has some LIFs that are not in the home node.

Related references

High Availability window on page 101

Setting up the network

Setting up the network consists of creating IPspaces, a broadcast domain, and subnets.

Creating IPspaces

You can create an IPspace by using System Manager to configure a single ONTAP cluster for client access from more than one administratively separate network domain, even when the clients use the same IP address subnet range. This enables you to separate client traffic for privacy and security.

About this task

All of the IPspace names must be unique within a cluster and must not consist of names that are reserved by the system, such as “local” or “localhost.”

Steps

1. Click the Network tab.
2. In the IPspaces tab, click Create.
3. In the Create IPspaces dialog box, specify a name for the IPspace that you want to create.
4. Click Create.

Creating broadcast domains

You can create a broadcast domain by using System Manager to provide a logical division of a computer network. In a broadcast domain, all associated nodes can be reached through broadcast at the datalink layer.

Steps

1. Click the Network tab.
2. In the Broadcast Domains tab, click Create.

3. In the Create Broadcast Domain dialog box, specify the name, MTU size, IPspace, and ports for the broadcast domain that you want to create.

4. Click Create.

Related references

Network window on page 142

Creating subnets

You can create a subnet by using System Manager to provide a logical subdivision of an IP network to pre-allocate the IP addresses. A subnet enables you to create interfaces more easily by specifying a subnet instead of an IP address and network mask values for each new interface.

Before you begin

You must have created the broadcast domain on which the subnet is used.

About this task

If you specify a gateway when creating a subnet, a default route to the gateway is added automatically to the SVM when a LIF is created using that subnet.

Steps

1. Click the Network tab.

2. In the Subnets tab, click Create.

3. In the Create Subnet dialog box, specify subnet details, such as the name, subnet IP address or subnet mask, range of IP addresses, gateway address, and broadcast domain.

You can specify the IP addresses as a range, as comma-separated multiple addresses, or as a mix of both.

4. Click Create.

Related references

Network window on page 142

Setting up physical storage

Setting up the physical storage consists of assigning disks to nodes, zeroing the spare disks, and creating aggregates.

Assigning disks to nodes

You can use System Manager to assign ownership of an unassigned disk to a specific node to increase the capacity of an aggregate or storage pool.

About this task

• You can assign disks if the following conditions are true:

 ◦ The container type of the selected disks must be “unassigned”.
 ◦ The disks must be connected to nodes in an HA pair.
The disks must be visible to the node.

- For MetroCluster configurations, you cannot use System Manager to assign disks. You must use the command-line interface instead.

Steps

1. Click **Storage > Aggregates & Disks > Disks**.
2. In the **Disks** window, select the **Inventory** tab.
3. Select the disks that you want to assign, and then click **Assign**.
4. In the **Assign Disks** dialog box, select the node to which you want to assign the disks.
5. Click **Assign**.

Zeroing spare disks

You can use System Manager to erase all the data and to format the spare disks by writing zeros to the disk. These disks can then be used in new aggregates.

About this task

When you zero the spare disks, all the spares in the cluster, including array LUNs, are zeroed. You can zero the spare disks for a specific node or for the entire cluster.

Steps

1. Click **Storage > Aggregates & Disks > Disks**.
2. In the **Disks** window, select the **Inventory** tab.
3. Click **Zero Spares**.
4. In the **Zero Spares** dialog box, select a node or “All nodes” from which you want to zero the disks.
5. Select the **Zero all non-zeroed spares** check box to confirm the zeroing operation.
6. Click **Zero Spares**.

Related concepts

- [Storage recommendations for creating aggregates](#) on page 162

Provisioning storage through aggregates

You can create an aggregate based on storage recommendations or manually depending on your requirement. You can create Flash Pool aggregates, SnapLock aggregates, and a FabricPool-enabled aggregates to provide storage for one or more volumes by using System Manager.

Before you begin

You must have enough spare disks to create an aggregate.

About this task

You cannot perform the following actions by using System Manager:

- Combine disks of different sizes even if there are enough spare disks of different sizes.
 You can initially create an aggregate with disks of the same size and then add disks of a different size later.
• Combine disks with different checksum types.
 You can initially create an aggregate with a single checksum type and add storage of a different
 checksum type later.

Choices
• Provisioning storage by creating an aggregate based on storage recommendations on page 45
• Provisioning storage by creating an aggregate manually on page 45
• Provisioning storage by creating a Flash Pool aggregate manually on page 46
• Provisioning storage by creating a SnapLock aggregate manually on page 48
• Provisioning storage by creating a FabricPool-enabled aggregate manually on page 49

Related references
 Aggregates window on page 171
 Storage Tiers window on page 162

Provisioning storage by creating an aggregate based on storage recommendations
You can use System Manager to create an aggregate based on storage recommendations. System
Manager analyzes the configuration of your storage system and provides storage recommendations
such as the number of aggregates that will be created, the available nodes, and the available spare
disks.

About this task
• You cannot create an aggregate based on storage recommendations in Cloud Volumes ONTAP,
 ONTAP Select, and MetroCluster configurations.
• Errors, if any, are displayed on the screen.
 You can fix these errors and then create an aggregate based on the storage recommendations, or
 you can create an aggregate manually.

Steps
1. Create an aggregate by using one of the following methods:
 • Click Applications & Tiers > Storage Tiers > Add Aggregate.
 • Click Storage > Aggregate & Disks > Aggregates > Create.
2. Review the storage recommendations, and then click Submit.
 The Information dialog box displays the status of the aggregates.
3. Optional: Click Run in Background to navigate to the Aggregates window.
4. Click Refresh to view the aggregates that are created.

Provisioning storage by creating an aggregate manually
You can manually create an aggregate that consists of only HDDs or only SSDs by using System
Manager.

Before you begin
All of the disks must be of the same size.
About this task

- If you are creating an aggregate on a four-node cluster in ONTAP Select, the mirrored aggregate option is selected by default.
- Starting with ONTAP 9.0, you can create aggregates with disk size equal to or larger than 10 TB.
- If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only available RAID type.

Steps

1. Create an aggregate by using one of the following methods:
 - Click Applications & Tiers > Storage Tiers > Add Aggregate.
 - Click Storage > Aggregate & Disks > Aggregates > Create.

2. Enable the Manually Create Aggregate option to create an aggregate.

3. To create an aggregate:
 a. Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.
 The minimum hot spare rule is applied to the disk group that has the largest disk size.
 b. Optional: Modify the RAID configuration of the aggregate:
 i. Click Change.
 ii. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.
 Shared disks support two RAID types: RAID DP and RAID-TEC.
 iii. Click Save.
 c. If you want to mirror the aggregate, select the Mirror this aggregate check box.
 For MetroCluster configurations, creating unmirrored aggregates is restricted. Therefore, the mirroring option is enabled by default for MetroCluster configurations.

4. Click Create.

Result

The aggregate is created with the specified configuration, and is added to the list of aggregates in the Aggregates window.

Provisioning storage by creating a Flash Pool aggregate manually

You can use System Manager to create a Flash Pool aggregate manually, or to convert an existing HDD aggregate to a Flash Pool aggregate by adding SSDs. When you create a new HDD aggregate, you can provision an SSD cache to it and create a Flash Pool aggregate.

Before you begin

- You must be aware of the platform-specific best practices and workload-specific best practices for the Flash Pool aggregate SSD tier size and configuration.
- All of the HDDs must be in the zeroed state.
- If you want to add SSDs to the aggregate, all of the existing SSDs and dedicated SSDs must be of the same size.
About this task

• You cannot use partitioned SSDs while creating a Flash Pool aggregate.
• You cannot mirror the aggregates if the cache source is storage pools.
• If you are creating an aggregate on a four-node cluster in ONTAP Select, the mirrored aggregate option is selected by default.
• Starting with ONTAP 9.0, you can create aggregates with disk size equal to or larger than 10 TB.
• If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only option available for RAID type.

Steps

1. Create an aggregate by using one of the following methods:
 • Click Applications & Tiers > Storage Tiers > Add Aggregate.
 • Click Storage > Aggregate & Disks > Aggregates > Create.

2. Enable the Manually Create Aggregate option to create an aggregate.

3. In the Create Aggregate window, specify the name of the aggregate, the disk type, and the number of disks or partitions to include for the HDDs in the aggregate.

4. If you want to mirror the aggregate, select the Mirror this aggregate check box.
 For MetroCluster configurations, creating unmirrored aggregates is restricted. Therefore, the mirroring option is enabled by default for MetroCluster configurations.

5. Click Use Flash Pool Cache with this aggregate.

6. Specify the cache source:

<table>
<thead>
<tr>
<th>If you want to select the cache source as...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage pools</td>
<td>a.</td>
</tr>
<tr>
<td></td>
<td>b.</td>
</tr>
<tr>
<td></td>
<td>c.</td>
</tr>
<tr>
<td>Dedicated SSDs</td>
<td>a.</td>
</tr>
<tr>
<td></td>
<td>b.</td>
</tr>
<tr>
<td></td>
<td>c.</td>
</tr>
<tr>
<td></td>
<td>i.</td>
</tr>
<tr>
<td></td>
<td>ii.</td>
</tr>
<tr>
<td></td>
<td>iii.</td>
</tr>
</tbody>
</table>

7. Click Create.
Result
The Flash Pool aggregate is created with the specified configuration, and is added to the list of aggregates in the Aggregates window.

Related concepts
How storage pool works on page 177

Related information

Provisioning storage by creating a SnapLock aggregate manually
You can use System Manager to create a SnapLock Compliance aggregate or a SnapLock Enterprise aggregate manually. You can create SnapLock volumes on these aggregates, which provide “write once, read many” (WORM) capabilities.

Before you begin
The SnapLock license must have been added.

About this task
• In MetroCluster configurations, you can create only SnapLock Enterprise aggregates.
• For array LUNs, only SnapLock Enterprise aggregates are supported.
• Starting with ONTAP 9.0, you can create aggregates with disk size equal to or larger than 10 TB.
• If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only option available for RAID type.
• Starting with ONTAP 9.1, you can create a SnapLock aggregate on an AFF platform.

Steps
1. Create a SnapLock aggregate by using one of the following methods:
 • Click Applications & Tiers > Storage Tiers > Add Aggregate.
 • Click Storage > Aggregate & Disks > Aggregates > Create.
2. Enable the Manually Create Aggregate option to create an aggregate.
3. To create a SnapLock aggregate:
 a. Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.
 You cannot change the name of a SnapLock Compliance aggregate after you create the aggregate.
 The minimum hot spare rule is applied to the disk group that has the largest disk size.
 b. Optional: Modify the RAID configuration of the aggregate:
 i. Click Change.
 ii. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.
 Shared disks support two RAID types: RAID-DP and RAID-TEC.
iii. Click Save.

c. Specify the SnapLock type.

d. If you have not initialized the system ComplianceClock, select the Initialize ComplianceClock check box.

This option is not displayed if the ComplianceClock is already initialized on the node.

Note: You must ensure that the current system time is correct. The ComplianceClock is set based on the system clock. Once the ComplianceClock is set, you cannot modify or stop the ComplianceClock.

e. Optional: If you want to mirror the aggregate, select the Mirror this aggregate check box.

For MetroCluster configurations, creating unmirrored aggregates is restricted. Therefore, the mirroring option is enabled by default for MetroCluster configurations.

By default, the mirroring option is disabled for SnapLock Compliance aggregates.

4. Click Create.

Provisioning storage by creating a FabricPool-enabled aggregate manually

You can use System Manager to create a FabricPool-enabled aggregate manually or to convert an existing SSD aggregate to a FabricPool-enabled aggregate by attaching a cloud tier to the SSD aggregate.

Before you begin

• You must have created a cloud tier and attached it to the cluster in which the SSD aggregate resides.

• An on-premises cloud tier must have been created.

• A dedicated network connection must exist between the cloud tier and the aggregate.

About this task

The following object stores can be used as cloud tiers:

• StorageGRID

• Alibaba Cloud (Starting with System Manager 9.6)

• Amazon Web Services (AWS) Simple Storage Service (S3)

• Amazon Web Services (AWS) Commercial Cloud Service (C2S)

• Microsoft Azure Blob storage

• IBM Cloud

• Google Cloud

Note:

• Azure Stack, which is an on-premises Azure services, is not supported.

• If you want to use any object store as a cloud tier, other than StorageGRID, you must have the FabricPool capacity license.
Steps

1. Create a FabricPool-enabled aggregate by using one of the following methods:
 - Click Applications & Tiers > Storage Tiers > Add Aggregate.
 - Click Storage > Aggregate & Disks > Aggregates > Create.

2. Enable the Manually Create Aggregate option to create an aggregate.

3. Create a FabricPool-enabled aggregate:
 a. Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.

 Note: Only all flash (all SSD) aggregates support FabricPool-enabled aggregates.

 The minimum hot spare rule is applied to the disk group that has the largest disk size.
 b. Optional: Modify the RAID configuration of the aggregate:
 i. Click Change.
 ii. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.

 Shared disks support two RAID types: RAID-DP and RAID-TEC.
 iii. Click Save.

4. Select the FabricPool checkbox, and then select a cloud tier from the list.

5. Click Create.

Setting up logical storage

Setting up the logical storage consists of creating storage virtual machines (SVMs) and volumes.

Creating SVMs

You can use System Manager to create fully configured storage virtual machines (SVMs) that can serve data immediately. A cluster can have one or more SVMs.

Before you begin

- The cluster must have at least one non-root aggregate in the online state.
- The aggregate must have sufficient space for the SVM root volume.
- You must have synchronized the time across the cluster by configuring and enabling NTP to prevent CIFS creation and authentication failures.
- The protocols that you want to configure on the SVM must be licensed.
- You must have configured the CIFS protocol for secure DDNS to work.

About this task

- While creating SVMs, you can perform the following tasks:
 - Create and fully configure SVMs.
 - Configure the volume type that is allowed on SVMs.
 - Create and configure SVMs with minimal network configuration.
Delegate the administration to SVM administrators.

- To name the SVM, you can use alphanumeric characters and the following special characters: “.” (period), “-” (hyphen), and “_” (underscore). The SVM name should start with an alphabet or “_” (underscore) and must not contain more than 47 characters.

 Note: You should use unique fully qualified domain names (FQDNs) for the SVM name such as vs0.example.com.

- You can establish SnapMirror relationships only between volumes that have the same language settings. The language of the SVM determines the character set that is used to display file names and data for all NAS volumes in the SVM.

- You cannot use a SnapLock aggregate as the root aggregate of SVMs.

Steps

1. Click **Storage > SVMs**.
2. Click **Create**.
3. In the **Storage Virtual Machine (SVM) Setup** window, specify the following details:
 - SVM name
 - IPspace allocated to the SVM
 - Volume type allowed
 - Protocols allowed
 - SVM language
 - Security style of the root volume
 - Root aggregate

 The default language setting for any SVM is C.UTF-8.

 By default, the aggregate with the maximum free space is selected as the container for the root volume of the SVM. Based on the protocols selected, the default security style and the root aggregate are selected.

 The security style is set to NTFS if you select CIFS protocol or a combination of CIFS protocol with the other protocols. The security style is set to UNIX if you select NFS, iSCSI, NVMe, or FC/FCoE, or a combination of these protocols.

 Note: NVMe does not allow the combination of protocols.

 In a MetroCluster configuration, only the aggregates that are contained in the cluster are displayed.

4. Specify the DNS domain names and the name server IP addresses to configure the DNS services.

 The default values are selected from the existing SVM configurations.

5. Optional: When configuring a data LIF to access data using a protocol, specify the target alias, subnets, and the number of LIFs per node.

 You can select the **Review or Modify LIFs configuration (Advanced Settings)** checkbox to modify the number of portsets in the LIF.
You can edit the details of the portset in a particular node by selecting the node from the nodes list in the details area.

6. Optional: Enable host-side applications such as SnapDrive and SnapManager for the SVM administrator by providing the SVM credentials.

7. Optional: For protocols other than NVMe, create a new LIF for SVM management by clicking **Create a new LIF for SVM management**, and then specify the portsets and the IP address with or without a subnet for the new management LIF.

For CIFS and NFS protocols, data LIFs have management access by default. You must create a new management LIF only if required. For iSCSI and FC, a SVM management LIF is required because data protocols and management protocols cannot share the same LIF.

8. Optional: For NVMe protocol, starting with ONTAP 9.5, configure a minimum of one LIF for each node on the second page of the SVM Setup wizard: **Configure NVMe Protocol**.

You must configure at least one LIF for each node in the HA pair. You can also specify two LIFs per node. Click the settings icon to toggle between one or two LIFs configurations.

9. Click **Submit & Continue**.

The SVM is created with the specified configuration.

Result

The SVM that you created is started automatically. The root volume name is automatically generated as **SVM name_root**. By default, the **vsadmin** user account is created and is in the locked state.

After you finish

You must configure at least one protocol on the SVM to allow data access.

Configuring CIFS and NFS protocols on SVMs

You can use System Manager to configure CIFS and NFS protocols on a storage virtual machine (SVM) to provide file-level data access for NAS clients. To enable the CIFS protocol, you must create data LIFs and the CIFS server. To enable the NFS protocol, you can specify the NIS details and the data LIFs.

Before you begin

- The protocols that you want to configure or enable on the SVM must be licensed. If the protocol that you want to configure is not enabled on the SVM, you can use the Edit Storage Virtual Machine window to enable the protocol for the SVM.
- You must have the Active Directory, organizational unit, and administrative account credentials for configuring the CIFS protocol.

About this task

SnapLock aggregates are not considered for automatically creating volumes.

Steps

1. If you have not configured the protocols while creating the SVM, click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Protocols** pane, click the protocol that you want to configure.
4. In the **Data LIF Configuration** section, if you want to retain the same data LIF configuration for both CIFS and NFS, select the **Retain the CIFS data LIF's configuration for NFS client** check box.

If you do not retain the same data LIF configuration for both CIFS and NFS, you must specify the IP address and ports separately for CIFS and NFS.

5. Specify the IP address by choosing one of the following options:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Specify the IP address by using a subnet | a. Select **Using a subnet**.
 b. In the Add Details dialog box, select the subnet from which the IP address must be assigned.
 For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
 c. If you want to assign a specific IP address to the interface, select **Use a specific IP address**, and then type the IP address.
 The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
 d. Click **OK**. |
| Specify the IP address manually without using a subnet | a. Select **Without a subnet**.
 b. In the Add Details dialog box, perform the following steps:
 i. Specify the IP address and the network mask or prefix.
 ii. Optional: Specify the gateway.
 iii. If you do not want to use the default value for the Destination field, specify a new destination value.
 If you do not specify a destination value, the Destination field is populated with the default value based on the family of the IP address.
 If a route does not exist, a new route is automatically created based on the gateway and destination.
 c. Click **OK**. |

6. Specify a port to create a data LIF:

 a. Click **Browse**.

 b. In the **Select Network Port or Adapter** dialog box, select a port.

 c. Click **OK**.

7. Configure the CIFS server by performing the following steps:

 a. Specify the following information to create a CIFS server:
 * CIFS server name
 * Active Directory to associate with the CIFS server
 * Organizational unit (OU) within the Active Directory domain to associate with the CIFS server
 By default, this parameter is set to CN=Computers.
• Credentials of an administrative account that has sufficient privileges to add the CIFS server to the OU

b. Optional: Select **Encrypt Data while accessing all shares of this SVM** to enable SMB 3.0 encryption for all of the shares of the SVM.

c. Provision a volume for CIFS storage when configuring the protocol by specifying the share name, size of the share, and access permissions.

d. Optional: Select **Encrypt Data while accessing this share** to enable SMB 3.0 encryption for a particular share.

8. Optional: Configure NIS services:

 a. Specify the IP addresses of the NIS servers and NIS domain name to configure NIS services on the SVM.

 b. Select the appropriate database type for which you want to add the “nis” name service source.

 c. Provision a volume for NFS storage by specifying the export name, size, and permission.

9. Click **Submit & Continue**.

Result

The CIFS server and NIS domain are configured with the specified configuration, and the data LIFs are created. By default, the data LIFs have management access. You can view the configuration details on the Summary page.

Configuring iSCSI protocol on SVMs

You can configure the iSCSI protocol on a storage virtual machine (SVM) to provide block-level data access by using System Manager. You can create iSCSI LIFs and portsets and then add the LIFs to the portsets. LIFs are created on the most suitable adapters and are assigned to portsets to ensure data path redundancy.

Before you begin

• The iSCSI license must be enabled on the cluster.

 If the iSCSI protocol is not enabled on the SVM, you can use the Edit Storage Virtual Machine window to enable the protocol for the SVM.

• All of the nodes in the cluster must be healthy.

• Each node must have at least two data ports, and the port state must be up.

About this task

• You can configure the iSCSI protocol while creating the SVM or you can do so at a later time.

• SnapLock aggregates are not considered for automatically creating volumes.

Steps

1. If you have not configured the iSCSI protocol while creating the SVM, click **Storage > SVMs**.

2. Select the SVM, and then click **SVM Settings**.

3. In the **Protocols** pane, click **iSCSI**.

4. Optional: In the **Network Access** section, specify an alias for the iSCSI target.
The maximum number of characters for an alias name is 128. If you do not specify a target alias, the SVM name is used as an alias.

5. Specify the number of iSCSI LIFs that can be assigned to a single node.

The minimum number of LIFs per node is one. The maximum number is the minimum of all the ports in the up state across the nodes. If the maximum value is an odd number, the previous even number is considered as the maximum value. You can choose any even number in the minimum and maximum value range.

Example

A 4-node cluster has node1, node2, and node3 with six ports each in the up state, and node4 with seven ports in the up state. The effective maximum value for the cluster is 6.

If the number of LIFs that you want to assign to the node is more than two, you must assign at least one portset to each LIF.

6. Specify the network details, including the subnet details, to create iSCSI LIFs:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the IP address by using a subnet</td>
<td>a. Select Using a subnet.</td>
</tr>
<tr>
<td></td>
<td>b. In the Add Details dialog box, select the subnet from which the IP address must be assigned. For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.</td>
</tr>
<tr>
<td></td>
<td>c. If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address. The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.</td>
</tr>
<tr>
<td></td>
<td>d. Click OK.</td>
</tr>
<tr>
<td>Specify the IP address manually without using a subnet</td>
<td>a. Select Without a subnet.</td>
</tr>
<tr>
<td></td>
<td>b. In the Add Details dialog box, perform the following steps:</td>
</tr>
<tr>
<td></td>
<td>i. Specify the IP address and the network mask or prefix.</td>
</tr>
<tr>
<td></td>
<td>ii. Optional: Specify the gateway.</td>
</tr>
<tr>
<td></td>
<td>iii. If you do not want to use the default value for the Destination field, specify a new destination value. If you do not specify a destination value, the Destination field is populated with the default value based on the family of the IP address. If a route does not exist, a new route is automatically created based on the gateway and destination.</td>
</tr>
<tr>
<td></td>
<td>c. Click OK.</td>
</tr>
</tbody>
</table>

7. Select the broadcast domain.

8. Select the adapter type.

If you have NIC cards configured in your cluster, you should select NIC.

If you have CNS cards configured in your cluster, you should select CNA.

If you have ifgrps configured in your cluster, you should select Interface Group.

Note: The ifgrp port must be added in the broadcast domain.
9. Optional: Provision a LUN for iSCSI storage when configuring the iSCSI protocol by specifying the LUN size, OS type for the LUN, and host initiator details.

10. If you want to verify or modify the configuration of the automatically generated iSCSI LIFs, select **Review or Modify LIFs configuration (Advanced Settings)**.

You can modify only the LIF name and the home port. By default, the portsets are set to the minimum value. You must specify unique entries. If you specify duplicate LIF names, System Manager appends numeric values to the duplicate LIF name.

Based on the selected portset, the LIFs are distributed across the portsets by using a round-robin method to ensure redundancy in case of node failure or port failure.

11. Click **Submit & Continue**.

Result
The iSCSI LIFs and portsets are created with the specified configuration. The LIFs are distributed among the portsets based on the selected portset. The iSCSI service is started if all of the LIFs are successfully created.

If LIF creation fails, you can create the LIFs by using the Network Interfaces window, attach the LIFs to the portsets by using the LUNs window, and then start the iSCSI service by using the iSCSI window.

Configuring FC protocol and FCoE protocol on SVMs

You can configure the FC protocol and the FCoE protocol on the storage virtual machine (SVM) for SAN hosts. LIFs are created on the most suitable adapters and are assigned to port sets to ensure data path redundancy. Based on your requirements, you can configure either the FC protocol or the FCoE protocols, or both the protocols by using System Manager.

Before you begin
- The FCP license must be enabled on the cluster.
- All of the nodes in the cluster must be healthy.
- Each node must have at least two correctly configured ports for each protocol (FC and FCoE).

About this task
- You can configure the FC protocol and the FCoE protocol while creating the SVM or you can configure the protocols at a later time.
 - If the protocols are not allowed on the SVM, you can use the Edit Storage Virtual Machine window to enable the protocols for the SVM.
- SnapLock aggregates are not considered for automatically creating volumes.

Steps
1. If you have not configured the protocols while creating the SVM, click the **Storage > SVMs** tab.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Protocols** pane, click **FC/FCoE**.
4. In the **Data Interface Configuration** section, select the corresponding option to configure data LIFs for the FC protocol and the FCoE protocol.
5. Specify the number of data LIFs per node for each protocol.
The minimum number of LIFs per node is one. The maximum number is the minimum of all the ports in the up state across the nodes. If the maximum value is an odd number, the previous even number is considered as the maximum value. You can choose any even number in the minimum and maximum value range.

Example

A four-node cluster has node1, node2, and node3 with six ports each in the up state, and node4 with seven ports in the up state. The effective maximum value for the cluster is six.

If the number of LIFs that you want to assign to the node is more than two, you must assign at least one port set to each LIF.

6. If you want to verify or modify the automatically generated LIFs configuration, select **Review or Edit the Interface Association**.

 You can modify only the LIF name and home port. You must ensure that you do not specify duplicate entries.

7. Optional: Provision a LUN for the FC storage or FCoE storage when configuring the protocol by providing the LUN size, OS type for the LUN, and host initiator details.

8. Click **Submit & Continue**.

Result

The data LIFs and port sets are created with the specified configuration. The LIFs are distributed accordingly among the port sets. The FCP service is started if all of the LIFs are successfully created for at least one protocol.

If LIF creation fails, you can create the LIFs and start the FCP service from the FC/FCoE window.

Related information

ONTAP 9 Documentation Center

Configuring NVMe protocol on SVMs

You can configure the NVMe protocol on a storage virtual machine (SVM) using System Manager. You can then create namespaces and assign them to an NVMe subsystem and host.

About this task

The SVM with NVMe should not have any other protocol. If you select NVMe, then the rest of the protocols will be disabled. You can also configure NVMe while creating the SVM.

Steps

1. If you did not configure the NVMe protocol when creating the SVM, click **Storage > SVMs**.
2. Select the SVM, and then click **SVM settings**.
3. In the **Protocols** pane, click **NVMe**.
4. Click the link to configure the protocol, as required.

 Note: If there are any other protocols enabled, you must deselect these to make NVMe available to select. NVMe cannot be combined with any other protocol.

5. In the **Edit Storage Virtual Machine** pane, click on **Resource Allocation**.
6. In the **Resource Allocation** tab, you can choose not to delegate volume creation or you can select an aggregate to provision the volumes automatically.
7. Click on the **Services** tab to configure the Name Service Switch details.

8. Click **Save and Close**

The NVMe protocol is configured on the SVM. After the protocol has been configured, you can start or stop the service using **SVM Settings**

Related concepts

Setting up NVMe on page 310

Delegating administration to SVM administrators

After setting up a functional storage virtual machine (SVM) or SVMs with basic network configuration, you can optionally delegate the administration of the SVM to SVM administrators.

About this task

SVM administrators cannot use System Manager to manage delegated SVMs. Administrators can manage them only by using the command-line interface (CLI).

Steps

1. In the **Administrator Details** section, set up a password for the *vsadmin* user account.

2. If you want a dedicated LIF for SVM management, select **Create a LIF for SVM management**, and then specify the network details.

 A dedicated SVM management LIF is required for SAN protocols, where data and management protocols cannot share the same LIF. SVM management LIFs can be created only on data ports.

3. Specify the network details, including subnet details, for creating iSCSI LIFs:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Then…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the IP address by using a subnet</td>
<td>a. Select Using a subnet.</td>
</tr>
</tbody>
</table>
 | | b. In the Add Details dialog box, select the subnet from which the IP address must be assigned.
 | | For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
 | | c. If you want to assign a specific IP address to the interface, select **Use a specific IP address**, and then type the IP address.
 | | The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
 | | d. Click **OK**. |
If you want to… Then…

Specify the IP address manually without using a subnet

a. Select **Without a subnet**.

b. In the Add Details dialog box, perform the following steps:

 i. Specify the IP address and the network mask or prefix.

 ii. Optional: Specify the gateway.

 iii. If you do not want to use the default value for the Destination field, specify a new destination value.

 If you do not specify a custom value, the Destination field is populated with the default value based on the family of the IP address.

 If a route does not exist, a new route is automatically created based on the gateway and destination.

 c. Click **OK**.

4. Specify a port for creating a data LIF:

 a. Click **Browse**.

 b. Select a port from the Select Network Port or Adapter dialog box.

 c. Click **OK**.

Result

The vsadmin account is unlocked and configured with the password.

The default access methods for the vsadmin account are ONTAP API (ontapi) and SSH (ssh). The SVM administrator can log in to the storage system by using the management IP address.

After you finish

You must assign aggregates to the SVM by using the Edit Storage Virtual Machine dialog box.

Note: If the SVM does not have any assigned aggregates, the SVM administrator cannot create volumes.

Creating FlexVol volumes

You can create a FlexVol volume for your data by using the Create Volume dialog box in System Manager. You must always create a separate volume for your data rather than storing data in the root volume.

Before you begin

- The cluster must contain a non-root aggregate and a storage virtual machine (SVM).
- If you want to create read/write volumes, you must have configured the protocols for the SVM, and you must have installed either the SnapMirror license or the SnapVault license. If you have not configured the protocols but have installed any one of these licenses, you can create only data protection (DP) volumes.
- For creating an encrypted volume, you must have installed the volume encryption license by using System Manager, and you must have enabled “key-manager setup” by using the command-line interface (CLI). You must refresh your web browser after enabling “key-manager setup”.

About this task

- You can enable storage Quality of Service (QoS) only for a read/write (rw) volume.
- When you create a DP volume on the sync-source SVM in a MetroCluster configuration, the volume is not replicated on the sync-destination SVM.
- When you create a DP volume in a MetroCluster configuration, the source volume is not replicated (mirrored or vaulted) in the destination SVM.
- In a MetroCluster configuration, System Manager displays only the following aggregates for creating volumes:
 - In normal mode, when you create volumes on sync-source SVMs or data-serving SVMs in the primary site, only those aggregates that belong to the cluster in the primary site are displayed.
 - In switched-over mode, when you create volumes on sync-destination SVMs or data-serving SVMs in the surviving site, only switched-over aggregates are displayed.
- You cannot encrypt a volume in Cloud Volumes ONTAP.
- If encryption is enabled on the source volume and if the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.

Steps

1. Click **Storage > Volumes**.
2. Click **Create > Create FlexVol**.
3. Browse and select the SVM in which you want to create the volume.

 The Create Volume dialog box is displayed. The dialogue box includes the following tabs:
 - General
 - Storage Efficiency
 - SnapLock
 - Quality of Service
 - Protection

4. On the **General** tab, perform the following steps:
 a. Specify a name for the FlexVol volume.
 b. Click the **FabricPool** button to specify that the volume is a FabricPool volume.
 c. Click **Choose** to select an aggregate.

 You can select only FabricPool-enabled aggregates if the volume is a FabricPool FlexVol volume, and you can select only non-FabricPool-enabled aggregates if the volume is a non-FabricPool FlexVol volume. If you choose an encrypted aggregate (NAE), the volume you are creating will inherit the encryption of the aggregate.
 d. Select a storage type.
 e. Specify the volume size and measurement units.
 f. Indicate how much space should be reserved for Snapshot copies.
 g. Select a space reserve option from the **Space Reserve** drop-down menu.
h. Select the **Volume Encryption** checkbox to enable encryption for the volume. This option is available only if you have enabled the Volume Encryption license and if the corresponding platform is capable of supporting encryption.

5. On the **Storage Efficiency** tab, perform the following steps:
 a. Select the type of storage for which you are creating this volume.

 You must select **Data Protection** if you are creating a SnapMirror destination volume. You are provided read-only access to this volume.

 b. Specify the tiering policy for the volume.

 c. Specify the size of the volume and the percentage of the total volume size that you want to reserve for Snapshot copies.

 The default space reserved for Snapshot copies is zero percent for SAN volumes and VMware volumes. For NAS volumes, the default is 5 percent.

 d. Select **Default**, **Thin provisioned**, or **Thick provisioned** for the volume.

 When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.

 Note:

 - For AFF storage systems, the value of thin provisioning is “Default”, and for other storage systems, the value of thick provisioning is “Default”.

 - For FabricPool-enabled aggregates, the value of thin provisioning is “Default”.

 e. Specify whether you want to enable deduplication on the volume.

 System Manager uses the default deduplication schedule. If the specified volume size exceeds the limit that is required for running deduplication, the volume is created and deduplication is not enabled.

 For systems with All Flash Optimized personality, inline compression and the auto deduplication schedule are enabled by default.

6. On the **Quality of Service** tab, perform the following steps:
 a. Select the **Manage Storage Quality of Service** checkbox if you want to enable storage QoS for the FlexVol volume to manage workload performance.

 b. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the FlexVol volume:
Create a new policy group

a. Select **New Policy Group**.

b. Specify the policy group name.

c. Specify the minimum throughput limit.
 - In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can set the minimum throughput limit for the policy group.
 - You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
 - If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value.
 This value is case-sensitive.

d. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value.
 This value is case-sensitive. The unit that you specify does not affect the maximum throughput.
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
</table>
| Select an existing policy group | a. Select **Existing Policy Group**, and then click **Choose** to select an existing policy group from the Select Policy Group dialog box.

b. Specify the minimum throughput limit.
 - In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can set the minimum throughput limit for the policy group.
 - You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
 - If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value.
This value is case-sensitive.

c. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value.
 This value is case-sensitive. The unit that you specify does not affect the maximum throughput.

If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects. |

7. On the **Protection** tab, perform the following steps:
 a. Specify whether you want to enable **Volume Protection**.
A non-FabricPool FlexGroup volume can be protected with a FabricPool FlexGroup volume.
A FabricPool FlexGroup volume can be protected with a non-FabricPool FlexGroup volume.
 b. Select the **Replication** type:
If you selected the replication type as... | Do this...
---|---
Asynchronous | a. **Optional:** If you do not know the replication type and relationship type, click **Help me Choose**, specify the values, and then click **Apply**.
b. Select the relationship type. The relationship type can be mirror, vault, or mirror and vault.
c. Select a cluster and an SVM for the destination volume. If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
d. Modify the volume name suffix, if required.

Synchronous | a. **Optional:** If you do not know the replication type and relationship type, click **Help me Choose**, specify the values, and then click **Apply**.
b. Select the synchronization policy. The synchronization policy can be StrictSync or Sync.
c. Select a cluster and an SVM for the destination volume. If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
d. Modify the volume name suffix, if required.

8. Click **Create**.

9. Verify that the volume that you created is included in the list of volumes in the **Volume** window. The volume is created with UNIX-style security and UNIX 700 “read write execute” permissions for the owner.

Related references

Volumes window on page 253

Creating SnapLock volumes

You can use System Manager to create a SnapLock Compliance volume or a SnapLock Enterprise volume. When you create a volume, you can also set retention times, and choose whether to automate setting the WORM state on data in the volume.

Before you begin

- The SnapLock license must have been installed.
- The SnapLock aggregate must be online.
- For creating an encrypted volume, you must have installed the volume encryption license by using System Manager, and you must have enabled “key-manager setup” by using the command-line interface (CLI). You must refresh your web browser after enabling “key-manager setup”.

About this task

- You can delete a complete SnapLock Enterprise volume or a file in a SnapLock Enterprise volume; however, you cannot delete only the data within a file in a SnapLock Enterprise volume.
- You cannot delete a SnapLock Compliance volume if data is committed to the volume.
- You cannot encrypt a volume in Cloud Volumes ONTAP.
- If encryption is enabled on the source volume and if the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.

Steps

1. Click Storage > Volumes.
2. Click Create > Create FlexVol.
3. Browse and select the storage virtual machine (SVM) in which you want to create the volume.
4. In the Create Volume dialog box, specify a new name if you want to change the default name of the volume.
 You cannot change the name of a SnapLock Compliance volume after you create the volume.
5. Select the container aggregate for the volume.
 You must select a SnapLock Compliance aggregate or SnapLock Enterprise aggregate to create a SnapLock volume. The volume inherits the SnapLock type from the aggregate, and the SnapLock type cannot be changed after the volume is created; therefore, you must select the correct aggregate.
6. Select the Volume Encryption checkbox to enable encryption for the volume.
 This option is available only if you have enabled the Volume Encryption license and if the corresponding platform is capable of supporting encryption.
7. Select the type of storage for which you are creating this volume.
 If you are creating a SnapMirror destination volume, you must select Data Protection. You are provided read-only access to this volume.
8. Specify the size of the volume and the percentage of the total volume size that you want to reserve for Snapshot copies.
 The default space that is reserved for Snapshot copies is zero percent for SAN volumes and VMware volumes. For NAS volumes, the default is 5 percent.
9. Optional: Select Thin Provisioned to enable thin provisioning for the volume.
 When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.
10. Optional: Make the required changes in the Storage Efficiency tab to enable deduplication on the volume.
 System Manager uses the default deduplication schedule. If the specified volume size exceeds the limit that is required for running deduplication, the volume is created, and deduplication is not enabled.
11. Select the SnapLock tab, and then perform the following steps:
 a. Optional: Specify the autocommit period.
The file in the volume remains unchanged for the period that you specify before the file is committed to the WORM state. To set files to the WORM state manually, you must select **Not specified** as the autocommit setting.

The values must be in the range of 5 minutes to 10 years.

b. Specify the minimum retention period and maximum retention period.

The values must be in the range of 1 day through 70 years or Infinite.

c. Select the default retention period.

The default retention period must be within the specified minimum retention period and maximum retention period.

12. Optional: Select the **Manage Storage Quality of Service** checkbox in the **Quality of Service** tab to enable storage QoS for the FlexVol volume in order to manage workload performance.

13. Create a storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the FlexVol volume.

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a storage QoS policy group</td>
<td>a. Select New Policy Group.</td>
</tr>
<tr>
<td></td>
<td>b. Specify the policy group name.</td>
</tr>
<tr>
<td></td>
<td>c. Specify the minimum throughput limit.</td>
</tr>
<tr>
<td></td>
<td>• In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.</td>
</tr>
<tr>
<td></td>
<td>• You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.</td>
</tr>
<tr>
<td></td>
<td>d. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.</td>
</tr>
<tr>
<td></td>
<td>• The minimum throughput limit and the maximum throughput limit must be of the same unit type.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value. This value is case-sensitive. The unit that you specify does not affect the maximum throughput.</td>
</tr>
<tr>
<td>If you want to…</td>
<td>Do this…</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Select an existing policy group</td>
<td>a. Select Existing Policy Group, and then click Choose to select an existing policy group from the Select Policy Group dialog box.</td>
</tr>
<tr>
<td></td>
<td>b. Specify the minimum throughput limit.</td>
</tr>
<tr>
<td></td>
<td>• In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.</td>
</tr>
<tr>
<td></td>
<td>• You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.</td>
</tr>
<tr>
<td></td>
<td>c. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.</td>
</tr>
<tr>
<td></td>
<td>• The minimum throughput limit and the maximum throughput limit must be of the same unit type.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value. This value is case-sensitive. The unit that you specify does not affect the maximum throughput.</td>
</tr>
<tr>
<td></td>
<td>If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.</td>
</tr>
</tbody>
</table>

14. Enable **Volume Protection** in the **Protection** tab to protect the volume:

15. In the **Protection** tab, select the **Replication** type:

<table>
<thead>
<tr>
<th>If you selected the replication type as…</th>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>a. Optional: If you do not know the replication type and relationship type, click Help me Choose, specify the values, and then click Apply.</td>
</tr>
<tr>
<td></td>
<td>b. Select the relationship type. The relationship type can be mirror, vault, or mirror and vault.</td>
</tr>
<tr>
<td></td>
<td>c. Select a cluster and an SVM for the destination volume. If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.</td>
</tr>
<tr>
<td></td>
<td>d. Modify the volume name suffix, if required.</td>
</tr>
</tbody>
</table>
If you selected the replication type as… | Do this…
--- | ---
Synchronous | a. **Optional:** If you do not know the replication type and relationship type, click **Help me Choose**, specify the values, and then click **Apply**.
b. Select the synchronization policy.
 The synchronization policy can be **StrictSync** or **Sync**.
c. Select a cluster and an SVM for the destination volume.
 If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
d. Modify the volume name suffix, if required.

16. Click **Create**.

17. Verify that the volume that you created is included in the list of volumes in the **Volume** window.

Result
The volume is created with UNIX-style security and UNIX 700 “read write execute” permissions for the owner.
Setting up SAML authentication

You can set up Security Assertion Markup Language (SAML) authentication so that remote users are authenticated through a secure identity provider (IdP) before they log in to System Manager.

Prerequisite: Configure Security Assertion Markup Language (SAML) authentication.

Enable SAML authentication.

Retrieve host metadata using System Manager.

Configure host metadata and trust rules on Identity Provider (IdP).

Log into System Manager using SAML authentication.

Do you want to change the IdP details?

Yes

Disable SAML authentication to edit the IdP details.

Log in to System Manager using cluster credentials.

No

End
Enabling SAML authentication

You can use System Manager to configure Security Assertion Markup Language (SAML) authentication so that remote users can log in by using a secure identity provider (IdP).

Before you begin

- The IdP that you plan to use for remote authentication must be configured.

 Note: See the documentation that is provided by the IdP that you have configured.

- You must have the URI of the IdP.

About this task

The IdPs that have been validated with System Manager are Shibboleth and Active Directory Federation Services.

Note: After SAML authentication is enabled, only remote users can access the System Manager GUI. Local users cannot access the System Manager GUI after SAML authentication is enabled.

Steps

1. Click **Configuration > Cluster > Authentication**.
2. Select the **Enable SAML authentication** check box.
3. Configure System Manager to use SAML authentication:
 a. Enter the URI of the IdP.
 b. Enter the IP address of the host system.
 c. Optional: If required, change the host system certificate.
4. Click **Retrieve Host Metadata** to retrieve the host URI and host metadata information.
5. Copy the host URI or host metadata details, access your IdP, and then specify the host URI or host metadata details and the trust rules in the IdP window.

 Note: See the documentation that is provided by the IdP that you have configured.
6. Click **Save**.

 The IdP login window is displayed.
7. Log in to System Manager by using the IdP login window.

 After the IdP is configured, if the user tries to log in by using the fully qualified domain name (FQDN), IPv6, or a cluster management LIF, then the system automatically changes the IP address to the IP address of the host system that was specified during the IdP configuration.

Related tasks

Accessing a cluster by using the ONTAP System Manager browser-based graphic interface on page 36
Disabling SAML authentication

You can disable Security Assertion Markup Language (SAML) authentication if you want to disable remote access to System Manager, or to edit the SAML configuration.

About this task
Disabling SAML authentication does not delete SAML configuration.

Steps
1. Click Configuration > Cluster > Authentication.
2. Clear the Enable SAML authentication check box.
3. Click Save. System Manager restarts.
4. Log in to System Manager by using the cluster credentials.

Related tasks
Accessing a cluster by using the ONTAP System Manager browser-based graphic interface on page 36
Setting up peering involves creating intercluster logical interfaces (LIFs) on each node, creating cluster peering, and creating SVM peering.

Prerequisites for cluster peering

Before you set up cluster peering, you should confirm that the connectivity, port, IP address, subnet, firewall, and cluster-naming requirements are met.

Connectivity requirements

Every intercluster LIF on the local cluster must be able to communicate with every intercluster LIF on the remote cluster.

Although it is not required, it is typically simpler to configure the IP addresses used for intercluster LIFs in the same subnet. The IP addresses can reside in the same subnet as data LIFs, or in a different subnet. The subnet belong to the broadcast domain that contains the ports that used for intercluster communication.

Intercluster LIFs can have an IPv4 address or an IPv6 address.

Port requirements

You can use dedicated ports for intercluster communication, or share ports used by the data network. Ports must meet the following requirements:

- All ports that are used to communicate with a given remote cluster must be in the same IPspace. You can use multiple IPspaces to peer with multiple clusters. Pair-wise full-mesh connectivity is required only within an IPspace.
- The broadcast domain that is used for intercluster communication must include at least two ports per node so that intercluster communication can fail over from one port to another port. Ports added to a broadcast domain can be physical network ports, VLANs, or interface groups (ifgrp).
- All ports must be cabled.
• All ports must be in a healthy state.
• The MTU settings of the ports must be consistent.

Firewall requirements
Firewalls and the intercluster firewall policy must allow the following protocols:
• ICMP service
• TCP to the IP addresses of all the intercluster LIFs over the ports 10000, 11104, and 11105
• HTTPS

The default intercluster firewall policy allows access through the HTTPS protocol and from all IP addresses (0.0.0.0/0). You can modify or replace the policy if necessary.

Related information
ONTAP 9 Documentation Center

Creating intercluster LIFs
Creating intercluster logical interfaces (LIFs) enables the cluster network to communicate with a node. You must create an intercluster LIF within each IPspace that will be used for peering, on each node in each cluster for which you want to create a peer relationship.

Steps
1. Click Configuration > Advanced Cluster Setup.
2. In the Setup Advanced Cluster Features window, click Proceed next to the Cluster Peering option.
3. Select an IPspace from the IPspace list.
4. Enter the IP address, port, network mask, and gateway details of each node.
5. Click Submit and Continue.

After you finish
You should enter the cluster details in the Cluster Peering window to continue with cluster peering.

Creating cluster peer relationships
You can create an authenticated cluster peer relationship to connect clusters so that the clusters in the peer relationship can communicate securely with each other.

Before you begin
• You must have reviewed and completed the requirements for performing this task.
 Prerequisites for cluster peering on page 72
• You must have created intercluster logical interfaces (LIFs).
• You should be aware of which version of ONTAP each cluster is running.

About this task
• If you want to create a peer relationship with a cluster running Data ONTAP 8.2.2 or earlier, you must use the CLI.
• You can create a peer relationship between a cluster running ONTAP 9.5 and a cluster running ONTAP 9.6. However, encryption is not supported in ONTAP 9.5, so the peer relationship cannot be encrypted.

• In a MetroCluster configuration, when you create a peer relationship between the primary cluster and an external cluster, it is a best practice to create a peer relationship between the surviving site cluster and the external cluster as well.

• You can create a custom passphrase or you can use the system-generated passphrase to authenticate the cluster peer relationship. However, the passphrases of both clusters must match.

Steps

1. Click **Configuration > Advanced Cluster Setup**.

2. In the **Target Cluster Intercluster LIF IP addresses** field, enter the IP addresses of the remote cluster's intercluster LIFs.

3. Optional: If you are creating a peer relationship between a cluster running ONTAP 9.5 and a cluster running ONTAP 9.6, select the checkbox.

 The peer relationship will not be encrypted. If you do not select the checkbox, the peer relationship will not be established.

4. In the **Passphrase** field, specify a passphrase for the cluster peer relationship.

 If you create a custom passphrase, the passphrase will be validated against the passphrase of the peered cluster to ensure an authenticated cluster peer relationship.

 If the names of the local cluster and remote cluster are identical, and if you are using a custom passphrase, an alias is created for the remote cluster.

5. Optional: To generate a passphrase from the remote cluster, enter the management IP address of the remote cluster.

6. Initiate cluster peering.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate cluster peering from the initiator cluster</td>
<td>Click Initiate Cluster Peering.</td>
</tr>
</tbody>
</table>
| Initiate cluster peering from the remote cluster (Applicable if you have created a custom passphrase) | a. Enter the management IP address of the remote cluster.
b. Click the **Management URL** link to access the remote cluster.
c. Click **Create Cluster Peering**.
d. Specify the intercluster LIF IP addresses and passphrase of the initiator cluster.
e. Click **Initiate Peering**.
f. Access the initiator cluster, and then click **Validate Peering**. |

After you finish

You should specify the SVM details in the SVM Peering window to continue with the peering process.
Creating SVM peers

SVM peering enables you to establish a peer relationship between two storage virtual machines (SVMs) for data protection.

Before you begin

You must have created a peer relationship between the clusters in which the SVMs that you plan to peer reside.

About this task

• The clusters that you can select as target clusters are listed when you create SVM peers by using the Configuration > SVM Peers window.

• If the target SVM resides on a cluster in a system running ONTAP 9.2 or earlier, SVM peering cannot be accepted by using System Manager.

 Note: In such a scenario, you can use the command-line interface (CLI) to accept SVM peering.

Steps

1. Select the initiator SVM.
2. Select the target SVM from the list of permitted SVMs.
3. Specify the name of the target SVM in the Enter an SVM field.

 Note: If you have navigated from the Configuration > SVM Peers window, you should select the target SVM from the list of peered clusters.
4. Initiate SVM peering.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate SVM peering from the initiator cluster</td>
<td>Click Initiate SVM Peering.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accept SVM peering from the remote cluster</th>
<th>Note: Applicable for non-permitted SVMs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Specify the management address of the remote cluster.</td>
</tr>
<tr>
<td></td>
<td>b. Click the Management URL link to access the SVM Peer window of the remote cluster.</td>
</tr>
<tr>
<td></td>
<td>c. On the remote cluster, accept the Pending SVM Peer request.</td>
</tr>
<tr>
<td></td>
<td>d. Access the initiator cluster, and then click Validate Peering.</td>
</tr>
</tbody>
</table>

5. Click Continue.

After you finish

You can view the intercluster LIFs, cluster peer relationship, and SVM peer relationship in the Summary window.

When you use System Manager to create the peer relationship, the encryption status is “Enabled” by default.
What passphrases are

You can use a passphrase to authorize peering requests. You can use a custom passphrase or a system-generated passphrase for cluster peering.

- You can generate a passphrase on the remote cluster.
- The minimum required length for a passphrase is eight characters.
- The passphrase is generated based on the IPspace.
- If you are using a system-generated passphrase for cluster peering, after you enter the passphrase in the initiator cluster, peering is authorized automatically.
- If you are using a custom passphrase for cluster peering, you have to navigate to the remote cluster to complete the peering process.
Managing clusters

You can use System Manager to manage clusters.

Related information

ONTAP concepts

Understanding quorum and epsilon

Quorum and epsilon are important measures of cluster health and function that together indicate how clusters address potential communications and connectivity challenges.

Quorum is a precondition for a fully functioning cluster. When a cluster is in quorum, a simple majority of nodes are healthy and can communicate with each other. When quorum is lost, the cluster loses the ability to accomplish normal cluster operations. Only one collection of nodes can have quorum at any one time because all of the nodes collectively share a single view of the data. Therefore, if two non-communicating nodes are permitted to modify the data in divergent ways, it is no longer possible to reconcile the data into a single data view.

Each node in the cluster participates in a voting protocol that elects one node master; each remaining node is a secondary. The master node is responsible for synchronizing information across the cluster. When quorum is formed, it is maintained by continual voting. If the master node goes offline and the cluster is still in quorum, a new master is elected by the nodes that remain online.

Because there is the possibility of a tie in a cluster that has an even number of nodes, one node has an extra fractional voting weight called epsilon. If the connectivity between two equal portions of a large cluster fails, the group of nodes containing epsilon maintains quorum, assuming that all of the nodes are healthy. For example, the following illustration shows a four-node cluster in which two of the nodes have failed. However, because one of the surviving nodes holds epsilon, the cluster remains in quorum even though there is not a simple majority of healthy nodes.

Epsilon is automatically assigned to the first node when the cluster is created. If the node that holds epsilon becomes unhealthy, takes over its high-availability partner, or is taken over by its high-availability partner, then epsilon is automatically reassigned to a healthy node in a different HA pair.

Taking a node offline can affect the ability of the cluster to remain in quorum. Therefore, ONTAP issues a warning message if you attempt an operation that will either take the cluster out of quorum or else put it one outage away from a loss of quorum. You can disable the quorum warning messages by using the `cluster quorum-service options modify` command at the advanced privilege level.

In general, assuming reliable connectivity among the nodes of the cluster, a larger cluster is more stable than a smaller cluster. The quorum requirement of a simple majority of half the nodes plus epsilon is easier to maintain in a cluster of 24 nodes than in a cluster of two nodes.

A two-node cluster presents some unique challenges for maintaining quorum. Two-node clusters use `cluster HA`, in which neither node holds epsilon; instead, both nodes are continuously polled to
ensure that if one node fails, the other has full read-write access to data, as well as access to logical interfaces and management functions.

Dashboard window

The Dashboard window contains multiple panels that provide cumulative at-a-glance information about your system and its performance.

You can use the Dashboard window to view information about important alerts and notifications, the efficiency and capacity of aggregates and volumes, the nodes that are available in a cluster, the status of the nodes in a high-availability (HA) pair, the most active applications and objects, and the performance metrics of a cluster or a node.

Alerts and Notifications

Displays all alerts in red, such as emergency EMS events, offline node details, broken disk details, license entitlements that are at high risk, and offline network port details. Displays all notifications in yellow, such as health monitor notifications that occurred in the past 24 hours at the cluster level, license entitlements that are at medium risk, unassigned disk details, the number of migrated LIFs, volume move operations that failed, and volume move operations that required administrative intervention in the past 24 hours.

The Alerts and Notifications panel displays up to three alerts and notifications beyond which a View-All link is displayed. You can click the View-All link to view more information about the alerts and notifications.

The refresh interval for the Alerts and Notifications panel is one minute.

Cluster Overview

Displays the aggregates and volumes that are nearing capacity, the storage efficiency of a cluster or node, and the protection details of top volumes.

The Capacity tab displays the top online aggregates that are nearing capacity, in descending order of used space.

The Capacity tab provides a link to the number of volumes with the highest capacity utilized when you enter a valid value in the Volumes exceeding used capacity of field. It also displays the amount of inactive (cold) data available in the cluster.

The Efficiency tab displays the storage efficiency savings for a cluster or node. You can view the total logical space used, total physical space used, and the overall savings. You can select a cluster or a specific node to view the storage efficiency savings. For System Manager 9.5, the space used for Snapshot copies is not included in the values for total logical space used, total physical space used, and overall savings. However, starting with System Manager 9.6, the space used for Snapshot copies is included in the values for total logical space used, total physical space used, and overall savings.

The refresh interval for the Cluster Overview panel is 15 minutes.

The Protection tab displays information about cluster-wide volumes that do not have defined protection relationships. Only the FlexVol volumes and FlexGroup volumes that meet the following criteria are displayed:

- The volumes are RW volumes and are online.
- The aggregate containing the volumes is online.
- The volumes have protection relationships and are not yet initialized.

You can navigate to the Volumes window to view the volumes that do not have a defined protection relationship.
The Protection tab also displays the top five SVMs that have the highest number of volumes that do not have defined protection relationships.

Nodes
Displays a pictorial representation of the number and names of the nodes that are available in the cluster, and the status of the nodes that are in an HA pair. You should position the cursor over the pictorial representation of the nodes to view the status of the nodes in an HA pair.

You can view more information about all of the nodes by using the Nodes link. You can also click the pictorial representation to view the model of the nodes and the number of aggregates, storage pools, shelves, and disks that are available in the nodes. You can manage the nodes by using the Manage Nodes link. You can manage the nodes in an HA pair by using the Manage HA link.

The refresh interval for the Nodes panel is 15 minutes.

Applications and Objects
You can use the Applications and Objects panel to display information about applications, clients, and files in a cluster.

The Applications tab displays information about the top five applications of the cluster. You can view the top five applications based on either IOPS and latency (from low to high or from high to low) or capacity (from low to high or from high to low).

You should click the specific bar chart to view more information about the application. The total space, used space, and available space are displayed for capacity, the IOPS details are displayed for IOPS, and the latency details are displayed for latency.

You can click View details to open the Applications window of the specific application.

The Objects tab displays information about the top five active clients and files in the cluster. You can view the top five active clients and files based on IOPS or throughput.

Note: This information is displayed only for CIFS and NFS protocols.

The refresh interval for the Applications and Objects panel is one minute.

Performance
Displays the average performance metrics, read performance metrics, and write performance metrics of the cluster based on latency, IOPS, and throughput. The average performance metrics is displayed by default. You can click Read or Write to view the read performance metrics or write performance metrics, respectively. You can view the performance metrics of the cluster or a node.

If the information about cluster performance cannot be retrieved from ONTAP, you cannot view the respective graph. In such cases, System Manager displays the specific error message.

The refresh interval for the charts in the Performance panel is 15 seconds.

Monitoring a cluster using the dashboard
The dashboard in System Manager enables you to monitor the health and performance of a cluster. You can also identify hardware problems and storage configuration issues by using the dashboard.

Step
1. Click the Dashboard tab to view the health and performance dashboard panels.
Applications

You can use predefined application templates in System Manager to create new configurations that are based on existing application templates. You can then provision instances of the application in ONTAP.

You configure applications by clicking Applications & Tiers > Applications.

Note: If someone adds new applications using the CLI or REST API while you are viewing the list of applications, then you will not be able to view those new applications when you scroll the list.

The following applications can be configured in System Manager:

General Applications
- NAS Container (volume is exported to NFS or CIFS clients)
- General SAN Application (set of LUNs exported to the application server)

Databases
- MongoDB (over SAN)
- Oracle (over NFS or SAN)
- Oracle (Real Application Cluster over NFS or SAN)
- Microsoft SQL Server (over SAN or SMB)

Virtual Infrastructure
- Virtual Servers (with VMware, Hyper-V, or XEN)

Steps
1. Provisioning a basic template on page 80
2. Storage service definitions on page 81
3. Adding Microsoft SQL Server over SAN to System Manager on page 82
4. Application provisioning settings on page 82
5. Editing an application on page 87
6. Deleting an application on page 88
7. Applications window on page 88

Related information

ONTAP concepts

Provisioning a basic template

You can use System Manager to quickly provision basic templates for SAP HANA.

About this task

As the cluster administrator, you can provision applications by configuring a basic template. The example describes how to configure the SAP HANA Server.

Steps
1. Click Applications & Tiers > Applications
2. In the **Basic** tab, select the **SAP HANA Server** template.

3. In the **Database Details** section, specify the following:
 - Database name
 - Database size
 - Log size
 - Tempdb size
 - Number of server cores
 - Span HA Controller Notes

4. Click **Provision Storage**

Result

The SAP HANA Server application is provisioned.

Storage service definitions

ONTAP includes predefined storage services that are mapped to corresponding minimum performance factors.

The actual set of storage services available in a cluster or SVM is determined by the type of storage that makes up an aggregate in the SVM.

The following table shows how the minimum performance factors are mapped to the predefined storage services:

<table>
<thead>
<tr>
<th>Storage service</th>
<th>Expected IOPS (SLA)</th>
<th>Peak IOPS (SLO)</th>
<th>Minimum volume IOPS</th>
<th>Estimated latency</th>
<th>Are expected IOPS enforced?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>128 TB</td>
<td>512 TB</td>
<td>75</td>
<td>17 ms</td>
<td>On AFF: Yes Otherwise: No</td>
</tr>
<tr>
<td>performance</td>
<td>2048 TB</td>
<td>4096 TB</td>
<td>500</td>
<td>2 ms</td>
<td>Yes</td>
</tr>
<tr>
<td>extreme</td>
<td>6144 TB</td>
<td>12288 TB</td>
<td>1000</td>
<td>1 ms</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following table defines the available storage service level for each type of media or node:

<table>
<thead>
<tr>
<th>Media or node</th>
<th>Available storage service level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>value</td>
</tr>
<tr>
<td>Virtual machine disk</td>
<td>value</td>
</tr>
<tr>
<td>FlexArray LUN</td>
<td>value</td>
</tr>
<tr>
<td>Hybrid</td>
<td>value</td>
</tr>
<tr>
<td>Capacity-optimized Flash</td>
<td>value</td>
</tr>
<tr>
<td>Solid-state drive (SSD) - non-AFF</td>
<td>value</td>
</tr>
<tr>
<td>Performance-optimized Flash - SSD (AFF)</td>
<td>extreme, performance, value</td>
</tr>
</tbody>
</table>
Adding Microsoft SQL Server over SAN to System Manager

You can use the Enhanced tab to add an instance of Microsoft SQL Server over SAN to System Manager.

About this task

The following procedure describes how to add a Microsoft SQL Server instance over SAN to System Manager. You can choose SMB as the export protocol only if the cluster is licensed for CIFS, which must be configured on the storage virtual machine (SVM).

Steps

1. Click **Applications & Tiers > Applications**
2. In the Enhanced tab, click **Add**
3. Select **Microsoft SQL Server instance** from the menu.

 Note: The dropdown list includes a list of all available application types and template types.

 The Add Microsoft SQL Server Instance window is displayed.

4. Specify the following details:

 - Database name
 - Database size and the required ONTAP service level
 - Number of server cores
 - Log size and the required ONTAP service level
 - Provision for Tempdb
 Specify if the server should be provisioned for Tempdb.
 - Export Protocol (SMB or SAN)
 Specify SAN
 - Host operating system
 - LUN format
 - Host mapping

5. Click **Add Application**

Result

The Microsoft SQL Server instance over SAN is added to System Manager.

Application provisioning settings

When setting up a basic or enhanced template for a database, server, or virtual desktop, you must provide details to System Manager. After an application is provisioned, you can edit the details and specify a resizing (increased size only). This section describes the fields in each template. Only the
fields that are required for provisioning or editing the settings of the specific application are displayed.

Details for Microsoft SQL Database Applications over SAN

You enter the following information to provision Microsoft SQL Database applications over SAN or edit the settings:

Database Name

Mandatory: The name of the database you are configuring; this string is used as a prefix when provisioning storage for each database.

Database Size

Mandatory: The size of the database, in units of MB, GB, TB, or PB.

ONTAP Service Level for Database

Mandatory: The service level for the database.

Log Size

Mandatory: The size of the database log in units of MB, GB, TB, or PB.

ONTAP Service Level for Log

Mandatory: The service level for the log.

Tempdb

Mandatory: The size of the tempdb database in units of MB, GB, TB, or PB.

Export Protocol

Mandatory: The export protocol is SAN

Number of Server Cores (on the SQL server)

Indicates the number of CPU cores on the databases server in increments of 2.

Span HA Controller Nodes

Specifies if storage objects should be created across a high-availability pair of nodes.

Details for provisioning a SAP HANA database

Active SAP HANA Nodes

The number of active SAP HANA nodes. The maximum number of nodes is 16.

Memory Size per HANA Node

The memory size of a single SAP HANA node.

Data Disk Size per HANA Node

The data disk size for each node.

Note: If set to 0, the memory size field above is used to calculate the size of the data area.

Details for Microsoft SQL Database Applications over SMB

You enter the following information to provision Microsoft SQL Database applications over SMB or edit the settings:

Database Name

Mandatory: The name of the database you are configuring; this string is used as a prefix when provisioning storage for each database.

Database Size

Mandatory: The size of the database, in units of MB, GB, TB, or PB.
Database Service Level
 Mandatory: The service level for the database.

Number of Server Cores (on the SQL server)
 Indicates the number of CPU cores on the databases server in increments of 2.

Log Size
 Mandatory: The size of the database log in units of MB, GB, TB, or PB.

Log Service Level
 Mandatory: The service level for the log.

Provision for Tempdb
 Mandatory: Indicates whether tempdb is provisioned.

Export Protocol
 Mandatory: The export protocol is SMB or SAN.
 SMB can be chosen only when the cluster is licensed for CIFS, which has been configured
 for the SVM.

Grant Access to User
 Mandatory: The access level for the application.

Permission
 Mandatory: The permission level for the application.

Details for a SQL Server Account
 You enter the following information to provide full control access to the SQL server accounts:
 Note: The installation account is granted SeSecurityPrivilege.

SQL Server Service Account
 Mandatory: This is an existing domain account; specify as

 domain\user

SQL Server Agent Service Account
 Optional: This is this domain account if SQL server agent service is configured, specify in
 the format domain\user.

Details for Oracle Database Applications
 You enter the following information to provision Oracle database applications or edit the settings:

Database Name
 Mandatory: The name of the database you are configuring; this string is used as a prefix
 when provisioning storage for each database.

Datafile Size
 Mandatory: The size of the datafile, in units of MB, GB, TB, or PB.

ONTAP Service Level for Datafile
 Mandatory: The service level for the datafile.

Redo Log Group Size
 Mandatory: The size of the redo log group, in units of MB, GB, TB, or PB.

ONTAP Service Level for Redo Log Group
 Mandatory: The service level for the redo log group.
Archive Log Size
Mandatory: The size of the archive log, in units of MB, GB, TB, or PB.

ONTAP Service Level for the Archive Log
Mandatory: The service level for the archive group.

Export Protocol
The export protocol: SAN or NFS

Initiators
A comma-separated list of the initiators (WWPN or IQN) in the initiator group.

Grant Access to Host
The host name to give the application access to.

Details for MongoDB Applications
You enter the following information to provision MongoDB applications or edit the settings:

Database Name
Mandatory: The name of the database you are configuring; this string is used as a prefix when provisioning storage for each database.

Data Set Size
Mandatory: The size of the datafile, in units of MB, GB, TB, or PB.

ONTAP Service Level for Data Set
Mandatory: The service level for the datafile.

Replication Factor
Mandatory: The number of replications.

Mapping for Primary Host
Mandatory: The name of primary host.

Mapping for Replica Host 1
Mandatory: The name of first host replica.

Mapping for Replica Host 2
Mandatory: Name of second host replica.

Details for Virtual Desktop Applications
You enter the following information to provision virtual desktop infrastructures (VDI) or edit the settings:

Average Desktop Size (used for the SAN Virtual Desktop)
This is used to determine the thin-provisioned size of each volume in units of MB, GB, TB, or PB.

Desktop Size
This is used to determine the size of the volumes which should be provisioned in units of MB, GB, TB, or PB.

ONTAP Service Level for Desktops
Mandatory: The service level for the datafile.

Number of Desktops
This number is used to determine the number of volumes created.

Note: This is not used to provision the virtual machines.
Select Hypervisor
The hypervisor used for these volumes; the hypervisor determines the correct datastore protocol. The options are VMware, Hyper-V, or XenServer/KVM.

Desktop Persistence
Determines if the desktop is persistent or nonpersistent. Selecting the desktop persistence sets the default values for the volume such as Snapshot schedules and post-process deduplication policies. Inline efficiencies are enabled by default for all volumes.

Note: These policies can be modified manually after provisioning.

Datastore Prefix
The value entered is used to generate the names of the datastores and, if applicable, the export policy name or share name.

Export Protocol
The export protocol: SAN or NFS

Initiators
A comma-separated list of the initiators (WWPN or IQN) in the initiator group.

Grant Access to Host
The host name to give the application access to.

Initiator Details
You enter the following information to set up the initiator:

Initiator Group
You can select an existing group or create a new group.

Initiator Group Name
The name of the new initiator group.

Initiators
A comma-separated list of the initiators (WWPN or IQN) in the initiator group.

The following fields apply only to SAP HANA provisioning:

Initiator OS Type
The operating system type of the new initiator group.

FCP Portset
The FCP portset that the initiator group is bound to.

Host Access Configuration
You enter the following information to configure the host access to the volumes:

Volume Export Configuration
Select the export policy to apply to the volumes during creation. The options are:

• Allow All
 This option implies that an export rule is created which permits read-write access to any clients.

• Create Custom Policy
 This option allows you to specify a list of host IP addresses to receive read-write access.

Note: You can modify the volume export policy later using System Manager workflows.
Host IP Addresses
This is a comma-separated list of IP addresses.

Note: For NFS-based systems, a new export policy is created using the datastore prefix and a rule is created in it to give access to the list of IP.

Application Details
When the application is added, you can view the configuration settings in the Overview tab of the Application Details window. Other details such as NFS or CIFS Access and Permissions are displayed depending on the type of application that was set up.

Type
This is the type of general application, database, or virtual infrastructure that was created.

SVM
The name of the server virtual machine that the application was created on.

Size
The total size of the volume.

Available
The amount of space currently available in the volume.

Protection
The type of data protection configured.
You can expand the Components and Volumes panes for performance details about space used, IOPs, and latency.

Note: The used size displayed in the Components pane is different than the used size displayed in the CLI.

Editing an application
You can edit a provisioned application to increase to storage size or to manage the Snapshot copies of the application.

About this task
As the cluster administrator, after you provision an application, you can edit it to modify the storage size. You can also create, restore, or delete Snapshot copies of the application. The example procedure that follows describes how to edit a NAS Container application.

Steps
1. Click Applications & Tiers > Applications
2. Click on the name of the NAS container application.

 Note: If someone adds new applications using the CLI or REST API while you are viewing the list of applications, then you will not be able to view those new applications when you scroll the list.

 The Overview tab of the Application Details: nas window displays the application settings.
3. Click Edit.

 The Edit NAS Container: nas displays the current storage size setting and the NFS Access - Grant Access to Host address.
4. Modify the Storage Total Size value.
5. In the size units field, select from the drop-down menu to specify the correct size units (Bytes, MB, GB, or TB).

6. In the **ONTAP Service Level** field, select from the drop-down menu to specify the value.

7. Click **Save**.

8. Navigate back to the **Application Details: nas** window, and select the **Snapshot Copies** tab. A list of Snapshot copies for this provisioned application is displayed. You can use the **Search** field to search for Snapshot copies by name.

9. Manage the Snapshot copies by performing the following tasks as necessary:

<table>
<thead>
<tr>
<th>Task</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>Click Create to create a new Snapshot copy.</td>
</tr>
<tr>
<td>Restore</td>
<td>Click the check boxes next to the Snapshot copies you want to restore, and then click Restore.</td>
</tr>
<tr>
<td>Delete</td>
<td>Click the check boxes next to the Snapshot copies you want to delete, and then click Delete.</td>
</tr>
</tbody>
</table>

Deleting an application

You can delete a provisioned application when it is no longer required.

About this task

As the cluster administrator, after you provision an application, you can delete it when you no longer require it. The example procedure that follows describes how to delete a **NAS Container** application.

Steps

1. Click **Applications & Tiers > Applications**

2. Click the name of the NAS container application.

 Note: If someone adds new applications using the CLI or REST API while you are viewing the list of applications, then you will not be able to view those new applications when you scroll the list.

 The **Overview** tab of the Application Details: nas window displays the application settings.

3. Click **Delete**.

 A dialog box displays a warning message that asks you if you are sure you want to delete this application.

4. Click **Delete**.

Applications window

You can use System Manager to display a list of the applications in a storage virtual machine (SVM). The list includes detailed information about each application.

Tabs

Depending on the configuration of the cluster, System Manager displays information about applications using one of the following methods:
No tabs
Detailed information about the application, including the name, the type, storage usage, performance, and related information.

Two tabs
The display provides two tabs of information about the application.

Enhanced
Detailed information about the application, including the name, the type, storage usage, performance, and related information.

Basic
Basic information about the application.

List of applications
Applications for the selected SVM are displayed on the Enhanced tab in a list in the following ways:

- For System Manager 9.5 and earlier, up to a maximum of 32 applications are displayed in the list.
- For System Manager 9.6, the first 25 applications are displayed in the list. As you scroll to the bottom of the list, another 25 applications are added to the list. When you continue to scroll, you can continue to add 25 applications at a time to expand the list up to a maximum of 1000 applications.

List columns
The information about each application is listed on the Enhanced tab in the following columns.

Expand/collapse arrow
Contains an arrow that you can click to expand the information to a show a detailed view or to collapse the information back to the summary view.

Name
The name of the application.

Type
The application type.

Component
The component of the application.

ONTAP Service Level
The level of ONTAP service for the application.

Usage
A graphical bar that shows the percentage of usage.

Used
The amount of storage space used by the application.

Available
The amount of storage space still available for the application.

Size
The size of the application.

IOPs
The number of input and output operations per second (IOPs) for the application.
Latency
The amount of latency for the application.

Entry fields
The following fields can be used to modify the display of information:

SVM
Enables you to display a drop-down list of SVMs from which you can select the SVM that contains the applications you want to display.

Search field
Enables you to type all or part of an application name to initiate a search based on the criteria you type. Only the applications with names that match the criteria are then displayed in the list.

Sort by field
Enables you to sort the list of applications based on name, size, or type.

Action icons
The following icons on the Enhanced tab can be used to initiate actions:

Add icon
Enables you to add an application to the selected SVM.

Filter icon
Enables you to specify the type of application you want to display in your search results.

Display icon
Enables you to switch between a list view and a card view of the application information.

Configuration update
You can use System Manager to configure the administration details of storage virtual machines (SVMs).

Configuring the administration details of an SVM
You can use System Manager to quickly configure the administration details of a storage virtual machine (SVM). You can optionally delegate the administration of the SVM to SVM administrators.

About this task
As an SVM administrator, you cannot use System Manager to manage delegated SVMs. You can manage the SVMs only by using the command-line interface (CLI).

Steps
1. Click Configuration > Cluster > Configuration Updates.
2. In the SVMs tab, select the node, and then click Configure Administration Details.
3. In the Administrator Details section, set up a password for the vsadmin user account.
4. If you want a dedicated LIF for SVM management, select **Create a LIF for SVM management**, and then specify the network details.

A dedicated SVM management LIF is required for SAN protocols, where data and management protocols cannot share the same LIF. SVM management LIFs can be created only on data ports.

5. Specify the network details:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Then…</th>
</tr>
</thead>
</table>
| Specify the IP address by using a subnet | a. Select **Using a subnet**.
 b. In the Add Details dialog box, select the subnet from which the IP address must be assigned.
 For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
 c. If you want to assign a specific IP address to the interface, select **Use a specific IP address**, and then type the IP address.
 The IP address that you specify is added to the subnet if that IP address is not already present in the subnet range.
 d. Click **OK**. |
| Specify the IP address manually without using a subnet | a. Select **Without a subnet**.
 b. In the Add Details dialog box, perform the following steps:
 i. Specify the IP address and network mask or prefix.
 ii. Optional: Specify the gateway.
 The destination field is populated with the default value based on the family of the IP address.
 iii. If you do not want the default value, specify a new destination value.
 If a route does not exist, a new route is automatically created based on the gateway and destination.
 c. Click **OK**. |

6. Specify a port to create a data LIF:
 a. Click **Browse**.
 b. In the **Select Network Port or Adapter** dialog box, select a port, and then click **OK**.

Configuration Updates window

You can use the Configuration Updates window to update the configuration details of the cluster, storage virtual machine (SVM), and nodes.

Tabs

Nodes

Enables you to configure details of the node.

SVMs

Enables you to configure details of the SVM.
Nodes tab

Command buttons

Edit Node Name
Opens the Edit Node Name dialog box, which enables you to modify the name of the node.

Create Node-management LIF
Opens the Create Node-management LIF dialog box, which enables you to create a node-management LIF for managing a specific node.

Edit AutoSupport
Opens the Edit AutoSupport Settings dialog box, which enables you to specify an email address from which email notifications are sent and to add multiple email addresses of the host names.

SVMs tab

Command button

Configure Administration Details
Opens the Configure Administration Details dialog box, which enables you to configure the administration details of the SVM.

Related tasks

Creating a cluster on page 28
Setting up a network when an IP address range is disabled on page 30

Service Processors

You can use a Services Processor to monitor and manage your storage system parameters such as temperature, voltage, current, and fan speeds through System Manager.

Isolating management network traffic

It is a best practice to configure SP/BMC and the e0M management interface on a subnet dedicated to management traffic. Running data traffic over the management network can cause performance degradation and routing problems.

The management Ethernet port on most storage controllers (indicated by a wrench icon on the rear of the chassis) is connected to an internal Ethernet switch. The internal switch provides connectivity to SP/BMC and to the e0M management interface, which you can use to access the storage system via TCP/IP protocols like Telnet, SSH, and SNMP.
If you plan to use both the remote management device and e0M, you must configure them on the same IP subnet. Since these are low-bandwidth interfaces, the best practice is to configure SP/BMC and e0M on a subnet dedicated to management traffic.

If you cannot isolate management traffic, or if your dedicated management network is unusually large, you should try to keep the volume of network traffic as low as possible. Excessive ingress broadcast or multicast traffic may degrade SP/BMC performance.

Note: Some storage controllers, such as the AFF A800, have two external ports, one for BMC and the other for e0M. For these controllers, there is no requirement to configure BMC and e0M on the same IP subnet.

Assigning IP addresses to Service Processors

You can use System Manager to assign IP addresses to all of your Service Processors at the same time and to use these Service Processors to monitor and manage various system parameters of your storage systems.

Steps

1. Click Configuration > Cluster > Configuration Updates.
2. In the Service Processor window, click Global Settings.
3. In the Global Settings dialog box, choose the source for assigning the IP addresses:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign IP addresses automatically from a DHCP server</td>
<td>Select DHCP.</td>
</tr>
<tr>
<td>Assign IP addresses from a subnet</td>
<td>Select Subnet.</td>
</tr>
<tr>
<td>Manually provide IP addresses</td>
<td>Select Manual Assignment.</td>
</tr>
</tbody>
</table>

4. Click Save.
Editing Service Processor settings

You can modify Service Processor attributes, such as the IP address, the network mask or the prefix length, and the gateway address, by using System Manager. You can also allocate IP addresses to Service Processors that do not have any IP addresses assigned.

About this task

- You can edit the settings of a Service Processor that was assigned an IP address manually.
- You cannot edit the settings of a Service Processor that was assigned an IP address through a DHCP server or through a subnet.

Steps

1. Click Configuration > Cluster > Service Processor.
2. In the Service Processor window, select the Service Processor that you want to modify, and then click Edit.
3. In the Edit Service Processor dialog box, make the required changes, and then click Save and Close.

Understanding the Service Processor

A Service Processor is a system-independent resource in the storage system that helps you to monitor and manage storage system parameters such as temperature, voltage, current, and fan speeds.

When the Service Processor detects an abnormal condition in any of the storage system parameters, the Service Processor logs an event, notifies ONTAP about the issue, and generates AutoSupport messages through email or through SNMP traps.

The Service Processor monitors ONTAP through a watchdog mechanism and can facilitate a quick failover to the partner node. The Service Processor also tracks numerous system events and saves the events in a log file. The events include boot progress, field-replaceable unit (FRU) changes, ONTAP generated events, and user transaction history.

The Service Processor can remotely log in and administer the storage system and can diagnose, shut down, power cycle, or reboot the system, regardless of the state of the storage system. In addition, the Service Processor provides remote diagnostic features.

The combined monitoring and managing capabilities of the Service Processor enables you to evaluate the storage system in the event of an issue, and then immediately perform effective service actions.

Service Processors window

You can use the Service Processors window to view and modify Service Processors attributes, such as the IP address, network mask (IPv4) or prefix-length (IPv6), and gateway, and to configure the IP source for a Service Processor.

- Command buttons on page 95
- Service processors list on page 95
- Details area on page 95
Command buttons

Edit
Opens the Edit Service Processor dialog box, which enables you to modify the IP address, network mask (IPv4) or prefix-length (IPv6), and gateway information of a Service Processor.

Global Settings
Opens the Global Settings dialog box, which allows you to configure the source of IP address for all your Service Processors as one of the following: DHCP, subnet, or manual.

Refresh
Updates the information in the window.

Service processors list

Node
Specifies the node on which the Service Processor is located.

IP Address
Specifies the IP addresses of the Service Processor.

Status
Specifies the status the Service Processor, which can be online, offline, daemon offline, node offline, degraded, rebooted, or unknown.

MAC Address
Specifies the MAC address of the Service Processor.

Details area
The area below the Service Processor list displays detailed information about the Service Processor, including network details, such as the IP address, network mask (IPv4) or prefix-length (IPv6), gateway, IP source, and MAC address, as well as general details, such as the firmware version and whether automatic update of the firmware is enabled.

Related tasks
Setting up a network when an IP address range is disabled on page 30

Cluster peers
Peered clusters are required for data replication using SnapMirror technology and SnapVault technology, and for data replication using FlexCache volumes and SyncMirror technology in MetroCluster configurations. You can use System Manager to peer two clusters so that the peered clusters can coordinate and share resources between them.

Generating a peering passphrase
Starting with System Manager 9.6, you can generate a passphrase for the local cluster IPspace and use the same passphrase in the remote cluster when creating peering relationships.

Steps
1. Click Configuration > Cluster Peers.
2. Click Generate Peering Passphrase.
 The Generate Peering Passphrase dialog window displays.
3. Complete the following fields:
 - **IPspace**: Select the IPspace from the pull-down menu.
 - **Passphrase Validity**: Select from the drop-down menu the duration for which you want the passphrase to be valid.
 - **SVM Permissions**: Select one of the following:
 - **All SVMs** to indicate all SVMs are permitted to access the cluster.
 - **Selected SVMs** to indicate specific SVMs that are permitted to access the cluster. Highlight the SVM names in the field that you want to specify.

4. Optional: Select the checkbox if the effective cluster version of the remote cluster is earlier than ONTAP 9.6. Otherwise, the cluster peering fails to generate.

5. Click **Generate** to generate the passphrase.
 For a successful generation, a message displays that identifies your passphrase.

6. If you want to email or copy the passphrase, perform one of the following actions:
 - Click **Email passphrase details**.
 - Click **Copy passphrase**.

Modifying the cluster peer passphrase

You can modify the passphrase that is provided during cluster peer creation.

Steps

1. Click **Configuration > Cluster Peers**.
2. Select the peered cluster, and click **Edit**
 The drop-down menu displays.
3. Click **Local Cluster Passphrase**.
 The Edit Local Cluster Passphrase dialog window displays.
4. In the **Enter Passphrase** field, enter a new passphrase, and then click **Apply**.
 Note: The minimum required length of the passphrase is eight characters.
 The passphrase is modified immediately. However, there might be a delay before the correct authentication status is displayed.

5. Log in to the remote cluster, and perform Steps 1 on page 96 through 4 on page 96 to modify the passphrase in the remote cluster.
 The authentication status for the local cluster is displayed as **ok_and_offer** until you modify the passphrase in the remote cluster.

Modifying LIFs that are configured for the remote cluster

You can use System Manager to modify the IPspace and intercluster logical interfaces (LIFs) that are configured for the remote cluster. You can add new intercluster IP addresses or remove existing IP addresses.

Before you begin

You must have at least one intercluster IP address to create the cluster peer relationship.
Steps
1. Click Configuration > Cluster > Configuration Updates.
2. Select the peered cluster, and click Edit
 The drop-down menu displays.
3. Click Peer Cluster Network Parameters.
 The Edit Peer Network Parameters dialog window displays.
4. If required, modify the following fields:
 • IPspace: Select the IPspace from the pull-down menu.
 • Intercluster LIFs: Add or remove intercluster IP addresses. You can add multiple IP addresses by separating them with commas.
5. Click Modify.
6. Verify the changes that you made in the Cluster Peers window.

Changing the peering encryption status
You can use System Manager to change the peering encryption status for the selected cluster.

About this task
The encryption status can be enabled or disabled. You can change the status from enabled to disabled or from disabled to enabled by selecting Change Encryption.

Steps
1. Click Configuration > Cluster Peers.
2. Select the peered cluster, and click Edit
 The drop-down menu displays.
3. Click Change Encryption.
 This action is not available if the encryption status is “N/A”.
 The Change Encryption dialog window displays. The toggle button indicates the current encryption status.
4. Slide the toggle button to change the peering encryption status and proceed.
 • If the current encryption status is “none”, you can enable encryption by sliding the toggle button to change the status to “tls_psk”.
 • If the current encryption status is “tls_psk”, you can disable the encryption by sliding the toggle button to change the status to “none”.
5. After you enable or disable peering encryption, you can either generate a new passphrase and provide it at the peered cluster or you can apply an existing passphrase that was already generated at the peered cluster.
 Note: If the passphrase used on the local site does not match the passphrase used on the remote site, the cluster peering relationship will not function properly.
 Select one of the following:
 • Generate a passphrase: Proceed to Step 6 on page 98.
• **Already have a passphrase**: Proceed to Step 9 on page 98.

6. If you chose **Generate a passphrase**, complete the necessary fields:
 - **IPspace**: Select the IPspace from the drop-down menu.
 - **Passphrase Validity**: Select from the drop-down menu the duration for which you want the passphrase to be valid.
 - **SVM Permissions**: Select one of the following:
 - **All SVMs** to indicate that all SVMs are permitted to access the cluster.
 - **Selected SVMs** to indicate specific SVMs that are permitted to access the cluster. Highlight the SVM names in the field that you want to specify.

7. Optional: Select the checkbox if the effective cluster version of the remote cluster is earlier than ONTAP 9.6. Otherwise, the passphrase fails to generate.

8. Click **Apply**.

 The passphrase is generated for the relationship and displayed. You can either copy the passphrase or email it.

 The authentication status for the local cluster is displayed as **ok_and_offer** for the selected passphrase validity period until you provide the passphrase at the remote cluster.

9. If you already generated a new passphrase in the remote cluster, then perform the following substeps:
 a. Click **Already have a passphrase**.
 b. Enter in the **Passphrase** field the same passphrase that was generated in the remote cluster.
 c. Click **Apply**.

Deleting cluster peer relationships

You can use System Manager to delete a cluster peer relationship if the relationship is no longer required. You must delete the cluster peering relationship from each of the clusters in the peer relationship.

Steps

1. Click **Configuration > Cluster Peers**.

2. Select the cluster peer for which you want to delete the relationship, and then click **Delete**.

3. Select the confirmation check box, and then click **Delete**.

4. Log in to the remote cluster, and perform Steps 1 on page 98 through 3 on page 98 to delete the peer relationship between the local cluster and the remote cluster.

 The status of the peer relationship is displayed as “unhealthy” until the relationship is deleted from both the local cluster and the remote cluster.
Cluster Peers window

You can use the Cluster Peers window to manage peer cluster relationships, which enables you to move data from one cluster to another.

Command buttons

Create
Opens the Create Cluster Peering dialog box, which enables you to create a relationship with a remote cluster.

Edit
Displays a drop-down menu with the following choices:

 Local Cluster Passphrase
 Opens the Edit Local Cluster Passphrase dialog box, which enables you to enter a new passphrase to validate the local cluster.

Peer Cluster Network Parameters
Opens the Edit Peer Cluster Network Parameters dialog box, which enables you to modify the IPspace and add or remove intercluster LIF IP addresses.
You can add multiple IP addresses, separated by commas.

Change Encryption
Opens the Change Encryption dialog box for the selected peer cluster. While you are changing the encryption of the peered relationship, you can either generate a new passphrase or provide a passphrase that was already generated at the remote peered cluster.
This action is not available if the encryption status is “N/A”.

Delete
Opens the Delete Cluster Peer Relationship dialog box, which enables you to delete the selected peer cluster relationship.

Refresh
Updates the information in the window.

Manage SVM Permissions
Enables SVMs to automatically accept SVM peering requests.

Generate Peering Passphrase
Enables you to generate a passphrase for the local cluster IPspace by specifying the IPspace, setting the passphrase validity duration, and specifying which SVMs are given permission.
You use the same passphrase in the remote cluster for peering.

Peer cluster list

Peer Cluster
Specifies the name of the peer cluster in the relationship.

Availability
Specifies whether the peer cluster is available for communication.

Authentication Status
Specifies whether the peer cluster is authenticated or not.
Local Cluster IPspace
Displays IPspace associated with the local cluster peer relationship.

Peer Cluster Intercluster IP Addresses
Displays IP addresses associated with the intercluster peer relationship.

Last Updated Time
Displays the time at which peer cluster was last modified.

Encryption
Displays the status of the encryption of the peering relationship.

Note: Starting with System Manager 9.6, peering is encrypted by default when you establish a peering relationship between two clusters.

- N/A: Encryption is not applicable to the relationship.
- none: The peering relationship is not encrypted.
- tls_psk: The peering relationship is encrypted.

Cloud registration
You can use System Manager to register an ONTAP cluster with NetApp Data Availability Services (Data Availability Services) to back up data to the cloud.

You can also reregister and deregister an ONTAP cluster.

Registering a cluster with NetApp Data Availability Services
You can use System Manager to register an ONTAP cluster with NetApp Data Availability Services (Data Availability Services).

Before you begin
You must have obtained the configuration key from Data Availability Services.

About this task
Starting with System Manager 9.6, you can provide HTTP proxy details (IP address and port) to configure a non-transparent proxy to secure the traffic between an ONTAP instance and public S3 and SQS endpoints.

Steps
1. Click Configuration > Cloud Registration
2. Type the configuration key that you obtained from Data Availability Services.
3. Enter the IP address and port for the HTTP proxy if you want to change the defaults that are displayed.

This action is supported starting with System Manager 9.6. Checkboxes are selected to enable the use of the proxy for administrative traffic control and data transfer traffic. You can deselect these checkboxes, if required.

<table>
<thead>
<tr>
<th>Select this checkbox...</th>
<th>To enable this action...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy administrative traffic</td>
<td>Control traffic through the proxy.</td>
</tr>
<tr>
<td>Proxy data transfer</td>
<td>Route data traffic through the proxy.</td>
</tr>
</tbody>
</table>
4. Select the IPspace from the drop-down menu, and provide the values for the intercluster LIFs, ports, and netmask.
If the intercluster LIF is already created for the IPspace, the values are automatically populated.

5. Click Register to register the ONTAP cluster with Data Availability Services.
When the registration is successful, the server name (FQDN), IPspace, and status are displayed.
If the status is unavailable or disconnected, you must reregister the ONTAP cluster with Data Availability Services by using a new configuration key.
After the status displays as "Connected", you can modify the configured HTTP proxy details by clicking Edit HTTP proxy.

High availability
You can use System Manager to create high availability (HA) pairs that provide hardware redundancy that is required for nondisruptive operations and fault tolerance.

Related information
ONTAP concepts

High Availability window
The High Availability window provides a pictorial representation of the high-availability (HA) state, interconnect status, and takeover or giveback status of all of the HA pairs in ONTAP. You can also manually initiate a takeover operation or giveback operation by using the High Availability window.
You can view details such as the takeover or giveback status and the interconnect status by clicking the HA pair image.
The color indicates the HA pair status:
• Green: Indicates that the HA pair and the interconnect are optimally configured and available for takeover or giveback.
 Green also indicates the takeover in progress state, giveback in progress state, and waiting for giveback state.
• Red: Indicates a downgraded state such as a takeover failure.
• Yellow: Indicates that the interconnect status is down.
When multiple HA pairs in a cluster are simultaneously involved in storage failover operations, the cluster status that is displayed is based on the status and severity of the HA pair. The following order of severity is considered while displaying the cluster status: takeover in progress, giveback in progress, waiting for giveback.

Actions
You can perform tasks such as takeover or giveback based on the status of the nodes in the HA pair.
• Takeover node_name
 Enables you to perform a takeover operation when maintenance is required on the partner node.
• Giveback node_name
 Enables you to perform a giveback operation when the partner node that has been taken over is waiting for giveback or is in a partial giveback state.
• Enable or Disable automatic giveback
Enables or disables the automatic giveback operation.

Note: Automatic giveback is enabled by default.

Command buttons

Refresh
Updates the information in the window.

Note: The information that is displayed in the High Availability window is automatically refreshed every 60 seconds.

Related tasks

Monitoring HA pairs on page 42

Licenses

You can use System Manager to view, manage, or delete any software licenses installed on a cluster or node.

Related information

System administration

Deleting licenses

You can use the Licenses window in System Manager to delete any software license that is installed on a cluster or a node.

Before you begin

The software license that you want to delete must not be used by any service or feature.

Steps

1. Click **Configuration > Cluster > Licenses**.
2. In the **Licenses** window, perform the appropriate action:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete a specific license package on a node or a master license</td>
<td>Click the Details tab.</td>
</tr>
<tr>
<td>Delete a specific license package across all of the nodes in the cluster</td>
<td>Click the Packages tab.</td>
</tr>
</tbody>
</table>

3. Select the software license package that you want to delete, and then click **Delete**.

 You can delete only one license package at a time.

4. Select the confirmation check box, and then click **Delete**.

Result

The software license is deleted from your storage system. The deleted license is also removed from the list of licenses in the Licenses window.
License types and entitlement risk

Understanding the various license types and the associated entitlement risk helps you manage the risk that is associated with the licenses in a cluster.

License types

A package can have one or more of the following types of licenses installed in the cluster:

- **Node-locked license or standard license**
 A node-locked license is issued for a node with a specific system serial number (also known as a controller serial number). This license is valid only for the node that has the matching serial number.

 Installing a node-locked license entitles a node to the licensed functionality. For the cluster to use the licensed functionality, at least one node must be licensed for the functionality. It might be out of compliance to use the licensed functionality on a node that does not have an entitlement for the functionality.

 ONTAP 8.2 and later releases treat a license that was installed prior to Data ONTAP 8.2 as a standard license. Therefore, in ONTAP 8.2 and later releases, all of the nodes in the cluster automatically have the standard license for the package that the previously licensed functionality is part of.

- **Master or site license**
 A master or site license is not tied to a specific system serial number. When you install a site license, all of the nodes in the cluster are entitled to the licensed functionality.

 If your cluster has a master license and you remove a node from the cluster, the node does not carry the site license with it, and the node is no longer entitled to the licensed functionality. If you add a node to a cluster that has a master license, the node is automatically entitled to the functionality that is granted by the site license.

- **Demo or temporary license**
 A demo or temporary license expires after a certain period of time. This license enables you to try certain software functionality without purchasing an entitlement. A temporary license is a cluster-wide license, and is not tied to a specific serial number of a node.

 If your cluster has a temporary license for a package and you remove a node from the cluster, the node does not carry the evaluation license with it.

- **Capacity license (ONTAP Select and FabricPool only)**
 An ONTAP Select instance is licensed according to the amount of data that the user wants to manage. For example, the user might buy a 10 TB capacity license to enable ONTAP Select to manage up to 10 TB of data. If more storage capacity is attached to the system than ONTAP Select is licensed to manage, ONTAP Select will not operate. By default, the maximum storage capacity that can be attached to an ONTAP Select instance is 2 TB until a capacity license (for example, a 5 TB capacity license, a 10 TB capacity license, and so on) is purchased and installed.

 Starting with ONTAP 9.2, FabricPool-enabled aggregates require a capacity license to be used with a third-party storage tier (for example, AWS). The FabricPool capacity license defines the amount of data that can be stored in the cloud tier storage.

Entitlement risk

An entitlement risk arises because of the non-uniform installation of a node-locked license. If the node-locked license is installed on all the nodes, there is no entitlement risk.

The entitlement risk level can be high risk, medium risk, no risk, or unknown risk depending on certain conditions:
• High risk
 ◦ If there is usage on a particular node, but the node-locked license is not installed on that node
 ◦ If the demo license that was installed on the cluster expires, and there is usage on any node

 Note: If a site license is installed on a cluster, the entitlement risk is never high.

• Medium risk
 If a site license is not installed, and the node-locked license is non-uniformly installed on the nodes in a cluster

• No risk
 There is no entitlement risk if a node-locked license is installed on all of the nodes, or a site license is installed on the cluster, irrespective of usage.

• Unknown
 The risk is unknown if the API is sometimes unable to retrieve the data related to entitlement risk that is associated with a cluster or the nodes in the cluster.

Licenses window

Your storage system arrives from the factory with preinstalled software. If you want to add or remove a software license after you receive the storage system, you can use the Licenses window.

 Note: System Manager does not monitor evaluation licenses and does not provide any warning when an evaluation license is nearing expiry. An evaluation license is a temporary license that expires after a certain period of time.

• **Command buttons** on page 104
• **Packages tab** on page 104
• **License Package details area** on page 105
• **Details tab** on page 105

Command buttons

Add

Opens the Add License window, which enables you to add new software licenses.

Delete

Deletes the software license that you select from the software license list.

Refresh

Updates the information in the window.

Packages tab

Displays information about the license packages that are installed on your storage system.

Package

Displays the name of the license package.

Entitlement Risk

Indicates the level of risk as a result of license entitlement issues for a cluster. The entitlement risk level can be high risk (†), medium risk (‡), no risk (§), unknown (¶), or unlicensed (-).
Description
Displays the level of risk as a result of license entitlement issues for a cluster.

License Package details area
The area below the license packages list displays additional information about the selected license package. This area includes information about the cluster or node on which the license is installed, the serial number of the license, usage in the previous week, whether the license is installed, the expiration date of the license, and whether the license is a legacy one.

Details tab
Displays additional information about the license packages that are installed on your storage system.

Package
Displays the name of the license package.

Cluster/Node
Displays the cluster or node on which the license package is installed.

Serial Number
Displays the serial number of the license package that is installed on the cluster or node.

Type
Displays the type of the license package, which can be the following:

- Temporary: Specifies that the license is a temporary license, which is valid only during the demonstration period.
- Master: Specifies that the license is a master license, which is installed on all the nodes in the cluster.
- Node Locked: Specifies that the license is a node-locked license, which is installed on a single node in the cluster.
- Capacity:
 - For ONTAP Select, specifies that the license is a capacity license, which defines the total amount of data capacity that the instance is licensed to manage.
 - For FabricPool, specifies that the license is a capacity license, which defines the amount of data that can be managed in the attached third-party storage (for example, AWS).

State
Displays the state of the license package, which can be the following:

- Evaluation: Specifies that the installed license is an evaluation license.
- Installed: Specifies that the installed license is a valid purchased license.
- Warning: Specifies that the installed license is a valid purchased license and is approaching maximum capacity.
- Enforcement: Specifies that the installed license is a valid purchased license and has exceeded the expiry date.
- Waiting for License: Specifies that the license has not yet been installed.

Legacy
Displays whether the license is a legacy license.
Maximum Capacity

- For ONTAP Select, displays the maximum amount of storage that can be attached to the ONTAP Select instance.
- For FabricPool, displays the maximum amount of third-party object store storage that can be used as cloud tier storage.

Current Capacity

- For ONTAP Select, displays the total amount of storage that is currently attached to the ONTAP Select instance.
- For FabricPool, displays the total amount of third-party object store storage that is currently used as cloud tier storage.

Expiration Date

Displays the expiration date of the software license package.

Related tasks

- Adding licenses on page 40
- Deleting licenses on page 102
- Creating a cluster on page 28

Cluster Expansion

You can use System Manager to increase the size and capabilities of your storage by adding compatible nodes to the cluster and configuring the node network details. You can also view the summary of the nodes.

When you log in to System Manager, System Manager automatically detects compatible nodes that have been cabled but have not been added to the cluster and prompts you to add the nodes. You can add compatible nodes as and when System Manager detects the nodes or you can manually add the nodes at a later time.

Steps

1. Adding nodes to a cluster on page 106
2. Configuring the network details of the nodes on page 107

Adding nodes to a cluster

You can use System Manager to increase the size and capabilities of your storage system by adding nodes to an existing cluster.

Before you begin

- New compatible nodes must be cabled to the cluster.
 Only the ports that are in the default broadcast domain will be listed in the Network window.
- All of the nodes in the cluster must be up and running.
- All of the nodes must be of the same version.

Step

1. Add the new compatible nodes to the cluster:
<table>
<thead>
<tr>
<th>If you are...</th>
<th>Do this...</th>
</tr>
</thead>
</table>
| Not logged in to System Manager | a. Log in to System Manager.
 Note: The new compatible nodes are automatically detected by System Manager at login. System Manager prompts you to add the new compatible nodes to the cluster.
b. Click Add Nodes to Cluster.
c. Modify the name of the nodes.
d. Specify the node licenses.
e. Click Submit and Proceed. |
| Logged in to System Manager | a. Click Configuration > Cluster > Expansion.
 System Manager searches for newly added nodes. If any warnings are displayed, you must fix them before proceeding. If new compatible nodes are discovered, proceed to the next step.
b. Modify the name of the nodes.
c. Specify the node licenses.
d. Click Submit and Proceed. |

Configuring the network details of the nodes

You can use System Manager to configure the node management LIF and Service Processor settings for the newly added nodes.

Before you begin

- Sufficient number of ports must be present in the default IPspace for LIF creation.
- All the ports must be up and running.

Steps

1. Configure node management:
 a. Enter the IP address in the **IP Address** field.
b. Select the port for node management in the **Port** field.
c. Enter the netmask and gateway details.

2. Configure Service Processor settings:
 a. Select the **Override defaults** check box to override the default values.
b. Enter the IP address, netmask, and gateway details.

3. Click **Submit and Proceed** to complete the network configuration of the nodes.

4. Verify the details of the nodes in the **Summary** page.

After you finish

- If your cluster is protected, you should create the required number of intercluster LIFs in the newly added nodes to avoid partial peering and unhealthy protection.
If SAN data protocols are enabled in your cluster, you should create the required number of SAN Data LIFs for serving data.

Related tasks

Creating network interfaces on page 136

Updating clusters

You can use System Manager to update a cluster or the individual nodes in a high-availability (HA) pair. You can also update a cluster in a MetroCluster configuration.

Updating clusters in a non MetroCluster configuration

You can use System Manager to update a cluster or the individual nodes in a high-availability (HA) pair. To perform an update, you should select an ONTAP image, validate that your cluster or the individual nodes in the HA pair are ready for the update, and then perform the update.

Updating clusters in a MetroCluster configuration

You can use System Manager to update a cluster in MetroCluster configurations. You must perform each operation on both the clusters except for updating the cluster.

Related information

Upgrade, revert, or downgrade
Prerequisite: Verify the update requirements on site A and then on site B.

Obtain the ONTAP image on site A and then on site B.

Select the ONTAP image on site A and then on site B.

Perform the pre-update validation on site A and then on site B.

Perform remedial action for warnings and errors on site A and then on site B, if required.

Perform the update only on site A.

Verify that the cluster update is complete on site A and then on site B.

Updating site A automatically updates site B.

Related information

Upgrade, revert, or downgrade
Obtaining ONTAP software images

For ONTAP 9.4 and later, you can copy the ONTAP software image from the NetApp Support Site to a local folder. For upgrades from ONTAP 9.3 or earlier, you must copy the ONTAP software image to an HTTP server or FTP server on your network.

About this task

To upgrade the cluster to the target release of ONTAP, you require access to software images. Software images, firmware version information, and the latest firmware for your platform model are available on the NetApp Support Site. You should note the following important information:

- Software images are specific to platform models.
 You must obtain the correct image for your cluster.
- Software images include the latest version of system firmware that was available when a given version of ONTAP was released.
- If you are upgrading a system with NetApp Volume Encryption to ONTAP 9.5 or later, you must download the ONTAP software image for non-restricted countries, which includes NetApp Volume Encryption.
 If you use the ONTAP software image for restricted countries to upgrade a system with NetApp Volume Encryption, the system panics and you lose access to your volumes.

Steps

1. Locate the target ONTAP software in the Software Downloads area of the NetApp Support Site.
2. Copy the software image.
 - For ONTAP 9.3 or earlier, copy the software image (for example, 93_q_image.tgz) from the NetApp Support Site to the directory on the HTTP server or FTP server from which the image will be served
 - For ONTAP 9.4 or later, copy the software image (for example, 95_q_image.tgz) from the NetApp Support Site to the directory on the HTTP server or FTP server from which the image will be served or to a local folder.

Updating single-node clusters

You can use System Manager to update single-node clusters.

Before you begin

- The clusters must be running ONTAP 9.4 or later.
- You must have copied the software image from the NetApp Support Site to an HTTP server on your network, to an FTP server on your network, or to your local system so that the nodes can access the image.

About this task

- Starting with System Manager 9.5, you can update single-node clusters in two-pack MetroCluster configurations.
 You must perform this operation on both the sites.
- Updating single-node clusters in MetroCluster configurations is not disruptive.
 The System Manager user interface is not available while the cluster is rebooting.
• In System Manager 9.4 and later, you can update single-node clusters in non-MetroCluster configurations. Updating single-node clusters in non-MetroCluster configurations is disruptive. The client data is not available while the update is in progress.

• If you try to perform other tasks while updating the node that hosts the cluster management LIF, an error message might be displayed. You must wait for the update to finish before performing any operations.

• If the NVMe protocol is configured in System Manager 9.4 and you perform an update from System Manager 9.4 to System Manager 9.5, then the NVMe protocol is available for a grace period of 90 days without a license. This feature is not available in MetroCluster configurations.

• If the NVMe protocol is not configured in System Manager 9.5 and you perform an update from System Manager 9.5 to System Manager 9.6, then the grace period is not provided, and you must install the NVMe license to use the NVMe protocol. This feature is not available in MetroCluster configurations.

Steps

1. Click Configuration > Cluster > Update.

2. In the Cluster Update tab, add a new software image or select an available software image.

If you want to…	Then…
Add a new software image from the local client	a. Click Add from Local Client.
b. Search for the software image, and then click Open.	

 Add a new software image from the NetApp Support Site | a. Click Add from Server.
 | b. In the Add a New Software Image dialog box, enter the URL of the HTTP server or FTP server on which you have saved the image that was downloaded from the NetApp Support Site.
 | For anonymous FTP, you must specify the URL in the ftp://anonymous@ftpserver format.
 | c. Click Add.

 Select an available image | Choose one of the listed images.

3. Click Validate to run the pre-update validation checks to verify whether the cluster is ready for an update.

 The validation operation checks the cluster components to validate that the update can be completed, and then displays any errors or warnings. The validation operation also displays any required remedial action that you must perform before updating the software.

 Important: You must perform all of the required remedial actions for the errors before proceeding with the update. Although you can ignore the remedial actions for the warnings, the best practice is to perform all of the remedial actions before proceeding with the update.

4. Click Next.

5. Click Update.

 Validation is performed again.

 • When the validation is complete, a table displays any errors and warnings, along with any required remedial actions to be taken before proceeding.
• If the validation is completed with warnings, you can choose to select the **Continue update with warnings** checkbox, and then click **Continue**.

When the validation is complete and the update is in progress, the update might be paused because of errors. You can click the error message to view the details, and then perform the remedial actions before resuming the update.

After the update is completed successfully, the node reboots, and you are redirected to the System Manager login page. If the node takes a long time to reboot, you must refresh your browser.

6. Log in to System Manager, and verify that the cluster is successfully updated to the selected version by clicking **Configuration > Cluster > Update > Update History**, and then viewing the details.

Updating a cluster nondisruptively

You can use System Manager to update a cluster or individual nodes in high-availability (HA) pairs that are running ONTAP 8.3.1 or later to a specific version of ONTAP software without disrupting access to client data.

Before you begin

• All of the nodes must be in HA pairs.
• All of the nodes must be healthy.
• You must have copied the software image from the NetApp Support Site to an HTTP server or FTP server on your network so that the nodes can access the image.

Obtaining ONTAP software images on page 110

About this task

• If you try to perform other tasks from System Manager while updating the node that hosts the cluster management LIF, an error message might be displayed. You must wait for the update to finish before performing any operations.

• A rolling update is performed for clusters with fewer than eight nodes, and a batch update is performed for clusters with more than eight nodes.
 In a rolling update, the nodes in the cluster are updated one at a time. In a batch update, multiple nodes are updated in parallel.

• You can nondisruptively update ONTAP software from one long-term service (LTS) release to the next LTS release (LTS+1).
 For example, if ONTAP 9.1 and ONTAP 9.3 are LTS releases, you can nondisruptively update your cluster from ONTAP 9.1 to ONTAP 9.3.

• Starting with System Manager 9.6, if the NVMe protocol is configured in System Manager 9.5 and you perform an upgrade from System Manager 9.5 to System Manager 9.6, you no longer have a grace period of 90 days to have the NVMe protocol available without a license. If the grace period is in effect when you upgrade from ONTAP 9.5 to 9.6, the grace period must be replaced with a valid NVMeoF license so you can continue to use the NVMe features.
 This feature is not available in MetroCluster configurations.

• If the NVMe protocol is not configured in System Manager 9.5 and you perform an update from System Manager 9.5 to System Manager 9.6, then the grace period is not provided, and you must install the NVMe license to use the NVMe protocol.
 This feature is not available in MetroCluster configurations.

• Starting with ONTAP 9.5, at least one NVMe LIF must be configured for each node in an HA pair using the NVMe protocol. You can also create a maximum of two NVMe LIFs per node.
When you upgrade to ONTAP 9.5, you must ensure that a minimum of one NVMe LIF is defined for each node in an HA pair using the NVMe protocol.

Steps
1. Click **Configuration > Cluster > Update**.
2. In the **Update** tab, add a new image or select an available image.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a new software image from the local client</td>
<td>a. Click Add from Local Client.</td>
</tr>
<tr>
<td></td>
<td>b. Search for the software image, and then click Open.</td>
</tr>
<tr>
<td>Add a new software image from the NetApp Support Site</td>
<td>a. Click Add from Server.</td>
</tr>
<tr>
<td></td>
<td>b. In the Add a New Software Image dialog box, enter the URL of the HTTP server or FTP server on which you have saved the image that was downloaded from the NetApp Support Site. For anonymous FTP, you must specify the URL in the <code>ftp://anonymous@ftpserver</code> format.</td>
</tr>
<tr>
<td></td>
<td>c. Click Add.</td>
</tr>
<tr>
<td>Select an available image</td>
<td>Choose one of the listed images.</td>
</tr>
</tbody>
</table>

3. Click **Validate** to run the pre-update validation checks to verify whether the cluster is ready for an update.

The validation operation checks the cluster components to validate that the update can be completed nondisruptively, and then displays any errors or warnings. It also displays any required remedial action that you must perform before updating the software.

Important: You must perform all of the required remedial actions for the errors before proceeding with the update. Although you can ignore the remedial actions for the warnings, the best practice is to perform all of the remedial actions before proceeding with the update.

4. Click **Next**.
5. Click **Update**.

Validation is performed again.

- When the validation is complete, a table displays any errors and warnings, along with any required remedial actions to be taken before proceeding.

- If the validation is completed with warnings, you can choose to select the **Continue update with warnings** checkbox, and then click **Continue**.

When the validation is complete and the update is in progress, the update might be paused because of errors. You can click the error message to view the details, and then perform the remedial actions before resuming the update.

After the update is completed successfully, the node reboots, and you are redirected to the System Manager login page. If the node takes a long time to reboot, you must refresh your browser.

6. Log in to System Manager and verify that the cluster is successfully updated to the selected version by clicking **Configuration > Cluster > Update > Update History**, and then viewing the details.

Related concepts

How to update a cluster nondisruptively on page 114
How to update a cluster nondisruptively

You can use System Manager to update a cluster nondisruptively to a specific ONTAP version. In a nondisruptive update, you have to select an ONTAP image, validate that your cluster is ready for the update, and then perform the update.

During a nondisruptive update, the cluster remains online and continues to serve data.

Planning and preparing for the update

As part of planning and preparing for the cluster update, you have to obtain the version of the ONTAP image to which you want to update the cluster from the NetApp Support Site, select the software image, and then perform a validation. The pre-update validation verifies whether the cluster is ready for an update to the selected version.

If the validation finishes with errors and warnings, you have to resolve the errors and warnings by performing the required remedial actions, and then verify that the cluster components are ready for the update. For example, during the pre-update validation, if a warning is displayed that offline aggregates are present in the cluster, you must navigate to the aggregate page, and then change the status of all of the offline aggregates to online.

Performing an update

When you update the cluster, either the entire cluster is updated or the nodes in a high-availability (HA) pair are updated. As part of the update, the pre-update validation is run again to verify that the cluster is ready for the update.

A rolling update or batch update is performed, depending on the number of nodes in the cluster.

Rolling update

One of the nodes is taken offline and is updated while the partner node takes over the storage of that node.

A rolling update is performed for a cluster that consists of two or more nodes. This is the only update method for clusters with less than eight nodes.

Batch update

The cluster is separated into two batches, each of which contains multiple HA pairs.

A batch update is performed for a cluster that consists of eight or more nodes. In such clusters, you can perform either a batch update or a rolling update. This is the default update method for clusters with eight or more nodes.

Related tasks

Updating a cluster nondisruptively on page 112

Cluster Update window

You can use the Cluster Update window to perform an automated cluster update nondisruptively or you can update single-node clusters disruptively.

- Tabs on page 115
- Cluster Update tab on page 115
- Update History tab on page 115
Tabs

Cluster Update
 Enables you to perform an automated cluster update nondisruptively or you can update single-node clusters disruptively.

Update History
 Displays the details of previous cluster updates.

Cluster Update tab
The Cluster Update tab enables you perform an automated cluster update nondisruptively or you can update single-node clusters disruptively.

Command buttons

Refresh
 Updates the information in the window.

Select
 You can select the version of the software image for the update.

 • Cluster Version Details: Displays the current cluster version in use and the version details of the nodes or high-availability (HA) pairs.

 • Available Software Images: Enables you to select an existing software image for the update. Alternatively, you can download a software image from the NetApp Support Site and add the image for the update.

Validate
 You can view and validate the cluster against the software image version for the update. A pre-update validation checks whether the cluster is in a state that is ready for an update. If the validation is completed with errors, a table displays the status of the various components and the required corrective action for the errors.

 You can perform the update only when the validation is completed successfully.

Update
 You can update all of the nodes in the cluster or an HA pair in the cluster to the selected version of the software image. While the update is in progress, you can choose to pause the update, and you can then either cancel or resume the update.

 If an error occurs, the update is paused and an error message is displayed with the remedial steps. You can choose to either resume the update after performing the remedial steps or cancel the update. You can view the table with the node name, uptime, state, and ONTAP version when the update is successfully completed.

Update History tab
Displays details about the cluster update history.

Update History list

Image Version
 Specifies the version of the ONTAP image to which the node will be updated.

Software Updates Installed on
 Specifies the type of disk on which the updates are installed.
MetroCluster switchover and switchback

Starting with System Manager 9.6, you can use MetroCluster switchover and switchback operations to allow one cluster site to take over the tasks of another cluster site. This capability allows you to facilitate maintenance or recovery from disasters.

A switchover operation allows one cluster (Site A) to take over the tasks that another cluster (Site B) usually performs. After the switchover, the cluster that has been taken over (Site B) can be brought down for maintenance and repairs. After the maintenance is completed, Site B can come up and healing tasks are completed, then you can initiate a switchback operation that allows the repaired cluster (Site B) to resume the tasks it usually performs.

System Manager supports two kinds of switchover operations, based on the status of the remote cluster site:

- A negotiated (planned) switchover: You initiate this operation when you need to do planned maintenance on a cluster or test your disaster recovery procedures.
- An unplanned switchover: You initiate this operation when a disaster has occurred on a cluster (Site B) and you want another site or cluster (Site A) to take over the tasks of the cluster affected by the disaster (Site B) while you perform repairs and maintenance.

You perform the same steps in System Manager for both switchover operations. When you initiate a switchover, System Manager determines whether the operation is feasible and aligns the workload accordingly.

MetroCluster switchover and switchback workflow

Starting with System Manager 9.6, you can use MetroCluster switchover and switchback operations after a disaster that renders all the nodes in the source cluster unreachable and powered off. You can also use the switchover workflow for a negotiated (planned) switchover in cases such as disaster recovery testing or a site going offline for maintenance.

The overall process for switchover and switchback workflow includes the following three phases:

1. **Switchover:** The switchover process allows you to transfer control of the storage and client access from a source cluster site (Site B) to another cluster site (Site A). This operation helps you provide nondisruptive operations during testing and maintenance. In addition, this process also enables you to recover from a site failure. For disaster recovery testing or planned site
maintenance, you can perform a MetroCluster switchover to transfer control to a disaster recovery (DR) site (Site A). Before you start the process, at least one of the surviving site nodes must be up and running before you perform the switchover. If a switchover operation previously failed on certain nodes on the DR site, the operation can be retried on all of those nodes.

2. **Site B Operations**: After switchover is completed, System Manager completes the healing process for the MetroCluster IP configuration. Healing is a planned event, which gives you full control of each step to minimize downtime. Healing is a two-phase process that occurs on the storage and controller components to prepare the nodes at the repaired site for the switchback process. During the first phase, the process heals the aggregates by resynchronizing the mirrored plexes and then heals the root aggregates by switching them back to the disaster site. In the second phase, the site is made ready for the switchback process.

3. **Switchback**: After maintenance and repairs are performed on Site B, you initiate the switchback operation to return control of the storage and client access from Site A to Site B. For a successful switchback, the following conditions must exist:
 - The home nodes and storage shelves must be powered on and reachable by nodes in Site A.
 - System Manager must have successfully completed the healing phase before you can initiate the switchback operation.
 - All the aggregates in Site A should be in mirrored status and cannot be in degraded or resyncing status.
 - All previous configuration changes must be complete before performing a switchback operation. This prevents those changes from competing with the negotiated switchover or switchback operation.

MetroCluster switchover and switchback workflow flowchart

The following flowchart illustrates the phases and processes that occur when you initiate switchover and switchback operations.
Preparing for switchover and switchback operations

Before you perform switchover operations using System Manager 9.6, you should verify that the necessary steps have been performed on the affected site.

Steps

1. If you are recovering from a disaster on Site B, you must perform the following steps:
 a. Repair or replace any damaged disks or hardware.
b. Restore power.

c. Rectify error issues that occur.

d. Bring up the disaster site.

2. Ensure the following conditions exist in your cluster:

 • Both sites are in Active state if you are performing a planned switchover.

 • The MetroCluster system uses configuration type “IP_Fabric”.

 • Both sites are operating with a two-node configuration (two nodes in each cluster). Sites with a single-node or four-node configuration are not supported for switchover and switchback operations using System Manager.

3. If you are launching the remote site (Site B) from the local site (Site A), ensure that Site B is running System Manager 9.6 or a later version.

Renaming the MetroCluster local site (Site A)

You can use System Manager to rename the MetroCluster local site (Site A) in a cluster.

Steps

1. Click Configuration > Configuration Updates.

2. Click Update cluster name.

3. Update the name in the text box, then click Submit.

 You can view the updated name when the MetroCluster Site A status is displayed.

4. To display the updated name of MetroCluster Site A when viewing it from the remote site (Site B), execute the following command within the CLI on the remote site (Site B):

   ```
   cluster peer modify-local-name
   ```

Performing a negotiated switchover

Starting with System Manager 9.6, you can initiate a negotiated (planned) switchover of a MetroCluster site. This operation is useful when you want to perform disaster recovery testing or planned maintenance on the site.

Steps

1. In System Manager, use the cluster administrator credentials to log on to the local MetroCluster site (Site A).

2. Click Configuration > MetroCluster

 The MetroCluster Switchover/Switchback Operations window displays.

3. Click Next.

 The MetroCluster Switchover and Switchback Operations window displays the status of the operations, and System Manager verifies whether a negotiated switchover is possible.

4. Perform one of the following substeps when the validation process has completed:

 • If validation is successful, proceed to Step 5 on page 120.

 • If validation fails, but Site B is up, then an error has occurred, such as a problem with a subsystem or NVram mirroring is not synchronized. You can perform either of the following processes:
- Fix the issue that is causing the error, click Close, and then start again at Step 1 on page 119.

- Halt the Site B nodes, click Close, and then perform the steps in Performing an unplanned switchover on page 120.

- If validation fails, and Site B is down, then most likely there is a connection problem. Verify that Site B is really down, then perform the steps in Performing an unplanned switchover on page 120.

5. Click Switchover from Site B to Site A to initiate the switchover process.

A warning message displays, warning you that the switchover operation stops all data SVMs on Site B and restarts them on Site A.

6. If you want to proceed, click Yes.

The switchover process begins. The states of Site A and Site B are displayed above the graphic representations of their configurations. If the switchover operation fails, an error message displays. Click Close. Correct any errors and start again at Step 1 on page 119

7. Wait until System Manager shows that healing has been completed.

When healing is completed, Site B is operational, and systems prepare for the switchback process.

When the preparations for the switchback process are complete, the Switchback from Site A to Site B button is active at the bottom of the window.

8. To proceed with the switchback operation, perform the steps in Performing a switchback on page 121.

Performing a unplanned switchover

Starting with System Manager 9.6, you can initiate an unplanned switchover of a MetroCluster site. This operation is useful after an outage event or disaster event.

Before you begin

Your MetroCluster is running in normal operating condition; however, the nodes in the local cluster (Site A) are up, but the nodes in the remote cluster (Site B) are down.

Steps

1. Verify that Site B is actually down.

A connection error might make Site B appear to be down.

Attention: Starting the switchover process with Site B up could cause disastrous results.

2. In System Manager, log on to the local MetroCluster site (Site A) using the cluster administrator credentials.

3. Click Configuration > MetroCluster

The MetroCluster Switchover/Switchback Operations window displays.

4. Click Next.

The MetroCluster Switchover/Switchback Operations window displays the status of the operations, and System Manager verifies whether a negotiated switchover is feasible.

5. When the validation process is complete, click Switchover Site B to Site A to initiate the switchover process.
A warning message displays, warning you that the switchover operation switches control from Site B to Site A. The status of Site B should be “UNREACHABLE”, and all Site B nodes are shown in red text.

Note: As noted in Step 1 on page 120, Site B must actually be down and not just unconnected. Also, you should be aware that the switchover operation might cause data loss.

6. If you want to proceed, ensure the check box is checked, and then click **Yes**.

 The switchover process begins. The states of Site A and Site B are displayed above the graphic representations of their configurations. If the switchover operation fails, an error message displays. Click **Close**. Correct any errors and start again at Step 1 on page 119

7. Perform all required maintenance activities for Site B.

8. Ensure Site B is up.

 The healing process begins. When System Manager shows the healing is completed, Site B is operational and the systems prepare for the switchback process. The **Switchback from Site A to Site B** button appears at the bottom of the window.

9. Proceed to *Performing a switchback* on page 121 to initiate the switchback operation.

Performing a switchback

Starting with System Manager 9.6, you can perform a switchback operation that restores control to the original MetroCluster site (Site B) after the system has completed a successful switchover operation.

Before you begin

Before you perform a switchback operation, you must complete the following tasks:

- You must prepare the MetroCluster sites by *Performing a negotiated (planned) switchover* on page 119 or *Performing an unplanned switchover* on page 120.
- If errors occurred during the healing operation, you must follow the displayed instructions to fix them.
- If the state of the remote site is displayed as “Getting ready for switchback”, then the aggregates are still resynchronizing. You should wait until the status of the remote site indicates that it is ready for switchback.

About this task

If a switchover operation is successful, the MetroCluster Switchover and Switchback Operations window displays. The window shows the status of both sites and provides a message that tells you the operation was successful.

Steps

1. Click **Switchback from Site A to Site B** to initiate the switchback operation.

 A warning message tells you that the switchback operation is returning MetroCluster control to Site B and that the process might take some time.

2. If you want to proceed, click **Yes**.

3. Perform one of the following substeps when the switchback process has completed:

 - If the switchback operation is successful, click **Done** to acknowledge the completion of MetroCluster operations.
Note: Until you acknowledge the completion of the switchback operation, System Manager continues to display a message that the operation has completed. You cannot initiate another operation or monitor subsequent switchover or switchback operations until you acknowledge the completion of the switchback operation.

- If the switchback operation is not successful, error messages display at the top of the status area. Make corrections if needed, and click **Switchback from Site A to Site B** to retry the process.

MetroCluster Switchover and Switchback Operations window

Starting with System Manager 9.6, you can use the MetroCluster Switchover and Switchback Operations window to initiate a negotiated (planned) switchover or an unplanned switchover from one site or cluster (Site B) to another site or cluster (Site A). After you perform maintenance or repairs on Site B, you can initiate a switchback from Site A to Site B and view the status of the operation in this window.

Command Buttons

- **Switchover Site B to Site A**
 - Initiates the process that switches Site B over to Site A.

- **Switchback Site A to Site B**
 - Initiates the process that switches Site A back to Site B.

Other actions

- **Navigate to Site B cluster**
 - Enter the cluster management IP address of Site B.

- **Checkbox for unplanned switchover**
 - If you want to initiate an unplanned switchover, check the box labeled **Continue with unplanned switchover**.

Status areas

As the system progresses through the process of switching over or switching back, System Manager displays status with the following methods:

- **Progress line graphic**
 - Displays phases of the operations and indicates the phases that have been completed. The phases are Switchover, Site B Operations, and Switchback.

- **Show Details**
 - Displays a list of time-stamped system events as the MetroCluster operations progress.

- **Local: Site A**
 - Displays a graphic of the configuration of the cluster at Site A, including the status of that site as it progresses through the phases of the operation.

- **Remote: Site B**
 - Displays a graphic of the configuration of the cluster at Site B, including the status of that site as it progresses through the phases of the operation.

If you log in to Site B and view the MetroCluster Switchover and Switchback Operations window, then the status of Site A is shown as “INACTIVE” and the status of Site B is shown as “SWITCHOVER MODE”.
Date and time settings of a cluster

You can use System Manager to manage the date and time settings of a cluster.

Related information

System administration

Date and Time window

The Date and Time window enables you to view the current date and time settings for your storage system and to modify the settings when required.

Command buttons

Edit

Opens the Edit Date and Time dialog box, which enables you to edit the time servers.

Refresh

Updates the information in the window.

Details area

The details area displays information about the date, time, time zone, NTP service, and time servers for your storage system.

Related tasks

Setting the time zone for a cluster on page 41

Setting up a network when an IP address range is disabled on page 30

SNMP

You can use System Manager to configure SNMP to monitor SVMs in your cluster.

Related information

Network and LIF management

Enabling or disabling SNMP

You can enable or disable SNMP on your clusters by using System Manager. SNMP enables you to monitor the storage virtual machines (SVMs) in a cluster to avoid issues before they can occur and to prevent issues from occurring.

Steps

1. Click 🔄.
2. In the Setup pane, click SNMP.
3. In the SNMP window, click either Enable or Disable.
Editing SNMP information

You can use the Edit SNMP Settings dialog box in System Manager to update information about the storage system location and contact personnel, and to specify the SNMP communities of your system.

About this task

System Manager uses the SNMP protocols SNMPv1 and SNMPv2c and an SNMP community to discover storage systems.

Steps

1. Click ✉.
2. In the Setup pane, click SNMP.
3. Click Edit.
4. In the General tab, specify the contact personnel information and location information for the storage system, and the SNMP communities.
 The community name can be of 32 characters and must not contain the following special characters: , / : " ’ |.
5. In the SNMPv3 tab, do the following:
 a. Click Add to add an SNMPv3 user.
 b. Specify the username and modify the engine ID, if required.
 c. Select the Authentication Protocol and enter your credentials.
 d. Select the Privacy Protocol and enter your credentials.
 e. Click OK to save the changes.
6. Click OK.
7. Verify the changes that you made to the SNMP settings in the SNMP window.

Related references

SNMP window on page 125

Enabling or disabling SNMP traps

SNMP traps enable you to monitor the health and state of the various components of your storage system. You can use the Edit SNMP Settings dialog box in System Manager to enable or disable SNMP traps on your storage system.

About this task

Although SNMP is enabled by default, SNMP traps are disabled by default.

Steps

1. Click ✉.
2. In the Setup pane, click SNMP.
3. In the **SNMP** window, click **Edit**.

4. In the **Edit SNMP Settings** dialog box, select the **Trap hosts** tab, and then select or clear the **Enable traps** check box to enable or disable SNMP traps, respectively.

5. If you enable SNMP traps, add the host name or IP address of the hosts to which the traps are sent.

6. Click **OK**.

Related references

SNMP window on page 125

Testing the trap host configuration

You can use System Manager to test whether you have configured the trap host settings correctly.

Steps

1. Click 🌟.

2. In the **Setup** pane, click **SNMP**.

3. In the **SNMP** window, click **Test Trap Host**.

4. Click **OK**.

SNMP window

The SNMP window enables you to view the current SNMP settings for your system. You can also change your system's SNMP settings, enable SNMP protocols, and add trap hosts.

Command buttons

Enable/Disable

Enables or disables SNMP.

Edit

Opens the Edit SNMP Settings dialog box, which enables you to specify the SNMP communities for your storage system and enable or disable traps.

Test Trap Host

Sends a test trap to all the configured hosts to check whether the test trap reaches all the hosts and whether the configurations for SNMP are set correctly.

Refresh

Updates the information in the window.

Details

The details area displays the following information about the SNMP server and host traps for your storage system:

SNMP

Displays whether SNMP is enabled or not.

Traps

Displays if SNMP traps are enabled or not.
Location
Displays the address of the SNMP server.

Contact
Displays the contact details for the SNMP server.

Trap host IP Address
Displays the IP addresses of the trap host.

Community Names
Displays the community name of the SNMP server.

Security Names
Displays the security style for the SNMP server.

Related tasks
- Editing SNMP information on page 124
- Enabling or disabling SNMP traps on page 124

LDAP
You can use System Manager to configure an LDAP server that centrally maintains user information.

Related tasks
- Adding an LDAP client configuration on page 343
- Deleting an LDAP client configuration on page 344
- Editing an LDAP client configuration on page 344

Viewing the LDAP client configuration
You can use System Manager to view the LDAP clients that are configured for a storage virtual machine (SVM) in a cluster.

Steps
1. Click 🌐.
2. In the Setup pane, click LDAP.
 The list of LDAP clients are displayed in the LDAP window.

Using LDAP services
An LDAP server enables you to centrally maintain user information. If you store your user database on an LDAP server in your environment, you can configure your storage virtual machine (SVM) to look up user information in your existing LDAP database.

About this task
ONTAP supports LDAP for user authentication, file access authorization, and user lookup and mapping services between NFS and CIFS.
LDAP window

You can use the LDAP window to view LDAP clients for user authentication, file access authorization, and user search, and to map services between NFS and CIFS at the cluster level.

Command buttons

Add
Opens the Create LDAP Client dialog box, which enables you to create and configure LDAP clients.

Edit
Opens the Edit LDAP Client dialog box, which enables you to edit LDAP client configurations. You can also edit active LDAP clients.

Delete
Opens the Delete LDAP Client(s) dialog box, which enables you to delete LDAP client configurations. You can also delete an active LDAP client.

Refresh
Updates the information in the window.

LDAP client list
Displays (in tabular format) details about LDAP clients.

LDAP Client Configuration
Displays the name of the LDAP client configuration that you specified.

Storage Virtual Machine
Displays the name of the storage virtual machine (SVM) for each LDAP client configuration.

Schema
Displays the schema for each LDAP client.

Minimum Bind Level
Displays the minimum bind level for each LDAP client.

Active Directory Domain
Displays the Active Directory domain for each LDAP client configuration.

LDAP Servers
Displays the LDAP server for each LDAP client configuration.

Preferred Active Directory Servers
Displays the preferred Active Directory server for each LDAP client configuration.

Users

You can use System Manager to add, edit, and manage a cluster user account, and specify a login user method to access the storage system.
Adding a cluster user account

You can use System Manager to add a cluster user account and to specify a user login method for accessing the storage system.

About this task

In clusters on which SAML authentication is enabled, for a particular application, you can add either SAML authentication or password-based authentication, or you can add both types of authentication.

Steps

1. Click 🕵️.
2. In the Management pane, click Users.
3. Click Add.
4. Type a user name for the new user.
5. Type a password for the user to connect to the storage system, and then confirm the password.
6. Add one or more user login methods, and then click Add.

Editing a cluster user account

You can use System Manager to edit a cluster user account by modifying the user login methods for accessing the storage system.

Steps

1. Click 🕵️.
2. In the Management pane, click Users.
3. In the Users window, select the user account that you want to modify, and then click Edit.
4. In the Modify User dialog box, modify the user login methods, and then click Modify.

Changing passwords for cluster user accounts

You can use System Manager to reset the password for a cluster user account.

Steps

1. Click 🕵️.
2. In the Management pane, click Users.
3. Select the user account for which you want to modify the password, and then click Change Password.
4. In the Change Password dialog box, type the new password, confirm the new password, and then click Change.
Locking or unlocking cluster user accounts

You can use System Manager to lock or unlock cluster user accounts.

Steps
1. Click 🍊.
2. In the Management pane, click Users.
3. Select the user account for which you want to modify the status, and click either Lock or Unlock.

User accounts (cluster administrators only)

You can create, modify, lock, unlock, or delete a cluster user account, reset a user's password, or display information about all user accounts.

You can manage cluster user accounts in the following ways:

- Creating a login method for a user by specifying the user's account name, the access method, the authentication method, and, optionally, the access-control role that the user is assigned
- Displaying users' login information, such as the account name, allowed access method, authentication method, access-control role, and account status
- Modifying the access-control role that is associated with a user's login method

 Note: It is best to use a single role for all the access and authentication methods of a user account.
- Deleting a user's login method, such as the access method or the authentication method
- Changing the password for a user account
- Locking a user account to prevent the user from accessing the system
- Unlocking a previously locked user account to enable the user to access the system again

Roles

You can use an access-control role to control the level of access a user has to the system. In addition to using the predefined roles, you can create new access-control roles, modify them, delete them, or specify account restrictions for the users of a role.

Users window

You can use the Users window to manage user accounts, to reset the password of a user, and to view information about all of the user accounts.

Command buttons

Add

Opens the Add User dialog box, which enables you to add user accounts.

Edit

Opens the Modify User dialog box, which enables you to modify user login methods.

Note: It is a best practice to use a single role for all of the access and authentication methods of a user account.
Delete
Enables you to delete a selected user account.

Change Password
Opens the Change Password dialog box, which enables you to reset a selected user’s password.

Lock
Locks the user account.

Refresh
Updates the information in the window.

Users list
The area below the users list displays detailed information about the selected user.

User
Displays the name of the user account.

Account Locked
Displays whether the user account is locked.

User Login Methods area
Application
Displays the access method that a user can use to access the storage system. The supported access methods include the following:

- System console (console)
- HTTP(S) (http)
- ONTAP API (ontapi)
- Service Processor (service-processor)
- SSH (ssh)

Authentication
Displays the default supported authentication method, which is “password”.

Role
Displays the role of a selected user.

Roles
You can use System Manager to create access-controlled user roles.

Related information
Administrator authentication and RBAC

Adding roles
You can use System Manager to add an access-control role and to specify the command or command directory that users of the role can access. You can also control the level of access that the role has to
the command or command directory, and you can specify a query that applies to the command or command directory.

Steps

1. Click 🌐.
2. In the Management pane, click Roles.
3. In the Roles window, click Add.
4. In the Add Role dialog box, type the role name and add the role attributes.
5. Click Add.

Editing roles

You can use System Manager to modify an access-control role's access to a command or command directory and to restrict a user's access to only a specified set of commands. You can also remove a role's access to the default command directory.

Steps

1. Click 🌐.
2. In the Management pane, click Roles.
3. In the Roles window, select the role that you want to modify, and then click Edit.
4. In the Edit Role dialog box, modify the role attributes, and then click Modify.
5. Verify the changes that you made in the Roles window.

Roles and permissions

The cluster administrator can restrict a user's access to only a specified set of commands by creating a restricted access-control role and then assigning the role to a user.

You can manage access-control roles in the following ways:

- By creating an access-control role, and then specifying the command or command directory that the role's users can access.
- By controlling the level of access that the role has for the command or command directory, and then specifying a query that applies to the command or command directory.
- By modifying an access-control role's access to a command or command directory.
- By displaying information about access-control roles, such as the role name, the command or command directory that a role can access, the access level, and the query.
- By deleting an access-control role.
- By restricting a user's access to only a specified set of commands.
- By displaying ONTAP APIs and their corresponding command-line interface (CLI) commands.
Roles window

You can use the Roles window to manage the roles that are associated with user accounts.

Command buttons

Add
Opens the Add Role dialog box, which enables you to create an access-control role and specify the command or command directory that the role's users can access.

Edit
Opens the Edit Role dialog box, which enables you to add or modify role attributes.

Refresh
Updates the information in the window.

Roles list

The roles list provides a list of roles that are available to be assigned to users.

Role Attributes area

The details area displays the role attributes, such as the command or command directory that the selected role can access, the access level, and the query that applies to the command or command directory.
Managing the network

You can use System Manager to manage the network of your storage system by creating and managing IPspaces, broadcast domains, subnets, network interfaces, Ethernet ports, and FC/FCoE adapters.

IPspaces

You can use System Manager to create and manage IPspaces.

Related information

Network and LIF management

Editing IPspaces

You can use System Manager to rename an existing IPspace.

About this task

- All IPspace names must be unique within a cluster and must not consist of names that are reserved by the system, such as local or localhost.
- The system-defined “Default” IPspace and “Cluster” IPspace cannot be modified.

Steps

1. Click Network > IPspaces.
2. Select the IPspace that you want to modify, and then click Edit.
3. In the Edit IPspace dialog box, specify a new name for the IPspace.
4. Click Rename.

Deleting IPspaces

You can use System Manager to delete an IPspace when you no longer require the IPspace.

Before you begin

The IPspace that you want to delete must not be associated with any broadcast domains, network interfaces, peer relationships, or storage virtual machines (SVMs).

About this task

The system-defined “Default” IPspace and “Cluster” IPspace cannot be deleted.

Steps

1. Click Network > IPspaces.
2. Select the IPspace that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Yes.
Broadcast domains

You can use System Manager to create and manage broadcast domains.

Related information

Network and LIF management

Editing broadcast domain settings

You can use System Manager to modify the attributes of a broadcast domain such as the name, the MTU size, and the ports that are associated with the broadcast domain.

About this task

• You must not modify the MTU size of the broadcast domain to which the management port e0M is assigned.
• You cannot use System Manager to edit broadcast domains in the cluster IPspace.
 You must use the command-line interface (CLI) instead.

Steps

1. Click Network > Broadcast Domains.
2. Select the broadcast domain that you want to modify, and then click Edit.
3. In the Edit Broadcast Domain dialog box, modify the broadcast domain attributes as required.
4. Click Save and Close.

Related references

Network window on page 142

Deleting broadcast domains

You can delete a broadcast domain by using System Manager when you no longer require the broadcast domain.

Before you begin

No subnets must be associated with the broadcast domain that you want to delete.

About this task

• When you delete a broadcast domain, the ports that are associated with the broadcast domain are assigned to the default IPspace, and the MTU settings of the ports are not changed.
• You cannot use System Manager to delete broadcast domains that are in the cluster IPspace.
 You must use the command-line interface (CLI) instead.

Steps

1. Click Network > Broadcast Domains.
2. Select the broadcast domain that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Delete.
Subnets

You can use System Manager to manage subnets.

Editing subnet settings

You can use System Manager to modify subnet attributes such as the name, subnet address, range of IP addresses, and gateway address of the subnet.

About this task

- You cannot use System Manager to edit subnets in the cluster IPspace. You must use the command-line interface (CLI) instead.
- Modifying the gateway address does not update the route. You must use the CLI to update the route.

Steps

1. Click **Network > Subnets**.
2. Select the subnet that you want to modify, and then click **Edit**.
 - You can modify the subnet even when the LIF in that subnet is still in use.
3. In the **Edit Subnet** dialog box, modify the subnet attributes as required.
4. Click **Save and Close**.

Deleting subnets

You can use System Manager to delete a subnet when you no longer require the subnet and you want to reallocate the IP addresses that were assigned to the subnet.

Before you begin

The subnet that you want to delete must not have any LIFs that are using the IP addresses from the subnet.

About this task

You cannot use System Manager to delete subnets in the Cluster IPspace. You must use the command-line interface (CLI) instead.

Steps

1. Click **Network > Subnets**.
2. Select the subnet that you want to delete, and then click **Delete**.
3. Select the confirmation check box, and then click **Delete**.
Network interfaces

You can use System Manager to create and manage network interfaces.

Creating network interfaces

You can use System Manager to create a network interface or LIF to access data from storage virtual machines (SVMs), to manage SVMs and to provide an interface for intercluster connectivity.

Before you begin

The broadcast domain that is associated with the subnet must have allocated ports.

About this task

- Dynamic DNS (DDNS) is enabled by default when a LIF is created. However, DDNS is disabled if you configure the LIF for intercluster communication using iSCSI, NVMe, or FC/FCoE protocols, or for management access only.
- You can specify an IP address by using a subnet or by not using a subnet.
- You cannot use System Manager to create a network interface if the ports are degraded. You must use the command-line interface (CLI) to create a network interface in such cases.
- To create NVMeoF data LIF the SVM must already be set up, the NVMe service must already exist on the SVM and the NVMeoF capable adapters should be available.
- NVMe protocol is enabled only if the selected SVM has the NVMe service configured.

Steps

1. Click Network > Network Interfaces.
2. Click Create.
3. In the Create Network Interface dialog box, specify an interface name.
4. Specify an interface role:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate the network interface with a data LIF</td>
<td>a. Select Serves Data.</td>
</tr>
<tr>
<td></td>
<td>b. Select the SVM for the network interface.</td>
</tr>
<tr>
<td>Associate the network interface with an intercluster LIF</td>
<td>a. Select Intercluster Connectivity.</td>
</tr>
<tr>
<td></td>
<td>b. Select the IPspace for the network interface.</td>
</tr>
</tbody>
</table>
5. Select the appropriate protocols.

The interface uses the selected protocols to access data from the SVM.
Note: If you select the NVMe protocol, the rest of the protocols are disabled. If NAS (CIFS and NFS) protocols are supported then they remain available. The NVMe transports field is displayed when you select the NVMe protocol and FC-NVMe is shown as the transport protocol.

6. If you want to enable management access on the data LIF, select the **Enable Management Access** check box.

You cannot enable management access for intercluster LIFs or LIFs with FC/FCoE or NVMe protocols.

7. **Assign the IP address:**

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the IP address by using a subnet</td>
<td>a. Select Using a subnet.</td>
</tr>
<tr>
<td></td>
<td>b. In the Add Details dialog box, select the subnet from which the IP address must be assigned. For intercluster LIF, only the subnets that are associated with the selected IP space are displayed.</td>
</tr>
<tr>
<td></td>
<td>c. If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address. The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.</td>
</tr>
<tr>
<td></td>
<td>d. Click OK.</td>
</tr>
<tr>
<td>Specify the IP address manually without using a subnet</td>
<td>a. Select Without a subnet.</td>
</tr>
<tr>
<td></td>
<td>b. In the Add Details dialog box, perform the following steps:</td>
</tr>
<tr>
<td></td>
<td>i. Specify the IP address and the network mask or prefix.</td>
</tr>
<tr>
<td></td>
<td>ii. Optional: Specify the gateway.</td>
</tr>
<tr>
<td></td>
<td>iii. If you do not want to use the default value for the Destination field, specify a new destination value. If you do not specify a destination value, the Destination field is populated with the default value based on the family of the IP address. If a route does not exist, a new route is automatically created based on the gateway and destination.</td>
</tr>
<tr>
<td></td>
<td>c. Click OK.</td>
</tr>
</tbody>
</table>

8. Select the required ports from the **Port** details area.

 - For data LIFs, the Port details area displays all of the ports from the broadcast domain that is associated with the IP space of the SVM.
 - For intercluster LIFs, the Port details area displays all of the ports from the broadcast domain that is associated with the required IP space.
 - The Port details area will display only NVMe capable adapters if the NVMe protocol is selected.

9. Optional: Select the **Dynamic DNS (DDNS)** check box to enable DDNS.

10. Click **Create**.
Related tasks

- Configuring iSCSI protocol on SVMs on page 54
- Configuring the network details of the nodes on page 107

Related references

- Network window on page 142

Editing network interface settings

You can use System Manager to modify the network interface to enable management access for a data LIF.

About this task

- You cannot modify the network settings of cluster LIFs, cluster management LIFs, or node management LIFs through System Manager.
- You cannot enable management access for an intercluster LIF.

Steps

1. Click Network > Network Interfaces.
2. Select the interface that you want to modify, and then click Edit.
3. In the Edit Network Interface dialog box, modify the network interface settings as required.
4. Click Save and Close.

Related references

- Network window on page 142

Deleting network interfaces

You can use System Manager to delete a network interface to free the IP address of the interface and then use the IP address for a different purpose.

Before you begin

The status of the network interface must be disabled.

Steps

1. Click Network > Network Interfaces.
2. Select the interface that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Delete.

Related references

- Network window on page 142
Migrating a LIF

You can use System Manager to migrate a data LIF or a cluster management LIF to a different port on the same node or on a different node within the cluster if the source port is faulty or requires maintenance.

Before you begin

The destination node and ports must be operational and must be able to access the same network as the source port.

About this task

• If you are removing the NIC from the node, you must migrate the LIFs that are hosted on the ports belonging to the NIC to other ports in the cluster.
• You cannot migrate iSCSI LIFs or FC LIFs.

Steps

1. Click Network > Network Interfaces.
2. Select the interface that you want to migrate, and then click Migrate.
3. In the Migrate Interface dialog box, select the destination port to which you want to migrate the LIF.
4. Optional: Select the Migrate Permanently check box if you want to set the destination port as the new home port for the LIF.
5. Click Migrate.

Ethernet ports

You can use System Manager to create and manage Ethernet ports.

Related information

Network and LIF management
ONTAP concepts

Creating interface groups

You can use System Manager to create an interface group—single-mode, static multimode, or dynamic multimode (LACP)—to present a single interface to clients by combining the capabilities of the aggregated network ports.

Before you begin

Free ports must be available that do not belong to any broadcast domain or interface group, or that host a VLAN.

Steps

1. Click Network > Ethernet Ports.
2. Click Create Interface Group.
3. In the Create Interface Group dialog box, specify the following settings:
• Name of the interface group
• Node
• Ports that you want to include in the interface group
• Usage mode of the ports: single-mode, static multiple, or dynamic multimode (LACP)
• Network load distribution: IP-based, MAC address-based, sequential, or port
• Broadcast domain for the interface group, if required

4. Click Create.

Related references
Network window on page 142

Creating VLAN interfaces
You can create a VLAN to maintain separate broadcast domains within the same network domain by using System Manager.

Steps
1. Click Network > Ethernet Ports.
2. Click Create VLAN.
3. In the Create VLAN dialog box, select the node, the physical interface, and the broadcast domain (if required).

 The physical interface list includes only Ethernet ports and interface groups. The list does not display interfaces that are in another interface group or an existing VLAN.

4. Type a VLAN tag, and then click Add.

 You must add unique VLAN tags.
5. Click Create.

Related references
Network window on page 142

Editing Ethernet port settings
You can edit Ethernet port settings such as the duplex mode and speed settings by using System Manager.

Steps
1. Click Network > Ethernet Ports.
2. Select the physical port, and then click Edit.
3. In the Edit Ethernet Port dialog box, modify the duplex mode and speed settings to either manual or automatic.
4. Click Edit.
Editing interface group settings

You can use System Manager to add ports to an interface group, to remove ports from an interface group, and to modify the usage mode and load distribution pattern of the ports in an interface group.

About this task

You cannot modify the MTU settings of an interface group that is assigned to a broadcast domain.

Steps

1. Click Network > Ethernet Ports.
2. Select an interface group, and then click Edit.
3. Modify the interface group settings as required, and then click Save and Close.

Related references

Network window on page 142

Modifying the MTU size of a VLAN

If you want to modify the MTU size of a VLAN interface that is not part of a broadcast domain, you can use System Manager to change the size.

About this task

You must not modify the MTU size of the management port e0M.

Steps

1. Click Network > Ethernet Ports.
2. Select the VLAN that you want to modify, and then click Edit.
3. In the Edit VLAN dialog box, modify the MTU size as required, and then click Save.

Deleting VLANs

You can delete VLANs that are configured on network ports by using System Manager. You might have to delete a VLAN before removing a NIC from its slot. When you delete a VLAN, the VLAN is automatically removed from all of the failover rules and groups that use the VLAN.

Before you begin

No LIFs must be associated with the VLAN.

Steps

1. Click Network > Ethernet Ports.
2. Select the VLAN that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Delete.

Related references

Network window on page 142
Ports and adapters

Ports are grouped under nodes and the nodes are displayed based on the selected protocol category. For example, if the data is served using the FC protocol, then only the nodes with FCP adapters are displayed. The hosted interface count helps you in choosing a port which is less loaded.

FC/FCoE and NVMe adapters

You can use System Manager to manage FC/FCoE and NVMe adapters.

Related information

Network and LIF management

Editing the FC/FCoE and NVMe adapter speed settings

You can modify the FC/FCoE and NVMe adapter speed settings by using the Edit FC/FCoE and NVMe Adapter Settings dialog box in System Manager.

Steps
1. Click Network > FC/FCoE and NVMe Adapters.
2. Select the adapter that you want to edit, and then click Edit.
3. In the Edit FC/FCoE and NVMe adapter settings dialog box, set the adapter speed to Manual or Automatic, and then click Save.

Related references

Network window on page 142

Network window

You can use the Network window to view the list of network components, such as subnets, network interfaces, Ethernet ports, broadcast domains, FC/FCoE and NVMe adapters, and IPspaces, and to create, edit, or delete these components in your storage system.

- Tabs on page 142
- Subnet tab on page 143
- Limitations of the Network Interfaces tab on page 144
- Ethernet Ports tab on page 145
- Broadcast Domain tab on page 147
- FC/FCoE and NVMe Adapters tab on page 147
- IPspaces tab on page 148

Tabs

Subnet

Enables you to view a list of subnets, and create, edit, or delete subnets from your storage system.
Network Interfaces
Enables you to view a list of network interfaces, create, edit, or delete interfaces from your storage system, migrate the LIFs, change the status of the interface, and send the interface back to the home port.

Ethernet Ports
Enables you to view and edit the ports of a cluster, and create, edit, or delete interface groups and VLAN ports.

Broadcast Domains
Enables you to view a list of broadcast domains, and create, edit, or delete domains from your storage system.

FC/FCoE and NVMe Adapters
Enables you to view the ports in a cluster, and edit the FC/FCoE and NVMe adapter settings.

IPspaces
Enables you to view a list of IPspaces and broadcast domains, and create, edit, or delete an IPspace from your storage system.

Subnet tab

Command buttons

Create
Opens the Create Subnet dialog box, which enables you to create new subnets that contain configuration information for creating a network interface.

Edit
Opens the Edit Subnet dialog box, which enables you to modify certain attributes of a subnet such as the name, subnet address, range of IP addresses, and gateway details.

Delete
Deletes the selected subnet.

Refresh
Updates the information in the window.

Subnet list

Name
Specifies the name of the subnet.

Subnet IP/Subnet mask
Specifies the subnet address details.

Gateway
Specifies the IP address of the gateway.

Available
Specifies the number of IP addresses available in the subnet.

Used
Specifies the number of IP addresses used in the subnet.

Total Count
Specifies the total number of IP addresses (available and used) in the subnet.

Broadcast domain
Specifies the broadcast domain to which the subnet belongs.
IPspace

Specifies the IPspace to which the subnet belongs.

Details area

The area below the subnet list displays detailed information about the selected subnet, including the subnet range and a graph showing the available, used, and total number of IP addresses.

Limitations of the Network Interfaces tab

- For cluster LIFs, node management LIFs, VIP LIFs, and BGP LIFs, you cannot use System Manager to perform the following actions:
 - Create, edit, delete, enable, or disable the LIFs
 - Migrate the LIFs or send the LIFs back to the home port
- For cluster management LIFs, you can use System Manager to migrate the LIFs, or send the LIFs back to the home port. However, you cannot create, edit, delete, enable, or disable the LIFs.
- For intercluster LIFs, you can use System Manager to create, edit, delete, enable, or disable the LIFs. However, you cannot migrate the LIFs, or send the LIFs back to the home port.
- You cannot create, edit, or delete network interfaces in the following configurations:
 - A MetroCluster configuration
 - SVMs configured for disaster recovery (DR).

Command buttons

Create

Opens the Create Network Interface dialog box, which enables you to create network interfaces and intercluster LIFs to serve data and manage SVMs.

Edit

Opens the Edit Network Interface dialog box, which you can use to enable management access for a data LIF.

Delete

Deletes the selected network interface.

This button is enabled only if the data LIF is disabled.

Status

Open the drop-down menu, which provides the option to enable or disable the selected network interface.

Migrate

Enables you to migrate a data LIF or a cluster management LIF to a different port on the same node or a different node within the cluster.

Send to Home

Enables you to host the LIF back on its home port.

This command button is enabled only when the selected interface is hosted on a non-home port and when the home port is available.

This command button is disabled when any node in the cluster is down.
Refresh

Updates the information in the window.

Interface list

You can move the pointer over the color-coded icon to view the operational status of the interface:

- Green specifies that the interface is enabled.
- Red specifies that the interface is disabled.

Interface Name

Specifies the name of the network interface.

Storage Virtual Machine

Specifies the SVM to which the interface belongs.

IP Address/WWPN

Specifies the IP address or worldwide port name (WWPN) of the interface.

Current Port

Specifies the name of the node and port on which the interface is hosted.

Data Protocol Access

Specifies the protocol used to access data.

Management Access

Specifies whether management access is enabled on the interface.

Subnet

Specifies the subnet to which the interface belongs.

Role

Specifies the operational role of the interface, which can be data, intercluster, cluster, cluster management, or node management.

Details area

The area below the interface list displays detailed information about the selected interface: failover properties such as the home port, current port, speed of the ports, failover policy, failover group, and failover state, and general properties such as the administrative status, role, IPspace, broadcast domain, network mask, gateway, and DDNS status.

Ethernet Ports tab

Command buttons

Create Interface Group

Opens the Create Interface Group dialog box, which enables you create interface groups by choosing the ports, and determining the use of ports and network traffic distribution.

Create VLAN

Opens the Create VLAN dialog box, which enables you to create a VLAN by choosing an Ethernet port or an interface group, and adding VLAN tags.

Edit

Opens one of the following dialog boxes:

- Edit Ethernet Port dialog box: Enables you to modify Ethernet port settings.
- Edit VLAN dialog box: Enables you to modify VLAN settings.
• Edit Interface Group dialog box: Enables you to modify interface groups.

You can only edit VLANs that are not associated with a broadcast domain.

Delete

Opens one of the following dialog boxes:
• Delete VLAN dialog box: Enables you to delete a VLAN.
• Delete Interface Group dialog box: Enables you to delete an interface group.

Refresh

Updates the information in the window.

Ports list

You can move the pointer over the color-coded icon to view the operational status of the port:
• Green specifies that the port is enabled.
• Red specifies that the port is disabled.

Port

Displays the port name of the physical port, VLAN port, or the interface group.

Node

Displays the node on which the physical interface is located.

Broadcast Domain

Displays the broadcast domain of the port.

IPspace

Displays the IPspace to which the port belongs.

Type

Displays the type of the interface such as interface group, physical interface, vip, or VLAN.

Details area

The area below the ports list displays detailed information about the port properties.

Details tab

Displays administrative details and operational details.

As part of the operational details, the tab displays the health status of the ports. The ports can be healthy or degraded. A degraded port is a port on which continuous network fluctuations occur, or a port that has no connectivity to any other ports in the same broadcast domain.

In addition, the tab also displays the interface name, SVM details, and IP address details of the network interfaces that are hosted on the selected port. It also indicates whether the interface is at the home port or not.

Performance tab

Displays performance metrics graphs of the ethernet ports, including error rate and throughput.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to view the updated graphs.
Broadcast Domain tab

Command buttons

Create
Opens the Create Broadcast Domain dialog box, which enables you to create new broadcast domains to contain ports.

Edit
Opens the Edit Broadcast Domain dialog box, which enables you to modify the attributes of a broadcast domain, such as the name, MTU size, and associated ports.

Delete
Deletes the selected broadcast domain.

Refresh
Updates the information in the window.

Broadcast domain list

Broadcast Domain
Specifies the name of the broadcast domain.

MTU
Specifies the MTU size.

IPspace
Specifies the IPspace.

Combined Port Update Status
Specifies the status of the port updates when you create or edit a broadcast domain. Any errors in the port updates are displayed in a separate window, which you can open by clicking the associated link.

Details area
The area below the broadcast domain list displays all the ports in a broadcast domain. In a non-default IPspace, if a broadcast domain has ports with update errors, such ports are not displayed in the details area. You can move the pointer over the color-coded icon to view the operational status of the ports:

- Green specifies that the port is enabled.
- Red specifies that the port is disabled.

FC/FCoE and NVMe Adapters tab

Command buttons

Edit
Opens the Edit FC/FCoE and NVMe Settings dialog box, which enables you to modify the speed of the adapter.

Status
Enables you to bring the adapter online or take it offline.

Refresh
Updates the information in the window.
FC/FCoE and NVMe adapters list

WWNN
- Specifies the unique identifier of the FC/FCoE and NVMe adapter.

Node Name
- Specifies the name of the node that is using the adapter.

Slot
- Specifies the slot that is using the adapter.

WWPN
- Specifies the FC worldwide port name (WWPN) of the adapter.

Status
- Specifies whether the status of the adapter is online or offline.

Speed
- Specifies whether the speed settings are automatic or manual.

Details area
The area below the FC/FCoE and NVMe adapters list displays detailed information about the selected adapters.

Details tab
- Displays adapter details such as the media type, port address, data link rate, connection status, operation status, fabric status, and the speed of the adapter.

Performance tab
- Displays performance metrics graphs of the FC/FCoE and NVMe adapter, including IOPS and response time.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to see the updated graphs.

IPspaces tab

Command buttons

Create
- Opens the Create IPspace dialog box, which enables you to create a new IPspace.

Edit
- Opens the Edit IPspace dialog box, which enables you to rename an existing IPspace.

Delete
- Deletes the selected IPspace.

Refresh
- Updates the information in the window.

IPspaces list

Name
- Specifies the name of the IPspace.

Broadcast Domains
- Specifies the broadcast domain.
Details area

The area below the IPspaces list displays the list of storage virtual machines (SVMs) in the selected IPspace.

Related tasks

- Creating network interfaces on page 136
- Editing network interface settings on page 138
- Deleting network interfaces on page 138
- Creating subnets on page 43
- Editing subnet settings on page 135
- Deleting subnets on page 135
- Creating VLAN interfaces on page 140
- Creating interface groups on page 139
- Editing the FC/FCoE and NVMe adapter speed settings on page 142
- Editing interface group settings on page 141
- Deleting VLANs on page 141
- Creating broadcast domains on page 42
- Editing broadcast domain settings on page 134
- Deleting broadcast domains on page 134
- Setting up a network when an IP address range is disabled on page 30
Managing physical storage

You can use System Manager to manage physical storage such as aggregates, storage pools, disks, array LUNs, nodes, Flash Cache, events, system alerts, AutoSupport notifications, jobs, and Flash Pool statistics.

Storage tiers

You can use System Manager to create aggregates to support the different security requirements, backup requirements, performance requirements, and data sharing requirements of your users.

Related information

Disk and aggregate management

Editing aggregates

You can use System Manager to change the aggregate name, RAID type, and RAID group size of an existing aggregate when required.

Before you begin

For modifying the RAID type of an aggregate from RAID4 to RAID-DP, the aggregate must contain enough compatible spare disks, excluding the hot spares.

About this task

• You cannot change the RAID group of ONTAP systems that support array LUNs.
 RAID0 is the only available option.

• You cannot change the RAID type of partitioned disks.
 RAID-DP is the only option that is available for partitioned disks.

• You cannot rename a SnapLock Compliance aggregate.

• If the aggregate consists of SSDs with storage pool, you can modify only the name of the aggregate.

• If the triple parity disk size is 10 TB, and the other disks are smaller than 10 TB in size, then you can select RAID-DP or RAID-TEC as the RAID type.

• If the triple parity disk size is 10 TB, and if even one of the other disks is larger than 10 TB in size, then RAID-TEC is the only available option for RAID type.

Steps

1. Choose one of the following methods:
 • Click Applications & Tiers > Storage Tiers.
 • Click Storage > Aggregates & Disks > Aggregates.

2. Select the aggregate that you want to edit, and then click Edit.

3. In the Edit Aggregate dialog box, modify the aggregate name, the RAID type, and the RAID group size, as required.
4. Click Save.

Related concepts

What compatible spare disks are on page 159

Related references

Aggregates window on page 171
Storage Tiers window on page 162

Deleting aggregates

You can use System Manager to delete aggregates when you no longer require the data in the aggregates. However, you cannot delete the root aggregate because it contains the root volume, which contains the system configuration information.

Before you begin

• All the FlexVol volumes and the associated storage virtual machines (SVMs) contained by the aggregate must be deleted.
• The aggregate must be offline.

Steps

1. Choose one of the following methods:
 • Click Applications & Tiers > Storage Tiers.
 • Click Storage > Aggregates & Disks > Aggregates.
2. Select one or more aggregates that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Delete.

Related references

Aggregates window on page 171
Storage Tiers window on page 162

Changing the RAID configuration when creating an aggregate

While creating an aggregate, you can modify the default values of the RAID type and RAID group size options of the aggregate by using System Manager.

About this task

If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only available RAID type.

Steps

1. Choose one of the following methods:
 • Click Applications & Tiers > Storage Tiers.
 • Click Storage > Aggregates & Disks > Aggregates.
2. In the Storage Tiers window, click Add Aggregate.
3. In the Create Aggregate dialog box, perform the following steps:
Provisioning cache by adding SSDs

You can use System Manager to add SSDs as either storage pools or dedicated SSDs to provision cache. By adding SSDs, you can convert a non-root aggregate or a root aggregate that does not contain partitioned disks to a Flash Pool aggregate, or increase the cache size of an existing Flash Pool aggregate.

About this task

- The added SSD cache does not add to the size of the aggregate, and you can add an SSD RAID group to an aggregate even when it is at the maximum size.
- You cannot use partitioned SSDs when you add cache by using System Manager.

Related concepts

- *How storage pool works* on page 177

Provisioning cache to aggregates by adding SSDs

You can use System Manager to add storage pools or dedicated SSDs to provision cache by converting an existing non-root HDD aggregate or a root aggregate that does not contain partitioned disks to a Flash Pool aggregate.

Before you begin

- The aggregate must be online.
- There must be sufficient spare SSDs or allocation units in the storage pool that can be assigned as cache disks.
- All of the nodes in the cluster must be running ONTAP 8.3 or later.
 - If the cluster is in a mixed-version state, you can use the command-line interface to create a Flash Pool aggregate and then provision SSD cache.
- You must have identified a valid 64-bit non-root aggregate composed of HDDs that can be converted to a Flash Pool aggregate.
- The aggregate must not contain any array LUNs.

About this task

You must be aware of platform-specific and workload-specific best practices for Flash Pool aggregate SSD tier size and configuration.

Steps

1. Choose one of the following methods:
 - Click **Applications & Tiers > Storage Tiers**.
2. In the Storage Tiers window, select the aggregate, and then click More Actions > Add Cache.

 Note: Adding cache is not supported on FabricPool-enabled aggregates.

3. In the Add Cache dialog box, perform the appropriate action:

<table>
<thead>
<tr>
<th>If you selected the cache source as...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage pools</td>
<td>a. Select the storage pool from which cache can be obtained.</td>
</tr>
<tr>
<td></td>
<td>b. Specify the cache size.</td>
</tr>
<tr>
<td></td>
<td>c. Modify the RAID type, if required.</td>
</tr>
<tr>
<td>Dedicated SSDs</td>
<td>Select the SSD size and the number of SSDs to include, and optionally modify the RAID configuration:</td>
</tr>
<tr>
<td></td>
<td>a. Click Change.</td>
</tr>
<tr>
<td></td>
<td>b. In the Change RAID Configuration dialog box, specify the RAID type and RAID group size, and then click Save.</td>
</tr>
</tbody>
</table>

4. Click Add.

 For mirrored aggregates, an Add Cache dialog box is displayed with the information that twice the number of selected disks will be added.

5. In the Add Cache dialog box, click Yes.

Result

The cache disks are added to the selected aggregate.

Related information

Increasing the cache for Flash Pool aggregates by adding SSDs

You can add SSDs as either storage pools or dedicated SSDs to increase the size of a Flash Pool aggregate by using System Manager.

Before you begin

- The Flash Pool aggregate must be online.
- There must be sufficient spare SSDs or allocation units in the storage pool that can be assigned as cache disks.

Steps

1. Click Storage > Aggregates & Disks > Aggregates.
2. In the Aggregates window, select the Flash Pool aggregate, and then click Add Cache.
3. In the Add Cache dialog box, perform the appropriate action:
If you selected the cache source as... | Do this...
---|---
Storage pools | Select the storage pool from which cache can be obtained, and specify the cache size.
Dedicated SSDs | Select the SSD size and the number of SSDs to include.

4. Click **Add**.

For mirrored aggregates, an Add Cache dialog box is displayed with the information that twice the number of selected disks will be added.

5. In the **Add Cache** dialog box, click **Yes**.

Result
The cache disks are added to the selected Flash Pool aggregate.

Adding capacity disks

You can increase the size of an existing non-root aggregate or a root aggregate containing disks by adding capacity disks. You can use System Manager to add HDDs or SSDs of the selected ONTAP disk type and to modify the RAID group options.

Before you begin

- The aggregate must be online.
- There must be sufficient compatible spare disks.

About this task

- It is a best practice to add disks that are of the same size as the other disks in the aggregate. If you add disks that are smaller in size than the other disks in the aggregate, the aggregate becomes suboptimal in configuration, which in turn might cause performance issues.
- If you add disks that are larger in size than the disks that are available in a pre-existing RAID group within the aggregate, then the disks are downsized, and their space is reduced to that of the other disks in that RAID group. If a new RAID group is created in the aggregate and similar sized disks remain in the new RAID group, the disks are not downsized.
- If you add disks that are not of the same size as the other disks in the aggregate, the selected disks might not be added; instead, other disks with a usable size between 90 percent and 105 percent of the specified size are automatically added. For example, for a 744 GB disk, all of the disks in the range of 669 GB through 781 GB are eligible for selection. For all of the spare disks in this range, ONTAP first selects only partitioned disks, then selects only unpartitioned disks, and finally selects both partitioned disks and unpartitioned disks.
- You cannot use System Manager to add HDDs to the following configurations:
 - Aggregates containing only SSDs
 - Root aggregates containing partitioned disks
 You must use the command-line interface to add HDDs to these configurations.
- Shared disks support two RAID types: RAID DP and RAID-TEC.
- You cannot use SSDs with storage pool.
- If the RAID group type is RAID DP, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them only to **Specific RAID group**, and not to **New RAID group** or **All RAID groups**.
The disks are added after downsizing the disk size to the size of the disks in the pre-existing RAID group of the existing aggregate.

- If the RAID group type is RAID-TEC, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them to All RAID groups, New RAID group, and Specific RAID group.

The disks are added after downsizing the disk size to the size of the disks in the pre-existing RAID group of the existing aggregate.

Steps

1. Choose one of the following methods:
 - Click Applications & Tiers > Storage Tiers.
 - Click Storage > Aggregates & Disks > Aggregates.

2. In the Storage Tiers window, select the aggregate to which you want to add capacity disks, and then click More Actions > Add Capacity.

3. Specify the following information in the Add Capacity dialog box:
 a. Specify the disk type for the capacity disks by using the Disk Type to Add option.
 b. Specify the number of capacity disks by using the Number of Disks or Partitions option.

4. Specify the RAID group to which the capacity disks are to be added by using the Add Disks To option.

 By default, System Manager adds the capacity disks to All RAID groups.
 a. Click Change.
 b. In the RAID Group Selection dialog box, specify the RAID group as New RAID group or Specific RAID group by using the Add Disks To option.

 Shared disks can be added only to the New RAID group option.

5. Click Add.

 For mirrored aggregates, an Add Capacity dialog box is displayed with the information that twice the number of selected disks will be added.

6. In the Add Capacity dialog box, click Yes to add the capacity disks.

Result

The capacity disks are added to the selected aggregate, and the aggregate size is increased.

Related concepts

What compatible spare disks are on page 159

Changing the RAID group when adding capacity disks

While adding capacity disks (HDDs) to an aggregate, you can change the RAID group to which you want to add the disks by using System Manager.

About this task

- If the RAID type is RAID-DP, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them only to Specific RAID group, and not to New RAID group or All RAID groups.
The disks are added after downsizing the disk size to the size of the existing aggregates.

- If the RAID group is RAID-TEC, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them to **All RAID groups**, **New RAID group**, and **Specific RAID group**.

The disks are added after downsizing the disk size to the size of the existing aggregates.

Steps

1. Choose one of the following methods:
 - Click **Applications & Tiers > Storage Tiers**.
 - Click **Storage > Aggregates & Disks > Aggregates**.

2. In the **Storage Tiers** window, select the aggregate to which you want to add capacity disks, and then click **More Actions > Add Capacity**.

3. In the **Add Capacity** dialog box, perform the following steps:
 a. Click **Change**.
 b. In the **Change RAID Configuration** dialog box, specify the RAID group to which you want to add the capacity disks.
 - You can change the default value **All RAID groups** to either **Specific RAID group** or **New RAID group**.
 c. Click **Save**.

Moving FlexVol volumes

You can nondisruptively move a FlexVol volume to a different aggregate or a different node for capacity utilization and improved performance by using System Manager.

Before you begin

If you are moving a data protection volume, data protection mirror relationships must be initialized before you move the volume.

About this task

- When you move a volume that is hosted on a Flash Pool aggregate, only the data that is stored in the HDD tier is moved to the destination aggregate. The cached data that is associated with the volume is not moved to the destination aggregate. Therefore, some performance degradation might occur after the volume move.

- You cannot move volumes from a SnapLock aggregate.

- You cannot move volumes from an SVM that is configured for disaster recovery to a FabricPool-enabled aggregate.

Steps

1. Choose one of the following methods:
 - Click **Applications & Tiers > Storage Tiers**.
 - Click **Storage > Aggregates & Disks > Aggregates**.

2. Select the aggregate that contains the volume, and then click **More Actions > Volume Move**.
3. Type or select information as prompted by the wizard.
4. Confirm the details, and then click **Finish** to complete the wizard.

Mirroring aggregates

You can use System Manager to protect data and to provide increased resiliency by mirroring data in real-time, within a single aggregate. Mirroring aggregates removes single points of failure in connecting to disks and array LUNs.

Before you begin

There must be sufficient free disks in the other pool to mirror the aggregate.

About this task

You cannot mirror a Flash Pool aggregate when the cache source is storage pool.

Steps

1. Choose one of the following methods:
 - Click **Applications & Tiers > Storage Tiers**.
 - Click **Storage > Aggregates & Disks > Aggregates**.
2. Select the aggregate that you want to mirror, and then click **More Actions > Mirror**.

 Note: SyncMirror is not supported on FabricPool-enabled aggregates.
3. In the **Mirror this aggregate** dialog box, click **Mirror** to initiate the mirroring.

Viewing aggregate information

You can use the Aggregates window in System Manager to view the name, status, and space information about an aggregate.

Steps

1. Choose one of the following methods:
 - Click **Applications & Tiers > Storage Tiers**.
 - Click **Storage > Aggregates & Disks > Aggregates**.
2. Click on the aggregate name to view the details of the selected aggregate.

Installing a CA certificate if you use StorageGRID

For ONTAP to authenticate with StorageGRID as the object store for a FabricPool-enabled aggregate, you can install a StorageGRID CA certificate on the cluster.

Steps

1. Follow the StorageGRID system documentation to copy the CA certificate of the StorageGRID system by using the Grid Management Interface.

 StorageGRID Webscale 11.1 Administrator Guide

 While adding StorageGRID as a cloud tier, a message is displayed if the CA certificate is not installed.
2. Add the StorageGRID CA certificate.
Note: The fully qualified domain name (FQDN) that you specify must match the custom common name on the StorageGRID CA certificate.

Related tasks

Adding a cloud tier on page 165

How moving a FlexVol volume works

Knowing how moving a FlexVol volume works helps you to determine whether the volume move satisfies service-level agreements and to understand where a volume move is in the volume move process.

FlexVol volumes are moved from one aggregate or node to another within the same storage virtual machine (SVM). A volume move does not disrupt client access during the move.

Moving a volume occurs in multiple phases:

- A new volume is made on the destination aggregate.
- The data from the original volume is copied to the new volume. During this time, the original volume is intact and available for clients to access.
- At the end of the move process, client access is temporarily blocked. During this time the system performs a final replication from the source volume to the destination volume, swaps the identities of the source and destination volumes, and changes the destination volume to the source volume.
- After completing the move, the system routes client traffic to the new source volume and resumes client access.

The move is not disruptive to client access because the time in which client access is blocked ends before clients notice a disruption and time out. Client access is blocked for 35 seconds by default. If the volume move operation cannot finish in the time that access is denied, the system aborts this final phase of the volume move operation and allows client access. The system attempts the final phase three times by default. After the third attempt, the system waits an hour before attempting the final phase sequence again. The system runs the final phase of the volume move operation until the volume move is complete.

How you can use effective ONTAP disk type for mixing HDDs

Starting with Data ONTAP 8.1, certain ONTAP disk types are considered equivalent for the purposes of creating and adding to aggregates, and managing spares. ONTAP assigns an effective disk type for each disk type. You can mix HDDs that have the same effective disk type.

When the `raid.disktype.enable` option is set to `off`, you can mix certain types of HDDs within the same aggregate. When the `raid.disktype.enable` option is set to `on`, the effective disk type is the same as the ONTAP disk type. Aggregates can be created using only one disk type. The default value for the `raid.disktype.enable` option is `off`.

Starting with Data ONTAP 8.2, the option `raid.mix.hdd.disktype.capacity` must be set to `on` to mix disks of type BSAS, FSAS, and ATA. The option `raid.mix.hdd.disktype.performance` must be set to `on` to mix disks of type FCAL and SAS.

The following table shows how the disk types map to the effective disk type:

<table>
<thead>
<tr>
<th>ONTAP disk type</th>
<th>Effective disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCAL</td>
<td>SAS</td>
</tr>
<tr>
<td>SAS</td>
<td>SAS</td>
</tr>
</tbody>
</table>
What compatible spare disks are

In System Manager, compatible spare disks are disks that match the properties of other disks in the aggregate. When you want to increase the size of an existing aggregate by adding HDDs (capacity disks) or change the RAID type of an aggregate from RAID4 to RAID-DP, the aggregate must contain sufficient compatible spare disks.

Disk properties that must match are the disk type, disk size (can be a higher size disk in case the same disk size is not available), disk RPM, checksum, node owner, pool, and shared disk properties. If you use higher sized disks, you must be aware that disk downsizing occurs and the size of all disks are reduced to the lowest disk size. Existing shared disks are matched with higher size non-shared disks, and the non-shared disks are converted to shared disks and added as spares.

If RAID mixing options, such as disk type mixing and disk RPM mixing, are enabled for the RAID group, the disk type and disk RPM of the existing disks of the aggregate are matched with the effective disk type and effective disk RPM of the spare disks to obtain compatible spares.

Related tasks

- *Adding capacity disks* on page 154
- *Editing aggregates* on page 150

How System Manager works with hot spares

A hot spare is a disk that is assigned to a storage system but not used by any RAID group. Hot spares do not contain any data and are assigned to a RAID group when a disk failure occurs in the RAID group. System Manager uses the largest disk as the hot spare.

When there are different disk types in the RAID group, the largest-sized disk of each disk type is left as the hot spare. For example, if there are 10 SATA disks and 10 SAS disks in the RAID group, the largest-sized SATA disk and the largest-sized SAS disk are serve as hot spares.

If the largest-sized disk is partitioned, then the hot spares are provided separately for partitioned and non-partitioned RAID groups. If the largest-sized disk is unpartitioned, then a single spare disk is provided.

The largest-sized non-partitioned disk is left as a hot spare if there are root partitions in the disk group. When a non-partitioned disk of the same size is not available, then spare root partitions are left as hot spares for the root partitioned group.

A single spare disk can serve as a hot spare for multiple RAID groups. System Manager calculates the hot spares based on the value set in the option `raid.min_spare_count` at the node level. For example, if there are 10 SSDs in an SSD RAID group and the option `raid.min_spare_count` is set to 1 at the node level, System Manager leaves 1 SSD as the hot spare and uses the other 9 SSDs for SSD-related operations. Similarly, if there are 10 HDDs in an HDD RAID group and the option `raid.min_spare_count` is set to 2 at the node level, System Manager leaves 2 HDDs as hot spares and uses the other 8 HDDs for HDD-related operations.
System Manager enforces the hot spare rule for RAID groups when you create an aggregate, edit an aggregate, and when you add HDDs or SSDs to an aggregate. The hot spare rule is also used when you create a storage pool or add disks to an existing storage pool.

There are exceptions to the hot spare rule in System Manager:

- For MSATA or disks in a multi-disk carrier, the number of hot spares is twice the value set at the node level and the number must not be less than 2 at any time.
- Hot spares are not used if the disks are part of array LUNs or virtual storage appliances.

Rules for displaying disk types and disk RPM

When you are creating an aggregate and adding capacity disks to an aggregate, you should understand the rules that apply when disk types and disk RPM are displayed.

When the disk type mixing and the disk RPM mixing options are not enabled, the actual disk type and actual disk RPM are displayed.

When these mixing options are enabled, the effective disk type and effective disk RPM are displayed instead of the actual disk type and actual disk RPM. For example, when the disk mixing option is enabled, System Manager displays BSAS disks as FSAS. Similarly, when the disk RPM mixing option is enabled, if the RPM of the disks is 10K and 15K, System Manager displays the effective RPM as 10K.

How mirrored aggregates work

Mirrored aggregates have two plexes (copies of their data), which use the SyncMirror functionality to duplicate the data to provide redundancy.

When a mirrored aggregate is created (or when a second plex is added to an existing unmirrored aggregate), ONTAP copies the data in the original plex (plex0) to the new plex (plex1). The plexes are physically separated (each plex has its own RAID groups and its own pool), and the plexes are updated simultaneously. This provides added protection against data loss if more disks fail than the RAID level of the aggregate protects against or there is a loss of connectivity, because the unaffected plex continues to serve data while you fix the cause of the failure. After the plex that had a problem is fixed, the two plexes resynchronize and reestablish the mirror relationship.

The disks and array LUNs on the system are divided into two pools: pool0 and pool1. Plex0 gets its storage from pool0 and plex1 gets its storage from pool1.

The following diagram shows an aggregate composed of disks with the SyncMirror functionality enabled and implemented. A second plex has been created for the aggregate, plex1. The data in plex1 is a copy of the data in plex0, and the RAID groups are also identical. The 32 spare disks are allocated to pool0 or pool1, 16 disks for each pool.
The following diagram shows an aggregate composed of array LUNs with the SyncMirror functionality enabled and implemented. A second plex has been created for the aggregate, plex1. Plex1 is a copy of plex0, and the RAID groups are also identical.

What a FabricPool is

FabricPool is a hybrid storage solution that uses an all flash (all SSD) aggregate as the performance tier and an object store as the cloud tier. Data in a FabricPool is stored in a tier based on whether it is frequently accessed or not. Using a FabricPool helps you reduce storage cost without compromising performance, efficiency, or protection.

Related tasks

Adding a cloud tier on page 165

Attaching an aggregate to a cloud tier on page 167
Storage recommendations for creating aggregates

Starting with System Manager 9.4, you can create aggregates based on storage recommendations. However, you must determine whether creating aggregates based on storage recommendations is supported in your environment. If your environment does not support creating aggregates based on storage recommendations, you must decide the RAID policy and disk configuration, and then create the aggregates manually.

System Manager analyzes the available spare disks in the cluster and generates a recommendation about how the spare disks should be used to create aggregates according to best practices. System Manager displays the summary of recommended aggregates including their names and usable size.

In many cases, the storage recommendation will be optimal for your environment. However, if your cluster is running ONTAP 9.3 or earlier, or if your environment includes the following configurations, you must create aggregates manually:

• Aggregates using third-party array LUNs
• Virtual disks with Cloud Volumes ONTAP or ONTAP Select
• MetroCluster configurations
• SyncMirror functionality
• MSATA disks
• Flash Pool aggregates
• Multiple disk types or sizes are connected to the node

In addition, if any of the following disk conditions exist in your environment, you must rectify the disk conditions before you use the storage recommendation to create aggregates:

• Missing disks
• Fluctuation in spare disk numbers
• Unassigned disks
• Non-zeroed spares (for ONTAP versions earlier than 9.6)
• Disks that are undergoing maintenance testing

Related tasks

Zeroing spare disks on page 44

Related information

Disk and aggregate management

Storage Tiers window

You can use the Storage Tiers window to view cluster-wide space details and to add and view aggregate details.

The Internal Tier panel, or the Performance Tier panel if the cluster has all flash (all SSD) aggregates, displays cluster-wide space details such as the sum of the total sizes of all of the aggregates, the space used by the aggregates in the cluster, and the available space in the cluster.

The Cloud Tier panel displays the total licensed cloud tiers in the cluster, the licensed space that is used in the cluster, and the licensed space that is available in the cluster. The Cloud Tier panel also displays the unlicensed cloud capacity that is used.
Aggregates are grouped by type, and the aggregate panel displays details about the total aggregate space, space used, and the available space. If inactive (cold) data is available on a solid-state drive (SSD) or All Flash FAS aggregate, the amount of space it uses is also displayed. You can select the aggregate and perform any of the aggregate-related actions.

Command buttons

Add Aggregate

Enables you to create an aggregate.

Actions

Provides the following options:

- **Change status to**
 - **Online**
 - Read and write access to the volumes that are contained in this aggregate is allowed.
 - **Offline**
 - Read and write access is not allowed.
 - **Restrict**
 - Some operations such as parity reconstruction are allowed, but data access is not allowed.

Add Capacity

Enables you to add capacity (HDDs or SSDs) to existing aggregates.

Add Cache

Enables you to add cache disks (SSDs) to existing HDD aggregates or Flash Pool aggregates.

You cannot add cache disks to FabricPool-enabled aggregates.

This option is not available for a cluster containing nodes with All Flash Optimized personality.

Mirror

Enables you to mirror the aggregates.

Volume Move

Enables you to move a FlexVol volume.

Details area

You can click the aggregate name to view detailed information about the aggregate.

Overview tab

Displays detailed information about the selected aggregate, and displays a pictorial representation of the space allocation of the aggregate, the space savings of the aggregate, and the performance of the aggregate.

Disk Information tab

Displays the disk layout information for the selected aggregate.

Volumes tab

Displays details about the total number of volumes on the aggregate, the total aggregate space, and the space committed to the aggregate.
Performance tab

Displays graphs that show the performance metrics of the aggregates, including throughput and IOPS. Performance metrics data for read, write, and total transfers is displayed for throughput and IOPS, and the data for SSDs and HDDs is recorded separately.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. If you change the client time zone or the cluster time zone, you should refresh your browser to view the updated graphs.

Related tasks

* Adding a cloud tier on page 165
* Attaching an aggregate to a cloud tier on page 167
* Deleting a cloud tier on page 169
* Editing a cloud tier on page 169
* Provisioning storage through aggregates on page 44
* Deleting aggregates on page 151
* Editing aggregates on page 150

Configuring and managing cloud tiers

Storing data in tiers can enhance the efficiency of your storage system. You manage storage tiers by using FabricPool-enabled aggregates. Cloud tiers store data in a tier based on whether the data is frequently accessed.

Before you begin

- You must be running ONTAP 9.2 or later.
- You must have all flash (all SSD) aggregates
Adding a cloud tier

You can use System Manager to add a cloud tier to an SSD aggregate or a virtual machine disk (VMDK) aggregate. Cloud tiers provide storage for infrequently used data.

Before you begin

- You must have the access key ID and secret key to connect to the object store.
- You must have created a bucket inside the object store.
- Network connectivity must exist between the cluster and the cloud tier.
- If communication between the cloud tier and the cluster is encrypted using SSL or TLS, the required certificates must be installed.

About this task

The following object stores can be used as cloud tiers:

- StorageGRID
- Alibaba Cloud (Starting with System Manager 9.6)
• Amazon Web Services (AWS) Simple Storage Service (S3)
• Amazon Web Services (AWS) Commercial Cloud Service (C2S)
• Microsoft Azure Blob storage
• IBM Cloud
• Google Cloud

Note:
• Azure Stack, which is an on-premises Azure service, is not supported.
• If you want to use any object store as a cloud tier, other than StorageGRID, you must have the FabricPool capacity license. You can add the license by clicking Add License.
• If you want to use an IBM Cloud Object Storage environment (such as Cleversafe), with FabricPool, you should specify a certification authority (CA) certificate. You can specify the CA certificate by moving the Object Store Certificate toggle button and specifying the certificate credentials.

Steps
1. Click Storage > Aggregates & Disks > Cloud Tier.
2. Click Add.
 A dialog box appears that lists all supported object store providers.
3. From the list, select the object store provider that you want to designate as the cloud tier.
 The Add Cloud Tier window is displayed.
4. Select a region from the drop-down list in the Region field.
 Based on your selection, the Service Name (FQDN) field is automatically populated with the server endpoint.
5. Specify the access key ID of the cloud tier, the secret key of the cloud tier, and the container name.
 If you have selected AWS Commercial Cloud Service (C2S) as the type, you must specify the CAP URL, server CA certificates, and client certificates.
6. If you want to modify any of the following settings, then click the Advanced Options icon to display the Advanced Options dialog window where you can make the changes:
 • The port number used to access the cloud tier
 • Enable or disable the SSL option that lets you transfer data securely to the cloud tier
7. Optional: If you want to add a cloud tier for StorageGRID or you want to use IBM Cloud Object Storage environment (such as Cleversafe) with FabricPool, you should specify a CA certificate. Specify the CA certificate by moving the Object Store Certificate toggle button and copying the contents of the certificate. Then paste the certificate contents in the signed certification.
8. From the IPspace list, select the IPspace that is used to connect to the cloud tier.
9. Click Save to save the cloud tier.
10. Click Save and Attach Aggregates to save the cloud tier and to attach aggregates to the cloud tier.
You can use System Manager to attach an All Flash aggregate to a cloud tier. You can store infrequently used data in cloud tiers.

Before you begin
You must have added a cloud tier to the cluster.

Steps
1. Click Storage > Aggregates & Disks > Cloud Tier.
2. In the Used in Aggregates column, click Attach Aggregates.
 The Attach Aggregates window is displayed.
3. Select the aggregate that you want to attach to the cloud tier.
4. Click Save.

Provisioning storage by creating a FabricPool-enabled aggregate manually
You can use System Manager to create a FabricPool-enabled aggregate to attach a cloud tier to the SSD aggregate.

Before you begin
• You must have created a cloud tier and attached it to the cluster in which the SSD aggregate resides.
• An on-premises cloud tier must have been created.
• A dedicated network connection must exist between the cloud tier and the aggregate.

About this task
The following object stores can be used as cloud tiers:
• StorageGRID
- Alibaba Cloud (Starting with System Manager 9.6)
- Amazon Web Services (AWS) Simple Storage Service (S3)
- Amazon Web Services (AWS) Commercial Cloud Service (C2S)
- Microsoft Azure Blob storage
- IBM Cloud
- Google Cloud

Note:
- Azure Stack, which is an on-premises Azure services, is not supported.
- If you want to use any object store as a cloud tier, other than StorageGRID, you must have the FabricPool capacity license.

Steps
1. Create a FabricPool-enabled aggregate by using one of the following methods:
 - Click **Applications & Tiers > Storage Tiers > Add Aggregate**.
 - Click **Storage > Aggregate & Disks > Aggregates > Create**.
2. Enable the **Manually Create Aggregate** option to create an aggregate.
3. Create a FabricPool-enabled aggregate:
 a. Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.
 Note: Only all flash (all SSD) aggregates support FabricPool-enabled aggregates.
 The minimum hot spare rule is applied to the disk group that has the largest disk size.
 b. Optional: Modify the RAID configuration of the aggregate:
 i. Click **Change**.
 ii. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.
 Shared disks support two RAID types: RAID-DP and RAID-TEC.
 iii. Click **Save**.
4. Select the **FabricPool** checkbox, and then select a cloud tier from the list.
5. Click **Create**.

Changing the tiering policy of a volume
You can use System Manager to change the default tiering policy of a volume to control whether the data of the volume is moved to the cloud tier when the data becomes inactive.

Steps
1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select All SVMs.
3. Select the volume for which you want to change the tiering policy, and then click More Actions > Change Tiering Policy.

4. Select the required tiering policy from the Tiering Policy list, and then click Save.

Editing a cloud tier

You can use System Manager to modify the configuration information of cloud tier. The configuration details that you can edit include the name, fully qualified domain name (FQDN), port, access key ID, secret key, and object store certificate.

Steps

1. Click Storage > Aggregates & Disks > Cloud Tier.
2. Select the cloud tier that you want to edit, and then click Edit.
3. In the Edit Cloud Tier window, modify the cloud tier name, FQDN, port, access key ID, secret key, and object store certificate, as required.

 If you have selected AWS Commercial Cloud Service (C2S) cloud tier, you can modify the server CA certificates, and client certificates.
4. Click Save.

Related references

Storage Tiers window on page 162

Deleting a cloud tier

You can use System Manager to delete a cloud tier that you no longer require.

Before you begin

You must have deleted the FabricPool-enabled aggregate that is associated with the cloud tier.

Steps

1. Click Storage > Aggregates & Disks > Cloud Tier.
2. Select the cloud tier that you want to delete, and then click Delete.

Related references

Storage Tiers window on page 162

What cloud tiers and tiering policies are

Cloud tiers provide storage for infrequently accessed data. You can attach an all-flash (all-SSD) aggregate to a cloud tier to store infrequently used data. You can use tiering policies to decide whether data should be moved to a cloud tier.

You can set one of the following tiering policies on a volume:

Snapshot-only

Moves the Snapshot copies of only those volumes that are currently not being referenced by the active file system. Snapshot-only policy is the default tiering policy.

Auto

Moves the inactive (cold) data and the Snapshot copies from the active file system to the cloud tier.
Backup (for System Manager 9.5)
Moves the newly transferred data of a data protection (DP) volume to the cloud tier.

All (starting with System Manager 9.6)
Moves all data to the cloud tier.

None
Prevents the data on the volume from being moved to a cloud tier.

Related tasks
Adding a cloud tier on page 165
Attaching an aggregate to a cloud tier on page 167

What inactive (cold) data is
Infrequently accessed data in a performance tier is known as inactive (cold) data. By default, data that is not accessed for a period of 31 days becomes inactive.

Inactive data is displayed at the aggregate level, cluster level, and volume level. The inactive data for an aggregate or a cluster is displayed only if inactive scanning is complete on that aggregate or cluster. By default, inactive data is displayed for FabricPool-enabled aggregates and SSD aggregates. Inactive data is not displayed for FlexGroups.

Cloud Tier window
You can use System Manager to add, edit, and delete cloud tiers and to view cloud tier details.

The Cloud Tier window displays the total number of licensed cloud tiers in the cluster, the licensed space that is used in the cluster, and the licensed space that is available in the cluster. The Cloud Tier window also displays the unlicensed cloud capacity that is used.

Command buttons
Add
Enables you to add a cloud tier.

Attach Aggregates
Enables you to attach aggregates to a cloud tier.

Delete
Enables you to delete a selected cloud tier.

Edit
Enables you to modify the properties of a selected cloud tier.

Details area
You can view detailed information about cloud tiers such as the list of cloud tiers, the details of the object stores, the aggregates used, and the used capacity.

If you create a cloud tier other than Alibaba Cloud, Amazon AWS S3, AWS Commercial Cloud Service (C2S), Google Cloud, IBM Cloud, Microsoft Azure Blob storage, or StorageGRID by using the command-line interface (CLI), this cloud tier is displayed as Others in System Manager. You can then attach aggregates to this cloud tier.
Aggregates

You can use System Manager to create aggregates to support the differing security, backup, performance, and data sharing requirements of your users.

Aggregates window

You can use the Aggregates window to create, display, and manage information about aggregates.

- Aggregates window on page 171
- Aggregate list on page 172
- Details area on page 173
- Command buttons on page 171

Command buttons

Create
Opens the Create Aggregate dialog box, which enables you to create an aggregate.

Edit
Opens the Edit Aggregate dialog box, which enables you to change the name of an aggregate or the level of RAID protection that you want to provide for the aggregate.

Delete
Deletes the selected aggregate.

Note: This button is disabled for the root aggregate.

More Actions
Provides the following options:

Change status to
Changes the status of the selected aggregate to one of the following statuses:

- Online
 Read and write access to the volumes that are contained in this aggregate is allowed.

- Offline
 Read and write access is not allowed.

- Restrict
 Some operations—such as parity reconstruction—are allowed, but data access is not allowed.

Add Capacity
Enables you to add capacity (HDDs or SSDs) to existing aggregates.

Add Cache
Enables you to add cache disks (SSDs) to existing HDD aggregates or Flash Pool aggregates.

This button is not available for a cluster containing nodes with All Flash Optimized personality.

Mirror
Enables you to mirror the aggregates.
Volume Move
 Enables you to move a FlexVol volume.

Attach Cloud Tier
 Enables you to attach a cloud tier to the aggregate.

Refresh
 Updates the information in the window.

Aggregate list
Displays the name and the space usage information for each aggregate.

Status
 Displays the status of the aggregate.

Name
 Displays the name of the aggregate.

Node
 Displays the name of the node to which the disks of the aggregate are assigned.
 This field is available only at the cluster level.

Type
 Displays the type of the aggregate.
 This field is not displayed for a cluster containing nodes with All Flash Optimized personality.

Used (%)
 Displays the percentage of space that is used in the aggregate.

Available Space
 Displays the available space in the aggregate.

Used Space
 Displays the amount of space that is used for data in the aggregate.

Total Space
 Displays the total space of the aggregate.

FabricPool
 Displays whether the selected aggregate is attached to a cloud tier.

Cloud Tier
 If the selected aggregate is attached to a cloud tier, it displays the name of the cloud tier.

Volume Count
 Displays the number of volumes that are associated with the aggregate.

Disk Count
 Displays the number of disks that are used to create the aggregate.

Flash Pool
 Displays the total cache size of the Flash Pool aggregate. A value of NA indicates that the aggregate is not a Flash Pool aggregate.
 This field is not displayed for a cluster containing nodes with All Flash Optimized personality.

Mirrored
 Displays whether the aggregate is mirrored.
SnapLock Type
Displays the SnapLock type of the aggregate.

Details area
Select an aggregate to view information about the selected aggregate. You can click Show More Details to view detailed information about the selected aggregate.

Overview tab
Displays detailed information about the selected aggregate, and displays a pictorial representation of the space allocation of the aggregate, the space savings of the aggregate, and the performance of the aggregate in IOPS and total data transfers.

Disk Information tab
Displays disk layout information such as the name of the disk, disk type, physical size, usable size, disk position, disk status, plex name, plex status, RAID group, RAID type, and storage pool (if any) for the selected aggregate. The disk port that is associated with the disk primary path and the disk name with the disk secondary path for a multipath configuration are also displayed.

Volumes tab
Displays details about the total number of volumes on the aggregate, total aggregate space, and the space committed to the aggregate.

Performance tab
Displays graphs that show the performance metrics of the aggregates, including throughput and IOPS. Performance metrics data for read, write, and total transfers is displayed for throughput and IOPS, and the data for SSDs and HDDs is recorded separately.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to view the updated graphs.

Related tasks
Provisioning storage through aggregates on page 44
Deleting aggregates on page 151
Editing aggregates on page 150

Storage pools
You can use System Manager to create storage pools to enable SSDs to be shared by multiple Flash Pool aggregates.

Related information
Disk and aggregate management

Creating a storage pool
A storage pool is a collection of SSDs (cache disks). You can use System Manager to combine SSDs to create a storage pool, which enables you to share the SSDs and SSD spares between an HA pair for allocation to two or more Flash Pool aggregates at the same time.

Before you begin
• Both nodes of the HA pair must be up and running in order to allocate SSDs and SSD spares through a storage pool.
Storage pools must have a minimum of 3 SSDs.

All SSDs in a storage pool must be owned by the same HA pair.

About this task

System Manager enforces the hot spare rule for SSD RAID groups when you use SSDs for adding disks to a storage pool. For example, if there are 10 SSDs in the SSD RAID group and the option `raid.min_spare_count` is set to 1 at the node level, System Manager leaves 1 SSD as the hot spare and uses the other 9 SSDs for SSD-related operations.

You cannot use partitioned SSDs when creating a storage pool by using System Manager.

Steps

1. Click Storage > Aggregates & Disks > Storage Pools.
2. In the Storage Pools window, click Create.
3. In the Create Storage Pool dialog box, specify the name for the storage pool, disk size, and the number of disks.
4. Click Create.

Related references

Storage Pools window on page 178

Adding disks to a storage pool

You can add SSDs to an existing storage pool and increase its cache size by using System Manager.

Before you begin

Both nodes of the HA pair must be up and running in order to allocate SSDs and SSD spares through a storage pool.

About this task

- The SSDs that you add to a storage pool are distributed proportionally among the aggregates using the storage pool cache and to the free space of the storage pool.
- System Manager enforces the hot spare rule for SSD RAID groups when you use SSDs for adding disks to a storage pool.
 For example, if there are 10 SSDs in the SSD RAID group and the option `raid.min_spare_count` is set to 1 at the node level, System Manager leaves 1 SSD as the hot spare and uses the other 9 SSDs for SSD-related operations.
- You cannot use partitioned SSDs when adding disks to a storage pool by using System Manager.

Steps

1. Click Storage > Aggregates & Disks > Storage Pools.
2. In the Storage Pools window, select the storage pool, and then click Add Disks.
3. In the Add Disks dialog box, specify the number of disks that you want to add.
4. Click Next.
5. In the Summary dialog box, review how the cache is distributed among various aggregates and the free space of the storage pool.
6. Click **Add**.

Related references

Storage Pools window on page 178

Deleting storage pools

You might want to delete a storage pool when the cache of the storage pool is not optimal or when it is no longer used by any aggregate or Flash Pool aggregate. You can delete a storage pool by using the Delete Storage Pool dialog box in System Manager.

Before you begin

The storage pool must not be used by any aggregate.

Steps

1. Click **Storage > Aggregates & Disks > Storage Pools**.
2. In the **Storage Pools** window, select the storage pool that you want to delete, and then click **Delete**.
3. In the **Delete Storage Pool** dialog box, click **Delete**.

Related references

Storage Pools window on page 178

How to use SSD storage pools

To enable SSDs to be shared by multiple Flash Pool aggregates, you can add the SSDs to a *storage pool*. After you add an SSD to a storage pool, you can no longer manage the SSD as a stand-alone entity. You must use the storage pool to assign or allocate the storage that is provided by the SSD.

You can create storage pools for a specific high-availability (HA) pair. Then, you can add allocation units from that storage pool to one or more Flash Pool aggregates that are owned by the same HA pair. Just as disks must be owned by the same node that owns an aggregate before the disks can be allocated to it, storage pools can provide storage only to the Flash Pool aggregates that are owned by one of the nodes that owns the storage pool.

If you have to increase the amount of Flash Pool cache on your system, you can add more SSDs to a storage pool, up to the maximum RAID group size for the RAID type of the Flash Pool caches that are using the storage pool. When you add an SSD to an existing storage pool, you increase the size of the storage pool's allocation units, including any allocation units that are already allocated to a Flash Pool aggregate.

You can use only one spare SSD for a storage pool, so that if an SSD in that storage pool becomes unavailable, ONTAP can use the spare SSD to reconstruct the partitions of the malfunctioning SSD. You do not have to reserve any allocation units as spare capacity; ONTAP can use only a full, unpartitioned SSD as a spare for the SSDs in a storage pool.

After you add an SSD to a storage pool, you cannot remove the SSD, just as you cannot remove disks from an aggregate. If you want to use the SSDs in a storage pool as discrete drives again, you must destroy all of the Flash Pool aggregates to which the storage pool's allocation units have been allocated, and then destroy the storage pool.
Requirements and best practices for using SSD storage pools

Some technologies cannot be combined with Flash Pool aggregates that use SSD storage pools.

You cannot use the following technologies with Flash Pool aggregates that use SSD storage pools for their cache storage:

- MetroCluster
- SyncMirror functionality
 Mirrored aggregates can coexist with Flash Pool aggregates that use storage pools; however, Flash Pool aggregates cannot be mirrored.
- Physical SSDs
 Flash Pool aggregates can use SSD storage pools or physical SSDs, but not both.

SSD storage pools must conform to the following rules:

- SSD storage pools can contain only SSDs; HDDs cannot be added to an SSD storage pool.
- All of the SSDs in an SSD storage pool must be owned by the same high-availability (HA) pair.
- You cannot use SSDs that have been partitioned for root-data partitioning in a storage pool.

If you provide storage from a single storage pool to two caches with different RAID types, and you expand the size of the storage pool beyond the maximum RAID group size for RAID4, the extra partitions in the RAID4 allocation units go unused. Therefore, it is a best practice to keep your cache RAID types homogenous for a storage pool.

You cannot change the RAID type of cache RAID groups that are allocated from a storage pool. You set the RAID type for the cache before adding the first allocation units, and you cannot change the RAID type later.

When you create a storage pool or add SSDs to an existing storage pool, you must use the same size SSDs. If a failure occurs and no spare SSD of the correct size exists, ONTAP can use a larger SSD to replace the failed SSD. However, the larger SSD is right-sized to match the size of the other SSDs in the storage pool, resulting in lost SSD capacity.

You can use only one spare SSD for a storage pool. If the storage pool provides allocation units to the Flash Pool aggregates that are owned by both nodes in the HA pair, then the spare SSD can be owned by either node. However, if the storage pool provides allocation units only to the Flash Pool aggregates that are owned by one of the nodes in the HA pair, then the SSD spare must be owned by that same node.

Considerations for when to use SSD storage pools

SSD storage pools provide many benefits, but they also introduce some restrictions that you should be aware of when deciding whether to use SSD storage pools or dedicated SSDs.

SSD storage pools make sense only when they are providing cache to two or more Flash Pool aggregates. SSD storage pools provide the following benefits:

- Increased storage utilization for SSDs used in Flash Pool aggregates
 SSD storage pools reduce the overall percentage of SSDs needed for parity by enabling you to share parity SSDs between two or more Flash Pool aggregates.
- Ability to share spares between HA partners
 Because the storage pool is effectively owned by the HA pair, one spare, owned by one of the HA partners, can function as a spare for the entire SSD storage pool if needed.
- Better utilization of SSD performance
 The high performance provided by SSDs can support access by both controllers in an HA pair.
These advantages must be weighed against the costs of using SSD storage pools, which include the following items:

- **Reduced fault isolation**
 The loss of a single SSD affects all RAID groups that include one of its partitions. In this situation, every Flash Pool aggregate that has cache allocated from the SSD storage pool that contains the affected SSD has one or more RAID groups in reconstruction.

- **Reduced performance isolation**
 If the Flash Pool cache is not properly sized, there can be contention for the cache between the Flash Pool aggregates that are sharing it. This risk can be mitigated with proper cache sizing and QoS controls.

- **Decreased management flexibility**
 When you add storage to a storage pool, you increase the size of all Flash Pool caches that include one or more allocation units from that storage pool; you cannot determine how the extra capacity is distributed.

Considerations for adding SSDs to an existing storage pool versus creating a new one

You can increase the size of your SSD cache in two ways—by adding SSDs to an existing SSD storage pool or by creating a new SSD storage pool. The best method for you depends on your configuration and plans for the storage.

The choice between creating a new storage pool and adding storage capacity to an existing one is similar to deciding whether to create a new RAID group or add storage to an existing one:

- If you are adding a large number of SSDs, creating a new storage pool provides more flexibility because you can allocate the new storage pool differently from the existing one.

- If you are adding only a few SSDs, and increasing the RAID group size of your existing Flash Pool caches is not an issue, then adding SSDs to the existing storage pool keeps your spare and parity costs lower, and automatically allocates the new storage.

If your storage pool is providing allocation units to Flash Pool aggregates whose caches have different RAID types, and you expand the size of the storage pool beyond the maximum RAID4 RAID group size, the newly added partitions in the RAID4 allocation units are unused.

Why you add disks to storage pools

You can add SSDs to an existing storage pool and increase its cache size. When you add SSDs to a storage pool that has allocation units already allocated to Flash Pool aggregates, you increase the cache size of each of those aggregates and the total cache of the storage pool.

If the allocation units of the storage pool are not yet allocated, adding SSDs to that storage pool does not affect the SSD cache size.

When you add SSDs to an existing storage pool, the SSDs must be owned by one node or the other of the same HA pair that already owned the existing SSDs in the storage pool. You can add SSDs that are owned by either node of the HA pair.

How storage pool works

A *storage pool* is a collection of SSDs. You can combine SSDs to create a storage pool, which enables you to share the SSDs and SSD spares across multiple Flash Pool aggregates, at the same time.

Storage pools consist of allocation units, which you can use to provide SSDs and SSD spares to aggregates or to increase the existing SSD size.
After you add an SSD to a storage pool, you can no longer use the SSD as an individual disk. You must use the storage pool to assign or allocate the storage provided by the SSD.

Related tasks

- Provisioning storage by creating a Flash Pool aggregate manually on page 46
- Provisioning cache by adding SSDs on page 152

Storage Pools window

You can use the Storage Pools window to create, display, and manage a dedicated cache of SSDs, also known as storage pools. These storage pools can be associated with a non-root aggregate to provide SSD cache and with a Flash Pool aggregate to increase its size.

This page is not available for a cluster containing nodes with All Flash Optimized personality.

- Command buttons on page 178
- Storage pools list on page 178
- Details tab on page 179

Command buttons

Create

Opens the Create Storage Pool dialog box, which enables you to create a storage pool.

Add Disks

Opens the Add Disks dialog box, which enables you to add cache disks to a storage pool.

Delete

Deletes the selected storage pool.

Refresh

Updates the information in the window.

Storage pools list

Name

Displays the name of the storage pool.

Total Cache

Displays the total cache size of the storage pool.

Spare Cache

Displays the available spare cache size of the storage pool.

Used Cache (%)

Displays the percentage of used cache size of the storage pool.

Allocation Unit

Displays the minimum allocation unit of the total cache size that you can use to increase the size of your storage pool.

Owner

Displays the name of the HA pair or the node with which the storage pool is associated.

State

Displays the state of the storage pool, which can be Normal, Degraded, Creating, Deleting, Reassigning, or Growing.
Is Healthy
Displays whether storage pool is healthy or not.

Details tab
Displays detailed information about the selected storage pool, such as the name, health, storage type, disk count, total cache, spare cache, used cache size (in percent), and allocation unit. The tab also displays the names of the aggregates that are provisioned by the storage pool.

Disks tab
Displays detailed information about the disks in the selected storage pool, such as the names, disk types, useable size, and total size.

Related tasks
- Adding disks to a storage pool on page 174
- Creating a storage pool on page 173
- Deleting storage pools on page 175

Disks
You can use System Manager to manage disks.

Related information
- Disk and aggregate management
- FlexArray virtualization installation requirements and reference
- ONTAP concepts

Reassigning disks to nodes
You can use System Manager to reassign the ownership of spare disks from one node to another node to increase the capacity of an aggregate or storage pool.

About this task
- You can reassign disks if the following conditions are true:
 - The container type of the selected disks must be “spare” or “shared”.
 - The disks must be connected to nodes in an HA configuration.
 - The disks must be visible to the node.
- You cannot reassign a disk if the following conditions are true:
 - The container type of the selected disk is “shared”, and the data partition is not spare.
 - The disk is associated with a storage pool.
- You cannot reassign the data partition of shared disks if storage failover is not enabled on the nodes that are associated with the shared disks.
- For partition disks, you can reassign only the data partition of the disks.
- For MetroCluster configurations, you cannot use System Manager to reassign disks. You must use the command-line interface to reassign disks for MetroCluster configurations.
Steps
1. Click Storage > Aggregates & Disks > Disks.
2. In the Disks window, select the Inventory tab.
3. Select the disks that you want to reassign, and then click Assign.
4. In the Warning dialog box, click Continue.
5. In the Assign Disks dialog box, select the node to which you want to reassign the disks.
6. Click Assign.

Viewing disk information
You can use the Disks window in System Manager to view the name, size, and container details of disks along with graphical information about capacity disks and cache disks.

Steps
1. Click Storage > Aggregates & Disks > Disks.
2. Select the disk that you want to view information about from the displayed list of disks.
3. Review the disk details.

Related references
Disks window on page 183

How ONTAP reports disk types
ONTAP associates a type with every disk. ONTAP reports some disk types differently than the industry standards; you should understand how ONTAP disk types map to industry standards to avoid confusion.

When ONTAP documentation refers to a disk type, it is the type used by ONTAP unless otherwise specified. RAID disk types denote the role that a specific disk plays for RAID. RAID disk types are not related to ONTAP disk types.

For a specific configuration, the disk types that are supported depend on the storage system model, the shelf type, and the I/O modules that are installed in the system.

The following tables show how ONTAP disk types map to industry standard disk types for the SAS and FC storage connection types, and for storage arrays.

SAS-connected storage

<table>
<thead>
<tr>
<th>ONTAP disk type</th>
<th>Disk class</th>
<th>Industry standard disk type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAS</td>
<td>Capacity</td>
<td>SATA</td>
<td>Bridged SAS-SATA disks with added hardware to enable them to be plugged into a SAS-connected storage shelf</td>
</tr>
<tr>
<td>FSAS</td>
<td>Capacity</td>
<td>NL-SAS</td>
<td>Near Line SAS</td>
</tr>
<tr>
<td>MSATA</td>
<td>Capacity</td>
<td>SATA</td>
<td>SATA disk in multi-disk carrier storage shelf</td>
</tr>
</tbody>
</table>
ONTAP disk type

<table>
<thead>
<tr>
<th>ONTAP disk type</th>
<th>Disk class</th>
<th>Industry standard disk type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS</td>
<td>Performance</td>
<td>SAS</td>
<td>Serial-Attached SCSI</td>
</tr>
<tr>
<td>SSD</td>
<td>Ultra-performance</td>
<td>SSD</td>
<td>Solid-state drives</td>
</tr>
</tbody>
</table>

FC-connected storage

<table>
<thead>
<tr>
<th>ONTAP disk type</th>
<th>Disk class</th>
<th>Industry standard disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA</td>
<td>Capacity</td>
<td>SATA</td>
</tr>
<tr>
<td>FCAL</td>
<td>Performance</td>
<td>FC</td>
</tr>
</tbody>
</table>

Storage arrays

<table>
<thead>
<tr>
<th>ONTAP disk type</th>
<th>Disk class</th>
<th>Industry standard disk type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUN</td>
<td>N/A</td>
<td>LUN</td>
<td>Logical storage device that is backed by storage arrays and used by ONTAP as a disk. These LUNs are referred to as array LUNs to distinguish them from the LUNs that ONTAP serves to clients.</td>
</tr>
</tbody>
</table>

Related information

NetApp Hardware Universe

Minimum number of hot spares required for disks

Having insufficient spares increases the risk of a disk failure with no available spare, resulting in a degraded RAID group. A spare disk is also required to provide important information (a core file) to technical support in case of a controller disruption.

MSATA disks, or disks in a multi-disk carrier, should have four hot spares during steady state operation, and you should never allow the number of MSATA hot spares to dip below two.

For RAID groups composed of SSDs, you should have at least one spare disk.

For all other ONTAP disk types, you should have at least one matching or appropriate hot spare available for each kind of disk installed in your storage system. However, having two available hot spares for all disks provides the best protection against disk failure. Having at least two available hot spares provides the following benefits:

- When you have two or more hot spares for a data disk, ONTAP can put that disk into the maintenance center if required.
- ONTAP uses the maintenance center to test suspect disks and to take offline any disk that shows problems.
- Having two hot spares means that when a disk fails, you still have a spare disk available if another disk fails before you replace the first failed disk.
A single spare disk can serve as a hot spare for multiple RAID groups. However, if any disk in those RAID groups fails, then no spare disk is available for any future disk failures or for a core file until the spare disk is replaced. Therefore, it is a best practice to have more than one spare.

Spare requirements for multi-disk carrier disks

Maintaining the proper number of spares for disks in multi-disk carriers is critical for optimizing storage redundancy and minimizing the amount of time that ONTAP must spend copying disks to achieve an optimal disk layout.

You must maintain a minimum of two hot spares for multi-disk carrier disks at all times. To support the use of the Maintenance Center and to avoid issues caused by multiple concurrent disk failures, you should maintain at least four hot spares for steady state operation, and replace failed disks promptly.

If two disks fail at the same time with only two available hot spares, ONTAP might not be able to swap the contents of both the failed disk and its carrier mate to the spare disks. This scenario is called a stalemate. If this happens, you are notified through EMS messages and AutoSupport messages. When the replacement carriers become available, you must follow the instructions that are provided by the EMS messages or you must contact technical support to recover from the stalemate.

Shelf configuration requirements for multi-disk carrier storage shelves

You can combine multi-disk carrier disk shelves with single-disk carrier disk shelves (standard disk shelves) on the same storage system and within in the same stack.

How to determine when it is safe to remove a multi-disk carrier

Removing a multi-disk carrier before it is safe to do so can result in one or more RAID groups becoming degraded, or possibly even a storage disruption. System Manager enables you to determine when it is safe to remove a multi-disk carrier.

When a multi-disk carrier has to be replaced, the following events must have occurred before you can remove the carrier safely:

- An AutoSupport message must have been logged indicating that the carrier is ready to be removed.
- An EMS message must have been logged indicating that the carrier is ready to be removed.
- The state of both disks in the carrier must be displayed as **broken** in the Disks window.
 You must remove the disks only after the carrier mate of a failed disk is evacuated. You can click Details to view the disk evacuation status in the Properties tab of the Disks window.
- The fault LED (amber) on the carrier must be lit continuously indicating that it is ready for removal.
- The activity LED (green) must be turned off indicating there is no disk activity.
- The shelf digital display only shows the shelf ID number.

 Attention: You cannot reuse the carrier mate of a failed disk. When you remove a multi-disk carrier that contains a failed disk, you must replace it with a new carrier.

Considerations for sizing RAID groups

Configuring an optimum RAID group size requires a trade-off of factors. You must decide which factors—speed of RAID rebuild, assurance against risk of data loss due to drive failure, optimizing
I/O performance, and maximizing data storage space—are most important for the aggregate that you are configuring.

When you create larger RAID groups, you maximize the space available for data storage for the same amount of storage used for parity (also known as the “parity tax”). On the other hand, when a disk fails in a larger RAID group, reconstruction time is increased, impacting performance for a longer period of time. In addition, having more disks in a RAID group increases the probability of a multiple disk failure within the same RAID group.

HDD or array LUN RAID groups

You should follow these guidelines when sizing your RAID groups composed of HDDs or array LUNs:

- All RAID groups in an aggregate should have a similar number of disks.
 The RAID groups do not have to be exactly the same size, but you should avoid having any RAID group that is less than one half the size of other RAID groups in the same aggregate when possible.
- The recommended range of RAID group size is between 12 and 20.
 The reliability of performance disks can support a RAID group size of up to 28, if needed.
- If you can satisfy the first two guidelines with multiple RAID group sizes, you should choose the larger size.

SSD RAID groups in Flash Pool aggregates

The SSD RAID group size can be different from the RAID group size for the HDD RAID groups in a Flash Pool aggregate. Usually, you should ensure that you have only one SSD RAID group for a Flash Pool aggregate, to minimize the number of SSDs required for parity.

SSD RAID groups in SSD aggregates

You should follow these guidelines when sizing your RAID groups composed of SSDs:

- All RAID groups in an aggregate should have a similar number of drives.
 The RAID groups do not have to be exactly the same size, but you should avoid having any RAID group that is less than one half the size of other RAID groups in the same aggregate when possible.
- For RAID-DP, the recommended range of RAID group size is between 20 and 28.

Disks window

You can use the Disks window to view all the disks in your storage system.

- *Command buttons* on page 183
- *Summary* on page 184
- *Inventory* on page 184
- *Inventory details area* on page 185

Command buttons

Assign

Assigns or reassigns the ownership of the disks to a node.

This button is enabled only if the container type of the selected disks is unassigned, spare, or shared.
Zero Spares
Erases all the data, and formats the spare disks and array LUNs.

Refresh
Updates the information in the window.

Tabs

Summary
Displays detailed information about the disks in the cluster, including the size of the spare disks and assigned disks. The tab also graphically displays information about spare disks, aggregates, and root aggregates for HDDs and information about spare disks, disks in a storage pool, aggregates, Flash Pool aggregates, and root aggregates for cache disks (SSDs).

The HDD panel is not displayed for systems with All Flash Optimized personality.

The details panel provides additional information about partitioned and unpartitioned spare disks (disk type, node, disk size, RPM, checksum, number of available disks, and spare capacity), in tabular format.

Inventory

Name
Displays the name of the disk.

Container Type
Displays the purpose for which the disk is used. The possible values are Aggregate, Broken, Foreign, Label Maintenance, Maintenance, Shared, Spare, Unassigned, Volume, Unknown, and Unsupported.

Partition Type
Displays the partition type of the disk.

Node Name
Displays the name of the node that contains the aggregate.
This field is available only at the cluster level.

Home owner
Displays the name of the home node to which this disk is assigned.

Current owner
Displays the name of the node that currently owns this disk.

Root owner
Displays the name of the node that currently owns the root partition of this disk.

Data Owner
Displays the name of the node that currently owns the data partition of this disk.

Data1 Owner
Displays the name of the node that currently owns the data1 partition of the disk.

Data2 Owner
Displays the name of the node that currently owns the data2 partition of the disk.

Storage Pool
Displays the name of the storage pool with which the disk is associated.

Type
Displays the type of the disk.
Firmware Version
Displays the firmware version of the disk.

Model
Displays the model of the disk.

RPM
Displays the effective speed of the disk drive when the option raid.mix.hdd.rpm.capacity is enabled, and displays the actual speed of the disk drive when the option raid.mix.hdd.rpm.capacity is disabled.
This field is not applicable to SSDs.

Effective Size
Displays the usable space available on the disk.

Physical Space
Displays the total physical space of the disk.

Shelf
Displays the shelf on which the physical disks are located.
This field is hidden by default.

Bay
Displays the bay within the shelf for the physical disk.
This field is hidden by default.

Pool
Displays the name of the pool to which the selected disk is assigned.
This field is hidden by default.

Checksum
Displays the type of the checksum.
This field is hidden by default.

Carrier ID
Specifies information about disks that are located within the specified multi-disk carrier.
The ID is a 64-bit value.
This field is hidden by default.

Inventory details area
The area below the inventory tab displays detailed information about the selected disk, including information about the aggregate or volume (if applicable), vendor ID, zeroing state (in percent), serial number of the disk, and error details in case of a broken disk. For shared disks, the Inventory details area displays the names of all the aggregates, including the root and the non-root aggregates.

Related tasks
Viewing disk information on page 180

Array LUNs
You can use System Manager to assign array LUNs to an existing aggregate and manage array LUNs.
Assigning array LUNs

You can use System Manager to assign unassigned array LUNs to an existing aggregate to increase the size of the aggregate.

About this task

- You can assign array LUNs if the following conditions are true:
 - The container type of the selected array LUNs must be “unassigned”.
 - The disks must be connected to nodes in an HA pair.
 - The disks must be visible to the node.
- For MetroCluster configurations, you cannot use System Manager to assign array LUNs as spares. You must use the command-line interface instead.

Steps

1. Click Storage > Aggregates & Disks > Array LUNs.
2. Select the array LUNs, and then click Assign.
3. In the Assign Array LUNs dialog box, select the node to which you want to assign the array LUNs.
4. Click Assign.

Reassigning spare array LUNs to nodes

You can use System Manager to reassign the ownership of spare array LUNs from one node to another to increase the capacity of an aggregate.

About this task

- You can reassign array LUNs if the following conditions are true:
 - The container type of the selected array LUNs must be “spare”.
 - The disks must be connected to nodes in an HA pair.
 - The disks must be visible to the node.
- For MetroCluster configurations, you cannot use System Manager to reassign array LUNs as spares. You must use the command-line interface instead.

Steps

1. Click Storage > Aggregates & Disks > Array LUNs.
2. Select the spare array LUNs that you want to reassign, and then click Assign.
3. In the Warning dialog box, click Continue.
4. In the Assign Array LUNs dialog box, select the node to which you want to reassign the spare array LUNs.
5. Click Assign.

Zeroing spare array LUNs

You can use System Manager to erase all the data and to format the spare array LUNs by writing zeros to the array LUNs. These array LUNs can then be used in new aggregates.

About this task

When you zero the spare array LUNs, all the spares in the cluster, including disks, are zeroed. You can zero the spare array LUNs for a specific node or for the entire cluster.

Steps

1. Click Storage > Aggregates & Disks > Array LUNs.
2. Click Zero Spares.
3. In the Zero Spares dialog box, select a node or “All nodes” from which you want to zero the array LUNs.
4. Select the Zero all non-zeroed spares check box to confirm the zeroing operation.
5. Click Zero Spares.

About disks and array LUNs

A disk is the basic unit of storage for storage systems that use ONTAP software to access native disk shelves. An array LUN is the basic unit of storage that third-party storage arrays provide to storage systems that run ONTAP software.

ONTAP software enables you to assign ownership to your disks and array LUNs, and to add them to an aggregate. ONTAP software also provides a number of ways to manage your disks, including removing them, replacing them, and sanitizing them. Because array LUNs are provided by the third-party storage array, you use the third-party storage array for all other management tasks for array LUNs.

You can create an aggregate using either disks or array LUNs. After you have created the aggregate, you manage it using ONTAP software in exactly the same way, whether it was created from disks or array LUNs.

Array LUNs window

The Array LUNs window enables you to assign ownership to your array LUNs and to add them to an aggregate.

The Array LUNs link in the left navigation pane is displayed only if there are any spare array LUNs, or if the V_StorageAttach license is installed.

- Command buttons on page 187
- Array LUN list on page 188
- Details area on page 188

Command buttons

Assign

Enables you to assign or reassign the ownership of array LUNs to a node.

Zero Spares

Erases all the data, and formats the spare array LUNs and disks.
Refresh

Updates the information in the window.

Array LUN list

Displays information such as the name, state, and vendor for each array LUN.

Name

Specifies the name of the array LUN.

State

Specifies the state of the array LUN.

Vendor

Specifies the name of the vendor.

Used Space

Specifies the space used by the array LUN.

Total Size

Specifies the size of the array LUN.

Container

Specifies the aggregate to which the array LUN belongs.

Node name

Specifies the name of the node to which the array LUN belongs.

Home owner

Displays the name of the home node to which the array LUN is assigned.

Current owner

Displays the name of the node that currently owns the array LUN.

Array name

Specifies the name of the array.

Pool

Displays the name of the pool to which the selected array LUN is assigned.

Details area

The area below the Array LUNs list displays detailed information about the selected array LUN.

Nodes

You can use System Manager to view the details of the nodes in the cluster.

Initializing the ComplianceClock time

You can use System Manager to initialize the ComplianceClock time to the current cluster time. You must initialize the ComplianceClock time in order to create SnapLock aggregates.

Before you begin

The SnapLock license must be installed.

About this task

You cannot modify or stop the ComplianceClock time after it is initialized.
Steps

1. Click **Storage > Nodes**.

2. Select the node, and then click **Initialize ComplianceClock**.

3. In the **Initialize ComplianceClock** dialog box, click **Yes** to initialize the ComplianceClock time to the current cluster time.

Nodes window

You can use the Nodes window to view the details of the nodes in a cluster.

- **Command buttons** on page 189
- **Nodes list** on page 189

Command buttons

Initialize ComplianceClock

Initializes the ComplianceClock of the selected node to the current value of the system clock.

Refresh

Updates the information in the window.

Nodes list

Name

Displays the name of the node.

State

Displays the state of the node (whether the node is up or down).

Up Time

Displays the duration for which the node is up.

ONTAP Version

Displays the ONTAP version that is installed on the node.

Model

Displays the platform model number of the node.

System ID

Displays the ID of the node.

Serial No

Displays the serial number of the node.

Details area

Displays detailed information about the selected node.

Details tab

Displays information related to the selected node such as the name of the node, the state of the node, and the duration for which the node is up.

Performance tab

Displays the throughput, IOPS, and latency of the selected node.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to view the updated graphs.
Hardware Cache

You can use System Manager to manage Hardware Cache modules.

Note: Flash Cache is known as Hardware Cache in System Manager.

Enabling or disabling Flash Cache modules

You can enable or disable the external cache functionality for a storage system that has a Flash Cache module installed by using System Manager. You can enable Flash Cache modules based on the workload requirements of your storage system.

Steps

1. Click **Configuration > Hardware Cache**
2. If you want to modify a module or modules, move the slider button to enable or disable each module, as required.

How Flash Cache modules work

Using Flash Cache modules improves the performance of a storage system. The impact of using Flash Cache modules is displayed on the Hardware Cache window.

You can configure Flash Cache modules and disks based on the workload requirements of a storage system. By determining the read workload (number of read operations) served by Flash Cache modules and disks, you can analyze the performance of the storage system.

Flash Cache modules do not contain any data during the storage system boot or when control is returned to the storage system after a takeover event. Therefore, disks serve all the data read requests of the storage system.

The Flash Cache module is slowly populated with data when data read requests are served. Because the data read requests served by Flash Cache modules are faster than those served by the disks, the performance of the storage system improves.

Data read requests served by the Flash Cache module replace the data read requests served by the disks, and therefore, the performance improvement in the storage system is directly related to the disk reads that are replaced. To understand the impact of Flash Cache modules on storage system performance, you must view the read workload graph in the Hardware Cache window when the Flash Cache module contains data.

Hardware Cache window

You can use the Hardware Cache window to enable or disable Flash Cache modules for a storage system that has a Flash Cache module installed. You can also view the read-workload statistics.

Module Information

Storage system name

The name of the storage system that has a Flash Cache module installed displays under the graphic.

Enable/Disable toggle button

Move the toggle button to enable or disable the module.

Size

The size of the module in gigabytes. If there are multiple Flash Cache module cards, the total cache size from all of the cards is displayed.
Note: The Flash Cache module size that is displayed differs from the actual size for the following reasons:

- System Manager reports only the usable capacity that is provided by ONTAP.
- A portion of the total capacity is reserved for storing metadata.

Model Names

The model names of the modules.

System Read Latency

Displays the average read latency in milliseconds.

Cache Read Workload

Indicates storage system performance by displaying a graph specifying the rate of the read workload that is served by the disks and the Flash Cache module.

Events

You can use System Manager to view the event log and event notifications.

Events window

You can use the Events window to view the event log and event notifications.

Command buttons

Refresh

Updates the information in the window.

Events list

Time

Displays the time when the event occurred.

Node

Displays the node and the cluster on which the event occurred.

Severity

Displays the severity of the event. The possible severity levels are:

- **Emergency**

 Specifies that the event source unexpectedly stopped, and the system experienced unrecoverable data loss. You must take corrective action immediately to avoid extended downtime.

- **Alert**

 Specifies that the event source has an alert, and action must be taken to avoid downtime.

- **Critical**

 Specifies that the event source is critical, and might lead to service disruption if corrective action is not taken immediately.

- **Error**

 Specifies that the event source is still performing, and a corrective action is required to avoid service disruption.
• Warning
 Specifies that the event source experienced an occurrence that you must be aware of.
 Events of this severity might not cause service disruption; however, corrective action
 might be required.

• Notice
 Specifies that the event source is normal, but the severity is a significant condition that
 you must be aware of.

• Informational
 Specifies that the event source has an occurrence that you must be aware of. No
 corrective action might be required.

• Debug
 Specifies that the event source includes a debugging message.

By default, the alert severity type, emergency severity type, and the error severity type are
displayed.

Source
Displays the source of the event.

Event
Displays the description of the event.

Details area
Displays the event details, including the event description, message name, sequence number, message
description, and corrective action for the selected event.

System alerts
You can use System Manager to monitor different parts of a cluster.

Related information
System administration

Acknowledging system health alerts
You can use System Manager to acknowledge and respond to system health alerts for subsystems.
You can use the information displayed to take the recommended action and correct the problem
reported by the alert.

Steps
1. Click **Events & Jobs > System Alerts**.
2. In the **System Alerts** window, click the arrow icon next to the name of subsystem.
3. Select the alert that you want to acknowledge, and then click **Acknowledge**.
4. Type your name, and then click **Acknowledge**.

Related references
System Alerts window on page 195
Suppressing system health alerts

You can use System Manager to suppress system health alerts that do not require any intervention from you.

Steps
1. Click Events & Jobs > System Alerts.
2. In the System Alerts window, click the arrow icon next to the name of subsystem.
3. Select the alert that you want to suppress, and then click Suppress.
4. Type your name, and then click Suppress.

Related references
 System Alerts window on page 195

Deleting system health alerts

You can use System Manager to delete system health alerts to which you have already responded.

Steps
1. Click Events & Jobs > System Alerts.
2. In the System Alerts window, click the arrow icon next to the name of subsystem.
3. Select the alert that you want to delete, and then click Delete.
4. Click OK.

Related references
 System Alerts window on page 195

Available cluster health monitors

There are several health monitors that monitor different parts of a cluster. Health monitors help you to recover from errors within ONTAP systems by detecting events, sending alerts to you, and deleting events as they clear.

<table>
<thead>
<tr>
<th>Health monitor name (identifier)</th>
<th>Subsystem name (identifier)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster switch (cluster-switch)</td>
<td>Switch (Switch-Health)</td>
<td>Monitors cluster network switches and management network switches for temperature, utilization, interface configuration, redundancy (cluster network switches only), and fan and power supply operation. The cluster switch health monitor communicates with switches through SNMP. SNMPv2c is the default setting.</td>
</tr>
<tr>
<td>MetroCluster Fabric</td>
<td>Switch</td>
<td>Monitors the MetroCluster configuration back-end fabric topology and detects misconfigurations such as incorrect cabling and zoning, and ISL failures.</td>
</tr>
<tr>
<td>Health monitor name (identifier)</td>
<td>Subsystem name (identifier)</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MetroCluster Health</td>
<td>Interconnect, RAID, and storage</td>
<td>Monitors FC-VI adapters, FC initiator adapters, left-behind aggregates and disks, and inter-cluster ports</td>
</tr>
<tr>
<td>Node connectivity (node-connect)</td>
<td>CIFS nondisruptive operations (CIFS-NDO)</td>
<td>Monitors SMB connections for nondisruptive operations to Hyper-V applications.</td>
</tr>
<tr>
<td></td>
<td>Storage (SAS-connect)</td>
<td>Monitors shelves, disks, and adapters at the node level for appropriate paths and connections.</td>
</tr>
<tr>
<td>System connectivity (system-connect)</td>
<td>Storage (SAS-connect)</td>
<td>Monitors shelves at the cluster level for appropriate paths to two HA clustered nodes.</td>
</tr>
</tbody>
</table>

Ways to respond to system health alerts

When a system health alert occurs, you can acknowledge it, learn more about it, repair the underlying condition, and prevent it from occurring again.

When a health monitor raises an alert, you can respond in any of the following ways:

- Get information about the alert, which includes the affected resource, alert severity, probable cause, possible effect, and corrective actions.
- Get detailed information about the alert, such as the time when the alert was raised and whether anyone else has acknowledged the alert already.
- Get health-related information about the state of the affected resource or subsystem, such as a specific shelf or disk.
- Acknowledge the alert to indicate that someone is working on the problem, and identify yourself as the “Acknowledger.”
- Resolve the problem by taking the corrective actions provided in the alert, such as fixing cabling to resolve a connectivity problem.
- Delete the alert, if the system did not automatically clear it.
- Suppress an alert to prevent it from affecting the health status of a subsystem. Suppressing is useful when you understand a problem. After you suppress an alert, it can still occur, but the subsystem health displays as “ok-with-suppressed.” when the suppressed alert occurs.
System Alerts window

You can use the System Alerts window to learn more about system health alerts. You can also acknowledge, delete, and suppress alerts from the window.

Command buttons

Acknowledge

Enables you to acknowledge the selected alert to indicate that the problem is being addressed and identifies the person who clicks the button as the “Acknowledger.”

Suppress

Enables you to suppress the selected alert to prevent the system from notifying you about the same alert again and identifies you as the “Suppressor.”

Delete

Deletes the selected alert.

Refresh

Updates the information in the window.

Alerts list

SubSystem (No. of Alerts)

Displays the name of the subsystem, such as the SAS connection, switch health, CIFS NDO, or MetroCluster, for which the alert is generated.

Alert ID

Displays the alert ID.

Node

Displays the name of the node for which the alert is generated.

Severity

Displays the severity of the alert as Unknown, Other, Information, Degraded, Minor, Major, Critical, or Fatal.

Resource

Displays the resource that generated the alert, such as a specific shelf or disk.

Time

Displays the time when the alert was generated.

Details area

The details area displays detailed information about the alert, such as the time when the alert was generated and whether the alert has been acknowledged. The area also includes information about the probable cause and possible effect of the condition generated by the alert, and the recommended actions to correct the problem reported by the alert.

Related tasks

- [Acknowledging system health alerts](#) on page 192
- [Suppressing system health alerts](#) on page 193
- [Deleting system health alerts](#) on page 193
AutoSupport notifications

You can use System Manager to configure AutoSupport notifications that help you to monitor your storage system health.

Setting up AutoSupport notifications

You can use the Edit AutoSupport Settings dialog box in System Manager to set up AutoSupport notifications by specifying an email address from which email notifications are sent and adding multiple email host names.

Steps

1. Click > AutoSupport.
2. Select the node, and then click Edit.
3. In the Email Recipient tab, type the email address from which email notifications are sent, specify the email recipients and the message content for each email recipient, and add the mail hosts.
 You can add up to five email addresses of the host names.
4. In the Others tab, select a transport protocol for delivering the email messages from the drop-down list and specify the HTTP or HTTPS proxy server details.
5. Click OK.
6. Verify that configuration you have set for AutoSupport notification is set up correctly in the AutoSupport window.

Enabling or disabling AutoSupport settings

You can enable or disable AutoSupport settings on your storage system by using System Manager. AutoSupport messages enable you to monitor your storage system health or send notifications to technical support and your internal support organization.

About this task

The AutoSupport option is enabled by default.

Steps

1. Click > AutoSupport.
2. Select the node, and then click Enable or Disable.
3. Click OK.
4. Verify that the AutoSupport status correctly displays the change you made.
Adding AutoSupport email recipients

You can use the Email Recipient tab of the Edit AutoSupport Settings dialog box in System Manager to add email addresses of the recipients of AutoSupport notifications.

Steps

1. Click 🌐 > AutoSupport.
2. Select the node, and then click Edit.
3. In the Email Recipient tab, type the address of the email recipient, specify whether the recipient receives a full message or a short message, and then click Add.
4. Click OK.
5. Verify that the details you specified are displayed in the AutoSupport window.

Testing AutoSupport settings

You can use the AutoSupport Test dialog box in System Manager to test that you have configured the AutoSupport settings correctly.

Steps

1. Click 🌐 > AutoSupport.
2. Select the node, and then click Test.
3. In the AutoSupport Test dialog box, enter the AutoSupport subject text “Test AutoSupport” or any text that notifies the recipients that you are testing the AutoSupport settings.
4. Click Test.
 An email message with the subject “Test AutoSupport” or the text that you typed in the AutoSupport subject field is sent to the specified recipients.

Generating AutoSupport data

You can use System Manager to generate AutoSupport data for a single node or multiple nodes to monitor their health and to send notifications to technical support.

Steps

1. Click 🌐 > AutoSupport.
2. Select the node, and then click AutoSupport Request > Generate AutoSupport.
 By default, the AutoSupport data is generated for all nodes.
3. In the Generate AutoSupport dialog box, perform the following steps:
 a. If you want to generate AutoSupport data for a specific node, clear the Generate Autosupport data for all nodes check box, and then select the node.
 b. Type the case number.
4. Click Generate.
5. In the Confirmation dialog box, click OK.
Viewing AutoSupport summary

System Manager enables you to view the status and details of all the previous AutoSupport data in order to review the data that has been sent to technical support. You can also view the information to understand the health and performance of your storage system.

Steps

1. Click AutoSupport.
2. Select the node, and then click AutoSupport Request > View Previous Summary. The AutoSupport data for all the nodes is displayed.
3. Click OK.

AutoSupport severity types

AutoSupport messages have severity types that help you understand the purpose of each message—for example, to draw immediate attention to an emergency problem, or only to provide information.

Messages have one of the following severities:

- **Alert**: Alert messages indicate that a next-higher level event might occur if you do not take some action.
 You must take an action against alert messages within 24 hours.
- **Emergency**: Emergency messages are displayed when a disruption has occurred.
 You must take an action against emergency messages immediately.
- **Error**: Error conditions indicate what might happen if you ignore.
- **Notice**: Normal but significant condition.
- **Info**: Informational message provides details about the issue, which you can ignore.
- **Debug**: Debug-level messages provide instructions you should perform.

If your internal support organization receives AutoSupport messages through email, the severity appears in the subject line of the email message.

AutoSupport window

The AutoSupport window enables you to view the current AutoSupport settings for your system. You can also change your system’s AutoSupport settings.

Command buttons

Enable

Enables AutoSupport notification. **Enable** is the default.

Disable

Disables AutoSupport notification.

Edit

Opens the Edit AutoSupport Settings dialog box, which enables you to specify an email address from which email notifications are sent and to add multiple email addresses of the host names.
Test

Opens the AutoSupport Test dialog box, which enables you to generate an AutoSupport test message.

AutoSupport Request

Provides the following AutoSupport requests:

Generate AutoSupport

Generates AutoSupport data for a selected node or all nodes.

View Previous Summary

Displays the status and details of all the previous AutoSupport data.

Refresh

Updates the information in the window.

Details area

The details area displays AutoSupport setting information such as the node name, AutoSupport status, transport protocol used, and name of the proxy server.

Jobs

You can use System Manager to manage job tasks such as displaying job information and monitoring the progress of a job.

Jobs

Jobs are asynchronous task and typically long-running volume operations, such as copying, moving, or mirroring data. Jobs are placed in a job queue and are run when resources are available. The cluster administrator can perform all the tasks related to job management.

A job can be one of the following categories:

- A server-affiliated job is placed in queue by the management framework to be run in a specific node.
- A cluster-affiliated job is placed in queue by the management framework to be run in any node in the cluster.
- A private job is specific to a node and does not use the replicated database (RDB) or any other cluster mechanism.
 You require the advanced privilege level or higher to run the commands to manage private jobs.

You can manage jobs in the following ways:

- Displaying job information, including the following:
 - Jobs on a per-node basis
 - Cluster-affiliated jobs
 - Completed jobs
 - Job history
- Monitoring a job's progress
- Displaying information about the initialization state for job managers.

You can determine the outcome of a completed job by checking the event log.
Job window

You can use the Job window to manage job tasks such as displaying job information and monitoring the progress of a job.

Command button

Refresh

Updates the information in the window.

Tabs

Current Jobs

This tab displays information about the job tasks that are in progress.

Job History

This tab displays information about all the jobs.

Job list

Job ID

Displays the ID of the job.

Start Time

Displays the start time of the job.

Job Name

Displays the name of the job.

Node

Displays the name of the node.

State

Displays the state of the job.

Job Description

Displays the description of the job.

Progress

Displays the state of the job.

Schedule Name

Displays the name of the schedule.

Flash Pool statistics

You can use System Manager to view the real-time SSD tier read and write workloads for a selected Flash Pool aggregate.

Flash Pool aggregate Statistics window

You can view the real-time SSD tier read and write workloads for a selected Flash Pool aggregate.

This page is not available for a cluster containing nodes with All Flash Optimized personality.

Displaying Statistics for Flash Pool aggregate

From the list of Flash Pool aggregates, you can select the Flash Pool aggregate whose statistics you want to view.
SSD Cache Read Workload
Displays a graphical view of the total read requests that are sent to the Flash Pool aggregate in comparison with the read operations that are performed by the SSD tier.

SSD Cache Write Workload
Displays a graphical view of the total write requests that are sent to the Flash Pool aggregate in comparison with the write operations that are performed by the SSD tier.
Managing logical storage

You can use System Manager to manage the logical storage such as storage virtual machines (SVMs), volumes, Qtrees, protocols, policies and so on.

Storage Virtual Machines

You can use System Manager to manage the SVMs in your cluster.

Related information

SAN administration
ONTAP concepts

SVM Dashboard window

The dashboard provides a cumulative at-a-glance information about your storage virtual machine (SVM) and its performance. You can use the Dashboard window to view important information related to your SVM such as the protocols configured, the volumes that are nearing capacity, and the performance.

SVM Details

This window displays details about the SVM through various panels such as the Protocol Status panel, Volumes Nearing Capacity panel, Applications panel, and performance panel.

Protocol Status

Provides an overview of the protocols that are configured for the SVM. You can click the protocol name to view the configuration.

If a protocol is not configured or if a protocol license is not available for the SVM, you can click the protocol name to configure the protocol or to add the protocol license.

Volumes Nearing Capacity

Displays information about the volumes that are nearing capacity utilization of 80 percent or more and that require immediate attention or corrective action.

Applications

Displays information about the top five applications of the SVM. You can view the top five applications based on either IOPS (from low to high or from high to low) or capacity (from low to high or from high to low). You must click the specific bar chart to view more information about the application. For capacity, the total space, used space, and available space are displayed, and for IOPS, the IOPS details are displayed. For L2/L3 applications, latency metrics are also displayed.

Note: The used size displayed in the Applications window does not equal the used size in the CLI.

You can click View details to open the Applications window of the specific application. You can click View all applications to view all of the applications for the SVM.

The refresh interval for the Applications panel is one minute.
SVM Performance
Displays the performance metrics of the protocols in the SVM, including latency and IOPS.

If the information about SVM performance cannot be retrieved from ONTAP, you cannot view the respective graph. In such cases, System Manager displays the specific error message.

The refresh interval for the SVM Performance panel is 15 seconds.

Monitoring SVMs
The dashboard in System Manager enables you to monitor the health and performance of a storage virtual machine (SVM).

Steps
1. Click Storage > SVMs.
2. Select the name the SVM that you want to monitor.
3. View the details in the dashboard panels.

Editing SVM settings
You can use System Manager to edit the properties of storage virtual machines (SVMs), such as the name service switch, name mapping switch, and aggregate list.

About this task
• You can edit the values of the following SVM properties:
 ° Name service switch
 ° Protocols that are enabled to serve data
 Note: The CIFS protocol that is configured on the SVM continues to serve data even when you disable the protocol on that SVM.
 ° The list of aggregates that are available to create volumes
 Note: For FlexVol volumes, you can assign aggregates only if you have delegated administration to an SVM administrator.

• System Manager does not display the values of the name service switch and the name mapping switch for an SVM that is created through the command-line interface or for the SVM services that are not configured and are not set to the default values by ONTAP. You can use the command-line interface to view the services because the Services tab is disabled. System Manager displays the name service switch and the name mapping switch of an SVM only when it is created by using System Manager or when the services of the SVM are set to the default values by ONTAP.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Details tab, modify the required data protocols.
4. In the Resource Allocation tab, choose one of the following methods to delegate volume creation:
If you want to provision volume creation...

Then...

For all aggregates
Select the Do not delegate volume creation option.

For specific aggregates
a. Select the Delegate volume creation option.
 b. Select the required aggregates for delegating volume creation.

5. In the Service tab, specify the name service switch sources for the required database types and the order in which they should be consulted to retrieve name service information.

The default values for each of the database types are as follows:

- hosts: files, dns
- namemap: files
- group: files
- netgroup: files
- passwd: files

6. Click Save and Close.

Related concepts

How ONTAP name service switch configuration works on page 209

Deleting SVMs

You can use System Manager to delete storage virtual machines (SVMs) that you no longer require from the storage system configuration.

Before you begin

You must have completed the following tasks:

1. Disabled the Snapshot copies, data protection (DP) mirrors, and load-sharing (LS) mirrors for all the volumes
 Note: You must use the command-line interface (CLI) to disable LS mirrors.
2. Deleted all the igroups that belong to the SVM manually if you are deleting SVMs
3. Deleted all the portsets
4. Deleted all the volumes in the SVM, including the root volume
5. Unmapped the LUNs, taken them offline, and deleted them
6. Deleted the CIFS server if you are deleting SVMs
7. Deleted any customized user accounts and roles that are associated with the SVM
8. Deleted any NVMe subsystems associated with the SVM using the CLI.
9. Stopped the SVM

About this task

When you delete SVMs, the following objects associated with the SVM are also deleted:
• LIFs, LIF failover groups, and LIF routing groups
• Export policies
• Efficiency policies

If you delete SVMs that are configured to use Kerberos, or modify SVMs to use a different Service Principal Name (SPN), the original service principal of the SVM is not automatically deleted or disabled from the Kerberos realm. You must manually delete or disable the principal. You must have the Kerberos realm administrator’s user name and password to delete or disable the principal.

If you want to move data from an SVM to another SVM before you delete the first SVM, you can use the SnapMirror technology to do so.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM that you want to delete, and then click **Delete**.
3. Select the confirmation check box, and then click **Delete**.

Starting SVMs

You can use System Manager to provide data access from a storage virtual machine (SVM) by starting the SVM.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM that you want to start, and then click **Start**.

Result

The SVM starts serving data to clients.

Stopping SVMs

You can use System Manager to stop a storage virtual machine (SVM) if you want to troubleshoot any issue with the SVM, delete the SVM, or stop data access from the SVM.

Before you begin

All the clients connected to the SVM must be disconnected.

Attention: If any clients are connected to the SVM when you stop it, data loss might occur.

About this task

• You cannot stop SVMs during storage failover (SFO).
• When you stop the SVM, an SVM administrator cannot log in to the SVM.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM that you want to stop, and then click **Stop**.
Result
The SVM stops serving data to clients.

Managing SVMs
A storage virtual machine (SVM) administrator can administer SVMs and their resources, such as volumes, protocols, and services, depending on the capabilities assigned by the cluster administrator. An SVM administrator cannot create, modify, or delete SVMs.

Note: SVM administrators cannot log in to System Manager.

SVM administrators might have all or some of the following administration capabilities:

• Data access protocol configuration
 SVM administrators can configure data access protocols, such as NFS, CIFS, iSCSI, and Fibre Channel (FC) protocol (Fibre Channel over Ethernet or FCoE included).

• Services configuration
 SVM administrators can configure services such as LDAP, NIS, and DNS.

• Storage management
 SVM administrators can manage volumes, quotas, qtrees, and files.

• LUN management in a SAN environment

• Management of Snapshot copies of the volume

• Monitoring SVM
 SVM administrators can monitor jobs, network connection, network interface, and the SVM health.

Related information
ONTAP 9 Documentation Center

Tracing file access to diagnose access errors on SVMs
Starting with System Manager 9.6, you can diagnose CIFS or NFS file access errors on a storage virtual machine (SVM).

About this task
File access issues, such as an “access denied” error, are likely to occur when there are problems with a share configuration, permissions, or user mapping. You can use System Manager to help you resolve file access problems by viewing the access trace results for the file or share that a user wants to access. System Manager shows whether the file or share has effective read, write, or execute permissions and the reasons why access is or is not effective.

Steps
1. Click Storage > SVMs.
2. Select the SVM that contains the files or shares for which file access errors were received.
3. Click Trace File Access.
 The Trace File Access window for the selected SVM shows the prerequisites and steps required to trace file access permissions.
4. Click Continue to begin the file tracing process.
5. Select the protocol that is used to access files or shares on the selected SVM.
6. In the **User Name** field, enter the name of the user who was trying to access the file or share.

7. Optional: Click 🌒 to specify more details to narrow the scope of the trace.

 The Advanced Options dialog window allows you to specify the following details:

 - **Client IP Address**: Specify the IP address of the client.
 - **File**: Specify the file name or file path to trace.
 - **Show in Trace Results**: Specify whether you want to view only access denied entries or all entries.

 Click **Apply** to apply the details you specified and to return to the Trace File Access window.

8. Click **Start Tracing**.

 The trace is initiated and a results table is displayed. The table is empty until users receive errors when requesting file access. The results table is refreshed every 15 seconds and displays messages in reverse chronological order.

9. Notify the affected user or users that they should try accessing the files within the next 60 minutes.

 Details of the denied file access requests are shown in the results table when errors occur for the specified username for the duration of the trace. The **Reasons** column identifies the problems that are preventing the user from accessing files and reasons why they occurred.

10. Optional: In the **Reasons** column of the result table, click **View Permissions** to view permissions for the file that the user is trying to access.

 - When the trace result shows a message saying that access is not granted for "Synchronize", "Read Control", "Read Attributes", "Execute", "Read EA", "Write", or "Read", the message is indicating that the desired access has not been granted for the set of permissions listed. In order to view the actual permissions status, you need to view the permissions using the provided link.

 - If you specified the CIFS protocol, the Effective File and Share Permissions dialog box displays, listing both file and share permissions associated with the share and file that the user is trying to access.

 - If you specified the NFS protocol, the Effective File Permissions dialog box displays, listing the file permissions associated with the file that the user is trying to access.

 A check mark indicates that permissions are granted, and an “X” indicates that permissions are not granted.

 Click **OK** to return to the Trace File Access window.

11. Optional: The results table displays read-only data. You can perform the following actions with the results of the trace:

 - Click **Copy to Clipboard** to copy the results to the clipboard.

 - Click **Export Trace Results** to export the results to a comma-separated values (CSV) file.

12. When you want to end the tracing operation, click **Stop Tracing**.

Types of SVMs

A cluster consists of four types of SVMs, which help in managing the cluster and its resources and data access to the clients and applications.

A cluster contains the following types of SVMs:
• Admin SVM
 The cluster setup process automatically creates the admin SVM for the cluster. The admin SVM represents the cluster.

• Node SVM
 A node SVM is created when the node joins the cluster, and the node SVM represents the individual nodes of the cluster.

• System SVM (advanced)
 A system SVM is automatically created for cluster-level communications in an IPspace.

• Data SVM
 A data SVM represents the data serving SVMs. After the cluster setup, a cluster administrator must create data SVMs and add volumes to these SVMs to facilitate data access from the cluster. A cluster must have at least one data SVM to serve data to its clients.

 Note: Unless otherwise specified, the term SVM refers to a data (data-serving) SVM.

 In the CLI, SVMs are displayed as Vservers.

Why you use SVMs

SVMs provide data access to clients regardless of the physical storage or controller, similar to any storage system. SVMs provide benefits such as nondisruptive operations, scalability, security, and unified storage.

SVMs provide the following benefits:

• Multi-tenancy
 SVM is the fundamental unit of secure multi-tenancy, which enables partitioning of the storage infrastructure so that it appears as multiple independent storage systems. These partitions isolate the data and management.

• Nondisruptive operations
 SVMs can operate continuously and nondisruptively for as long as they are needed. SVMs help clusters to operate continuously during software and hardware upgrades, addition and removal of nodes, and all administrative operations.

• Scalability
 SVMs meet on-demand data throughput and the other storage requirements.

• Security
 Each SVM appears as a single independent server, which enables multiple SVMs to coexist in a cluster while ensuring no data flows among them.

• Unified storage
 SVMs can serve data concurrently through multiple data access protocols. SVMs provide file-level data access through NAS protocols, such as CIFS and NFS, and block-level data access through SAN protocols, such as iSCSI, FC/FCoE, and NVMe. SVMs can serve data to SAN and NAS clients independently at the same time.

• Delegation of management
 SVM administrators have privileges assigned by the cluster administrator.
How ONTAP name service switch configuration works

ONTAP stores name service configuration information in a table that is the equivalent of the `/etc/nsswitch.conf` file on UNIX systems. You must understand the function of the table and how ONTAP uses it so that you can configure it appropriately for your environment.

The ONTAP name service switch table determines which name service sources ONTAP consults in which order to retrieve information for a certain type of name service information. ONTAP maintains a separate name service switch table for each SVM.

Database types

The table stores a separate name service list for each of the following database types:

<table>
<thead>
<tr>
<th>Database type</th>
<th>Defines name service sources for...</th>
<th>Valid sources are...</th>
</tr>
</thead>
<tbody>
<tr>
<td>hosts</td>
<td>Converting host names to IP addresses</td>
<td>files, dns</td>
</tr>
<tr>
<td>group</td>
<td>Looking up user group information</td>
<td>files, nis, ldap</td>
</tr>
<tr>
<td>passwd</td>
<td>Looking up user information</td>
<td>files, nis, ldap</td>
</tr>
<tr>
<td>netgroup</td>
<td>Looking up netgroup information</td>
<td>files, nis, ldap</td>
</tr>
<tr>
<td>namemap</td>
<td>Mapping user names</td>
<td>files, ldap</td>
</tr>
</tbody>
</table>

Source types

The sources specify which name service source to use for retrieving the appropriate information.

<table>
<thead>
<tr>
<th>Specify source type...</th>
<th>To look up information in...</th>
<th>Managed by the command families...</th>
</tr>
</thead>
<tbody>
<tr>
<td>files</td>
<td>Local source files</td>
<td>vserver services name-service unix-user</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vserver services name-service unix-group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vserver services name-service netgroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vserver services name-service dns hosts</td>
</tr>
<tr>
<td>nis</td>
<td>External NIS servers as specified in the NIS domain configuration of the SVM</td>
<td>vserver services name-service nis-domain</td>
</tr>
<tr>
<td>ldap</td>
<td>External LDAP servers as specified in the LDAP client configuration of the SVM</td>
<td>vserver services name-service ldap</td>
</tr>
<tr>
<td>dns</td>
<td>External DNS servers as specified in the DNS configuration of the SVM</td>
<td>vserver services name-service dns</td>
</tr>
</tbody>
</table>

Even if you plan to use NIS or LDAP for both data access and SVM administration authentication, you should still include `files` and configure local users as a fallback in case NIS or LDAP authentication fails.

Related tasks

Editing SVM settings on page 203
Storage Virtual Machines window

You can use the Storage Virtual Machines window to manage your storage virtual machines (SVMs) and display information about them.

You cannot manage (create, delete, start, or stop) an SVM configured for disaster recovery (DR) by using System Manager. Also, you cannot view the storage objects associated with the SVM configured for disaster recovery in the application interface.

Command buttons

Create
Opens the Storage Virtual Machine (SVM) Setup wizard, which enables you to create a new SVM.

Edit
Opens the Edit Storage Virtual Machine dialog box, which enables you to modify the properties, such as the name service switch, name mapping switch, and aggregate list, of a selected SVM.

Delete
Deletes the selected SVMs.

Start
Starts the selected SVM.

Stop
Stops the selected SVM.

SVM Settings
Manages the storage, policies, and configuration for the selected SVM.

Protection Operations
Provides the following options:

Initialize
Enables you to initialize the SVM relationship to perform a baseline transfer from the source SVM to the destination SVM.

Update
Enables you to update data from the source SVM to the destination SVM.

Activate Destination SVM
Enables you to activate the destination SVM.

Resync from Source SVM
Enables you to initiate resynchronization of the broken relationship.

Resync from Destination SVM (Reverse Resync)
Enables you to resynchronize the relationship from the destination SVM to the source SVM.

Reactivate Source SVM
Enables you to reactivate the source SVM.

Refresh
Updates the information in the window.

Trace File Access
Enables you to trace the accessibility of a file or share on the selected SVM for a specified username.
SVM list

The SVM list displays the name of each SVM and the allowed protocols on it.

You can view only data SVMs by using System Manager.

Name

Displays the name of the SVM.

State

Displays the SVM state, such as Running, Starting, Stopped, or Stopping.

Subtype

Displays the subtype of the SVM, which can be one of the following:

- **default**
 Specifies that the SVM is a data-serving SVM.

- **dp-destination**
 Specifies that the SVM is configured for disaster recovery.

- **sync-source**
 Specifies that the SVM is in the primary site of a MetroCluster configuration.

- **sync-destination**
 Specifies that the SVM is in the surviving site of a MetroCluster configuration.

Allowed Protocols

Displays the allowed protocols, such as CIFS and NFS, on each SVM.

IPspace

Displays the IPspace of the associated SVM.

Volume Type

Displays the allowed volume type, such as FlexVol volume, on each SVM.

Protected

Displays whether the SVM is protected or not.

Configuration State

Displays whether the configuration state of the SVM is locked or unlocked.

Details area

The area below the SVM list displays detailed information, such as the type of volumes allowed, language, and Snapshot policy, about the selected SVM.

You can also configure the protocols that are allowed on this SVM. If you have not configured the protocols while creating the SVM, you can click the protocol link to configure the protocol.

You cannot configure protocols for an SVM configured for disaster recovery by using System Manager.

Note: If the FCP service is already started for the SVM, clicking the FC/FCoE link opens the Network Interfaces window.

The color indicates the status of the protocol configuration:
<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>LIFs exist and the protocol is configured. You can click the link to view the configuration details.</td>
</tr>
<tr>
<td></td>
<td>Note: Configuration might be partially completed. However, service is running. You can create the LIFs and complete the configuration from the Network Interfaces window.</td>
</tr>
<tr>
<td>Yellow</td>
<td>Indicates one of the following:</td>
</tr>
<tr>
<td></td>
<td>• LIFs exist. Service is created but is not running.</td>
</tr>
<tr>
<td></td>
<td>• LIFs exist. Service is not created.</td>
</tr>
<tr>
<td></td>
<td>• Service is created. LIFs do not exist.</td>
</tr>
<tr>
<td>Grey</td>
<td>The protocol is not configured. You can click the protocol link to configure the protocol.</td>
</tr>
<tr>
<td>Grey border</td>
<td>The protocol license has expired or is missing. You can click the protocol link to add the licenses in the Licenses page.</td>
</tr>
</tbody>
</table>

You can also add the management interface and view details such as the protection relationships, protection policy, NIS domain, and so on.

The **Details** area also includes a link to view the Public SSL Certificate for an SVM. When you click this link, you can perform the following tasks:

- View certificate details, the serial number, the start date, and the expiration date.
- Copy the certificate to the clipboard.
- Email the certificate details.

Peer Storage Virtual Machines area

Displays a list of the SVMs that are peered with the selected SVM along with details of the applications that are using the peer relationship.

Trace File Access window

Starting with System Manager 9.6, you can use the Trace File Access window to diagnose issues when you have problems accessing files and shares on an SVM using the CIFS or NFS protocol.

Command buttons

Continue

Starts the process of setting up and initiating a file access trace on the selected SVM.

Protocols

Allows you to select the protocol that is used to access files and shares on the selected SVM, either CIFS or NFS.

Advanced Options icon

Allows you to specify additional details to narrow the scope of the trace.
Show in Trace Results
Allows you to specify in the Advanced Options dialog box whether you want the trace results to display only file access requests that were denied or to display all file access requests—those that were successful and those that were denied.

Start Tracing
Allows you to start the trace. The results show access problems for file access requests submitted over the next 60 minutes.

Stop Tracing
Allows you to stop the trace.

View Permissions
Allows you to display permissions. When using the CIFS protocol, you can display effective file and share permissions. When using the NFS protocol, you can display effective file permissions.

Copy to Clipboard
Allows you copy the results table to the clipboard.

Export Trace Results
Allows you to export the trace results to a file in comma-separated-values (.csv) format.

Entry fields

User Name
You enter the name of the user who received file access request errors that you want to trace.

Search trace results
You enter specific information that you want to find in the search results, and then you click Enter.

Client IP Address
In the Advanced Options dialog box, you can specify the IP address of the client as an additional detail to narrow the scope of the trace.

File
In the Advanced Options dialog box, you can specify the file or file path that you want to access as an additional detail to narrow the scope of the trace.

Results list for CIFS protocol tracing
When you specify the CIFS protocol, the results list displays the following data for your trace based on the parameters you specified. The data is displayed in reverse chronological order. If you stop tracing, the results remain in the list until you start another trace.

- Share: The name of the share that the system attempted to access, whether successful or not.
- Path: The file path of the file that the system attempted to access, whether successful or not.
- Client IP Address: The IP address of the client from which access requests were initiated.
- Reasons: The reasons the attempt to access the file or share was successful or not.

Note: When the trace result shows a message saying that access is not granted for "Synchronize", "Read Control", "Read Attributes", "Execute", "Read EA", "Write", or "Read", the message is indicating that the desired access has not been granted for the set of permissions listed. In order to view the actual permissions status, you need to view the permissions using the provided link.
Results list for NFS protocol tracing

When you specify the NFS protocol, the results list displays the following data for your trace based on the parameters you specified. The data is displayed in reverse chronological order. If you stop tracing, the results remain in the list until you start another trace.

- **Path:** The file path of the file that the system attempted to access, whether successful or not.
- **Client IP Address:** The IP address of the client from which access requests were initiated.
- **Reasons:** The reasons the attempt to access the file or share was successful or not.

Note: When the trace result shows a message saying that access is not granted for "Synchronize", "Read Control", "Read Attributes", "Execute", "Read EA", "Write", or "Read"", the message is indicating that the desired access has not been granted for the set of permissions listed. In order to view the actual permissions status, you need to view the permissions using the provided link.

Related information

* SMB/CIFS management
* SMB/CIFS and NFS multiprotocol express configuration

Volumes

You can use System Manager to create, edit, and delete volumes.

You can access all the volumes in the cluster by using the Volumes tab or you can access the volumes specific to an SVM by using **SVMs > Volumes.**

Note: The Volumes tab is displayed only if you have enabled the CIFS and NFS licenses.

Related information

* ONTAP concepts
 * Logical storage management

Editing volume properties

You can modify volume properties such as the volume name, security style, fractional reserve, and space guarantee by using System Manager. You can modify storage efficiency settings (deduplication schedule, deduplication policy, and compression) and space reclamation settings.

Before you begin

For enabling volume encryption, you must have installed the volume encryption license by using System Manager, and you must have enabled “key-manager setup” by using the command-line interface (CLI). You must refresh your web browser after enabling “key-manager setup”.

About this task

- You can set the fractional reserve to either zero percent or 100 percent.
- Data compression is not supported on 32-bit volumes.
- For Data ONTAP 8.3.1 clusters, you can enable both inline compression and background compression for Cloud Volumes ONTAP for AWS (AWS). Compression is not supported for Data ONTAP Edge.
- You cannot rename a SnapLock Compliance volume.
Steps

1. Click **Storage > Volumes**.

2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) in which the volume that you want to edit resides.

3. Select the volume that you want to modify, and then click **Edit**. The Edit Volume dialog box is displayed.

4. In the **General** tab, modify the following properties as required:
 - Change the volume name
 - Enable volume encryption
 This option is available only if you have enabled the Volume Encryption license and if the corresponding platform supports encryption. You can perform key-manager set up from the CLI.
 - Change the security style of the volume
 - Enable or disable thin provisioning

5. Click the **Storage Efficiency** tab, and enable storage efficiency by configuring the following properties:
 - Deduplication
 - Data compression
 You cannot enable background compression for a volume that is contained by an aggregate with All Flash Optimized personality. You can enable only inline compression for these volumes.
 You can enable inline deduplication only on a volume that is contained by an aggregate with All Flash Optimized personality or on a volume in a Flash Pool aggregate.

6. For SnapLock volumes, click the **SnapLock** tab, and perform the following steps:
 a. Specify the autocommit period.
 The autocommit period determines how long a file in the volume must remain unchanged before the file is committed to WORM state.
 b. Specify the minimum retention period and maximum retention period.
 The values must be in the range of 1 day through 70 years or Infinite.
 c. Select the default retention period.
 The default retention period must be within the specified minimum retention period and maximum retention period.

7. Click the **Advanced** tab, and enable the following properties:
 - If you want the volume to automatically grow when the used space in the volume is above the grow threshold, select **Grow**.
 - If you want the volume to grow or shrink in size in response to the amount of used space, select **Grow or Shrink**.
 a. Specify the maximum size to which the volume can grow.
 - Enable automatic deletion of older Snapshot copies by choosing one of the following options:
 - Try
 Deletes the Snapshot copies that are not locked by any other subsystems.
• Destroy
 Deletes the Snapshot copies that are locked by the data-backing functionality.
• Disrupt
 Deletes the Snapshot copies that can disrupt the data transfer.
 • Select the caching policy that you want to assign to the volume.
 This option is available only for FlexVol volumes in a Flash Pool aggregate.
 • Select the retention priority for cached data in the volume.
 This option is available only for FlexVol volumes in a Flash Pool aggregate.
 • Specify the fractional reserve that you want to set for the volume.
 • Update the access time for reading the file.
 This option is disabled for SnapLock volumes.

8. Click **Save and Close**.

Related tasks

Setting up CIFS on page 301

Related references

Volumes window on page 253

Editing data protection volumes

You can use System Manager to modify the volume name for a data protection (DP) volume. If the source volume does not have storage efficiency enabled, you might want to enable storage efficiency only on the destination volume.

About this task

You cannot modify storage efficiency on a mirror DP volume.

Steps

1. Click **Storage > Volumes**.

2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) in which the DP volume that you want to edit resides.

3. Select the volume that you want to modify, and then click **Edit**.

4. In the **Edit Data Protection Volume** dialog box, modify the volume name.

5. Ensure the **Enable Storage Efficiency** option is selected.
 If storage efficiency is already enabled on the volume, then the check box is selected by default.

6. Optional: Click the **Advanced** tab, and perform the following steps:
 a. Select the caching policy that you want to assign to the volume.
 b. Select the retention priority for the cached data in the volume.
 These options are available only for data protection FlexVol volumes in a Flash Pool aggregate.

7. Click **Save**.
Deleting volumes

You can use System Manager to delete a FlexVol volume when you no longer require the data that a volume contains or if you have copied the data that a volume contains to another location. When you delete a volume, all the data in the volume is destroyed, and you cannot recover that data.

Before you begin

The following conditions must exist before you delete a FlexVol volume:

- The volume must be unmounted and must be in the offline state.
- FlexClone volumes must be either split from the parent volume or destroyed if the FlexVol volume is cloned.
- The SnapMirror relationships must be deleted if the volume is in one or more SnapMirror relationships.

About this task

You should be aware of the following limitations when deleting a FlexVol volume:

- You can delete a complete SnapLock Enterprise volume or a file in a SnapLock Enterprise volume; however, you cannot delete only the data within a file in a SnapLock Enterprise volume.
- You cannot delete a SnapLock Compliance volume if data is committed to the volume.
- If the FlexVol contains both qtrees and volumes, the qtrees appear as directories. You should be careful to not delete the qtrees accidentally when deleting volumes.
- If you have associated FlexCache volumes with an origin volume, then you must delete the FlexCache volumes before you can delete the origin volume.

Steps

1. Click Storage > Volumes.

2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) in which the volume that you want to delete resides.

3. Select the volumes that you want to delete.

4. **Note:** Verify that you have selected the correct volumes that you want to delete. When you delete a volume, all the data in the volume is destroyed, and you cannot recover that data. Click Delete.

5. Select the confirmation check box, and then click Delete.

Related references

Volumes window on page 253

Creating FlexClone volumes

You can use System Manager to create a FlexClone volume when you require a writable, point-in-time copy of an existing FlexVol volume. You might want to create a copy of a volume for testing or
to provide access to the volume for additional users without giving them access to the production data.

Before you begin
- The FlexClone license must be installed on the storage system.
- The volume that you want to clone must be online and must be a non-root volume.

About this task
The base Snapshot copy that is used to create a FlexClone volume of a SnapMirror destination is marked as busy and cannot be deleted. If a FlexClone volume is created from a Snapshot copy that is not the most recent Snapshot copy, and that Snapshot copy no longer exists on the source volume, all SnapMirror updates to the destination volume fail.

Steps
1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the FlexVol volume that you want to clone from the list of volumes.
4. Click **More Actions > Clone > Create > Volume**.
5. Type the name of the FlexClone volume that you want to create.
6. Optional: If you want to enable thin provisioning for the new FlexClone volume, select **Thin Provisioning**.
 By default, this setting is the same as that of the parent volume.
7. Create a Snapshot copy or select an existing Snapshot copy that you want to use as the base Snapshot copy for creating the FlexClone volume.
8. Click **Clone**.

Related references
- **Volumes window** on page 253

Creating FlexClone files
You can use System Manager to create a FlexClone file, which is a writable copy of a parent file. You can use these copies to test applications.

Before you begin
- The file that is cloned must be part of the active file system.
- The FlexClone license must be installed on the storage system.

About this task
- FlexClone files are supported only for FlexVol volumes.
 You can create a FlexClone file of a parent file that is within a volume by accessing the parent file from the volume in which it resides, not from the parent volume.
- You cannot create a FlexClone file on a SnapLock volume.
Steps
1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volume in which you want to create a FlexClone file from the list of volumes.
4. Click More Actions > Clone > Create > File.
5. In the Create FlexClone File dialog box, select the file that you want to clone, and then specify a name for the FlexClone file.
6. Click Clone.

Result
The FlexClone file is created in the same volume as the parent file.

Related references
Volumes window on page 253

Splitting a FlexClone volume from its parent volume
If you want a FlexClone volume to have its own disk space instead of using the disk space of its parent volume, you can split the volume from its parent by using System Manager. After the split, the FlexClone volume becomes a normal FlexVol volume.

Before you begin
The FlexClone volume must be online.

About this task
For systems that are not AFF systems, the clone-splitting operation deletes all of the existing Snapshot copies of the clone. The Snapshot copies that are required for SnapMirror updates are also deleted. Therefore, any subsequent SnapMirror updates might fail.

You can pause the clone-splitting operation if you have to perform any other operation on the volume. You can resume the clone-splitting process after the other operation is complete.

Steps
1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexClone volume that you want to split from its parent volume.
4. Click More Actions > Clone > Split.
5. Confirm the FlexClone volume details for the clone-splitting operation, and then click Start Split in the confirmation dialog box.

Related references
Volumes window on page 253
Viewing the FlexClone volume hierarchy

You can use System Manager to view the hierarchy of FlexClone volumes and their parent volumes.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the required volume from the list of volumes.
4. Click **More Actions > Clone > View Hierarchy**.

Result

Volumes that have at least one child FlexClone volume are displayed. The FlexClone volumes are displayed as children of their respective parent volumes.

Related references

Volumes window on page 253

Changing the status of a volume

You can use System Manager to change the status of a FlexVol volume when you want to take a volume offline, bring a volume back online, or restrict access to a volume.

Before you begin

- If you want a volume to be the target of a volume copy operation or a SnapMirror replication operation, the volume must be in the restricted state.
- If you want to take a NAS volume offline, the NAS volume must be unmounted.

About this task

You can take a volume offline to perform maintenance on the volume, to move the volume, or to destroy the volume. When a volume is offline, the volume is unavailable for read or write access by clients. You cannot take a root volume offline.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the volume for which you want to modify the status.
4. From the **More Actions > Change status to** menu, select the required volume status.
5. Click **Ok** in the confirmation dialog box to change the volume status.

Related references

Volumes window on page 253
Viewing the list of saved Snapshot copies

You can use System Manager to view the list of all of the saved Snapshot copies for a selected volume from the Snapshot Copies tab in the lower pane of the Volumes window. You can use the list of saved Snapshot copies to rename, restore, or delete a Snapshot copy.

Before you begin

The volume must be online.

About this task

You can view Snapshot copies for only one volume at a time.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Click the plus sign (+) next to the volume for which you want to view saved Snapshot copies.
4. Click the **Show More Details** link to view more information about the volume.
5. Click the **Snapshot Copies** tab.

The list of available Snapshot copies for the selected volume is displayed.

Creating Snapshot copies outside a defined schedule

You can use System Manager to create a Snapshot copy of a volume outside a defined schedule to capture the state of the file system at a specific point in time.

About this task

You can view Snapshot copies for only one volume at a time.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the volume from the list of volumes.
4. Click **More Actions > Manage Snapshots > Create**.
5. In the **Create Snapshot Copy** dialog box, if you want to change the default name, specify a new name for the Snapshot copy.

Valid characters are ASCII characters, numerals, hyphens (-), underscores (_), periods (.), and the plus (+) symbol.

The default name of a Snapshot copy consists of the volume name and the timestamp.

6. Click **Create**.
7. Verify that the Snapshot copy that you created is included in the list of Snapshot copies in the **Snapshot Copies** tab.

Related references

Volumes window on page 253
Setting the Snapshot copy reserve

You can use System Manager to reserve space (measured as a percentage) for the Snapshot copies in a volume. By setting the Snapshot copy reserve, you can allocate enough disk space for the Snapshot copies so that they do not consume the active file system space.

About this task

The default space that is reserved for Snapshot copies is 5 percent for SAN and VMware volumes.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volume for which you want to set the Snapshot copy reserve.
4. Click More Actions > Manage Snapshots > Configuration Settings.
5. Type or select the percentage of volume space that you want to reserve for the Snapshot copies, and then click OK.

Related references

Volumes window on page 253

Hiding the Snapshot copy directory

You can use System Manager to hide the Snapshot copy directory (.snapshot) so that the Snapshot copy directory is not visible when you view your volume directories. By default, the .snapshot directory is visible.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volume for which you want hide the Snapshot copy directory.
4. Click More Actions > Manage Snapshots > Configuration Settings.
5. Ensure that the Make snapshot directory (.snapshot) visible option is not selected, and then click OK.

Related references

Volumes window on page 253

Scheduling automatic creation of Snapshot copies

You can use System Manager to set up a schedule for the automatic creating automatic Snapshot copies of a volume. You can specify the time and frequency of creating the copies. You can also specify the number of Snapshot copies that are saved.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the required volume from the list of volumes.

4. Click More Actions > Manage Snapshots > Configuration Settings.

5. In the Configure Volume Snapshot Copies dialog box, select Enable scheduled Snapshot Copies.

6. Select a Snapshot policy.

 You can schedule the creation of only policy-based Snapshot copies.

7. Click OK to save your changes and start your Snapshot copy schedule.

Related references

Volumes window on page 253

Restoring a volume from a Snapshot copy

You can use System Manager to restore a volume to a state that is recorded in a previously created Snapshot copy to retrieve lost information. When you restore a volume from a Snapshot copy, the restore operation overwrites the existing volume configuration. Any changes that were made to the data in the volume after the Snapshot copy was created are lost.

Before you begin

- The SnapRestore license must be installed on your system.
- If the FlexVol volume that you want to restore contains a LUN, the LUN must be unmounted or unmapped.
- There must be enough space available for the restored volume.
- Users accessing the volume must be notified that you are going to revert a volume, and that the data from the selected Snapshot copy replaces the current data in the volume.

About this task

- If the volume that you restore contains junction points to other volumes, the volumes that are mounted on these junction points will not be restored.
- You cannot restore Snapshot copies for SnapLock Compliance volumes.

Steps

1. Click Storage > Volumes.

2. From the drop-down menu in the SVM field, select All SVMs.

3. Select the volume that you want to restore from a Snapshot copy.

4. Click More Actions > Manage Snapshots > Restore.

5. Select the appropriate Snapshot copy, and then click Restore.

6. Select the confirmation check box, and then click Restore.

Related references

Volumes window on page 253
Extending the expiry date of Snapshot copies

You can use System Manager to extend the expiry date of the Snapshot copies in a volume.

Before you begin
The SnapLock license must be installed on your system.

About this task
You can extend the expiry date only for Snapshot copies in a data protection (DP) volume that is the destination in a SnapLock for SnapVault relationship.

Steps
1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select a volume.
4. Click Show More Details to view more information about the volume.
5. Click the Snapshot Copies tab.
 The list of available Snapshot copies for the selected volume is displayed.
6. Select the Snapshot copy that you want to modify, and then click Extend Expiry Date.
7. In the Extend Expiry Date dialog box, specify the expiry date.
 The values must be in the range of 1 day through 70 years or Infinite.
8. Click OK.

Renaming Snapshot copies

You can use System Manager to rename a Snapshot copy to help you organize and manage your Snapshot copies.

About this task
You cannot rename the Snapshot copies (which are committed to the WORM state) of a SnapLock DP volume that is in a SnapVault relationship.

Steps
1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Click the required volume.
4. Click the Show More Details link to view more information about the volume.
5. Click the Snapshot Copies tab.
 The list of available Snapshot copies for the selected volume is displayed.
6. Select the Snapshot copy that you want to rename, and then click More Actions > Rename.
7. Specify a new name, and then click Rename.
Valid characters are ASCII characters, numerals, hyphens (-), underscores (_), periods (.), and the plus (+) symbol.

8. Verify the Snapshot copy name in the **Snapshot Copies** tab of the **Volumes** window.

Related references

Volumes window on page 253

Deleting Snapshot copies

You can delete a Snapshot copy to conserve disk space or to free disk space by using System Manager. You can also delete a Snapshot copy if the Snapshot copy is no longer required.

Before you begin

If you want to delete a Snapshot copy that is busy or locked, you must have released the Snapshot copy from the application that was using the Snapshot copy.

About this task

- You cannot delete the base Snapshot copy in a parent volume if a FlexClone volume is using that Snapshot copy. The base Snapshot copy is the Snapshot copy that is used to create a FlexClone volume. The base Snapshot copy always displays the status *busy* and Application Dependency as *busy, vclone* in the parent volume.
- You cannot delete a locked Snapshot copy that is used in a SnapMirror relationship. The Snapshot copy is locked and is required for the next update.
- You cannot delete a Snapshot copy from a SnapLock DP volume that is used in a SnapVault relationship before the expiry time of the Snapshot copy.
- You cannot delete the unexpired Snapshot copies (which are committed to WORM state) of a SnapLock DP volume that is in a SnapVault relationship.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Expand the required volume.
4. Click the **Show More Details** link to view more information about the volume.
5. Click the **Snapshot Copies** tab.
 The list of available Snapshot copies for the selected volume is displayed.
6. Select the Snapshot copy that you want to delete.
7. Click **Delete**.
8. Select the confirmation check box, and then click **Delete**.

Related references

Volumes window on page 253

Related information

ONTAP 9 Documentation Center
Resizing volumes

When a volume reaches nearly full capacity, you can increase the size of the volume, delete some Snapshot copies, or adjust the Snapshot reserve. You can use the Volume Resize wizard in System Manager to provide more free space.

About this task

• For a volume that is configured to grow automatically, you can modify the limit to which the volume can grow automatically based on the increased size of the volume.

• You cannot resize a data protection volume if its mirror relationship is broken or if a reverse resynchronization operation has been performed on the volume. Instead, you must use the command-line interface (CLI).

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volume that you want to resize.
4. Click More Actions > Resize.
5. Type or select information as prompted by the wizard.
6. Confirm the details, and then click Finish to complete the wizard.
7. Verify the changes that you made to the available space and the total space of the volume in the Volumes window.

Related references

Volumes window on page 253

Enabling storage efficiency on a volume

You can use System Manager to enable storage efficiency and to configure both deduplication and data compression or only deduplication on a volume to save storage space. If you have not enabled storage efficiency when you created the volume, you can do so later by editing the volume.

Before you begin

• The volume must be online.

• If you want to use a policy-based deduplication schedule, you must have created an efficiency policy.

About this task

• You can enable background compression only if you have enabled background deduplication.

• You can enable inline compression and inline deduplication with or without enabling background compression and background deduplication, respectively.

• You can enable inline deduplication only on volumes that are contained by an aggregate with All Flash Optimized personality and on volumes that are contained by a Flash Pool aggregate.

• Starting with System Manager 9.6, editing storage efficiency is supported for FlexGroup DP volumes.
Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volume for which you want to enable storage efficiency, and then click Edit.
4. In the Edit Volume dialog box, click Storage Efficiency.
5. Select the Background Deduplication check box.
6. Select one of the following methods to run deduplication:

<table>
<thead>
<tr>
<th>If you want to run deduplication...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Based on a storage efficiency policy | a. Ensure that the Policy based option is selected.
b. Click Choose, and then select a storage efficiency policy.
c. Click OK. |
| When required | Select the On-demand option. |

7. Optional: Select the Background Compression check box to enable background compression. You cannot enable background compression for a volume that is contained by an aggregate with All Flash Optimized personality.
8. Optional: Select the Inline Compression check box to compress data while it is being written to the volume. By default, inline compression is enabled on volumes that are contained by an aggregate with All Flash Optimized personality.
9. Optional: Select the Inline Deduplication check box to run deduplication before data is written to the disk. By default, inline deduplication is enabled on volumes that are contained by an aggregate with All Flash Optimized personality.
10. Click Save and Close.

Related references

Volumes window on page 253

Changing the deduplication schedule

You can use System Manager to change the deduplication schedule by choosing to run deduplication manually, automatically, or on a schedule that you specify.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the read/write volume for which you want to modify the deduplication schedule.
4. Click Edit, and then click the Storage Efficiency tab.
5. Change the deduplication schedule as required.
6. Click **Save and Close**.

Related references

Volumes window on page 253

Running deduplication operations

You can use System Manager to run deduplication immediately after creating a FlexVol volume or to schedule deduplication to run at a specified time.

Before you begin

- Deduplication must be enabled on the volume.
- The volume must be online and mounted.

About this task

Deduplication is a background process that consumes system resources during the operation; therefore, it might affect other operations that are in progress. You must cancel deduplication before you can perform any other operation.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the volume for which you want to run deduplication.
4. Click **More Actions > Storage Efficiency**.
5. If you are running deduplication on the volume for the first time, run deduplication on the entire volume data by selecting **Scan Entire Volume** in the **Storage Efficiency** dialog box.
6. Click **Start**.
7. View the last-run details of the deduplication operation in the **Storage Efficiency** tab of the **Volumes** window.

Related references

Volumes window on page 253

Moving FlexVol volumes between aggregates or nodes

You can nondisruptively move a FlexVol volume to a different aggregate or a different node for capacity utilization and improved performance by using System Manager.

Before you begin

If you are moving a data protection (DP) volume, the data protection mirror relationships must be initialized before you move the volume.

About this task

You cannot move SnapLock volumes between aggregates and nodes.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volume that you want to move.
4. Click More Actions > Move.
5. In the Move Volume dialog box, select the destination aggregate or node for the volume, and then change the tiering policy.

 Note:
 - You cannot change the tiering policy of a root volume.
 - You cannot move the root volume to FabricPool.
 - For read/write volumes, you can set the tiering policy as “back up” during the volume move. The tiering policy changes to “snapshot-only” after the move.
 - Capacity tier values that are displayed in the “Used After Move” in both the source aggregate and destination aggregate are estimated values. For the exact values, you must navigate to the Aggregate window and view the details of a specific aggregate.
6. Click Move.

Manually triggering the cutover for volume move

For a volume move operation, you can use System Manager to manually trigger the cutover when the volume enters the cutover deferred phase. You can set the duration of the cutover and the cutover action to be performed by the system if the operation fails within that duration.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. Click the Volumes tab.
4. Expand the volume for which the volume move operation has been initiated.
5. Click the Show More Details link to view more information about the volume.
6. In the Overview tab, click Cutover.
7. In the Cutover dialog box, click Advanced Options.
8. Optional: Specify the cutover action and the cutover window period.
9. Click OK.

Assigning volumes to Storage QoS

You can limit the throughput of FlexVol volumes and FlexGroup volumes by assigning them to storage Quality of Service (QoS) policy groups. You can assign storage QoS for new volumes, or you can modify the storage QoS details of the volumes that are already assigned to a policy group by using System Manager.

About this task

- You can assign storage QoS only to read/write (rw) volumes that are online.
• You cannot assign storage QoS to a volume if the following storage objects are assigned to a policy group:
 ◦ Parent storage virtual machine (SVM) of the volume
 ◦ Child LUNs of the volume
 ◦ Child files of the volume

• You can assign storage QoS or modify the QoS details for a maximum of 10 volumes simultaneously.

Steps
1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select one or more volumes for which you want to assign storage QoS.
4. Click More Actions > Storage QoS.
5. In the Quality of Service Details dialog box, select the Manage Storage Quality of Service check box if you want to manage the workload performance of the FlexVol volume.

 If some of the volumes that you selected are already assigned to a policy group, the changes that you make might affect the performance of these volumes.

6. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the FlexVol volume:
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
</table>
| Create a new policy group | **a.** Select **New Policy Group.**
b. Specify the policy group name.
c. Specify the minimum throughput limit.
 - In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.
 - You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
 - If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.
d. Specify the maximum throughput limit to prevent the workload of the objects in the policy group from exceeding the specified throughput limit.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value. This value is case-sensitive. The unit that you specify does not affect the maximum throughput. |
If you want to... | Do this...
---|---
Select an existing policy group | a. Select **Existing Policy Group**, and then click **Choose** to select an existing policy group from the Select Policy Group dialog box.

b. Specify the minimum throughput limit.

- In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.

- You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.

- If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.

c. Specify the maximum throughput limit to prevent the workload of the objects in the policy group from exceeding the specified throughput limit.

- The minimum throughput limit and the maximum throughput limit must be of the same unit type.

- If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.

- If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value. This value is case-sensitive. The unit that you specify does not affect the maximum throughput.

If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.

7. Optional: Click the link that specifies the number of volumes if you want to review the list of selected volumes, and then click **Discard** if you want to remove any volumes from the list.

The link is displayed only when multiple volumes are selected.

8. Click **OK**.

Creating a mirror relationship from a source SVM

You can use System Manager to create a mirror relationship from the source storage virtual machine (SVM), and to assign a mirror policy and schedule to the mirror relationship. The mirror copy enables quick availability of data if the data on the source volume is corrupted or lost.

Before you begin

- The SnapMirror license must be enabled on the source cluster and destination cluster.

 Note:

 - For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license and Data Protection Optimization (DPO) license enabled.
After the DPO license is enabled on the destination cluster, you must refresh the browser of the source cluster to enable the Protect option.

- While mirroring a SnapLock volume, the SnapMirror license must be installed on both the source cluster and destination cluster, and the SnapLock license must be installed on the destination cluster.
- The source cluster and destination cluster and the source SVM and destination SVM must be in a healthy peer relationship.
- The destination aggregate must have space available.
- FlexVol volumes must be online and of type read/write.
- The SnapLock aggregate type must be the same on both clusters.
- A maximum of 25 volumes can be protected in one selection.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task
- System Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You can create a mirror relationship between SnapLock volumes of the same type only. For example, if the source volume is a SnapLock Enterprise volume, then the destination volume must also be a SnapLock Enterprise volume.
- If encryption is enabled on the source volume and the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- SVMs that are peered only for FlexCache applications and do not have peering permissions for SnapMirror applications are not shown in the list of SVMs in this task. You can use the ONTAP System Manager 9.6 enhanced peering workflow to give permission to, or peer to, these SVMs. You then can select them in this task to create a protection relationship.

Steps
1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volumes for which you want to create mirror relationships, and then click More Actions > Protect.
 The Protect option is available only for a read/write volume.
4. Select the Replication type:
If you selected the replication type as… | Do this…
--- | ---
Asynchronous | a. Optional: If you do not know the replication type and relationship type, click Help me Choose, specify the values, and then click Apply.

b. Select the relationship type.
The relationship type can be mirror, vault, or mirror and vault.

c. Select a cluster and an SVM.
If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.

d. Modify the volume name suffix, if required.

Synchronous | a. Optional: If you do not know the replication type and relationship type, click Help me Choose, specify the values, and then click Apply.

b. Select the synchronization policy.
The synchronization policy can be StrictSync or Sync.

c. Select a cluster and an SVM.
If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.

d. Modify the volume name suffix, if required.

5. Optional: Click 🔄, update the protection policy and protection schedule, select FabricPool-enabled aggregate, and then initialize the protection relationship.

6. Click Save.

Result
A new destination volume of type dp is created with the following default settings:

- Autogrow is enabled.
- Compression is disabled.
- The language attribute is set to match the language attribute of the source volume.

If the destination FlexVol volume is on a different SVM than the source FlexVol volume, then a peer relationship is created between the two SVMs if the relationship does not already exist.

A mirror relationship is created between the source volume and the destination volume. The base Snapshot copy is transferred to the destination volume if you have opted to initialize the relationship.

Related references
* Protection window on page 401

Creating a vault relationship from a source SVM
You can use System Manager to create a vault relationship from the source storage virtual machine (SVM), and to assign a vault policy to the vault relationship to create a backup vault. In the event of
Before you begin

- The SnapVault license or SnapMirror license must be enabled on both the source cluster and the destination cluster.

 Note:
 - For some platforms, it is not mandatory for the source cluster to have the SnapVault license or the SnapMirror license enabled if the destination cluster has the SnapVault license or the SnapMirror license, and the Data Protection Optimization (DPO) license enabled.
 - After the DPO license is enabled on the destination cluster, you must refresh the browser of the source cluster to enable the `Protect` option.

- The source cluster and destination cluster and the source SVM and destination SVM must be in a healthy peer relationship.
- The destination aggregate must have space available.
- The source aggregate and the destination aggregate must be 64-bit aggregates.
- A vault (XDP) policy must exist.
 - If a vault policy does not exist, you must create a vault policy or accept the default vault policy (named XDPDefault) that is automatically assigned.
- FlexVol volumes must be online and of type read/write.
- The SnapLock aggregate type must be the same.
- A maximum of 25 volumes can be protected in one selection.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task

- System Manager does not support a cascade relationship.
 - For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You can create a lock-vault relationship only between a non-SnapLock (primary) volume and a SnapLock destination (secondary) volume.
- If encryption is enabled on the source volume and the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the volumes for which you want to create vault relationships, and then click **More Actions > Protect**.
 - The **Protect** option is available only for a read/write volume.
4. Select the Replication type:

<table>
<thead>
<tr>
<th>If you selected the replication type as…</th>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>a. Optional: If you do not know the replication type and relationship type, click Help me Choose, specify the values, and then click Apply.</td>
</tr>
<tr>
<td></td>
<td>b. Select the relationship type. The relationship type can be mirror, vault, or mirror and vault.</td>
</tr>
<tr>
<td></td>
<td>c. Select a cluster and an SVM. If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.</td>
</tr>
<tr>
<td></td>
<td>d. Modify the volume name suffix, if required.</td>
</tr>
<tr>
<td>Synchronous</td>
<td>a. Optional: If you do not know the replication type and relationship type, click Help me Choose, specify the values, and then click Apply.</td>
</tr>
<tr>
<td></td>
<td>b. Select the synchronization policy. The synchronization policy can be StrictSync or Sync.</td>
</tr>
<tr>
<td></td>
<td>c. Select a cluster and an SVM. If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.</td>
</tr>
<tr>
<td></td>
<td>d. Modify the volume name suffix, if required.</td>
</tr>
</tbody>
</table>

5. **Optional:** Click 🌟, update the protection policy and protection schedule, enable SnapLock properties on the destination volume, select a FabricPool-enabled aggregate, and then initialize the protection relationship.

6. Click **Save**.

Related references

Protection window on page 401

Creating a mirror and vault relationship from a source SVM

You can use System Manager to create a mirror and vault relationship from the source storage virtual machine (SVM). Creating this relationship enables you to better protect your data by periodically transferring data from the source volume to the destination volume. This relationship also enables you to retain data for long periods by creating backups of the source volume.

Before you begin

- The source cluster must be running ONTAP 8.3.2 or later.
- The SnapMirror license must be enabled on the source cluster and destination cluster.

Note:
For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license and Data Protection Optimization (DPO) license enabled.

After the DPO license is enabled on the destination cluster, you must refresh the browser of the source cluster to enable the Protect option.

- The source cluster and destination cluster must be in a healthy peer relationship.
- The source SVM and destination SVM must be in a healthy peer relationship, or the destination SVM must have permission to peer.
- The destination aggregate must have space available.
- The source aggregate and the destination aggregate must be 64-bit aggregates.
- FlexVol volumes must be online and of type read/write.
- The SnapLock aggregate type must be the same.
- A maximum of 25 volumes can be protected in one selection.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task

- System Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- If encryption is enabled on the source volume and the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- SVMs that are peered only for FlexCache applications and do not have peering permissions for SnapMirror applications are not shown in the list of SVMs in this task. You can use the ONTAP System Manager 9.6 enhanced peering workflow to give permission to, or peer to, these SVMs. You then can select them in this task to create a protection relationship.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the volumes for which you want to create mirror and vault relationships, and then click More Actions > Protect.
 The Protect option is available only for a read/write volume.
4. Select the Replication type:
<table>
<thead>
<tr>
<th>If you selected the replication type as...</th>
<th>Do this...</th>
</tr>
</thead>
</table>
| **Asynchronous** | **a. Optional:** If you do not know the replication type and relationship type, click **Help me Choose**, specify the values, and then click **Apply**.
| | **b.** Select the relationship type.
| | The relationship type can be mirror, vault, or mirror and vault.
| | **c.** Select a cluster and an SVM.
| | If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
| | **d.** Modify the volume name suffix, if required. |
| **Synchronous** | **a. Optional:** If you do not know the replication type and relationship type, click **Help me Choose**, specify the values, and then click **Apply**.
| | **b.** Select the synchronization policy.
| | The synchronization policy can be StrictSync or Sync.
| | **c.** Select a cluster and an SVM.
| | If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
| | **d.** Modify the volume name suffix, if required. |

5. Optional: Click ⚙, update the protection policy and protection schedule, select **FabricPool-enabled aggregate**, and then initialize the protection relationship.

6. Click **Save**.

Creating an NFS datastore for VMware

You can use the Create NFS Datastore for VMware wizard in System Manager to create an NFS datastore for VMware. You can create a volume for the NFS datastore and specify the ESX servers that can access the NFS datastore.

Before you begin

The NFS service must be licensed.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the **SVM** field, select **All SVMs**.
3. Select the volume, and then click **More Actions > Provision Storage for VMware**.
4. In the **Create NFS Datastore for VMware** wizard, type or select information as required.
5. Confirm the details, and then click **Finish** to complete the wizard.
Changing the tiering policy of a volume

You can use System Manager to change the default tiering policy of a volume to control whether the data of the volume is moved to the cloud tier when the data becomes inactive.

Creating FlexGroup volumes

A FlexGroup volume can contain many volumes that can be administered as a group instead of individually. You can use System Manager to create a FlexGroup volume by selecting specific aggregates or by selecting system-recommended aggregates.

About this task

• You can create only read/write (rw) FlexGroup volumes.
• Starting with System Manager 9.6, you can create FlexGroup volumes in a MetroCluster configuration.

Steps

1. Click Storage > Volumes.
2. Click Create > Create FlexGroup.
3. In the Create FlexGroup window, specify a name for the FlexGroup volume.
 By default, the aggregates are selected according to best practices.
4. Click the Volume Encryption button to enable encryption for the volume.
 This option is available only if you have enabled the Volume Encryption license and if the corresponding platform supports encryption.
 Turning on volume encryption might affect the cross-volume storage efficiency when the selected aggregates are encrypted.
5. Specify a size for the FlexGroup volume.
 Note: You must also specify the measurement units.
6. Enable the FabricPool toggle button to use FabricPool aggregates in the FlexGroup volume.
 • When you enable FabricPool, you can select the Tiering policy from the following choices in the drop-down menu:
 Snapshot-only
 Moves the Snapshot copies of only those volumes that are currently not being referenced by the active file system. Snapshot-only policy is the default tiering policy.
 Auto
 Moves the inactive (cold) data and the Snapshot copies from the active file system to the cloud tier.
 Backup (for System Manager 9.5)
 Moves the newly transferred data of a data protection (DP) volume to the cloud tier.
 All (starting with System Manager 9.6)
 Moves all data to the cloud tier.
 None
 Prevents the data on the volume from being moved to a cloud tier.
• If you leave FabricPool in the “not enabled” position, only non-FabricPool aggregates are included in the created FlexGroup volume, and the tiering policy is set to “None”.

• If no FabricPool aggregates exist in the SVM, then FabricPool displays in the “not enabled” position and cannot be changed.

• If only FabricPool aggregates exist in the SVM, then the FabricPool button is displays in the "enabled" position and cannot be changed.

7. If you want to specify particular aggregates, click (advanced options).
 The aggregates associated with the FlexGroup volume you are creating are selected by default, according to best practices. They are displayed next to the Aggregates label.

8. In the Protection section, perform the following actions:
 a. Enable the Volume Protection option.
 b. Select the Replication type.

 Note: The Synchronous replication type is not supported for FlexGroup volumes.
 c. Click Help me Choose, if you do not know the replication type and relationship type.

 • Specify the values and click Apply.
 The replication type and the relationship type is automatically selected based on the values specified.
 d. Select the relationship type.
 The relationship types can be mirror, vault, or mirror and vault.
 e. Select a cluster and an SVM for the destination volume.
 If the selected cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the selected cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
 f. Modify the volume name suffix as required.

9. Click Create to create the FlexGroup volume.

Related references

Volumes window on page 253

Viewing FlexGroup volume information

You can use System Manager to view information about a FlexGroup volume. You can view a graphical representation of the space allocated, the protection status, and the performance of a FlexGroup volume.

About this task

You can also view the Snapshot copies that are available for the FlexGroup volume, the data protection relationships for the FlexGroup volume, and the average performance metrics, read performance metrics, and write performance metrics of the FlexGroup volume based on latency, IOPS, and throughput.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.

3. From the displayed list of FlexGroup volumes, select the FlexGroup volume about which you want to view information.

 The information about the FlexGroup volume, the space allocated to the FlexGroup volume, the protection status of the FlexGroup volume, and the performance information about the FlexGroup volume are displayed.

4. Click the Show More Details link to view more information about the FlexGroup volume.

5. Click the Snapshot Copies tab to view the Snapshot copies of the FlexGroup volume.

6. Click the Data Protection tab to view the data protection relationships for the FlexGroup volume.

7. Click the Storage Efficiency tab to view the storage efficiency settings.

8. Click the Performance tab to view the average performance metrics, read performance metrics, and write performance metrics of the FlexGroup volume based on latency, IOPS, and throughput.

Related references

Volumes window on page 253

Editing FlexGroup volumes

Starting with System Manager 9.6, you can edit the properties of an existing FlexGroup volume.

Before you begin

The FlexGroup volume must be online.

About this task

FabricPool FlexGroup volumes can be expanded under the following conditions:

- A FabricPool FlexGroup volume can be expanded only with FabricPool aggregates.
- A non-FabricPool FlexGroup volume can be expanded only with non-FabricPool aggregates.
- If the FlexGroup volume contains a mix of FabricPool and non-FabricPool volumes, then the FlexGroup volume can be expanded with both FabricPool and non-FabricPool aggregates.

Steps

1. Click Storage > Volumes.

2. From the drop-down menu in the SVM field, select All SVMs.

3. Select the FlexGroup volume that you want to modify, and click Edit.

4. Optional: If you want to rename the FlexGroup volume, enter the new name in the Name field. Starting with System Manager 9.6, you can also rename FlexGroup DP volumes.

5. Optional: Enable the Encrypted option to enable encryption for the volume.

 This option is available only if you have enabled the Volume Encryption license and if the corresponding platform supports encryption.

6. Specify the percentage of the Snapshot copy reserve.

7. Optional: Click to modify the FlexGroup volume settings. Refer to Specifying advanced options for a FlexGroup volume on page 242.
8. Specify the size to which you want to resize the FlexGroup volume.

By default, existing aggregates are used to resize the FlexGroup volume. The minimum size that is allowed for the volume is displayed next to the size fields.

Note: If you want to expand the FlexGroup volume by adding new resources, click (advanced options). Refer to *Specifying advanced options for a FlexGroup volume* on page 242.

9. Click **Save** to save the changes.

Related references

Volumes window on page 253

Specifying advanced options for a FlexGroup volume

When you create a FlexGroup volume, you can specify options you want to associate with the FlexGroup volume.

Steps

1. Optional: In the Create FlexGroup window, click (advanced options).

 The Advanced Options window displays. It contains sections (the headings in the left column), in which you can specify various options.

2. In the **General Details** section, select the space reserve and security style, and then set the UNIX permission for the volume.

 You should note the following limitations:

 - The Space Reserve option is not available for FabricPool aggregates.
 - When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.
 - For All-Flash Optimized storage systems, thin provisioning is enabled by default, and for other storage systems, thick provisioning is enabled by default.

3. In the **Aggregates** section, you can enable the Select Aggregates button to override the best practices defaults and select your choices from a list of FabricPool aggregates.

4. In the **Optimize Space** section, you can enable deduplication on the volume.

 System Manager uses the default deduplication schedule. If the specified volume size exceeds the limit that is required for running deduplication, the volume is created and deduplication is not enabled.

 For systems with All Flash Optimized personality, inline compression and the auto deduplication schedule is enabled by default.

5. In the **QoS** (Quality of Service) section, specify the policy group to control the input/output (I/O) performance of the FlexGroup volume.

6. Click **Apply** to update the changes.
Resizing FlexGroup volumes

You can use System Manager to resize a FlexGroup volume by resizing existing resources or by adding new resources.

Before you begin

- To resize a FlexGroup volume, there must be enough free space on the existing aggregates.
- To expand a FlexGroup volume, there must be enough free space on the aggregate that you are using for expansion.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexGroup volume that you want to resize, and then click More Actions > Resize.
4. In the Resize FlexGroup Volume window, specify the size to which you want to resize the FlexGroup volume.
 By default, existing aggregates are used to resize the FlexGroup volume. Starting with System Manager 9.6, the minimum size that is allowed for the volume is displayed next to the size fields.

 Note: If you want to expand the FlexGroup volume by adding new resources, click (advanced options).
5. Specify the percentage of the Snapshot copy reserve.
6. Click Resize to resize the FlexGroup volume.

Related references

Volumes window on page 253

Changing the status of a FlexGroup volume

You can use System Manager to change the status of a FlexGroup volume when you want to take a FlexGroup volume offline, bring a FlexGroup volume back online, or restrict access to a FlexGroup volume.

About this task

System Manager does not support constituent-level management for FlexGroup volumes.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexGroup volume for which you want to modify the status.
4. Click More Actions > Change status to, and then update the FlexGroup volume status by selecting the required status.

Related references

Volumes window on page 253
Deleting FlexGroup volumes

You can use System Manager to delete a FlexGroup volume when you no longer require the FlexGroup volume.

Before you begin

- The junction path of the FlexGroup volume must be unmounted.
- The FlexGroup volume must be offline.

About this task

System Manager does not support constituent level of management for FlexGroup volumes.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexGroup volume that you want to delete, and then click Delete.
4. Select the confirmation check box, and then click OK.

Related references

Volumes window on page 253

Creating FlexCache volumes

Starting with System Manager 9.6, you can create a FlexCache volume.

About this task

You must have a FlexCache capacity license before you can create a FlexCache volume.

Steps

1. Click Storage > Volumes.
2. In the Volumes window, click Create > FlexCache.
 The Create FlexCache volume window displays.
3. Optional: The following fields in the Origin Volume area display values for the origin volume for which you want to create a FlexCache volume. You can modify them.
 - Cluster: Use the drop-down menu to select the cluster associated with the origin volume.
 - SVM: Use the drop-down menu to select the SVM that contains the origin volume.
 If you choose an SVM that is not peered, but is permitted to peer, System Manager allows you to peer it explicitly.
 - Volume: Use the drop-down menu to select the volume name, or enter the name into the field.
4. The following fields in the FlexCache Volume area display default values for the FlexCache volume you are creating. You can modify them.
 - SVM: Use the drop-down menu to select the SVM in which you want to create the FlexCache volume. If the FlexCache license capacity is full or almost full, you can select Manage FlexCache license to modify your license.
- **New Volume Name**: Enter a name for the FlexCache volume.

- **Size**: Specify the size for the FlexCache volume, including the measurement units.
 The size field is initially set by default. The size you specify cannot exceed the licensed capacity size.

5. Click **Save** to create the FlexCache volume.

You can return to the **Volumes** window to view the FlexCache volume in the list of volumes.

Related references

Volumes window on page 253

Viewing FlexCache volume information

Starting with System Manager 9.6, you can view information about a FlexCache volume. You can view a graphical representation of the space allocated and the performance of a FlexCache volume.

Steps

1. Click **Storage > Volumes**.

2. From the drop-down menu in the **SVM** field, select **All SVMs**.

3. From the displayed list of volumes, select the FlexCache volume about which you want to view information.

 The **Style** column displays "FlexCache" for a FlexCache volume.

 When you make a selection, the **Volume** window for the selected FlexCache volume displays.

4. Initially, the **Volume** window displays the **Overview** tab. Click the tabs to view additional details about the FlexCache volume:

<table>
<thead>
<tr>
<th>Click this tab...</th>
<th>To view these details...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>General information about the FlexCache volume, the space allocated to the FlexCache volume, and performance information about the FlexCache volume.</td>
</tr>
<tr>
<td>Storage Efficiency</td>
<td>The storage efficiency settings of the FlexCache volume.</td>
</tr>
<tr>
<td>Performance</td>
<td>The average performance metrics, read performance metrics, and write performance metrics of the FlexCache volume based on latency, IOPS, and throughput. Also, the percentage of cache hits or cache misses is displayed.</td>
</tr>
</tbody>
</table>

5. Optional: Click **More actions** to view additional information and take actions from the selections in the drop-down menu:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change status</td>
<td>Enables you to change the status of the FlexCache volume. Refer to Changing the status of a FlexCache volume on page 247.</td>
</tr>
<tr>
<td>Resize</td>
<td>Enables you to resize the FlexCache volume. Refer to Resizing FlexCache volumes on page 247.</td>
</tr>
<tr>
<td>Storage Efficiency</td>
<td>Enables you to adjust parameters to improve the storage efficiency of the FlexCache volume.</td>
</tr>
<tr>
<td>Storage QoS</td>
<td>Enables you to adjust the minimum and maximum storage limits for the FlexCache volume.</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Encryption rekey</td>
<td>Enables you to reset the encryption key (only if you have enabled encryption on the peer cluster that includes the FlexCache volume)</td>
</tr>
</tbody>
</table>

Editing FlexCache volumes

Starting with System Manager 9.6, you can edit the properties of an existing FlexCache volume.

Steps

1. Click **Storage > Volumes**.
2. From the drop-down menu in the SVM field, select **All SVMs**.
3. Select the FlexCache volume that you want to modify, and click **Edit**.
4. Optional: Enter a new name for the FlexCache volume in the **Volume** field under **FlexCache Volume**.
5. Optional: Enter a new size for the FlexCache volume in the **Size** field under **FlexCache Volume**, and select the measurement unit from the drop-down menu.
6. Optional: Enable or disable encryption.
7. Optional: Click to modify the FlexCache volume advanced settings. Refer to *Setting advanced settings for FlexCache volumes* on page 246.
8. Click **Save** to save the changes.

Related references

- **Volumes window** on page 253

Specifying advanced options for a FlexCache volume

Starting with System Manager 9.6, when you edit a FlexCache volume, you can specify the advanced options that you want to associate with the FlexCache volume.

Steps

1. Optional: In the **Edit FlexCache volume** window, click to specify the advanced options.

 The Advanced Options window displays. It contains sections (the headings in the left column), in which you can specify various options.

2. Optional: In the **General Details** section, you can edit the permissions for the volume.

3. In the **Aggregates** section, you can enable the **Select Aggregates** toggle button to override the best practices defaults and select your choices from a list of aggregates.

4. In the **Storage Efficiency** section, you can enable compression and deduplication on the volume.

 Deduplication is not enabled by default for FlexCache volumes. System Manager uses the default deduplication schedule if the specified volume size exceeds the limit that is required for running deduplication.

5. Click **Apply** to update the changes.
Resizing FlexCache volumes

Starting with System Manager 9.6, you can resize a FlexCache volume by resizing existing resources or by adding new resources.

Before you begin

- To resize a FlexCache volume, there must be enough free space on the existing aggregates.
- To expand a FlexCache volume, there must be enough free space on the aggregate that you are using for expansion.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexCache volume that you want to resize, and then click More Actions > Resize.
4. In the Resize FlexCache Volume window, specify the size to which you want to resize the FlexCache volume.
 By default, existing aggregates are used to resize the FlexCache volume. Starting with System Manager 9.6, the maximum size that is allowed for the volume is displayed next to the size field.

 Note: If you want to expand the FlexCache volume by adding new resources, click (advanced options). Refer to Specifying advanced options for FlexCache volumes on page 246.
5. Click Save to resize the FlexCache volume.

Related references

Volumes window on page 253

Changing the status of a FlexCache volume

Starting with System Manager 9.6, you can change the status of a FlexCache volume when you want to take it offline, bring a FlexCache volume back online, or restrict access to a FlexCache volume.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexCache volume for which you want to modify the status.
4. Click More Actions > Change status to, and then update the FlexCache volume status by selecting the required status.

 Note: To take a FlexCache volume offline and to change the status to "restricted", you must first unmount the volume.
Deleting FlexCache volumes

Starting with System Manager 9.6, you can delete a FlexCache volume when you no longer require it.

Before you begin

• The junction path of the FlexCache volume must be unmounted.
• The FlexCache volume must be offline.

Steps

1. Click Storage > Volumes.
2. From the drop-down menu in the SVM field, select All SVMs.
3. Select the FlexCache volume that you want to delete, and then click Delete.
4. Select the confirmation check box, and then click OK.

Related references

Volumes window on page 253

What NetApp Volume Encryption is

NetApp Volume Encryption is the process of protecting the user data, including the metadata, by encrypting the data before storing it on the disk. The data is decrypted and provided to the user only after proper authentication is provided.

To encrypt data, an encryption key is required. Each volume is assigned an encryption key to encrypt/decrypt operations of its data.

When NetApp Aggregate Encryption is enabled on an aggregate, new volumes are encrypted by default. Volume encryption can override the default encryption.

Note: When a selected aggregate is encrypted, volume encryption affects cross-volume storage efficiency.

Snapshot configuration

You can configure Snapshot copies by setting a schedule for an existing Snapshot policy. Starting with ONTAP 9.4, you can have less than 1024 Snapshot copies of a FlexVol volume.

How volume guarantees work for FlexVol volumes

Volume guarantees (sometimes called space guarantees) determine how space for a volume is allocated from its containing aggregate—whether or not the space is preallocated for the volume.

The guarantee is an attribute of the volume.

You set the guarantee when you create a new volume; you can also change the guarantee for an existing volume, provided that sufficient free space exists to honor the new guarantee.

Volume guarantee types can be volume (the default type) or none.

• A guarantee type of volume allocates space in the aggregate for the entire volume when you create the volume, regardless of whether that space is used for data yet. The allocated space cannot be provided to or allocated for any other volume in that aggregate.
• A guarantee of none allocates space from the aggregate only as it is needed by the volume.
The amount of space consumed by volumes with this guarantee type grows as data is added instead of being determined by the initial volume size, which might leave space unused if the volume data does not grow to that size. The maximum size of a volume with a guarantee of none is not limited by the amount of free space in its aggregate. It is possible for the total size of all volumes associated with an aggregate to exceed the amount of free space for the aggregate, although the amount of space that can actually be used is limited by the size of aggregate. Writes to LUNs or files (including space-reserved LUNs and files) contained by that volume could fail if the containing aggregate does not have enough available space to accommodate the write.

When space in the aggregate is allocated for a volume guarantee for an existing volume, that space is no longer considered free in the aggregate, even if the volume is not yet using the space. Operations that consume free space in the aggregate, such as creation of aggregate Snapshot copies or creation of new volumes in the containing aggregate, can occur only if there is enough available free space in that aggregate; these operations are prevented from using space already allocated to another volume.

When the free space in an aggregate is exhausted, only writes to volumes or files in that aggregate with preallocated space are guaranteed to succeed.

Guarantees are honored only for online volumes. If you take a volume offline, any allocated but unused space for that volume becomes available for other volumes in that aggregate. When you try to bring that volume back online, if there is insufficient available space in the aggregate to fulfill its guarantee, it will remain offline. You must force the volume online, at which point the volume's guarantee will be disabled.

Related information

FlexClone volumes and space guarantees

A FlexClone volume inherits its initial space guarantee from its parent volume. For example, if you create a FlexClone volume from a parent volume with a space guarantee of volume, then the FlexClone volume's initial space guarantee will be volume also. You can change the FlexClone volume's space guarantee.

For example, suppose that you have a 100-MB FlexVol volume with a space guarantee of volume, with 70 MB used and 30 MB free, and you use that FlexVol volume as a parent volume for a new FlexClone volume. The new FlexClone volume has an initial space guarantee of volume, but it does not require a full 100 MB of space from the aggregate, as it would if you had copied the volume. Instead, the aggregate needs to allocate only 30 MB (100 MB minus 70 MB) of free space to the clone.

If you have multiple clones with the same parent volume and a space guarantee of volume, they all share the same shared parent space with each other, so the space savings are even greater.

Note: The shared space depends on the existence of the shared Snapshot copy (the base Snapshot copy that was used to create the FlexClone volume). If you delete this shared Snapshot copy, you lose the space savings provided by the FlexClone volume.

Thin provisioning for greater efficiencies using FlexVol volumes

With thin provisioning, when you create volumes and LUNs in a given aggregate, you do not actually allocate any space for those in advance. The space is allocated as data is written to the volumes or LUNs.

The unused aggregate space is available to other volumes and LUNs. By allowing as-needed provisioning and space reclamation, thin provisioning can improve storage utilization and decrease storage costs.
A FlexVol volume can share its containing aggregate with other FlexVol volumes. Therefore, a single aggregate is the shared source of all the storage used by the FlexVol volumes it contains. Flexible volumes are no longer bound by the limitations of the disks on which they reside. A FlexVol volume can be sized based on how much data you want to store in it, rather than on the size of your disk. This flexibility enables you to maximize the performance and capacity utilization of the storage systems. Because FlexVol volumes can access all available physical storage in the system, improvements in storage utilization are possible.

Example

A 500-GB volume is allocated with only 100 GB of actual data; the remaining 400 GB allocated has no data stored in it. This unused capacity is assigned to a business application, even though the application might not need all 400 GB until later. The allocated but unused 400 GB of excess capacity is temporarily wasted.

With thin provisioning, the storage administrator provisions 500 GB to the business application but uses only 100 GB for the data. The difference is that with thin provisioning, the unused 400 GB is still available to other applications. This approach allows the application to grow transparently, and the physical storage is fully allocated only when the application needs it. The rest of the storage remains in the free pool to be used as needed.

Using space reservations with FlexVol volumes

Using space reservation, you can provision FlexVol volumes. Thin provisioning appears to provide more storage than is actually available from a given aggregate, as long as not all of that storage is currently being used.

Thick provisioning sets aside enough storage from the aggregate to ensure that any block in the volume can be written to at any time.

Aggregates can provide storage to volumes contained by more than one storage virtual machine (SVM). If you are using thin provisioning, and you need to maintain strict separation between your SVMs (for example, if you are providing storage in a multi-tenancy environment), you should either use fully allocated volumes (thick provisioning) or ensure that your aggregates are not shared between tenants.

When the space reserve is set to “Default”, the ONTAP space reservation settings apply to the volumes.

Related information

NetApp Technical Report 3563: NetApp Thin Provisioning Increases Storage Utilization With On Demand Allocation

NetApp Technical Report 3483: Thin Provisioning in a NetApp SAN or IP SAN Enterprise Environment

Benefits of storage efficiency

Storage efficiency enables you to store the maximum amount of data for the lowest cost and accommodate rapid data growth while consuming less space. You can use technologies such as RAID-DP, FlexVol, Snapshot copies, deduplication, data compression, SnapMirror, and FlexClone to increase storage utilization and decrease storage costs. When used together, these technologies help to achieve increased performance.

- High-density disk drives, such as serial advanced technology attachment (SATA) drives mitigated with RAID-DP technology, provide increased efficiency and read performance.
- RAID-DP is a double-parity RAID6 implementation that protects against dual disk drive failures.
• Thin provisioning enables you to maintain a common unallocated storage space that is readily available to other applications as required. It is based on FlexVol technology.

• Snapshot copies are a point-in-time, read-only view of a data volume, which consume minimal storage space.
 Two Snapshot copies created in sequence differ only by the blocks added or changed in the time interval between the two. This block incremental behavior limits the associated consumption of storage capacity.

• Deduplication saves storage space by eliminating redundant data blocks within a FlexVol volume.

• Data compression stores more data in less space and reduces the time and bandwidth required to replicate data during volume SnapMirror transfers.
 You have to choose the type of compression (inline or background) based on your requirement and the configurations of your storage system. Inline compression checks if data can be compressed, compresses data, and then writes data to the volume. Background compression runs on all the files, irrespective of whether the file is compressible or not, after all the data is written to the volume.

• SnapMirror technology is a flexible solution for replicating data over local area, wide area, and Fibre Channel networks.
 It can serve as a critical component in implementing enterprise data protection strategies. You can replicate your data to one or more storage systems to minimize downtime costs in case of a production site failure. You can also use SnapMirror technology to centralize the backup of data to disks from multiple data centers.

• FlexClone technology copies data volumes, files, and LUNs as instant virtual copies.
 A FlexClone volume, file, or LUN is a writable point-in-time image of the FlexVol volume or another FlexClone volume, file, or LUN. This technology enables you to use space efficiently, storing only data that changes between the parent and the clone.

• The unified architecture integrates multiprotocol support to enable both file-based and block-based storage on a single platform.
 With FlexArray Virtualization, you can virtualize your entire storage infrastructure under one interface, and you can apply all the preceding efficiencies to your non-NetApp systems.

Data compression and deduplication

Beginning with Data ONTAP 8.0.1, data compression is supported with deduplication.

When both data compression and deduplication are enabled on a FlexVol volume, the data is first compressed and then deduplicated. Therefore, deduplication can further increase the space savings by removing duplicate blocks in the FlexVol volume.

Though data compression and deduplication can be enabled on a FlexVol volume, the savings might not be the sum of the savings when each is run individually on a data set. The combined savings can yield higher savings than running deduplication or data compression individually.

You can achieve better savings when you run the data compression scanner before deduplication. This is because data compression scanner cannot run on data that is locked by deduplication, but deduplication can run on compressed data.

The following illustration shows how data is first compressed and then deduplicated:
When you run deduplication on a FlexVol volume that contains uncompressed data, it scans all the uncompressed blocks in the FlexVol volume and creates a digital fingerprint for each of the blocks.

Note: If a FlexVol volume has compressed data, but the compression option is disabled on that volume, then you might lose the space savings when you run the `sis undo` command.

Guidelines for using deduplication

You must remember certain guidelines about system resources and free space when using deduplication.

The guidelines are as follows:

- If you have a performance-sensitive solution, you must carefully consider the performance impact of deduplication and measure the impact in a test setup before using deduplication.

- Deduplication is a background process that consumes system resources while it is running. If the data does not change very often in a FlexVol volume, it is best to run deduplication less frequently. Multiple concurrent deduplication operations running on a storage system lead to a higher consumption of system resources.

- You must ensure that sufficient free space exists for deduplication metadata in the volumes and aggregates.

- If deduplication is used on the source volume, you must use deduplication on the destination volume.

- You must use automatic mode when possible so that deduplication runs only when significant additional data has been written to each FlexVol volume.

- You must run deduplication before creating a Snapshot copy to obtain maximum savings.

- You must set the Snapshot reserve to greater than 0 if Snapshot copies are used.

Options for resizing volumes

You can use the Volume Resize wizard to change your volume size, adjust the Snapshot reserve, delete Snapshot copies, and dynamically view the results of your changes.

The Volume Resize wizard displays a bar graph that displays the current space allocations within the volume, including the amount of used and free space. When you make changes to the size or Snapshot reserve of the volume, this graph is updated dynamically to reflect the changes.

You can also use the **Calculate space** button to determine the amount of space that is freed by deleting selected Snapshot copies.
You can use the Volume Resize wizard to make the following changes to your volume:

Change the volume size
You can change the total volume size to increase or decrease storage space.

Adjust Snapshot reserve
You can adjust the amount of space reserved for Snapshot copies to increase or decrease storage space.

Delete Snapshot copies
You can delete Snapshot copies to reclaim volume space.

Note: Snapshot copies that are in use cannot be deleted.

Autogrow
You can specify the limit to which the volume can be grown automatically, if required.

Considerations when moving volumes
Moving a volume has many considerations and recommendations that are influenced by the volume you are moving or by the system configuration. You should understand the considerations associated with moving volumes.

- If you move a volume that has inline deduplication enabled from an aggregate with All Flash Optimized personality or a Flash Pool aggregate to an HDD aggregate, inline deduplication is disabled on the volume.

- If you move a volume that has background deduplication and inline compression enabled from an aggregate with All Flash Optimized personality to an HDD aggregate, then background compression, background deduplication, and inline compression are automatically enabled on the volume.

- If you move a volume that has background compression enabled from an HDD aggregate to an aggregate with All Flash Optimized personality, background compression is disabled on the volume.

- If you move a volume from a Flash Pool aggregate to a non-Flash Pool aggregate, the caching policies and retention priority are disabled.

- If you move a volume from a non-Flash Pool aggregate to a Flash Pool aggregate, the default caching policy and the default retention priority are automatically assigned to the volume.

Volumes window
You can use the Volumes window to manage your FlexVol volumes and FlexGroup volumes. Starting with System Manager 9.6, you can also manage FlexCache volumes.

You cannot view or manage volumes that are in storage virtual machines (SVMs) that are configured for disaster recovery by using System Manager. You must use the CLI instead.

Note: The command buttons and list of columns will differ based on the type of volume that is selected. You can view only those command buttons and columns that are applicable for the selected volume.

Selection field

SVM selection pull-down menu
Enables you to select all SVMs or a specific SVM to display in the list.
Command buttons

Create
Provides the following options:

FlexVol
Opens the Create Volume dialog box, which enables you to add FlexVol volumes.

FlexGroup
Opens the Create FlexGroup window, which enables you to create FlexGroup volumes.

FlexCache
Opens the Create FlexCache Volume window, which enables you to create FlexCache volumes.

Edit
Enables you to edit the properties of the selected volume.

Delete
Deletes the selected volume or volumes.

More Actions
Provides the following options:

Change status to
Changes the status of the selected volume to one of the following statuses:

- Online
- Offline
- Restrict

Resize
Enables you to change the size of the volume.

For FlexGroup volumes, you can use existing resources to resize the volumes or you can add new resources to expand the volumes.

For FlexCache volumes, you can also add or remove an aggregate.

Protect
Opens the Create Protection Relationship window for the volumes that are selected as source.

Manage Snapshots
Provides a list of Snapshot options, including the following:

Create
Displays the Create Snapshot dialog box, which you can use to create a Snapshot copy of the selected volume.

Configuration Settings
Configures the Snapshot settings.

Restore
Restores a Snapshot copy of the selected volume.

Clone
Provides a list of clone options, including the following:
Create
Creates a clone of the selected volume or a clone of a file from the selected volume.

Split
Splits the clone from the parent volume.

View Hierarchy
Displays information about the clone hierarchy.

Storage Efficiency
Opens the Storage Efficiency dialog box, which you can use to manually start deduplication or to abort a running deduplication operation. This button is displayed only if deduplication is enabled on the storage system.

Move
Opens the Move Volume dialog box, which you can use to move volumes from one aggregate or node to another aggregate or node within the same SVM.

Storage QoS
Opens the Quality of Service details dialog box, which you can use to assign one or more volumes to a new or existing policy group.

Change Tiering Policy
Enables you to change the tiering policy of the selected volume.

Volume Encryption Rekey
Changes the data encryption key of the volume.

The data in the volume is re-encrypted using the new key that is automatically generated. The old key is automatically deleted after the rekey operation finishes.

Starting with System Manager 9.6, volume encryption rekey is supported for FlexGroup DP volumes and FlexCache volumes. Rekey is disabled for volumes that have inherited encryption from an NAE aggregate.

Note: If you initiate a volume move operation when the rekey operation of the same volume is in progress, the rekey operation is aborted. In System Manager 9.5 and earlier version, if you try to move a volume when a conversion or rekey operation of a volume is in progress, then the operation is aborted without warning. Starting with System Manager 9.6, if you attempt a volume move during a conversion or rekey operation, a message is displayed warning that the conversion or rekey operation will be aborted if you continue.

Provision Storage for VMware
Enables you to create a volume for the NFS datastore and to specify the ESX servers that can access the NFS datastore.

View Missing Protection Relationship
Displays the read/write volumes that are online and are not protected, and displays the volumes that have protection relationships but are not initialized.

Reset Filters
Enables you to reset the filters that were set to view missing protection relationships.

Refresh
Updates the information in the window.

Enables you to select which details you want to display in the list on the Volumes window.
Volume list

Status
Displays the status of the volume.

Name
Displays the name of the volume.

Style
In System Manager 9.5, this column displays the type of volume, such as FlexVol or FlexGroup. FlexCache volumes created by using the CLI are displayed as FlexGroup volumes.

In System Manager 9.6, this column displays the type of volume: FlexVol, FlexGroup, or FlexCache.

SVM
Displays the SVM that contains the volume.

Aggregates
Displays the name of the aggregates belonging to the volume.

Thin Provisioned
Displays whether a space guarantee is set for the selected volume. Valid values for online volumes are **Yes** and **No**.

Root volume
Displays whether the volume is a root volume.

Available Space
Displays the available space in the volume.

Total Space
Displays the total space in the volume, which includes the space that is reserved for Snapshot copies.

% Used
Displays the amount of space (in percentage) that is used in the volume.

Logical Used %
Displays the amount of logical space (in percentage), including space reserves, that is used in the volume.

Note: This field is displayed only if you have enabled logical space reporting by using the CLI.

Logical Space Reporting
Displays whether logical space reporting is enabled on the volume.

Note: This field is displayed only if you have enabled logical space reporting by using the CLI.

Logical Space Enforcement
Displays whether to perform logical space accounting on the volume.

Type
Displays the type of volume: **rw** for read/write, **ls** for load sharing, or **dp** for data protection.

Protection Relationship
Displays whether the volume has a protection relationship initiated.
If the relationship is between an ONTAP system and a non-ONTAP system, the value is displayed as **No** by default.

Storage Efficiency
Displays whether deduplication is enabled or disabled for the selected volume.

Encrypted
Displays whether the volume is encrypted or not.

QoS Policy Group
Displays the name of the Storage QoS policy group to which the volume is assigned. By default, this column is hidden.

SnapLock Type
Displays the SnapLock type of the volume.

Clone
Displays whether the volume is a FlexClone volume.

Is Volume Moving
Displays whether a volume is being moved from one aggregate to another aggregate or from one node to another node.

Tiering Policy
Displays the tiering policy of a FabricPool-enabled aggregate. The default tiering policy is “snapshot-only”.

Application
Displays the name of the application that is assigned to the volume.

Overview area
You can click the plus sign (+) to the left in the row in which a volume is listed to view an overview of the details about that volume.

Protection
Displays the **Data Protection** tab of the Volume window for the selected volume.

Performance
Displays the **Performance** tab of the Volume window for the selected volume.

Show More Details
Displays the Volume window for the selected volume.

Volume window for the selected volume
You can display this window by either of these methods:

- Clicking the volume name in the list of volumes on the Volumes window.
- Clicking **Show More Details** on the **Overview** area displayed for the selected volume.

The Volume window displays the following tabs:

Overview tab
Displays general information about the selected volume, and displays a pictorial representation of the space allocation of the volume, the protection status of the volume, and the performance of the volume. The Overview tab displays details about the encryption of the volume, such as the encryption status and the encryption type, the conversion status or rekey status, information about a volume that is being moved, such as the state and phase of the volume move, the destination node and aggregate to which the
volume is being moved, the percentage of volume move that is complete, the estimated
time to complete the volume move operation, and details of the volume move operation.
This tab also displays information about whether the volume is blocked for input/output
(I/O) operations and the application blocking the operation.

For FlexCache volumes, details about the origin of the FlexCache volume are displayed.
The refresh interval for performance data is 15 seconds.

This tab contains the following command button:

Cutover

Opens the Cutover dialog box, which enables you to manually trigger the cutover.
The **Cutover** command button is displayed only if the volume move operation is in
the “replication” or “hard deferred” state.

Snapshot Copies tab

Displays the Snapshot copies of the selected volume. This tab contains the following
command buttons:

Create

Opens the Create Snapshot Copy dialog box, which enables you to create a Snapshot
copy of the selected volume.

Configuration Settings

Configures the Snapshot settings.

More Actions > Rename

Opens the Rename Snapshot Copy dialog box, which enables you to rename a
selected Snapshot copy.

More Actions > Restore

Restores a Snapshot copy.

More Actions > Extend Expiry Period

Extends the expiry period of a Snapshot copy.

Delete

Deletes the selected Snapshot copy.

Refresh

Updates the information in the window.

Data Protection tab

Displays data protection information about the selected volume.

If the source volume (read/write volume) is selected, the tab displays all of the mirror
relationships, vault relationships, and mirror and vault relationships that are related to the
destination volume (DP volume). If the destination volume is selected, the tab displays the
relationship with the source volume.

If some or all of the cluster peer relationships of the local cluster are in an unhealthy state,
the Data Protection tab might take some time to display the protection relationships
relating to a healthy cluster peer relationship. Relationships relating to unhealthy cluster
peer relationships are not displayed.

Storage Efficiency tab

Displays information in the following panes:

- **Bar graph**
Displays (in graphical format) the volume space that is used by data and Snapshot copies. You can view details about the space used before and after applying settings for storage efficiency savings.

- Details
 Displays information about deduplication properties, including whether deduplication is enabled on the volume, the deduplication mode, the deduplication status, type, and whether inline or background compression is enabled on the volume.

- Last run details
 Provides details about the last-run deduplication operation on the volume. Space savings resulting from compression and deduplication operations that are applied on the data on the volume are also displayed.

Performance tab
Displays information about the average performance metrics, read performance metrics, and write performance metrics of the selected volume, including throughput, IOPS, and latency.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You must refresh your browser to view the updated graphs.

FlexCache tab
Displays details about FlexCache volumes only if the volume you selected is an origin volume that has FlexCache volumes associated with it. Otherwise, this tab does not appear.

Related tasks
- Creating FlexVol volumes on page 59
- Creating FlexClone volumes on page 217
- Creating FlexClone files on page 218
- Deleting volumes on page 217
- Setting the Snapshot copy reserve on page 222
- Deleting Snapshot copies on page 225
- Creating Snapshot copies outside a defined schedule on page 221
- Editing volume properties on page 214
- Changing the status of a volume on page 220
- Enabling storage efficiency on a volume on page 226
- Changing the deduplication schedule on page 227
- Running deduplication operations on page 228
- Splitting a FlexClone volume from its parent volume on page 219
- Resizing volumes on page 226
- Restoring a volume from a Snapshot copy on page 223
- Scheduling automatic creation of Snapshot copies on page 222
- Renaming Snapshot copies on page 224
- Hiding the Snapshot copy directory on page 222
- Viewing the FlexClone volume hierarchy on page 220
- Creating FlexGroup volumes on page 239
- Editing FlexGroup volumes on page 241
- Resizing FlexGroup volumes on page 243
- Changing the status of a FlexGroup volume on page 243
- Deleting FlexGroup volumes on page 244
- Viewing FlexGroup volume information on page 240
Junction Path

You can use the Junction Path window in System Manager to mount or unmount FlexVol volumes to a junction in the SVM namespace.

Mounting volumes

You can use System Manager to mount volumes to a junction in the storage virtual machine (SVM) namespace.

About this task

- If you mount a volume to a junction path with a language setting that is different from that of the immediate parent volume in the path, NFSv3 clients cannot access some of the files because some characters might not be decoded correctly.
 - This issue does not occur if the immediate parent directory is the root volume.
- You can mount a SnapLock volume only under the root of the SVM.
- You cannot mount a regular volume under a SnapLock volume.

Steps

1. Click Storage > Junction Path.
2. From the drop-down menu in the SVM field, select the SVM on which you want to mount a volume.
3. Click Mount, and then select the volume that is to be mounted.
4. Optional: If you want to change the default junction name, specify a new name.
5. Click Browse, and then select the junction path to which you want to mount the volume.
6. Click OK, and then click Mount.
7. Verify the new junction path in the Details tab.

Unmounting FlexVol volumes

You can use the Junction Path option of Storage pane in System Manager to unmount FlexVol volumes from a junction in the storage virtual machine (SVM) namespace.

Steps

1. Click Storage > Junction Path.
2. From the drop-down menu in the SVM field, select the SVM from which you want to unmount a volume.
3. Select the volumes that have to be unmounted, and then click Unmount.
4. Select the confirmation check box, and then click Unmount.
Changing export policies

When a volume is created, the volume automatically inherits the default export policy of the root volume of the storage virtual machine (SVM). You can use System Manager to change the default export policy that is associated with the volume to redefine the client access to data.

Steps

1. Click Storage > Junction Path.
2. From the drop-down menu in the SVM field, select the SVM in which the volume that you want to modify resides.
3. Select the volume, and then click Change Export Policy.
4. Select the export policy, and then click Change.
5. Verify that the Export Policy column in the Junction Path window displays the export policy that you applied to the volume.

Result

The default export policy is replaced with the export policy that you selected.

Junction Path window

You can use the Junction Path menu to manage the NAS namespace of storage virtual machines (SVMs).

Command buttons

Mount

Opens the Mount Volume dialog box, which enables you to mount a volume to the junction in an SVM namespace.

Unmount

Opens the Unmount Volume dialog box, which enables you to unmount a volume from its parent volume.

Change Export Policy

Opens the Change Export Policy dialog box, which enables you to change the existing export policy associated with the volume.

Refresh

Updates the information in the window.

Junction Path list

Path

Specifies the junction path of the mounted volume. You can click the junction path to view the related volumes and qtrees.

Storage Object

Specifies the name of the volume mounted on the junction path. You can also view the qtrees that the volume contains.

Export Policy

Specifies the export policy of the mounted volume.
Security Style
Specifies the security style for the volume. Possible values include UNIX (for UNIX mode bits), NTFS (for CIFS ACLs), and Mixed (for mixed NFS and CIFS permissions).

Details tab
Displays general information about the selected volume or qtree, such as the name, type of storage object, junction path of the mounted object, and export policy. If the selected object is a qtree, details about the space hard limit, space soft limit, and space usage are displayed.

Shares
You can use System Manager to create, edit, and manage shares.

Creating a CIFS share
You can use System Manager to create a CIFS share that enables you to specify the folder, qtree, or volume that CIFS users can access.

Before you begin
You must have installed the CIFS license before you set up and start CIFS.

Steps
1. Click Storage > Shares.
2. From the drop-down menu in the SVM field, select the SVM on which you want to create a CIFS share.
3. Click Create Share.
4. In the Create Share window, click Browse, and then select the folder, qtree, or volume that should be shared.
5. Specify a name for the new CIFS share.
6. Optional: Select the Enable continuous availability for Hyper-V and SQL check box to permit clients that support SMB 3.0 and later to open files persistently during nondisruptive operations.
 Files that are opened by using this option are protected from disruptive events such as failover, giveback, and LIF migration.
 Starting with System Manager 9.6, continuous availability is supported for FlexGroup volumes.
7. Select the Encrypt data while accessing this share check box to enable SMB 3.0 encryption.
8. Provide a description or comment for the share, and then click Create.

Result
The CIFS share is created with the access permissions set to “Full Control for Everyone” in the group.

Related tasks
Setting up CIFS on page 301
Related references

Shares window on page 265

Stopping share access
You can use System Manager to stop a share when you want to remove the shared network access to a folder, qtree, or volume.

Before you begin
You must have installed the CIFS license.

Steps
1. Click **Storage > Shares**.
2. From the drop-down menu in the **SVM** field, select the SVM on which the CIFS share that you want to stop resides.
3. From the list of shares, select the share that you want to stop sharing, and then click **Stop Sharing**.
4. Select the confirmation check box, and then click **Stop**.
5. Verify that the share is no longer listed in the **Shares** window.

Related references

Shares window on page 265

Creating home directory shares
You can use System Manager to create a home directory share and to manage home directory search paths.

Before you begin
CIFS must be set up and started.

Steps
1. Click **Storage > Shares**.
2. Click **Create Home Directory**, and then provide the pattern information that determines how a user is mapped to a directory.
3. Click **Create**.
4. Verify that the home directory that you created is listed in the **Shares** window.

Editing share settings
You can use System Manager to modify the settings of a share such as the symbolic link settings, share access permissions of users or groups, and the type of access to the share. You can also enable or disable continuous availability of a share over Hyper-V, and enable or disable access-based enumeration (ABE). Starting with System Manager 9.6, continuous availability is supported for FlexGroup volumes.

Steps
1. Click **Storage > Shares**.
2. Select the share that you want to modify from the list of shares, and then click **Edit**.

3. In the **Edit Share Settings** dialog box, modify the share settings as required:
 a. In the **General** tab, enable continuous availability of a share over Hyper-V.

 Enabling continuous availability permits SMB 3.0 and clients that support SMB 3.0 to open files persistently during nondisruptive operations. Files that are opened persistently are protected from disruptive events such as failover, giveback, and LIF migration.
 b. In the **Permissions** tab, add users or groups, and then assign permissions to specify the type of access.
 c. In the **Options** tab, select the required options.

4. Click **Save and Close**.

5. Verify the changes that you made to the selected share in the **Shares** window.

Related references

Shares window on page 265

How ONTAP enables dynamic home directories

ONTAP home directories enable you to configure an SMB share that maps to different directories based on the user that connects to it and a set of variables. Instead of creating separate shares for each user, you can configure one share with a few home directory parameters to define a user’s relationship between an entry point (the share) and the home directory (a directory on the SVM).

A user who is logged in as a guest user does not have a home directory and cannot access other users’ home directories. There are four variables that determine how a user is mapped to a directory:

Share name

This is the name of the share that you create to which the user connects. You must set the home directory property for this share.

The share name can use the following dynamic names:

- \%w (the user’s Windows user name)
- \%d (the user’s Windows domain name)
- \%u (the user’s mapped UNIX user name)

To make the share name unique across all home directories, the share name must contain either the \%w or the \%u variable. The share name can contain both the \%d and the \%w variable (for example, \%d/\%w), or the share name can contain a static portion and a variable portion (for example, home_\%w).

Share path

This is the relative path, which is defined by the share and is therefore associated with one of the share names, that is appended to each search path to generate the user’s entire home directory path from the root of the SVM. It can be static (for example, home), dynamic (for example, eng/\%w), or a combination of the two (for example, eng/\%w).

Search paths

This is the set of absolute paths from the root of the SVM that you specify that directs the ONTAP search for home directories. You can specify one or more search paths by using the `vserver cifs home-directory search-path add` command. If you specify multiple search paths, ONTAP tries them in the order specified until it finds a valid path.
Directory

This is the user's home directory that you create for the user. The directory name is usually the user's name. You must create the home directory in one of the directories that are defined by the search paths.

As an example, consider the following setup:

- User: John Smith
- User domain: acme
- User name: jsmith
- SVM name: vs1
- Home directory share name #1: home_%w - share path: %w
- Home directory share name #2: %w - share path: %d/%w
- Search path #1: /vol0home/home
- Search path #2: /vol1home/home
- Search path #3: /vol2home/home
- Home directory: /vol1home/home/jsmith

Scenario 1: The user connects to \vs1\home_jsmith. This matches the first home directory share name and generates the relative path jsmith. ONTAP now searches for a directory named jsmith by checking each search path in order:

- /vol0home/home/jsmith does not exist; moving on to search path #2.
- /vol1home/home/jsmith does exist; therefore, search path #3 is not checked; the user is now connected to his home directory.

Scenario 2: The user connects to \vs1\jsmith. This matches the second home directory share name and generates the relative path acme/jsmith. ONTAP now searches for a directory named acme/jsmith by checking each search path in order:

- /vol0home/home/acme/jsmith does not exist; moving on to search path #2.
- /vol1home/home/acme/jsmith does not exist; moving on to search path #3.
- /vol2home/home/acme/jsmith does not exist; the home directory does not exist; therefore, the connection fails.

Shares window

You can use the Shares window to manage your shares and to view information about the shares.

- Command buttons on page 265
- Shares list on page 266
- Details area on page 266

Command buttons

Create Share

Opens the Create Share dialog box, which enables you to create a share.
Create Home Directory
Opens the Create Home Directory Share dialog box, which enables you to create a new home directory share.

Edit
Opens the Edit Settings dialog box, which enables you to modify the properties of a selected share.

Stop Sharing
Stops the selected object from being shared.

Refresh
Updates the information in the window.

Shares list
The shares list displays the name and path of each share.

Share Name
Displays the name of the share.

Path
Displays the complete path name of an existing folder, qtree, or volume that is shared. Path separators can be backward slashes or forward slashes, although ONTAP displays all path separators as forward slashes.

Home Directory
Displays the name of the home directory share.

Comment
Displays additional descriptions of the share, if any.

Continuously Available Share
Displays whether the share is enabled for continuous availability. Starting with System Manager 9.6, continuous availability is supported for FlexGroup volumes.

Details area
The area below the shares list displays the share properties and the access rights for each share.

Properties
- Name
 Displays the name of the share.
- Oplocks status
 Specifies whether the share uses opportunistic locks (oplocks).
- Browsable
 Specifies whether the share can be browsed by Windows clients.
- Show Snapshot
 Specifies whether Snapshot copies can be viewed by clients.
- Continuously Available Share
 Specifies whether the share is enabled or disabled for continuous availability. Starting with System Manager 9.6, continuous availability is supported for FlexGroup volumes.
- Access-Based Enumeration
 Specifies whether access-based enumeration (ABE) is enabled or disabled on the share.
• BranchCache
 Specifies whether BranchCache is enabled or disabled on the share.

• SMB Encryption
 Specifies whether data encryption using SMB 3.0 is enabled at the storage virtual
 machine (SVM) level or at the share level. If SMB encryption is enabled at the SVM
 level, SMB encryption applies for all of the shares and the value is shown as Enabled
 (at the SVM level).

• Previous Versions
 Specifies whether the previous versions can be viewed and restored from the client.

Share access control

Displays the access rights of the domain users, domain groups, local users, and local
groups for the share.

Related tasks

Creating a CIFS share on page 262

Stopping share access on page 263

Editing share settings on page 263

LUNs

You can use System Manager to manage LUNs.

You can access all the LUNs in the cluster by using the LUNs tab or you can access the LUNs
specific to the SVM by using **SVMs > LUNs**.

Note: The LUNs tab is displayed only if you have enabled the FC/FCoE and iSCSI licenses.

Related information

SAN administration

Creating FC SAN optimized LUNs

You can use System Manager to create one or more FC SAN optimized LUNs during the initial setup
of a cluster on an AFF platform.

Before you begin

• You must ensure that only one storage virtual machine (SVM) has been created with the name
 AFF_SAN_DEFAULT_SVM, and that this SVM does not contain any LUNs.

• You must have verified that the hardware setup has been completed successfully.

 ONTAP 9 Documentation Center

About this task

• This method is available only during the initial setup of a cluster with two or more nodes.
 System Manager uses only the first two nodes to create LUNs.

• Each LUN is created on a separate volume.

• Volumes are thin provisioned.

• Space reservation is disabled on the created LUNs.
Most of the cluster configurations are already completed at the factory and are optimized for optimum storage efficiency and performance. You must not modify these configurations.

Steps

1. Log in to System Manager by using your cluster administrator credentials.
 After you create LUNs using this method, you cannot use this method again.
 If you close the dialog box without creating LUNs, you must navigate to the LUNs tab and click Create to access the dialog box again.

2. In the LUN details area of the Create LUNs dialog box, specify the application type:

<table>
<thead>
<tr>
<th>If the application type is...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>Specify the database name and size.</td>
</tr>
<tr>
<td>b. If you have deployed Oracle Real Application Clusters (RAC), then</td>
<td>select the Oracle RAC check box.</td>
</tr>
<tr>
<td>Only two RAC nodes are supported. You must ensure that Oracle RAC has a minimum of two initiators added to the initiator group.</td>
<td></td>
</tr>
<tr>
<td>SQL</td>
<td>Specify the number of databases and the size of each database.</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>Specify the name and size of each LUN.</td>
</tr>
<tr>
<td>b. If you want to create more LUNs, click Add more LUNs, and then</td>
<td>specify the name and size for each LUN.</td>
</tr>
</tbody>
</table>

Data, log, binary, and temporary LUNs are created based on the selected application type.

3. In the Map to these Initiators area, perform these steps:
 a. Specify the initiator group name and the type of operating system.
 b. Add the host initiator WWPN by selecting it from the drop-down list or by typing the initiator in the text box.
 c. Add the alias for the initiator.

Only one initiator group is created.

4. Click Create.
 A summary table is displayed with the LUNs that are created.

5. Click Close.

Related information

ONTAP 9 Documentation Center

Application-specific LUN settings

System Manager supports Oracle, SQL, and other application types while creating FC SAN optimized LUNs on an AFF cluster. LUN settings such as the LUN size are determined by rules specific to the application type. For SQL and Oracle, LUN settings are automatically created.

If your cluster contains two or more nodes, System Manager uses only the first two nodes selected by the API to create LUNs. Data aggregates are already created in each of the two nodes. The size of each volume created is equal to the available capacity of the aggregate. The volumes are thin-provisioned and space reservation is disabled on the LUNs.
Storage efficiency policy is enabled by default with the schedule set to “daily” and quality of service (QoS) set to “best_effort”. By default, access time (atime) update is enabled on the cluster. However, access time updates are disabled by System Manager while creating volumes and therefore every time a file is read or written, the access time field in the directory is not updated.

Note: Enabling the access time update causes performance degradation to the data-serving capability of the cluster.

LUN settings for SQL

By default, LUNs and volumes are provisioned for a single instance of the SQL server with 2 databases of 1 TB each and 24 physical cores. Space is provisioned for LUNs and volumes according to specific rules for the SQL server. Load balancing is performed for LUNs across the HA pair. You can modify the number of databases. For each database, eight data LUNs and one log LUN is created. One temporary LUN is created for each SQL instance.

The following table provides information about how space is provisioned for the default values of SQL:

<table>
<thead>
<tr>
<th>Node</th>
<th>Aggregate</th>
<th>LUN type</th>
<th>Volume name</th>
<th>LUN name</th>
<th>Formula for LUN size</th>
<th>LUN size (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1</td>
<td>node1_aggr 1</td>
<td>data</td>
<td>db01_data01</td>
<td>db01_data01</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db01_data02</td>
<td>db01_data02</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db01_data03</td>
<td>db01_data03</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db01_data04</td>
<td>db01_data04</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db02_data01</td>
<td>db02_data01</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db02_data02</td>
<td>db02_data02</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db02_data03</td>
<td>db02_data03</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db02_data04</td>
<td>db02_data04</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>log</td>
<td>db01_log</td>
<td>db01_log</td>
<td>Database size ÷ 20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temp</td>
<td>sql_temp</td>
<td>sql_temp</td>
<td>Database size ÷ 3</td>
<td>330</td>
</tr>
<tr>
<td>node2</td>
<td>node2_aggr 1</td>
<td>data</td>
<td>db01_data05</td>
<td>db01_data05</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db01_data06</td>
<td>db01_data06</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db01_data07</td>
<td>db01_data07</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>db01_data08</td>
<td>db01_data08</td>
<td>Database size ÷ 8</td>
<td>125</td>
</tr>
</tbody>
</table>
LUN settings for Oracle

By default, LUNs and volumes are provisioned for one database of 2 TB. Space is provisioned for LUNs and volumes according to specific rules for Oracle. By default, Oracle Real Application Clusters (RAC) is not selected.

The following table provides information about how space is provisioned for the default values of Oracle:

<table>
<thead>
<tr>
<th>Node</th>
<th>Aggregate</th>
<th>LUN type</th>
<th>Volume name</th>
<th>LUN name</th>
<th>Formula for LUN size</th>
<th>LUN size (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1</td>
<td>node1_aggr 1</td>
<td>data</td>
<td>ora_vol01</td>
<td>ora_lundata01</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol02</td>
<td>ora_lundata02</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol03</td>
<td>ora_lundata03</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol04</td>
<td>ora_lundata04</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>log</td>
<td>ora_vol05</td>
<td>ora_lunlog1</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol06</td>
<td>ora_orabin1</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
<tr>
<td>node2</td>
<td>node2_aggr 1</td>
<td>data</td>
<td>ora_vol07</td>
<td>ora_lundata05</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol08</td>
<td>ora_lundata06</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol09</td>
<td>ora_lundata07</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ora_vol10</td>
<td>ora_lundata08</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>log</td>
<td>ora_vol11</td>
<td>ora_lunlog2</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
</tbody>
</table>
For Oracle RAC, LUNs are provisioned for grid files. Only two RAC nodes are supported for Oracle RAC.

The following table provides information about how space is provisioned for the default values of Oracle RAC:

<table>
<thead>
<tr>
<th>Node</th>
<th>Aggregate</th>
<th>LUN type</th>
<th>Volume name</th>
<th>LUN name</th>
<th>Formula for LUN size</th>
<th>LUN size (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1</td>
<td>node1_aggr1</td>
<td>data</td>
<td>ora_vol01</td>
<td>ora_lundata01</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>ora_vol02</td>
<td>ora_lundata02</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>ora_vol03</td>
<td>ora_lundata03</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>ora_vol04</td>
<td>ora_lundata04</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>log</td>
<td>ora_vol05</td>
<td>ora_lunlog1</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>binaries</td>
<td>ora_vol06</td>
<td>ora_orabin1</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grid</td>
<td>ora_vol07</td>
<td>ora_lungrid1</td>
<td>10 GB</td>
<td>10</td>
</tr>
<tr>
<td>node2</td>
<td>node2_aggr1</td>
<td>data</td>
<td>ora_vol08</td>
<td>ora_lundata05</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>ora_vol09</td>
<td>ora_lundata06</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>ora_vol10</td>
<td>ora_lundata07</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
<td>ora_vol11</td>
<td>ora_lundata08</td>
<td>Database size ÷ 8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>log</td>
<td>ora_vol12</td>
<td>ora_lunlog2</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>binaries</td>
<td>ora_vol13</td>
<td>ora_orabin2</td>
<td>Database size ÷ 40</td>
<td>50</td>
</tr>
</tbody>
</table>

LUN settings for other application type

Each LUN is provisioned in a volume. The space is provisioned in the LUNs based on the specified size. Load balancing is performed across the nodes for all the LUNs.

Creating LUNs

You can use System Manager to create LUNs for an existing aggregate, volume, or qtree when there is available free space. You can create a LUN in an existing volume or create a new FlexVol volume.
for the LUN. You can also enable storage Quality of Service (QoS) to manage the workload performance.

About this task

If you specify the LUN ID, System Manager checks the validity of the LUN ID before adding it. If you do not specify a LUN ID, ONTAP software automatically assigns one.

While selecting the LUN multiprotocol type, you should have considered the guidelines for using each type. The LUN Multiprotocol Type, or operating system type, determines the layout of data on the LUN, and the minimum and maximum sizes of the LUN. After the LUN is created, you cannot modify the LUN host operating system type.

In a MetroCluster configuration, System Manager displays only the following aggregates for creating FlexVol volumes for the LUN:

- In normal mode, when you create volumes on sync-source SVMs or data-serving SVMs in the primary site, only those aggregates that belong to the cluster in the primary site are displayed.
- In switched-over mode, when you create volumes on sync-destination SVMs or data-serving SVMs in the surviving site, only switched-over aggregates are displayed.

Steps

1. Click Storage > LUNs.

2. In the LUN Management tab, click Create.

3. Browse and select an SVM in which you want to create the LUNs.

4. In the Create LUN Wizard, specify the name, size, type, description for the LUN, and select the Space Reserve, and then click Next.

5. Create a new FlexVol volume for the LUN or select an existing volume or qtree, and then click Next.

6. Add initiator groups if you want to control host access to the LUN, and then click Next.

7. Select the Manage Storage Quality of Service check box if you want to manage the workload performance of the LUN.

8. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the LUN:
If you want to... | Do this...
---|---
Create a new policy group | a. Select **New Policy Group**

b. Specify the policy group name.

c. Specify the minimum throughput limit.

- In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.

- You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.

- If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.

d. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.

- The minimum throughput limit and the maximum throughput limit must be of the same unit type.

- If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.

- If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value and this value is case-sensitive. The unit that you specify does not affect the maximum throughput.
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
</table>
| Select an existing policy group | **a.** Select **Existing Policy Group**, and then click **Choose** to select an existing policy group from the Select Policy Group dialog box.
b. Specify the minimum throughput limit.
- In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.
- You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
- If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value.
 This value is case-sensitive.
c. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.
- The minimum throughput limit and the maximum throughput limit must be of the same unit type.
- If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.
- If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value and this value is case-sensitive.
 The unit that you specify does not affect the maximum throughput.
 If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects. |

9. Review the specified details in the **LUN summary** window, and then click **Next**.

10. Confirm the details, and then click **Finish** to complete the wizard.

Related concepts

Guidelines for using LUN multiprotocol type on page 285

Related references

LUNs window on page 287

Deleting LUNs

You can use System Manager to delete LUNs and return the space used by the LUNs to their containing aggregates or volumes.

Before you begin

- The LUN must be offline.
- The LUN must be unmapped from all initiator hosts.
Steps

1. Click Storage > LUNs.

2. In the LUN Management tab, select one or more LUNs that you want to delete, and then click Delete.

3. Select the confirmation check box, and then click Delete.

Related references

LUNs window on page 287

Creating initiator groups

You can use System Manager to create an initiator group. Initiator groups enable you to control host access to specific LUNs. You can use port sets to limit which LIFs an initiator can access.

Steps

1. Click Storage > LUNs.

2. In the Initiator Groups tab, click Create.

3. In the General tab of the Create Initiator Group dialog box, specify the initiator group name, operating system, host alias name, port set, and supported protocol for the group.

4. Click Create.

Related references

LUNs window on page 287

Deleting initiator groups

You can use the Initiator Groups tab in System Manager to delete initiator groups.

Before you begin

All the LUNs mapped to the initiator group must be manually unmapped.

Steps

1. Click Storage > LUNs.

2. In the Initiator Groups tab, select one or more initiator groups that you want to delete, and then click Delete.

3. Click Delete.

4. Verify that the initiator groups you deleted are no longer displayed in the Initiator Groups tab.

Related references

LUNs window on page 287
Adding initiators

You can use System Manager to add initiators to an initiator group. An initiator provides access to a LUN when the initiator group that it belongs to is mapped to that LUN.

Steps

1. Click Storage > LUNs.
2. In the LUN Management tab, select the initiator group to which you want to add initiators and click Edit.
3. In the Edit Initiator Group dialog box, click Initiators.
4. Click Add.
5. Specify the initiator name and click OK.
6. Click Save and Close.

Related references

LUNs window on page 287

Deleting initiators from an initiator group

You can use the Initiator Groups tab in System Manager to delete an initiator. To delete an initiator from an initiator group, you must disassociate the initiator from the initiator group.

Before you begin

All of the LUNs that are mapped to the initiator group that contains the initiator that you want to delete must be manually unmapped.

Steps

1. Click Storage > LUNs.
2. In the Initiator Groups tab, select the initiator group from which you want to delete the initiator, and then click Edit.
3. In the Edit Initiator Group dialog box, click the Initiators tab.
4. Select and delete the initiator from the text box, and click Save.

The initiator is disassociated from the initiator group.

Related references

LUNs window on page 287

Creating port sets

You can use System Manager to create port sets to limit access to your LUNs.

Steps

1. Click Storage > LUNs.
2. In the Portsets tab, click Create.
3. In the Create Portset dialog box, select the type of protocol.
4. Choose the network interface that you want to associate with the port set.
5. Click Create.

Deleting port sets
You can use System Manager to delete a port set when it is no longer required.

Steps
1. Click Storage > LUNs.
2. In the Portsets tab, select one or more port sets and click Delete.
3. Confirm the deletion by clicking Delete.

Cloning LUNs
LUN clones enable you to create multiple readable and writable copies of a LUN. You can use System Manager to create a temporary copy of a LUN for testing or to make a copy of your data available to additional users without providing them access to the production data.

Before you begin
• You must have installed the FlexClone license on the storage system.
• When space reservation is disabled on a LUN, the volume that contains the LUN must have enough space to accommodate changes to the clone.

About this task
• When you create a LUN clone, automatic deletion of the LUN clone is enabled by default in System Manager.
 The LUN clone is deleted when ONTAP triggers automatic deletion to conserve space.
• You cannot clone LUNs that are on SnapLock volumes.

Steps
1. Click Storage > LUNs.
2. In the LUN Management tab, select the LUN that you want to clone, and then click Clone.
3. Optional: If you want to change the default name, specify a new name for the LUN clone.
4. Click Clone.
5. Verify that the LUN clone that you created is listed in the LUNs window.

Related references
 LUNs window on page 287

Editing LUNs
You can use the LUN properties dialog box in System Manager to change the name, description, size, space reservation setting, or the mapped initiator hosts of a LUN.

About this task
When you resize a LUN, you have to perform the steps on the host side that are recommended for the host type and the application that is using the LUN.
Steps
1. Click Storage > LUNs.
2. In the LUN Management tab, select the LUN that you want to edit from the list of LUNs, and click Edit.
3. Make the required changes.
4. Click Save and Close.

Related references

LUNs window on page 287

Bringing LUNs online
You can use the LUN Management tab in System Manager to bring selected LUNs online and make them available to the host.

Before you begin
Any host application accessing the LUN must be quiesced or synchronized.

Steps
1. Click Storage > LUNs.
2. In the LUN Management tab, select one or more LUNs that you want to bring online.
3. Click Status > Online.

Related references

LUNs window on page 287

Taking LUNs offline
You can use the LUN Management tab in System Manager to take selected LUNs offline and make them unavailable for block protocol access.

Before you begin
Any host application accessing the LUN must be quiesced or synchronized.

Steps
1. Click Storage > LUNs.
2. In the LUN Management tab, select one or more LUNs that you want to take offline.
3. Click Status > Offline.

Related references

LUNs window on page 287

Moving LUNs
You can use System Manager to move a LUN from its containing volume to another volume or qtree within a storage virtual machine (SVM). You can move the LUN to a volume that is hosted on an
aggregate containing high-performance disks, thereby improving the performance when accessing the LUN.

About this task

- You cannot move a LUN to a qtree within the same volume.
- If you have created a LUN from a file using the command-line interface (CLI), you cannot move the LUN using System Manager.
- The LUN move operation is nondisruptive; it can be performed when the LUN is online and serving data.
- You cannot use System Manager to move the LUN if the allocated space in the destination volume is not sufficient to contain the LUN, and even if autogrow is enabled on the volume. You should use the CLI instead.
- You cannot move LUNs on SnapLock volumes.

Steps

1. Click Storage > LUNs.

2. In the LUN Management tab, select the LUN that you want to move from the list of LUNs, and then click Move.

3. Optional: In the Move Options area of the Move LUN dialog box, specify a new name for the LUN if you want to change the default name.

4. Select the storage object to which you want to move the LUN and perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want to move the LUN to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new volume</td>
<td>a. Select an aggregate in which you want to create the new volume.</td>
</tr>
<tr>
<td></td>
<td>b. Specify a name for the volume.</td>
</tr>
<tr>
<td>An existing volume or qtree</td>
<td>a. Select a volume to which you want to move the LUN.</td>
</tr>
<tr>
<td></td>
<td>b. If the selected volume contains any qtrees, select the qtree to which you want to move the LUN.</td>
</tr>
</tbody>
</table>

5. Click Move.

6. Confirm the LUN move operation, and click Continue.

 For a brief period of time, the LUN is displayed on both the origin and destination volume. After the move operation is complete, the LUN is displayed on the destination volume.

 The destination volume or qtree is displayed as the new container path for the LUN.
Assigning LUNs to storage QoS

You can use System Manager to limit the throughput of LUNs by assigning them to storage Quality of Service (QoS) policy groups. You can assign storage QoS for new LUNs or modify storage QoS details for LUNs that are already assigned to a policy group.

About this task

- You cannot assign storage QoS to a LUN if the following storage objects are assigned to a policy group:
 - Parent volume of the LUN
 - Parent storage virtual machine (SVM) of the LUN
- You can assign storage QoS or modify the QoS details for a maximum of 10 LUNs simultaneously.

Steps

1. Click Storage > LUNs.
2. In the LUN Management tab, select one or more LUNs for which you want to assign storage QoS.
3. Click Storage QoS.
4. In the Quality of Service Details dialog box, select the Manage Storage Quality of Service check box if you want to manage the workload performance of the LUN.

 If some of the LUNs that you selected are already assigned to a policy group, the changes that you make might affect the performance of these LUNs.
5. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the LUN:
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a new policy group</td>
<td>a. Select New Policy Group.</td>
</tr>
<tr>
<td></td>
<td>b. Specify the policy group name.</td>
</tr>
<tr>
<td></td>
<td>c. Specify the minimum throughput limit.</td>
</tr>
<tr>
<td></td>
<td>• In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.</td>
</tr>
<tr>
<td></td>
<td>• You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.</td>
</tr>
<tr>
<td></td>
<td>d. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.</td>
</tr>
<tr>
<td></td>
<td>• The minimum throughput limit and the maximum throughput limit must be of the same unit type.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.</td>
</tr>
<tr>
<td></td>
<td>• If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value and this value is case-sensitive. The unit that you specify does not affect the maximum throughput.</td>
</tr>
</tbody>
</table>
If you want to... | Do this...
---|---
Select an existing policy group | a. Select **Existing Policy Group**, and then click **Choose** to select an existing policy group from the Select Policy Group dialog box.

b. Specify the minimum throughput limit.

- In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.
- You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
- If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.

c. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.

- The minimum throughput limit and the maximum throughput limit must be of the same unit type.
- If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.
- If you do not specify the maximum throughput value, the system automatically displays “Unlimited” as the value and this value is case-sensitive. The unit that you specify does not affect the maximum throughput.

If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.

6. Optional: Click the link that specifies the number of LUNs to review the list of selected LUNs, and click **Discard** if you want to remove any LUNs from the list.

The link is displayed only when multiple LUNs are selected.

7. Click **OK**.

Editing initiator groups

You can use the Edit Initiator Group dialog box in System Manager to change the name of an existing initiator group and its operating system. You can add initiators to or remove initiators from the initiator group. You can also change the port set associated with the initiator group.

Steps

1. Click **Storage > LUNs**.

2. In the **Initiator Groups** tab, select the initiator group that you want to modify, and then click **Edit**.

3. Make the necessary changes.

4. Click **Save and Close**.
5. Verify the changes you made to the initiator group in the **Initiator Groups** tab.

Related references

LUNs window on page 287

Editing initiators

You can use the Edit Initiator Group dialog box in System Manager to change the name of an existing initiator in an initiator group.

Steps

1. Click **Storage > LUNs**.
2. In the **Initiator Groups** tab, select the initiator group to which the initiator belongs, and then click **Edit**.
3. In the **Edit Initiator Group** dialog box, click **Initiators**.
4. Select the initiator that you want to edit and click **Edit**.
5. Change the name and click **OK**.
6. Click **Save and Close**.

Related references

LUNs window on page 287

Editing port sets

You can use the Portsets tab in System Manager to edit settings related to port sets.

Steps

1. Click **Storage > LUNs**.
2. In the **Portsets** tab, select the port set you want to edit and click **Edit**.
3. In the **Edit Portset** dialog box, make the necessary changes.
4. Click **Save and Close**.

Related tasks

Configuring iSCSI protocol on SVMs on page 54

Viewing LUN information

You can use the LUN Management tab in System Manager to view details about a LUN, such as its name, status, size, and type.

Steps

1. Click **Storage > LUNs**.
2. In the **LUN Management** tab, select the LUN that you want to view information about from the displayed list of LUNs.
3. Review the LUN details in the **LUNs** window.
Viewing initiator groups

You can use the Initiator Groups tab in System Manager to view all the initiator groups and the initiators mapped to these initiator groups, and the LUNs and LUN ID mapped to the initiator groups.

Steps
1. Click **Storage > LUNs**.
2. Click **Initiator Groups** and review the initiator groups that are listed in the upper pane.
3. Select an initiator group to view the initiators that belong to it, which are listed in the **Initiators** tab in the lower pane.
4. Select an initiator group to view the LUNs mapped to it, which are listed in the **Mapped LUNs** in the lower pane.

Guidelines for working with FlexVol volumes that contain LUNs

When you work with FlexVol volumes that contain LUNs, you must change the default settings for Snapshot copies. You can also optimize the LUN layout to simplify administration.

Snapshot copies are required for many optional features such as SnapMirror, SyncMirror, dump and restore, and ndmpcopy.

When you create a volume, ONTAP automatically performs the following:
- Reserves 5 percent of the space for Snapshot copies
- Schedules Snapshot copies

Because the internal scheduling mechanism for creating Snapshot copies within ONTAP does not ensure that the data within a LUN is in a consistent state, you should change these Snapshot copy settings by performing the following tasks:
- Turn off the automatic Snapshot copy schedule.
- Delete all of the existing Snapshot copies.
- Set the percentage of space reserved for Snapshot copies to zero.

You should use the following guidelines to create volumes that contain LUNs:
- Do not create any LUNs in the system’s root volume. ONTAP uses this volume to administer the storage system. The default root volume is /vol/vol0.
- You should use a SAN volume to contain the LUN.
- You should ensure that no other files or directories exist in the volume that contains the LUN. If this is not possible and you are storing LUNs and files in the same volume, you should use a separate qtree to contain the LUNs.
- If multiple hosts share the same volume, you should create a qtree on the volume to store all of the LUNs for the same host. This is a best practice that simplifies LUN administration and tracking.
- To simplify management, you should use naming conventions for LUNs and volumes that reflect their ownership or the way that they are used.

Related information

ONTAP 9 Documentation Center
Understanding space reservations for LUNs

Understanding how the space reservation setting (combined with the volume guarantee) affects how space is set aside for LUNs helps you to understand the ramifications of disabling space reservations, and why certain combinations of LUN and volume settings are not useful.

When a LUN has space reservations enabled (a space-reserved LUN), and its containing volume has a volume guarantee, free space from the volume is set aside for the LUN at creation time; the size of this reserved space is governed by the size of the LUN. Other storage objects in the volume (other LUNs, files, Snapshot copies, and so on) are prevented from using this space.

When a LUN has space reservations disabled (a non-space-reserved LUN), no space is set aside for that LUN at creation time. The storage required by any write operation to the LUN is allocated from the volume when it is needed, provided sufficient free space is available.

If a space-reserved LUN is created in a none-guaranteed volume, the LUN behaves the same as a non-space-reserved LUN. This is because a none-guaranteed volume has no space to allocate to the LUN; the volume itself can only allocate space as it is written to, due to its none guarantee. Therefore, creating a space-reserved LUN in a none-guaranteed volume is not recommended; employing this configuration combination might provide write guarantees that are in fact impossible.

When the space reserve is set to “Default”, the ONTAP space reservation settings apply to the LUNs. ONTAP space reservation settings also apply to the container volumes if new volumes are created.

Guidelines for using LUN multiprotocol type

The LUN multiprotocol type, or operating system type, specifies the operating system of the host accessing the LUN. It also determines the layout of data on the LUN, and the minimum and maximum size of the LUN.

Note: Not all ONTAP versions support all LUN multiprotocol types. For the latest information, see the Interoperability Matrix Tool.

The following table describes the LUN multiprotocol type values and the guidelines for using each type:

<table>
<thead>
<tr>
<th>LUN multiprotocol type</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>If your host operating system is AIX.</td>
</tr>
<tr>
<td>HP-UX</td>
<td>If your host operating system is HP-UX.</td>
</tr>
<tr>
<td>Hyper-V</td>
<td>If you are using Windows Server 2008 or Windows Server 2012 Hyper-V and your LUNs contain virtual hard disks (VHDS). If you are using hyper_v for your LUN type, you should also use hyper_v for your igroup OS type. Note: For raw LUNs, you can use the type of child operating system that the LUN multiprotocol type uses.</td>
</tr>
<tr>
<td>Linux</td>
<td>If your host operating system is Linux.</td>
</tr>
<tr>
<td>NetWare</td>
<td>If your host operating system is NetWare.</td>
</tr>
<tr>
<td>OpenVMS</td>
<td>If your host operating system is OpenVMS.</td>
</tr>
<tr>
<td>Solaris</td>
<td>If your host operating system is Solaris and you are not using Solaris EFI labels.</td>
</tr>
</tbody>
</table>
LUN multiprotocol type | When to use
--- | ---
Solaris EFI | If you are using Solaris EFI labels.
Note: Using any other LUN multiprotocol type with Solaris EFI labels might result in LUN misalignment problems.
VMware | If you are using an ESX Server and your LUNs will be configured with VMFS.
Note: If you configure the LUNs with RDM, you can use the guest operating system as the LUN multiprotocol type.
Windows 2003 MBR | If your host operating system is Windows Server 2003 using the MBR partitioning method.
Windows 2003 GPT | If you want to use the GPT partitioning method and your host is capable of using it. Windows Server 2003, Service Pack 1 and later are capable of using the GPT partitioning method, and all 64-bit versions of Windows support it.
Windows 2008 or later | If your host operating system is Windows Server 2008 or later; both MBR and GPT partitioning methods are supported.
Xen | If you are using Xen and your LUNs will be configured with Linux LVM with Dom0.
Note: For raw LUNs, you can use the type of guest operating system that the LUN multiprotocol type uses.

Related tasks

Creating LUNs on page 271

Related information

NetApp Interoperability
Solaris Host Utilities 6.1 Installation and Setup Guide
Solaris Host Utilities 6.1 Quick Command Reference
Solaris Host Utilities 6.1 Release Notes

Understanding LUN clones

LUN clones are writable, space-efficient clones of parent LUNs. Creating LUN clones is highly space-efficient and time-efficient because the cloning operation does not involve physically copying any data. Clones help in space storage utilization of the physical aggregate space.

You can clone a complete LUN without the need of a backing Snapshot copy in a SAN environment. The cloning operation is instantaneous and clients that are accessing the parent LUN do not experience any disruption or outage. Clients can perform all normal LUN operations on both parent entities and clone entities. Clients have immediate read/write access to both the parent and cloned LUN.

Clones share the data blocks of their parent LUNs and occupy negligible storage space until clients write new data either to the parent LUN, or to the clone. By default, the LUN clone inherits the space reserved attribute of the parent LUN. For example, if space reservation is disabled on the parent LUN, then space reservation is also disabled on the LUN clone.
Note: When you clone a LUN, you must ensure that the volume has enough space to contain the LUN clone.

Initiator hosts

Initiator hosts can access the LUNs mapped to them. When you map a LUN on a storage system to the igroup, you grant all the initiators in that group access to that LUN. If a host is not a member of an igroup that is mapped to a LUN, that host does not have access to the LUN.

igroup name

The igroup name is a case-sensitive name that must satisfy several requirements.

The igroup name:

- Contains 1 to 96 characters. Spaces are not allowed.
- Can contain the letters A through Z, a through z, numbers 0 through 9, hyphen ("-"), underscore ("_"), colon (":"), and period (".").
- Must start with a letter or number.

The name you assign to an igroup is independent of the name of the host that is used by the host operating system, host files, or Domain Name Service (DNS). If you name an igroup aix1, for example, it is not mapped to the actual IP host name (DNS name) of the host.

Note: You might find it useful to provide meaningful names for igroups, ones that describe the hosts that can access the LUNs mapped to them.

igroup type

The igroup type can be mixed type, iSCSI, or FC/FCoE.

igroup ostype

The ostype indicates the type of host operating system used by all of the initiators in the igroup. All initiators in an igroup must be of the same ostype. The ostypes of initiators are solaris, windows, hpux, aix, netware, xen, hyper_v, vmware, and linux.

You must select an ostype for the igroup.

LUNs window

You can use the LUNs window to create and manage LUNs and to display information about LUNs. You can also add, edit, or delete initiator groups and initiator IDs.

- LUN Management tab on page 287
- Initiator Groups tab on page 289
- Portsets tab on page 290

LUN Management tab

This tab enables you to create, clone, delete, move, or edit the settings of LUNs. You can also assign LUNs to a Storage Quality of Service (QoS) policy group.

Command buttons

Create

Opens the Create LUN wizard, which enables you to create LUNs.
In a cluster on an AFF platform that does not contain any existing LUNs, the Create FC SAN optimized LUNs dialog box is opened, which enables you to set up one or more FC SAN optimized LUNs.

Clone
Opens the Clone LUN dialog box, which enables you to clone the selected LUNs.

Edit
Opens the Edit LUN dialog box, which enables you to edit the settings of the selected LUN.

Delete
Deletes the selected LUN.

Status
Enables you to change the status of the selected LUN to either Online or Offline.

Move
Opens the Move LUN dialog box, which enables you to move the selected LUN to a new volume or an existing volume or qtree within the same storage virtual machine (SVM).

Storage QoS
Opens the Quality of Service details dialog box, which enables you to assign one or more LUNs to a new or existing policy group.

Refresh
Updates the information in the window.

LUNs list

<table>
<thead>
<tr>
<th>Name</th>
<th>SVM</th>
<th>Container Path</th>
<th>Space Reservation</th>
<th>Available Size</th>
<th>Total Size</th>
<th>% Used</th>
<th>Type</th>
<th>Status</th>
<th>Policy Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Application
Displays the name of the application that is assigned to the LUN.

Description
Displays the description of the LUN.

Details area
The area below the LUNs list displays details related to the selected LUN.

Details tab
Displays details related to the LUN such as the LUN serial number, whether the LUN is a clone, LUN description, the policy group to which the LUN is assigned, minimum throughput of the policy group, maximum throughput of the policy group, details about the LUN move operation, and the application assigned to the LUN. You can also view details about the initiator groups and initiators that are associated with the selected LUN.

Performance tab
Displays performance metrics graphs of the LUNs, including data rate, IOPS, and response time.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. Refresh your browser to see the updated graphs.

Initiator Groups tab
This tab enables you to create, delete, or edit the settings of initiator groups and initiator IDs.

Command buttons

Create
Opens the Create Initiator Group dialog box, which enables you to create initiator groups to control host access to specific LUNs.

Edit
Opens the Edit Initiator Group dialog box, which enables you to edit the settings of the selected initiator group.

Delete
Deletes the selected initiator group.

Refresh
Updates the information in the window.

Initiator Groups list

Name
Displays the name of the initiator group.

Type
Specifies the type of protocol supported by the initiator group. The supported protocols are iSCSI, FC/FCoE, or Mixed (iSCSI and FC/FCoE).

Operating System
Specifies the operating system for the initiator group.

Portset
Displays the port set that is associated with the initiator group.

Initiator Count
Displays the number of initiators added to the initiator group.
Details area
The area below the Initiator Groups list displays details about the initiators that are added to the selected initiator group and the LUNs that are mapped to the initiator group.

Portsets tab
This tab enables you to create, delete, or edit the settings of port sets.

Command buttons
Create
Opens the Create Portset dialog box, which enables you to create port sets to limit access to your LUNs.

Edit
Opens the Edit Portset dialog box, which enables you to select the network interfaces that you want to associate with the port set.

Delete
Deletes the selected port set.

Refresh
Updates the information in the window.

Portsets list
Portset Name
Displays the name of the port set.

Type
Specifies the type of protocol supported by the port set. The supported protocols are iSCSI, FC/FCoE, or Mixed (iSCSI and FC/FCoE).

Interface Count
Displays the number of network interfaces that are associated with the port set.

Initiator Group Count
Displays the number of initiator groups that are associated with the port set.

Details area
The area below the Portsets list displays details about the network interfaces and initiator groups associated with the selected port set.

Related tasks
Creating LUNs on page 271
Deleting LUNs on page 274
Creating initiator groups on page 275
Deleting initiator groups on page 275
Adding initiators on page 276
Deleting initiators from an initiator group on page 276
Editing LUNs on page 277
Editing initiator groups on page 282
Editing initiators on page 283
Bringing LUNs online on page 278
Taking LUNs offline on page 278
Qtrees

You can use System Manager create, edit, and delete Qtrees.

Related information
ONTAP concepts
Logical storage management
NFS management
SMB/CIFS management

Creating qtrees

Qtrees enable you to manage and partition your data within a volume. You can use the Create Qtree dialog box in System Manager to add a new qtree to a volume on your storage system.

Steps
1. Click Storage > Qtrees.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which you want to create a qtree.
3. Click Create.
4. In the Details tab of the Create Qtree dialog box, type a name for the qtree.
5. Select the volume to which you want to add the qtree.
 The Volume browse list includes only the volumes that are online.
6. If you want to disable opportunistic locks (oplocks) for the qtree, clear the Enable Oplocks for files and directories in this Qtree check box.
 By default, oplocks are enabled for each qtree.
7. If you want to change the default inherited security style, select a new security style.
 The default security style of the qtree is the security style of the volume that contains the qtree.
8. If you want to change the default inherited export policy, either select an existing export policy or create an export policy.
 The default export policy of the qtree is the export policy that is assigned to the volume that contains the qtree.
9. If you want to restrict the disk space usage, click the Quotas tab.
 a. If you want to apply quotas on the qtree, click Qtree quota, and then specify the disk space limit.
 b. If you want to apply quotas for all the users on the qtree, click User quota, and then specify the disk space limit.
10. Click Create.
11. Verify that the qtree that you created is included in the list of qtrees in the Qtrees window.
Deleting qtrees

You can delete a qtree and reclaim the disk space that the qtree uses within a volume by using System Manager. When you delete a qtree, all of the quotas that are applicable to that qtree are no longer applied by ONTAP.

Before you begin

• The qtree status must be normal.
• The qtree must not contain any LUN.

Steps

1. Click Storage > Qtrees.
2. In the Qtrees window, select one or more qtrees that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Delete.
4. Verify that the qtree that you deleted is no longer included in the list of qtrees in the Qtrees window.

Editing qtrees

You can use System Manager to modify the properties of a qtree such as the security style, enable or disable opportunistic locks (oplocks), and assign a new or existing export policy.

Steps

1. Click Storage > Qtrees.
2. Select the qtree that you want to edit, and then click Edit.
3. In the Edit Qtree dialog box, edit the following properties as required:
 • Oplocks
 • Security style
 • Export policy
4. Click Save.
5. Verify the changes that you made to the selected qtree in the Qtrees window.
Assigning export policies to qtrees

Instead of exporting an entire volume, you can export a specific qtree on a volume to make it directly accessible to clients. You can use System Manager to export a qtree by assigning an export policy to the qtree. You can assign an export policy to one or more qtrees from the Qtrees window.

Steps
1. Click Storage > Qtrees.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which the qtrees that you want to export reside.
3. Select one or more qtrees for which you want to assign an export policy, and then click Change Export Policy.
4. In the Export Policy dialog box, either create an export policy or select an existing export policy. Creating an export policy on page 326
5. Click Save.
6. Verify that the export policy and its related export rules that you assigned to the qtrees are displayed in the Details tab of the appropriate qtrees.

Viewing qtree information

You can use the Qtrees window in System Manager to view the volume that contains the qtree, the name, security style, and status of the qtree, and the oplocks status.

Steps
1. Click Storage > Qtrees.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which the qtree about which you want to view information resides.
3. Select the qtree from the displayed list of qtrees.
4. Review the qtree details in the Qtrees window.

Qtree options

A qtree is a logically defined file system that can exist as a special subdirectory of the root directory within a FlexVol volume. Qtrees are used to manage and partition data within the volume.

If you create qtrees on a FlexVol that contains volumes, the qtrees appear as directories. Therefore, you need to be careful to not delete the qtrees accidentally when deleting volumes.

You can specify the following options when creating a qtree:

- Name of the qtree
- Volume in which you want the qtree to reside
- Oplocks
 By default, oplocks are enabled for the qtree. If you disable oplocks for the entire storage system, oplocks are not set even if you enable oplocks for each qtree.
- Security style
 The security style can be UNIX, NTFS, or Mixed (UNIX and NTFS). By default, the security style of the qtree is the same as that of the selected volume.
• Export policy
 You can create a new export policy or select an existing policy. By default, the export policy of
 the qtree is same as that of the selected volume.

• Space usage limits for qtree and user quotas

Qtrees window

You can use the Qtrees window to create, display, and manage information about qtrees.

• Command buttons on page 294
• Qtree list on page 294
• Details area on page 295

Command buttons

Create
 Opens the Create Qtree dialog box, which enables you to create a new qtree.

Edit
 Opens the Edit Qtree dialog box, which enables you to change the security style and to
 enable or disable oplocks (opportunistic locks) on a qtree.

Change Export Policy
 Opens the Export Policy dialog box, which enables you to assign one or more qtrees to
 new or existing export policies.

Delete
 Deletes the selected qtree.
 This button is disabled unless the status of the selected qtree is normal.

Refresh
 Updates the information in the window.

Qtrees list

The qtree list displays the volume in which the qtree resides and the qtree name.

Name
 Displays the name of the qtree.

Volume
 Displays the name of the volume in which the qtree resides.

Security Style
 Specifies the security style of the qtree.

Status
 Specifies the current status of the qtree.

Oplocks
 Specifies whether the oplocks setting is enabled or disabled for the qtree.

Export Policy
 Displays the name of the export policy to which the qtree is assigned.
Details area

Details tab
Displays detailed information about the selected qtree, such as the mount path of the volume containing the qtree, details about the export policy, and the export policy rules.

Related tasks

Creating qtrees on page 291
Deleting qtrees on page 292
Editing qtrees on page 292

Quotas

You can use System Manager to create, edit, and delete quotas.

Related information

Logical storage management

Creating quotas

Quotas enable you to restrict or track the disk space and number of files that are used by a user, group, or qtree. You can use the Add Quota wizard in System Manager to create a quota and to apply the quota to a specific volume or qtree.

About this task

Using System Manager, the minimum value that you can specify for the hard limit and soft limit on the number of files that the quota can own is 1000. If you want to specify a value lower than 1000, you should use the command-line interface (CLI).

Steps

1. Click Storage > Quotas.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which you want to create a quota.
3. In the User Defined Quotas tab, click Create.
 The Create Quota Wizard is displayed.
4. Type or select information as prompted by the wizard.
5. Confirm the details, and then click Finish to complete the wizard.

After you finish

You can use the local user name or RID to create user quotas. If you create the user quota or group quota by using the user name or group name, then the /etc/passwd file and the /etc/group file must be updated, respectively.

Related references

Quotas window on page 299
Deleting quotas

You can use System Manager to delete one or more quotas when your users and their storage requirements and limitations change.

Steps

1. Click Storage > Quotas.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which the quotas that you want to delete reside.
3. Select one or more quotas that you want to delete, and then click Delete.
4. Select the confirmation check box, and then click Delete.

Related references

Quotas window on page 299

Editing quota limits

You can use System Manager to edit the disk space threshold, the hard limit and soft limit on the amount of disk space that the quota target can use, and the hard limit and soft limit on the number of files that the quota target can own.

Steps

1. Click Storage > Quotas.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which the quota that you want to edit resides.
3. Select the quota that you want to edit, and click Edit Limits.
4. In the Edit Limits dialog box, edit the quota settings as required.
 One hundred (100) is the minimum value that you can specify for the hard limit and soft limit on the number of files that the quota can own. If you want to specify a value lower than 100, you should use the command-line interface (CLI).
5. Click Save and Close.
6. Verify the changes that you made to the selected quota in the User Defined Quotas tab.

Related references

Quotas window on page 299

Activating or deactivating quotas

You can use System Manager to activate or deactivate quotas on one or more volumes that you select on your storage system. You can activate or deactivate quotas when you users and their storage requirements and limitations change.

Steps

1. Click Storage > Quotas.
2. From the drop-down menu in the SVM field, select the storage virtual machine (SVM) on which the quotas that you want to activate or deactivate reside.
3. In the **Quota Status on Volumes** tab, select one or more volumes for which you want to activate or deactivate quotas.

4. Click **Activate** or **Deactivate**, as required.

5. If you are deactivating a quota, select the confirmation check box, and then click **OK**.

6. Verify the quota status on the volumes in the **Status** column.

Related references

Quotas window on page 299

Resizing quotas

You can use the Resize Quota dialog box in System Manager to adjust the active quotas in the specified volume so that they reflect the changes that you have made to a quota.

Before you begin

Quotas must be enabled for the volumes for which you want to resize quotas.

Steps

1. Click **Storage > Quotas**.

2. In the **Quota Status on Volumes** tab of the **Quotas** window, select one or more volumes for which you want to resize the quotas.

3. Click **Resize**.

Related references

Quotas window on page 299

Viewing quota information

You can use the Quotas window in System Manager to view quota details such as the volume and qtrees to which the quota is applied, the type of quota, the user or group to which the quota is applied, and the space and file usage.

Steps

1. Click **Storage > Quotas**.

2. From the drop-down menu in the **SVM** field, select the storage virtual machine (SVM) on which the quota that you want to view information about resides.

3. Perform the appropriate action:

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to view details of all of the quotas that you created</td>
<td>Click the User Defined Quotas tab.</td>
</tr>
<tr>
<td>You want to view details of the quotas that are currently active</td>
<td>Click the Quota Report tab.</td>
</tr>
</tbody>
</table>

4. Select the quota that you want to view information about from the displayed list of quotas.

5. Review the quota details.
Types of quotas

Quotas can be classified on the basis of the targets to which they are applied.

The following are the types of quotas based on the targets to which they are applied:

User quota
The target is a user.

The user can be represented by a UNIX user name, UNIX UID, a Windows SID, a file or directory whose UID matches the user, Windows user name in pre-Windows 2000 format, and a file or directory with an ACL owned by the user’s SID. You can apply it to a volume or a qtree.

Group quota
The target is a group.

The group is represented by a UNIX group name, a GID, or a file or directory whose GID matches the group. ONTAP does not apply group quotas based on a Windows ID. You can apply a quota to a volume or a qtree.

Qtree quota
The target is a qtree, specified by the path name to the qtree.

You can determine the size of the target qtree.

Default quota
Automatically applies a quota limit to a large set of quota targets without creating separate quotas for each target.

Default quotas can be applied to all three types of quota target (users, groups, and qtrees). The quota type is determined by the value of the type field.

Quota limits

You can apply a disk space limit or limit the number of files for each quota type. If you do not specify a limit for a quota, none is applied.

Quotas can be soft or hard. Soft quotas cause Data ONTAP to send a notification when specified limits are exceeded, and hard quotas prevent a write operation from succeeding when specified limits are exceeded.

Hard quotas impose a hard limit on system resources; any operation that would result in exceeding the limit fails. The following settings create hard quotas:

- Disk Limit parameter
- Files Limit parameter

Soft quotas send a warning message when resource usage reaches a certain level, but do not affect data access operations, so you can take appropriate action before the quota is exceeded. The following settings create soft quotas:

- Threshold for Disk Limit parameter
- Soft Disk Limit parameter
- Soft Files Limit parameter

Threshold and Soft Disk quotas enable administrators to receive more than one notification about a quota. Typically, administrators set the Threshold for Disk Limit to a value that is only slightly smaller than the Disk Limit, so that the threshold provides a "final warning" before writes start to fail.
Disk space **hard limit**
Disk space limit applied to hard quotas.

Disk space soft limit
Disk space limit applied to soft quotas.

Threshold limit
Disk space limit applied to threshold quotas.

Files hard limit
The maximum number of files on a hard quota.

Files soft limit
The maximum number of files on a soft quota.

Quota management

System Manager includes several features that help you to create, edit, or delete quotas. You can create a user, group, or tree quota and you can specify quota limits at the disk and file levels. All quotas are established on a per-volume basis.

After creating a quota, you can perform the following tasks:

- Enable and disable quotas
- Resize quotas

Quotas window

You can use the Quotas window to create, display, and manage information about quotas.

- **Tabs** on page 299
- **Command buttons** on page 299
- **User Defined Quotas list** on page 300
- **Details area** on page 300

Tabs

User Defined Quotas
You can use the **User Defined Quotas** tab to view details of the quotas that you create and to create, edit, or delete quotas.

Quota Report
You can use the Quota Report tab to view the space and file usage and to edit the space and file limits of quotas that are active.

Quota Status on Volumes
You can use the Quota Status on Volumes tab to view the status of a quota and to turn quotas on or off and to resize quotas.

Command buttons

Create
Opens the Create Quota wizard, which enables you to create quotas.

Edit Limits
Opens the Edit Limits dialog box, which enables you to edit settings of the selected quota.
Delete
Deletes the selected quota from the quotas list.

Refresh
Updates the information in the window.

User Defined Quotas list
The quotas list displays the name and storage information for each quota.

Volume
Specifies the volume to which the quota is applied.

Qtree
Specifies the qtree associated with the quota. “All Qtrees” indicates that the quota is associated with all the qtrees.

Type
Specifies the quota type: user, or group, or tree.

User/Group
Specifies a user or a group associated with the quota. “All Users” indicates that the quota is associated with all the users. “All groups” indicates that the quota is associated with all the groups.

Quota Target
Specifies the type of target that the quota is assigned to. The target can be qtree, user, or group.

Space Hard Limit
Specifies the disk space limit applied to hard quotas.
This field is hidden by default.

Space Soft Limit
Specifies the disk space limit applied to soft quotas.
This field is hidden by default.

Threshold
Specifies the disk space limit applied to threshold quotas.
This field is hidden by default.

File Hard Limit
Specifies the maximum number of files in a hard quota.
This field is hidden by default.

File Soft Limit
Specifies the maximum number of files in a soft quota.
This field is hidden by default.

Details area
The area below the quotas list displays quota details such as the quota error, space usage and limits, and file usage and limits.

Related tasks
Creating quotas on page 295
Deleting quotas on page 296
CIFS protocol

You can use System Manager to enable and configure CIFS servers to allow CIFS clients to access files on the cluster.

Related information

SMB/CIFS management

Setting up CIFS

You can use System Manager to enable and configure CIFS servers to allow CIFS clients to access the files on the cluster.

Before you begin

• The CIFS license must be installed on your storage system.
• While configuring CIFS in the Active Directory domain, the following requirements must be met:
 ◦ DNS must be enabled and configured correctly.
 ◦ The storage system must be able to communicate with the domain controller by using the fully qualified domain name (FQDN).
 ◦ The time difference (clock skew) between the cluster and the domain controller must not be more than five minutes.
• If CIFS is the only protocol that is configured on the storage virtual machine (SVM), the following requirements must be met:
 ◦ The root volume security style must be NTFS.
 By default, System Manager sets the security style as UNIX.
 ◦ Superuser access must be set to Any for the CIFS protocol.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Configuration tab, click Set up.
4. In the General tab of the CIFS Server Setup dialog box, specify the NetBIOS name and the Active Directory domain details.
5. Click the Options tab, and then perform the following actions:
 • In the SMB settings area, select or clear the SMB signing check box and the SMB encryption check box, as required.
 • Specify the default UNIX user.
 • In the WINS Servers area, add the required IP address.
6. Click **Set up**.

Related tasks

- Creating a CIFS share on page 262
- Editing volume properties on page 214
- Modifying export policy rules on page 328

Related references

- CIFS window on page 307

Editing the general properties for CIFS

You can modify the general properties for CIFS such as the default UNIX user and default Windows user by using System Manager. You can also enable or disable SMB signing for the CIFS server.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Configuration** tab, click **Options**.
4. In the **CIFS Options** dialog box, modify the following CIFS server properties, as required:
 - UNIX user
 - Windows user
 - IP address
 - Enable or disable SMB signing
 Enabling SMB signing prevents the data from being compromised. However, you might encounter performance degradation in the form of increased CPU usage on both the clients and the server, although the network traffic remains the same. You can disable SMB signing on any of your Windows clients that do not require protection against replay attacks. For information about disabling SMB signing on Windows clients, see the Microsoft Windows documentation.
 - Enable or disable SMB 3.0 encryption
 You should enable SMB Multichannel to establish multiple channels between an SMB 3.0 session and transport connections.
5. Click either **Save** or **Save and Close**.

Related references

- CIFS window on page 307

Adding home directory paths

You can use System Manager to specify one or more paths that can be used by the storage system to resolve the location of the CIFS home directories of users.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Home Directories** area of the Configuration tab, click Manage.

4. In the **Manage Home Directories** dialog box, specify the paths that are to be used by the storage system to search for the CIFS home directories of users.

5. Click Add, and then click Save and Close.

Related references

CIFS window on page 307

Deleting home directory paths

You can use System Manager to delete a home directory path when you do not want the storage system to use the path to resolve the location of the CIFS home directories of users.

Steps

1. Click Storage > SVMs.

2. Select the SVM, and then click SVM Settings.

3. In the **Home Directories** area of the Configuration tab, click Manage.

4. In the **Manage Home Directories** dialog box, select the home directory path that you want to delete, and then click Delete.

5. Click Save and Close.

Related references

CIFS window on page 307

Resetting CIFS domain controllers

You can use System Manager to reset the CIFS connection to domain controllers for the specified domain. Failure to reset the domain controller information can cause a connection failure.

About this task

You have to update the discovery information of the storage system’s available domain controller after you add or delete a domain from the list of preferred domain controllers. You can update the storage system’s available domain controller discovery information in ONTAP through the command-line interface (CLI).

Steps

1. Click Storage > SVMs.

2. Select the SVM, and then click SVM Settings.

3. In the Domain tab, click Reset.

Related references

CIFS window on page 307
Updating the CIFS group policy configuration

You have to update the group policy after the policy configuration is changed through the command-line interface (CLI). You can use the CIFS window in System Manager to update the group policy.

Steps
1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. Click the **Domain** tab.
4. In the **Group Policy** area, select the group policy configuration that you want to update, and then click **Update**.

Enabling or disabling a CIFS group policy configuration

You can enable or disable the CIFS group policy configuration from the CIFS window in System Manager.

Steps
1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. Click the **Domain** tab.
4. In the **Group Policy** area, select the group policy configuration that you want to enable or disable, and then click **Enable** or **Disable**, as required.

Reloading CIFS group policy

You have to reload a CIFS group policy if the status of the policy is changed. You can use the CIFS window in System Manager to reload the group policy.

Steps
1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. Click the **Domain** tab.
4. In the **Group Policy** area, select the group policy configuration that you want to reload, and then click **Reload**.

Setting up BranchCache

You can use System Manager to configure BranchCache on a CIFS-enabled storage virtual machine (SVM) to enable the caching of content on computers that are local to the requesting clients.

Before you begin
- CIFS must be licensed, and a CIFS server must be configured.
- For BranchCache version 1, SMB 2.1 or later must be enabled.
- For BranchCache version 2, SMB 3.0 must be enabled, and the remote Windows clients must support BranchCache 2.
About this task

- You can configure BranchCache on SVMs.
- You can create an all-shares BranchCache configuration if you want to offer caching services for all of the content that is contained within all of the SMB shares on the CIFS server.
- You can create a per-share BranchCache configuration if you want to offer caching services for the content that is contained within selected SMB shares on the CIFS server.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the BranchCache tab, click Set Up.
4. In the BranchCache Setup dialog box, enter the following information:
 a. Specify the path to the hash store.
 The path can be to an existing directory where you want the hash data to be stored. The destination path must be read-writable. Read-only paths such as Snapshot directories are not allowed.
 b. Specify the maximum size (in KB, MB, GB, TB, or PB) for a hash data store.
 If the hash data exceeds this value, older hashes are deleted to provide space for newer hashes. The default size for a hash store is 1 GB.
 c. Specify the operating mode for the BranchCache configuration.
 The default operating mode is set to all shares.
 d. Specify a server key to prevent clients from impersonating the BranchCache server.
 You can set the server key to a specific value so that if multiple servers are providing BranchCache data for the same files, clients can use hashes from any server using that same server key. If the server key contains any spaces, you must enclose the server key in quotation marks.
 e. Select the required BranchCache version.
 By default, all of the versions that are supported by the client are selected.
5. Click Set Up.

Modifying the BranchCache settings

You can use the CIFS window in System Manager to modify the BranchCache settings that are configured for a CIFS-enabled storage virtual machine (SVM). You can change the hash store path, the hash store size, the operating mode, and the BranchCache versions that are supported.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the BranchCache tab, click Edit.
4. In the Modify BranchCache Settings dialog box, modify the required information:
 - Hash store path
If you modify the hash store path, you are provided with an option to retain the cached hash data from the previous hash store.

- Hash store size
- Operating mode
- BranchCache version

5. Click **Modify**.

Deleting the BranchCache configuration

You can use System Manager to delete the BranchCache configuration if you no longer want to offer caching services on the storage virtual machine (SVM) that is configured for BranchCache.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **BranchCache** tab, click **Delete**.
4. Select the confirmation check box, and then click **Delete**.

 You can also remove existing hashes from the hash store.

Adding preferred domain controllers

System Manager automatically discovers domain controllers through DNS. Optionally, you can add one or more domain controllers to the list of preferred domain controllers for a specific domain.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Domain** tab, click **Add** in the **Preferred Domain Controllers** area.
4. Enter the fully qualified domain name (FQDN) and the IP addresses of the domain controllers that you want to add.

 You can add multiple domain controllers by entering the IP addresses of the domain controllers, separated by commas.
5. Click **Save**.
6. Verify that the domain controller that you added is displayed in the list of preferred domain controllers.

Editing preferred domain controllers

You can use System Manager to modify the IP address of the preferred domain controllers that are configured for a specific domain.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Preferred Domain Controllers** area of the **Domain** tab, double-click the domain controller that you want to edit.

4. Modify the IP addresses of the domain controller, and then click **Save**.

Deleting preferred domain controllers

You can use System Manager to delete a preferred domain controller to which the storage virtual machine (SVM) computer account is associated. You can do this when you no longer want to use a particular domain controller.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Domain** tab, select the domain that you want to delete from the **Preferred Domain Controllers** area, and then click **Delete**.
4. Select the confirmation check box, and then click **Delete**.

Viewing CIFS domain information

You can use System Manager to view information about the domain controllers and servers that are connected to the storage system.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. Click the **Domain** tab.
4. Review the information about the connected domain controllers and servers.

CIFS window

You can use the CIFS window to configure the CIFS server, to manage domain controllers, to manage symbolic UNIX mappings, and to configure BranchCache.

Configuration tab

The Configuration tab enables you to create and manage the CIFS server.

Server

- Specifies the status of the CIFS server, name of the server, authentication mode, name of the active directory domain, and status of SMB multichannel.

Home Directories

- Specifies home directory paths and the style for determining how PC user names are mapped to home directory entries.

Command buttons

- **Setup**
 - Opens the CIFS Setup wizard, which enables you to set up CIFS on your storage virtual machine (SVM).

- **Options**
Displays the CIFS Options dialog box, which enables you to enable or disable SMB 3.0 signing, to enable or disable SMB 3.0 encryption, and to add Windows Internet Name Service (WINS) servers. SMB signing prevents the network traffic between the CIFS server and the client from being compromised.

- **Delete**
 Enables you to delete the CIFS server.

- **Refresh**
 Updates the information in the window.

Domain tab
The Domain tab enables you to view and reset your CIFS domain controllers, and to add or delete preferred domain controllers. You can also use this tab to manage CIFS group policy configurations.

Servers
Displays information about discovered authentication servers and your preferred domain controllers on the CIFS-enabled SVM.

You can also reset the information about the discovered servers, add a preferred domain controller, delete a domain controller, or refresh the list of domain controllers.

Group Policy
Enables you to view, enable, or disable group policy configurations on the CIFS server. You can also reload a group policy if the status of the policy is changed.

Symlinks tab
The Symlinks tab enables you to manage the mappings of UNIX symbolic links for CIFS users.

Path Mappings
Displays the list of symbolic link mappings for CIFS.

Command buttons
- **Create**
 Opens the Create New Symlink Path Mappings dialog box, which enables you to create a UNIX symbolic link mapping.

- **Edit**
 Opens the Edit Symlink Path Mappings dialog box, which enables you to modify the CIFS share and path.

- **Delete**
 Enables you to delete the symbolic link mapping.

- **Refresh**
 Updates the information in the window.

BranchCache tab
The BranchCache tab enables you to set up and manage BranchCache settings on CIFS-enabled SVMs.

You can view the status of the BranchCache service, the path to the hash store, the size of the hash store, and the operating mode, server key, and version of BranchCache.

Command buttons
- **Setup**
Opens the BranchCache Setup dialog box, which enables you to configure BranchCache for the CIFS server.

- Edit
 Opens the Modify BranchCache Settings dialog box, which enables you to modify the properties of the BranchCache configuration.

- Delete
 Enables you to delete the BranchCache configuration.

- Refresh
 Updates the information in the window.

Related tasks

- *Setting up CIFS on page 301*
- *Editing the general properties for CIFS on page 302*
- *Adding home directory paths on page 302*
- *Deleting home directory paths on page 303*
- *Resetting CIFS domain controllers on page 303*

NFS protocol

You can use System Manager to authenticate NFS clients to access data on the SVM.

Related information

- *NFS management*

Editing NFS settings

You can use System Manager to edit the NFS settings such as enabling or disabling NFSv3, NFSv4, and NFSv4.1, enabling or disabling read and write delegations for NFSv4 clients, and enabling NFSv4 ACLs. You can also edit the default Windows user.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click NFS.
4. In the NFS window, click Edit.
5. In the Edit NFS Settings dialog box, make the required changes.
6. Click Save and Close.

Related references

- *NFS window on page 310*
NFS window

You can use the NFS window to display and configure your NFS settings.

Server Status
Displays the status of the NFS service. The service is enabled if the NFS protocol is configured on the storage virtual machine (SVM).

Note: If you have upgraded to ONTAP 8.3 or later from an NFS-enabled storage system running Data ONTAP 8.1.x, the NFS service is enabled in ONTAP 8.3 or later. However, you must enable support for NFSv3 or NFSv4 because NFSv2 is no longer supported.

Command buttons

Enable
Enables the NFS service.

Disable
Disables the NFS service.

Edit
Opens the Edit NFS Settings dialog box, which enables you to edit NFS settings.

Refresh
Updates the information in the window.

Related tasks

Editing NFS settings on page 309

NVMe protocol

You can use System Manager to configure the NVMe protocol. The NVMe is a transport protocol that provides high speed access to flash-based network storage. Systems that use NVMe protocol have a subsystem consisting of specific NVME controllers, namespaces, nonvolatile storage medium, hosts, ports and interface between the controller and storage medium.

Setting up NVMe

You can set up the NVMe protocol for an SVM using System Manager. When the NVMe protocol is enabled on the SVM, you can then provision a namespace or namespaces and assign them to a host and a subsystem.

Starting with ONTAP 9.5, you must configure at least one NVMe LIF for each node in an HA pair that uses the NVMe protocol. You can also define a maximum of two NVMe LIFs per node. You configure the NVMe LIFs when you create or edit the SVM settings using System Manager.

The following illustration shows the workflow for setting up NVMe:
Creating an NVMe namespace

You can use System Manager to create one or more NVMe namespaces and connect each to a host or set of hosts in a storage virtual machine (SVM). The NVMe namespace is a quantity of memory that can be formatted into logical blocks. Each namespace can be mapped to an NVMe subsystem.

Before you begin

The SVM must already be configured with the NVMe protocol. To map a namespace, at least one LIF with the data protocol NVMe must exist in the node that owns the namespace.

Steps

1. Click Storage > NVMe > NVMe namespaces.
2. Select the SVM that will contain the namespace.
3. Ensure that at least one NVMe LIF is configured for each node of the HA pair. You can create a maximum of two NVMe LIFs per node.
4. Configure the size of the namespace (between 1MB and 16TB).
5. Enter the block size.
 - For System Manager 9.5, the block size defaults to 4 KB, and this field is not shown.
 - For System Manager 9.6, you can specify a block size of 4 KB or 512 Bytes.
6. Select the existing volume or create a new volume by choosing the aggregate.
 - Click on the + symbol to set up additional namespaces (max 250) within the SVM.
7. Select the NVMe subsystem that will be associated with this namespace.
You can choose from the following options:

- None: No subsystems are mapped.
- Use an existing subsystem: The subsystems listed are based on the selected SVM.
- Create a new subsystem: You can choose to create a new subsystem and map to all the new namespaces.

8. Select the host operating system.
9. Click Submit.

Related references

NVMe namespaces window on page 318

Editing an NVMe namespace

You can use System Manager to edit the namespace by changing the subsystem that the namespace is mapped to.

About this task

You can only modify the NVMe subsystem settings in this window, you cannot edit the other namespace details.

Steps

1. Click NVMe > NVMe namespaces.
2. In the NVMe namespaces window, select the namespace you want to edit.
3. Select a subsystem option:
 - None: Choosing this option unmaps the existing subsystem mapping for this namespace only. This option is preselected if no subsystem mapping is present for the selected namespace.
 - Use an existing subsystem: This option is preselected if subsystem-to-namespace mapping is present. Choosing a different subsystem maps the new subsystem by unmapping the previously mapped subsystem.

Cloning an NVMe namespace

You can use System Manager to quickly create another namespace of the same configuration by choosing to clone a namespace. You can map the newly cloned namespace to another host NQN.

Before you begin

You must have a FlexClone license to clone a namespace.

About this task

You can clone a namespace with the selected host mapping and associate it with another subsystem.

Steps

1. Click NVMe > NVMe namespaces.
2. In the NVMe namespaces window, select the namespace you want to clone.
3. You can rename the cloned namespace if you need a specific name but it is not required.
The dialog provides a default name of the namespace to-be-cloned.

4. Modify the subsystem mapping for the cloned namespace.

5. Click OK.

The online, mapped namespace is cloned inside the same SVM with a different name. Host mapping will not be cloned.

Starting and stopping the NVMe service

The NVMe service enables you to manage NVMe adapters for use with namespaces. You can use System Manager to start the NVMe service to bring the adapters online. You can stop the NVMe service to take the NVMe adapters offline and to disable access to the namespaces.

Before you begin

NVMe capable adapters must be present before you start the NVMe service.

Steps

1. Click Storage > SVMs.

2. Select the SVM, and then click SVM settings.

3. In the Protocols menu, click NVMe.

4. Click Start or Stop service as required.

What NVMe is

The nonvolatile memory express (NVMe) protocol is a transport protocol used for accessing nonvolatile storage media.

NVMe over Fabrics (NVMeoF) is a specification-defined extension to NVMe that enables NVMe-based communication over connections other than PCIe. This interface allows for external storage enclosures to be connected to a server.

NVMe is designed to provide efficient access to storage devices built with non-volatile memory, from flash technology to higher performing, persistent memory technologies. As such, it does not have the same limitations as storage protocols designed for hard disk drives. Flash and solid state devices (SSDs) are a type of non-volatile memory (NVM). NVM is a type of memory that keeps its content during a power outage. NVMe is a way that you can access that memory.

The benefits of NVMe include increased speeds, productivity, throughput, and capacity for data transfer. Specific characteristics include the following:

• NVMe is designed to have up to 64 thousand queues. Each queue in turn can have up to 64 thousand concurrent commands.

• NVMe is supported by multiple hardware and software vendors

• NVMe is more productive with Flash technologies enabling faster response times

• NVMe allows for multiple data requests for each “request” sent to the SSD. NVMe takes less time to decode a “request” and does not require thread locking in a multithreaded program.

• NVMe supports functionality that prevents bottlenecking at the CPU level and enables massive scalability as systems expand
What an NVMe subsystem is

An NVMe subsystem includes one or more controllers, one or more namespaces, one or more non-volatile memory (NVM) subsystem ports (FC-NVMe or RDMA transport ports), an NVM storage medium, and an interface between the controllers and the NVM storage medium. For controller mapping and management, an NVM subsystem maps to a vserv in ONTAP.

An NVMe subsystem can be created using System Manager. You can associate the NVMe subsystem with different hosts and namespaces within the vserv. Also, each vserv can support more than one NVMe subsystem. However, you cannot configure a NVMe subsystem to be used on multiple vservers.

An NVMe over Fabric (NVMeoF) subsystem is a separate kernel object that resides in the FreeBSD kernel. The NVMeoF subsystem interfaces with the following components:

- SAN components, such as BCOMKA, FCT, and VDOM
- WAFL
- RAS components, such as CM, ASUP, and EMS

All interfaces with NVMeoF subsystems adhere to the current definitions and patterns found in ONTAP.

Creating NVMe subsystems

You can use System Manager to create an NVMe subsystem.

Steps

1. Click **Create** in the **NVMe Subsystems** window.
2. Provide entries in the **NVMe Subsystems: Create** window for the following fields:
 - **SVM**
 From the drop-down menu, select the SVM on which you want to create the subsystem.
 - **Name**
 Enter a name for the subsystem. The subsystem name cannot already exist in the SVM. The name is case-sensitive and is limited to 96 characters. Special characters are allowed.
 - **Host OS**
 From the drop-down menu, select the type of Host OS of the subsystem.
 - **Host NQN**
 Enter the Host NQN attached to the controller. You can enter more than one Host NQN by separating them with commas.
3. Click **Save**.
 The NVMe subsystem is created, and the NVMe Subsystems window is displayed.

Related references

NVMe Subsystems window on page 316
Editing NVMe subsystems details

You can use System Manager to edit the details of an NVMe subsystem.

Steps
1. Find the NVMe subsystem you want to edit in the NVMe Subsystem window.
2. Check the box to the left of the name of the subsystem you want to edit.
3. Click Edit.

 The current details of the NVMe subsystem are displayed in the NVMe Subsystems: Edit window.
4. You can modify only the information in the **Host NQN** field.
 - **Host NQN**
 Modify the Host NQN attached to the controller. You can enter more than one Host NQN by separating them with commas.

 The **Associated NVMe Namespaces** table displays below the Host NQN field. For each namespace, that table lists the namespace path and namespace ID.
5. Click Save.

 The NVMe subsystem details are updated, and the NVMe Subsystems window is displayed.

Related references

* NVMe Subsystems window on page 316

Deleting an NVMe subsystem

You can use System Manager to delete an NVMe subsystem from a cluster.

About this task

The following actions occur when you delete an NVMe subsystem:

- If the NVMe subsystem has configured hosts, then mapped hosts will be removed.
- If the NVMe subsystem has mapped namespaces, then they will be unmapped.

Steps
1. Find the NVMe subsystem you want to delete on the NVMe Subsystem window.
2. Check the box to the left of the name of the subsystem you want to delete.
3. Click Delete.

 A Warning message is displayed.
4. Click the **Delete the NVMe Subsystem** check box to confirm the deletion, then click Yes.

 The NVMe subsystem is deleted from the cluster, and the NVMe Subsystems window is displayed.

Related references

* NVMe Subsystems window on page 316
NVMe Subsystems window

The NVMe Subsystems window displays by default an inventory list of NVMe subsystems in a cluster. You can filter the list to display only subsystems that are specific to an SVM. The window also enables you to create, edit, or delete NVMe subsystems. You can access this window by selecting **Storage > NVMe > Subsystems**.

- *NVMe Subsystems table* on page 316
- *Toolbar* on page 316

NVMe Subsystems table

The NVMe Subsystems table lists the inventory of NVMe subsystems in a cluster. You can refine the list by using the drop-down menu in the **SVM** field to select an SVM to display only the NVMe subsystems associated with that SVM. The **Search** field and **Filtering** drop-down menu enable you to further customize the list.

The NVMe Subsystems table contains the following columns:

- **(check box)**
 - Enables you to specify on which subsystems you want to perform actions.
 - Click the check box to select the subsystem, then click the action in the toolbar that you want to perform.

- **Name**
 - Displays the name of the subsystem.
 - You can search for a subsystem by entering its name in the **Search** field.

- **Host OS**
 - Displays the name of the host OS associated with the subsystem.

- **Host NQN**
 - Displays the NVMe Qualified Name (NQN) attached to the controller. If multiple NQNs are displayed, they are separated by commas.

- **Associated NVMe Namespaces**
 - Displays the number of the NVM namespaces associated with the subsystem. You can hover over the number to display the associated namespaces paths. Click on a path to display the Namespace Details window.

Toolbar

The toolbar is located above the column header. You can use the fields and buttons in the toolbar to perform various actions.

- **Search**
 - Enables you to search on values that might be found in the **Name** column.

- **Filtering**
 - Allows you to select from a drop-down menu that lists various methods of filtering the list.

- **Create**
 - Opens the Create NVMe Subsystem dialog box, which enables you to create an NVMe subsystem.

- **Edit**
 - Opens the Edit NVMe Subsystem dialog box, which enables you to edit an existing NVMe subsystem.
Delete

Opens the Delete NVMe Subsystem confirmation dialog box, which enables you to delete an existing NVMe subsystem.

NVMe namespaces

An NVMe namespace is a quantity of non-volatile memory (NVM) that can be formatted into logical blocks. Namespaces are used when a storage virtual machine is configured with the NVMe protocol and are the equivalent of LUNs for FC and iSCSI protocols.

One or more namespaces are provisioned and connected to an NVMe host. Each namespace can support various block sizes.

The NVMe protocol provides access to namespaces through multiple controllers. Using NVMe drivers, which are supported on most operating systems, solid state drive (SSD) namespaces appear as standard-block devices on which file systems and applications can be deployed without any modification.

A namespace ID (NSID) is an identifier used by a controller to provide access to a namespace. When setting the NSID for a host or host group, you also configure the accessibility to a volume by a host. A logical block can only be mapped to a single host group at a time, and a given host group does not have any duplicate NSIDs.

NVMe subsystem provisioning for NVMe namespaces

An NVMe subsystem includes one or more NVMe controllers, namespaces, NVM subsystem ports, an NVM storage medium, and an interface between the controller and the NVM storage medium.

When you create an NVMe namespace, you can choose to map an NVMe subsystem to the namespace, as follows:

None (default)
No NVMe subsystems are mapped to the namespace.

Existing subsystem
You can select an existing NVMe subsystem to map to the namespace. NVMe subsystems are listed based on the host OS and SVM fields. When you hover the pointer over the NVMe subsystem name, more details are shown about the subsystem.

New subsystem
You can create a new NVMe subsystem and map it to the namespace. The subsystem is created on the host OS and SVM.

You provision a subsystem by providing the following details:

- **The NVMe subsystem name**
 The NVMe subsystem name is case sensitive. It must contain 1 to 96 characters, and special characters are allowed.

- **Host OS**
 The host OS type that the subsystem is being created on.

- **Host NQN**
 The host NVMe qualification name attached to the controller. This column can contain comma-separated values because there can be from one to many hosts attached to a subsystem.
NVMe namespaces window

You can use the NVMe namespaces window to set up and manage your namespaces and associated subsystems for the NVMe protocol. You can search for an existing namespace using the namespace path.

Command Buttons

Create
Opens the NVMe namespace create dialog box, which allows you to set up a new namespace and map it to an NVMe subsystem.

Edit
Enables you to edit the namespace mapping.

Delete
Deletes the selected namespace.

More Actions
Allows you to create a clone of the selected namespace, which can be associated with an existing subsystem, or you can choose not to map it to a subsystem.

Refresh
Updates the information in the window.

NVMe List

Status
Displays if the namespace is online or offline.

Namespace Path
The path to the new namespace in the /vol/volume'/file format. The namespace path is a clickable link. Clicking the link takes you to the namespace details page.

NVMe Subsystem
The name of the subsystem attached to a namespace. If no subsystems are attached, the value of this column is shown as None. You can see the list of unmapped namespaces by filtering this column for NVMe subsystem contains None.

SVMs
The SVM name on which the namespace is created. The SVM name is a clickable link. Clicking the link takes you to the existing SVM dashboard page.

Starting with ONTAP 9.5, at least one NVMe LIF must be configured for each node of a HA pair associated with the SVM. You can create a maximum of two NVMe LIFs for each node in the pair.

Namespace ID
A unique identifier used by the controller to provide access to a namespace. This is not a user input; it is generated by the system when the new namespace is created.

Total Space
Displays the total size of the namespace.

Used Space
Displays the amount of used space in the namespace.

% Used
Displays the amount of space (in percentage) that is used in the namespace. The value for this field is calculated using total and used space.
Details Area
You can select a namespace to view information about the selected namespace. From this area, you can also edit, delete or clone the namespace.

Overview tab
Displays general information about the selected namespace, and displays a pictorial representation of the space allocation of the namespace and the performance of the namespace.

In the Overview tab, the SVM and volume names are clickable links. Clicking the link takes you to the SVM and volume pages, respectively. The number of hosts can be one or more; by default two host names are shown. If more than two host names are shown, you can click a link to access the additional hosts.

The Overview tab also displays a space chart that shows the total and used space details for the namespace and a performance chart that shows details such as latency, IOPS, and throughput.

Status
The status of the namespace; the value can be online or offline.

Host NQN
The host NVMe Qualified Names (NQNs) uniquely describes the host for the purposes of identification and authentication. This field can accept comma separated NVMe qualification name (NQN) values. The host NQN starts with nqn and rest of the validation is the same as the initiator qualification name (IQN).

Host OS
The host operating system for the namespace: Hyper-V, Linux, VMware, Windows or Xen.

Volume
Displays the volume name on which the namespace is hosted.

Read-Only
Displays whether the namespace is read-only or not.

Node
The node that owns the namespace.

Block Size
The size of the storage block.

Restore Inaccessible
If unmapping a subsystem fails and partial data remains, unmapped namespaces cannot be restored.

iSCSI protocol
You can use System Manager to configure the iSCSI protocol that enables you to transfer block data to hosts using SCSI protocol over TCP/IP.

Related information
SAN administration
Creating iSCSI aliases

An iSCSI alias is a user-friendly identifier that you assign to an iSCSI target device (in this case, the storage system) to make it easier to identify the target device in user interfaces. You can use System Manager to create an iSCSI alias.

About this task

An iSCSI alias is a string of 1 to 128 printable characters. An iSCSI alias must not include spaces.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. In the Service tab of the iSCSI window, click Edit.
5. In the Edit iSCSI Service Configuration dialog box, enter an iSCSI alias in the Target Alias field, and then click OK.

Related references

iSCSI window on page 324

Enabling or disabling the iSCSI service on storage system interfaces

You can use System Manager to control which network interfaces are used for iSCSI communication by enabling or disabling the interfaces. When the iSCSI service is enabled, iSCSI connections and requests are accepted over those network interfaces that are enabled for iSCSI, but not over disabled interfaces.

Before you begin

You must have terminated any outstanding iSCSI connections and sessions that are currently using the interface. By default, the iSCSI service is enabled on all of the Ethernet interfaces after you enable the iSCSI license.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. In the iSCSI Interfaces area, select the interface on which you want to enable or disable the iSCSI service.
5. Click Enable or Disable, as required.

Related tasks

Configuring iSCSI protocol on SVMs on page 54

Related references

iSCSI window on page 324
Adding the security method for iSCSI initiators

You can use System Manager to add an initiator and to specify the security method that is used to authenticate the initiator.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. In the iSCSI window, click the Initiator Security tab.
5. Click Add in the Initiator Security area.
6. Specify the initiator name and the security method for authenticating the initiator.
 For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
7. Click OK.

Related references

iSCSI window on page 324

Editing default security settings

You can use the Edit Default Security dialog box in System Manager to edit the default security settings for the iSCSI initiators that are connected to the storage system.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
5. In the Edit Default Security dialog box, change the security type.
 For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
6. Click OK.

Related references

iSCSI window on page 324
Editing initiator security

The security style that is configured for an initiator specifies how authentication is done for that initiator during the iSCSI connection login phase. You can use System Manager to change the security for selected iSCSI initiators by changing the authentication method.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. In the Initiator Security tab, select one or more initiators from the initiator list, and then click Edit in the Initiator Security area.
5. Change the security type.
 - For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
6. Click OK.
7. Verify the changes that you made in the Initiator Security tab.

Related references
 * iSCSI window on page 324

Changing the default iSCSI initiator authentication method

You can use System Manager to change the default iSCSI authentication method, which is the authentication method that is used for any initiator that is not configured with a specific authentication method.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
5. Change the security type.
 - For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
6. Click OK.

Related references
 * iSCSI window on page 324
Setting the default security for iSCSI initiators

You can use System Manager to remove the authentication settings for an initiator and to use the default security method to authenticate the initiator.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. In the Initiator Security tab, select the initiator for which you want to change the security setting.
5. Click Set Default in the Initiator Security area, and then click Set Default in the confirmation dialog box.

Related references

iSCSI window on page 324

Starting or stopping the iSCSI service

You can use System Manager to start or stop the iSCSI service on your storage system.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. Click Start or Stop, as required.

Related references

iSCSI window on page 324

Viewing initiator security information

You can use System Manager to view the default authentication information and all the initiator-specific authentication information.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click iSCSI.
4. In the Initiator Security tab of the iSCSI window, review the details.
iSCSI window

You can use the iSCSI window to start or stop the iSCSI service, change a storage system iSCSI node name, and create or change the iSCSI alias of a storage system. You can also add or change the initiator security setting for an iSCSI initiator that is connected to your storage system.

Tabs

Service
You can use the Service tab to start or stop the iSCSI service, change a storage system iSCSI node name, and create or change the iSCSI alias of a storage system.

Initiator Security
You can use the Initiator Security tab to add or change the initiator security setting for an iSCSI initiator that is connected to your storage system.

Command buttons

Edit
Opens Edit iSCSI Service Configurations dialog box, which enables you to change iSCSI node name and iSCSI alias of the storage system.

Start
Starts the iSCSI service.

Stop
Stops the iSCSI service.

Refresh
Updates the information in the window.

Details area

The details area displays information about the status of the iSCSI service, iSCSI target node name, and iSCSI target alias. You can use this area to enable or disable the iSCSI service on a network interface.

Related tasks

Creating iSCSI aliases on page 320
Enabling or disabling the iSCSI service on storage system interfaces on page 320
Adding the security method for iSCSI initiators on page 321
Editing default security settings on page 321
Editing initiator security on page 322
Changing the default iSCSI initiator authentication method on page 322
Setting the default security for iSCSI initiators on page 323
Starting or stopping the iSCSI service on page 323

FC/FCoE protocol

You can use System Manager to configure FC/FCoE protocols.

Related information

SAN administration
Starting or stopping the FC or FCoE service

The FC service enables you to manage FC target adapters for use with LUNs. You can use System Manager to start the FC service to bring the adapters online and to enable access to the LUNs on the storage system. You can stop the FC service to take the FC adapters offline and to disable access to the LUNs.

Before you begin

• The FC license must be installed.
• An FC adapter must be present in the target storage system.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click FC/FCoE.
4. Click Start or Stop, as required.

Related references

FC/FCoE window on page 326

Changing an FC or FCoE node name

If you replace a storage system chassis and reuse it in the same Fibre Channel SAN, the node name of the replaced storage system might be duplicated in certain cases. You can change the node name of the storage system by using System Manager.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Protocols pane, click FC/FCoE.
4. Click Edit.
5. Type the new name, and then click OK.

Related references

FC/FCoE window on page 326

The FCoE protocol

Fibre Channel over Ethernet (FCoE) is a new model for connecting hosts to storage systems. Like the traditional FC protocol, FCoE maintains existing FC management and controls, but it uses a 10-gigabit Ethernet network as the hardware transport.

Setting up an FCoE connection requires one or more supported converged network adapters (CNAs) in the host, connected to a supported data center bridging (DCB) Ethernet switch. The CNA is a consolidation point and effectively serves as both an HBA and an Ethernet adapter.

In general, you can configure and use FCoE connections the same way you use traditional FC connections.
FC/FCoE window

You can use the FC/FCoE window to start or stop the FC service.

Command buttons

Edit

Opens the Edit Node Name dialog box, which enables you to change the FC or FCoE node name.

Start

Starts the FC/FCoE service.

Stop

Stops the FC/FCoE service.

Refresh

Updates the information in the window.

FC/FCoE details

The details area displays information about the status of FC/FCoE service, the node name, and the FC/FCoE adapters.

Related tasks

- *Starting or stopping the FC or FCoE service* on page 325
- *Changing an FC or FCoE node name* on page 325
- *Configuring FC protocol and FCoE protocol on SVMs* on page 56

Export policies

You can use System Manager to create, edit, and manage export policies.

Creating an export policy

You can use System Manager to create an export policy so that clients can access specific volumes.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Export Policies.
4. Click Create.
5. In the Create Export Policy dialog box, specify a name for the export policy.
6. If you want to create an export policy by copying the rules from an existing export policy, select the Copy Rules from check box, and then select the storage virtual machine (SVM) and the export policy.

 You should not select the destination SVM for disaster recovery from the drop-down menu to create an export policy.
7. In the Export Rules area, click Add to add rules to the export policy.
8. Click Create.

9. Verify that the export policy that you created is displayed in the Export Policies window.

Renaming export policies

You can use System Manager to rename an existing export policy.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Export Policies.
4. Select the export policy that you want to rename, and then click Rename Policy.
5. In the Rename Policy dialog box, specify a new policy name, and then click Modify.
6. Verify the changes that you made in the Export Policies window.

Deleting export policies

You can use System Manager to delete export policies that are no longer required.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Export Policies.
4. Select the export policy that you want to delete, and then click Delete Policy.
5. Select the confirmation check box, and then click Delete.

Adding rules to an export policy

You can use System Manager to add rules to an export policy, which enables you to define client access to data.

Before you begin
You must have created the export policy to which you want to add the export rules.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Export Policies.
4. Select the export policy to which you want to add rules, and from the Export Rules tab, click Add.
5. In the Create Export Rule dialog box, perform the following steps:
 a. Specify the client that requires access to the data.
 You can specify multiple clients as comma-separated values.
You can specify the client in any of the following formats:

- As a host name; for instance, host1
- As an IPv4 address; for instance, 10.1.12.24
- As an IPv4 address with a network mask; for instance, 10.1.16.0/255.255.255.0
- As an IPv6 address; for instance, FE80::0202:B3FF:FE1E:8329
- As an IPv6 address with a network mask; for instance, 2001:db8::/32
- As a netgroup, with the netgroup name preceded by an at symbol (@); for instance, @netgroup
- As a domain name preceded by a period (.) for instance, .example.com

Note: You must not enter an IP address range, such as 10.1.12.10 through 10.1.12.70. Entries in this format are interpreted as a text string and are treated as a host name.

You can enter the IPv4 address **0.0.0.0/0** to provide access to all of the hosts.

b. If you want to modify the rule index number, select the appropriate rule index number.

c. Select one or more access protocols.

If you do not select any access protocol, the default value “Any” is assigned to the export rule.

d. Select one or more security types and access rules.

6. Click **OK**.

7. Verify that the export rule that you added is displayed in the **Export Rules** tab for the selected export policy.

Modifying export policy rules

You can use System Manager to modify the specified client, access protocols, and access permissions of an export policy rule.

Steps

1. Click **Storage > SVMs**.

2. Select the SVM, and then click **SVM Settings**.

3. In the **Policies** pane, click **Export Policies**.

4. In the **Export Policies** window, select the export policy for which you want to edit the export rule, and in the **Export Rules** tab, select the rule that you want to edit, and then click **Edit**.

5. Modify the following parameters as required:

 - Client specification
 - Access protocols
 - Access details

6. Click **OK**.

7. Verify that the updated changes for the export rule are displayed in the **Export Rules** tab.
Deleting export policy rules

You can use System Manager to delete export policy rules that are no longer required.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Export Policies.
4. Select the export policy for which you want to delete the export rule.
5. In the Export Rules tab, select the export rule that you want to delete, and then click Delete.
6. In the confirmation box, click Delete.

How export policies control client access to volumes or qtrees

Export policies contain one or more export rules that process each client access request. The result of the process determines whether the client is denied or granted access and what level of access. An export policy with export rules must exist on the storage virtual machine (SVM) for clients to access data.

You associate exactly one export policy with each volume or qtree to configure client access to the volume or qtree. The SVM can contain multiple export policies. This enables you to do the following for SVMs with multiple volumes or qtrees:

- Assign different export policies to each volume or qtree of the SVM for individual client access control to each volume or qtree in the SVM.
- Assign the same export policy to multiple volumes or qtrees of the SVM for identical client access control without having to create a new export policy for each volume or qtree.

If a client makes an access request that is not permitted by the applicable export policy, the request fails with a permission-denied message. If a client does not match any rule in the export policy, then access is denied. If an export policy is empty, then all accesses are implicitly denied.

You can modify an export policy dynamically on a system running ONTAP.

Export Policies window

You can use the Export Policies window to create, view, and manage information about export policies and its related export rules.

Export Policies

The Export Policies window enables you to view and manage the export policies created for the storage virtual machine (SVM).

Command buttons

- Create
 Opens the Create Export Policy dialog box, which enables you to create an export policy and add export rules. You can also copy export rules from an existing SVM.

- Rename
Opens the Rename Policy dialog box, which enables you to rename the selected export policy.

- **Delete**
 Opens the Delete Export Policy dialog box, which enables you to delete the selected export policy.

- **Refresh**
 Updates the information in the window.

Export Rules tab

The Export Rules tab enables you to view information about the export rules created for a particular export policy. You can also add, edit, and delete rules.

Command buttons

- **Add**
 Opens the Create Export Rule dialog box, which enables you to add an export rule to the selected export policy.

- **Edit**
 Opens the Modify Export Rule dialog box, which enables you to modify the attributes of the selected export rule.

- **Delete**
 Opens the Delete Export Rule dialog box, which enables you to delete the selected export rule.

- **Move Up**
 Moves up the rule index of the selected export rule.

- **Move Down**
 Moves down the rule index of the selected export rule.

- **Refresh**
 Updates the information in the window.

Export rules list

- **Rule Index**
 Specifies the priority based on which the export rules are processed. You can use the Move Up and Move Down buttons to choose the priority.

- **Client**
 Specifies the client to which the rule applies.

- **Access Protocols**
 Displays the access protocol that is specified for the export rule. If you have not specified any access protocol, the default value “Any” is considered.

- **Read-Only Rule**
 Specifies one or more security types for read-only access.

- **Read/Write Rule**
 Specifies one or more security types for read/write access.

- **Superuser Access**
 Specifies the security type or types for superuser access.
Assigned Objects tab

The Assigned Objects tab enables you to view the volumes and qtrees that are assigned to the selected export policy. You can also view whether the volume is encrypted or not.

Efficiency policies

You can use System Manager to create, edit, and delete efficiency policies.

Adding efficiency policies

You can use System Manager to add efficiency policies for running the deduplication operation on a volume on a specified schedule or when the change in volume data reaches a specified threshold value.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Efficiency Policies.
4. Click Add, and then specify the policy name.
5. Specify how the storage efficiency policy should be run:
 - Select Schedule, and specify the schedule name and the schedule details.
 You can specify the maximum run-time duration of the efficiency policy, if required.
 - Select ChangeLog Threshold, and specify the threshold value (in percent) for the change in volume data.
6. Optional: Select the Set QoS policy to background check box to reduce performance impact on client operations.
7. Click Add.

Editing efficiency policies

You can use System Manager to modify the attributes of an efficiency policy such as the policy name, schedule name, and maximum runtime.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Efficiency Policies.
4. In the Efficiency Policies window, select the policy that you want to edit, and then click Edit.
5. In the Edit Efficiency Policy dialog box, make the required changes.
6. Click Save.
Deleting efficiency policies

You can use System Manager to delete an efficiency policy that is no longer required.

Before you begin
The efficiency policy must be disabled.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Efficiency Policies.
4. Select the efficiency policy that you want to delete, and then click Delete.
5. Select the confirmation check box, and then click Delete.

Enabling or disabling efficiency policies

You can use System Manager to enable or disable an efficiency policy.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click Efficiency Policies.
4. Select one or more efficiency policies that you want to enable or disable.
5. Click Status > Enable or Status > Disable, as required.
6. If you are disabling an efficiency policy, select the confirmation check box, and then click OK.

What an efficiency policy is

An efficiency policy is a job schedule for a deduplication operation on a FlexVol volume.

You can run deduplication on a FlexVol volume either by scheduling the operations to start at a specific time or by specifying that the operations are triggered if a threshold percentage is exceeded. You can schedule a deduplication operation by creating job schedules that are enclosed within the efficiency policies. The volume efficiency policies support only job schedules that are of type cron. Alternately, you can specify a threshold percentage. When new data exceeds the specified percentage, the deduplication operation is started.

Understanding predefined efficiency policies

You can configure a volume with efficiency policies to achieve additional space savings. You can configure a volume to run inline compression without a scheduled or manually started background efficiency operation configured on the volume.

When you create an SVM, the following efficiency policies are created automatically and cannot be deleted:

• Default
 You can configure a volume with the efficiency policy to run the scheduled deduplication operations on the volume.
• Inline-only
 You can configure a volume with the inline-only efficiency policy and enable inline compression, to run inline compression on the volume without any scheduled or manually started background efficiency operations.

For more information about the inline-only and default efficiency policies, see the man pages.

Efficiency Policies window

You can use the Efficiency Policies window to create, display, and manage information about efficiency policies.

Command buttons

Add
Open the Add Efficiency Policy dialog box, which enables you to run a deduplication operation on a volume for a specified duration (schedule-based) or when the change in volume data reaches a specified threshold value (threshold-based).

Edit
Open the Edit Efficiency Policy dialog box, which enables you to modify the schedule, threshold value, QoS type, and maximum run time for a deduplication operation.

Delete
Open the Delete Efficiency Policy dialog box, which enables you to delete the selected efficiency policy.

Status
Open a drop-down menu, which provides options to enable or disable the selected efficiency policy.

Refresh
Updates the information in the window.

Efficiency policies list

Policy
Specifies the name of an efficiency policy.

Status
Specifies the status of an efficiency policy. The status can be one of the following:

- **Enabled**
 Specifies that the efficiency policy can be assigned to a deduplication operation.

- **Disabled**
 Specifies that the efficiency policy is disabled. You can enable the policy by using the status drop-down menu and assign it later to a deduplication operation.

Run By
Specifies whether the storage efficiency policy is run based on a schedule or based on a threshold value (change log threshold).

QoS Policy
Specifies the QoS type for the storage efficiency policy. The QoS type can be one of the following:

- **Background**
 Specifies that the QoS policy is running in the background, which reduces potential performance impact on the client operations.
• **Best-effort**
 Specifies that the QoS policy is running on a best-effort basis, which enables you to maximize the utilization of system resources.

Maximum Runtime
Specifies the maximum run-time duration of an efficiency policy. If this value is not specified, the efficiency policy is run till the operation is complete.

Details area
The area below the efficiency policy list displays additional information about the selected efficiency policy, including the schedule name and the schedule details for a schedule-based policy, and the threshold value for a threshold-based policy.

Protection policies
You can use System Manager to create, edit, and delete protection policies.

Creating protection policies
You can use System Manager to create asynchronous mirror policies, vault policies, or mirror and vault policies, and to apply these policies to a data protection relationship.

Steps
1. Click **Storage > SVMs**.
2. Select the storage virtual machine (SVM) for which you want to create a protection policy, and then click **SVM Settings**.
3. In the **Policies** pane, click **Protection Policies**.
4. Click **Create**.
5. In the **Create Policy** dialog box, select the policy type that you want to create.
6. Specify the policy name and transfer priority.
 Low indicates that the transfer has the least priority, and the transfer is usually scheduled after normal priority transfers. By default, the priority is set to Normal.
7. Optional: For a policy of type asynchronous mirror, select the **Transfer All Source Snapshot Copies** check box to include the “all_source_snapshots” rule to the mirror policy, which backs up all of the Snapshot copies from the source volume.
8. Optional: Select the **Enable Network Compression** check box to compress the data that is being transferred during a data transfer.
9. Optional: Click **Add Comments** to add additional comments for the policy.
10. For a policy of type vault or mirror vault, specify a SnapMirror label and a destination retention count.
11. Click **Create**.
Deleting protection policies

You can use System Manager to delete a protection policy if you no longer want to use the policy.

About this task

The cluster-level mirror policies or vault policies are not displayed.

Steps

1. Click **Storage > SVMs**.
2. Select the storage virtual machine (SVM), and then click **SVM Settings**.
3. In the **Protection Policies** window, select the policy that you want to delete, and then click **Delete**.
4. In the **Delete Policy** dialog box, click **Delete**.

Editing protection policies

You can use System Manager to modify a protection policy and to apply the policy to a data protection relationship.

About this task

The protection policies are not displayed at the cluster level.

Steps

1. Click **Storage > SVMs**.
2. Select the storage virtual machine (SVM), and then click **SVM Settings**.
3. In the **Policies** pane, click **Protection Policies**.
4. Select the protection policy that you want to edit, and then click **Edit**.
5. Modify the transfer priority, and then enable or disable network compression.
6. For an asynchronous mirror policy, back up all of the source Snapshot copies.
7. For a vault policy or mirror vault policy, modify the SnapMirror label and retention count.
 - You cannot remove the sm_created label for a mirror vault policy.
8. Click **Save**.

Protection Policies window

You can use the Protection Policies window to create, manage, and display information about mirror, vault, and mirror vault policies.

- **Command buttons** on page 336
- **Protection policies list** on page 336
- **Details area** on page 336
Command buttons
Create
Opens the Create Policy dialog box, which enables you to create a mirror, vault, or mirror vault policy.

Edit
Opens the Edit Policy dialog box, which enables you to edit a policy.

Delete
Opens the Delete Policy dialog box, which enables you to delete a policy.

Refresh
Updates the information in the window.

Protection policies list
Name
Displays the name of the protection policy.

Type
Displays the policy type, which can be Vault, Mirror Vault, or Asynchronous Mirror.

Comment
Displays the description specified for the policy.

Transfer Priority
Displays the data transfer priority, such as Normal or Low.

Details area
Policy Details tab
Displays details of the protection policy, such as the user who created the policy, number of rules, retention count, and status of network compression.

Policy Rules tab
Displays details of the rules that are applied to the policy. The Policy Rules tab is displayed only if the selected policy contains rules.

QoS policy groups
You can use System Manager to create, edit, and delete QoS policy groups.

Creating QoS policy groups
You can use System Manager to create storage Quality of Service (QoS) policy groups to limit the throughput of workloads and to monitor workload performance.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click QoS Policy Groups.
4. In the QoS Policy Groups window, click Create.
5. In the Create Policy Group dialog box, specify a group name for the policy.
6. Specify the minimum throughput limit.
 - In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.
 - You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
 - If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays “None” as the value. This value is case-sensitive.

7. Specify the maximum throughput limit.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput limit, the system automatically displays “Unlimited” as the value. This value is case-sensitive. The unit that you specify does not affect the maximum throughput.

8. Click OK.

Deleting QoS policy groups
You can use System Manager to delete a Storage Quality of Service (QoS) policy group that is no longer required.

Before you begin
You must have unassigned all of the storage objects that are assigned to the policy group.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Policies pane, click QoS Policy Groups.
4. In the QoS Policy Groups window, select the policy group that you want to delete, and then click Delete.
5. In the confirmation dialog box, click Delete.

Editing QoS policy groups
You can use the Edit Policy Group dialog box in System Manager to modify the name and maximum throughput of an existing storage Quality of Service (QoS) policy group.

About this task
 - In System Manager 9.5, you can set the minimum throughput limit only on a performance-based All Flash Optimized personality. In System Manager 9.6, you can also set the minimum throughput limit for ONTAP Select Premium systems.
 - You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Policies** pane, click **QoS Policy Groups**.
4. Select the QoS policy group that you want to edit, and then click **Edit**.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput limit, the value is set to unlimited, and the unit that you specify does not affect the maximum throughput.
5. In the **Edit Policy Group** dialog box, edit the QoS policy group details, and then click **Save**.

Managing workload performance by using **Storage QoS**

Storage Quality of Service (QoS) can help you manage risks around meeting your performance objectives. You can use Storage QoS to limit the throughput to workloads and to monitor workload performance. You can reactively limit workloads to address performance problems, and you can proactively limit workloads to prevent performance problems.

A workload represents the input/output (I/O) operations to one of the following kinds of storage objects:
- FlexVol volumes
- LUNs
- FlexGroup volumes

You can assign a storage object to a policy group to control and monitor a workload. You can monitor workloads without controlling them.

The following illustration shows a sample environment before and after using Storage QoS. On the left, the workloads compete for cluster resources to transmit I/O. These workloads get “best effort” performance, which means that you have less performance predictability (for example, a workload might get such good performance that it negatively impacts other workloads). On the right, the same workloads are assigned to policy groups. The policy groups enforce a maximum throughput limit.
How Storage QoS works

Storage QoS controls workloads that are assigned to policy groups by throttling and prioritizing client operations (SAN and NAS data requests) and system operations.

The following illustration shows a sample environment before and after using Storage QoS. On the left, workloads compete for cluster resources to transmit I/O. These workloads get “best effort” performance, which means that you have less performance predictability (for example, a workload might get such good performance that it negatively impacts other workloads). On the right, the same workloads are assigned to policy groups that enforce maximum throughput limits.

The `-max-throughput` parameter specifies the maximum throughput limit for the policy group that the policy group must not exceed. The value of this parameter is specified in terms of IOPS or MB/s, or a combination of comma-separated IOPS and MB/s values, and the range is zero to infinity.

The units are base 10. There should be no space between the number and the unit. The default value for the `-max-throughput` parameter is `infinity`, which is specified by the special value INF.

Note: There is no default unit for the `-max-throughput` parameter. For all values except zero and infinity, you must specify the unit.

The keyword “none” is available for a situation that requires the removal of a value. The keyword “INF” is available for a situation that requires the maximum available value to be specified.

Examples of valid throughput specifications are: ""100B/s"", "10KB/s", "1gb/s", "500MB/s", "1tb/s", "100iops", "100iops,400KB/s", and "800KB/s,100iops".

How the maximum throughput limit works

You can specify one service-level objective for a Storage QoS policy group: a maximum throughput limit. A maximum throughput limit, which you define in terms of IOPS, MBps, or both, specifies the throughput that the workloads in the policy group cannot collectively exceed.

When you specify a maximum throughput for a policy group, Storage QoS controls client operations to ensure that the combined throughput for all workloads in the policy group does not exceed the specified maximum throughput.

For example, assume that you create the policy group “untested_apps” and specify a maximum throughput of 300 MBps. You assign three volumes to the policy group. The combined throughput to those three volumes cannot exceed 300 MBps.

Note: The combined throughput to the workloads in a policy group might exceed the specified limit by up to 10 percent. A deviation might occur if you have a workload that experiences rapid changes in throughput (sometimes called a bursty workload).
Note the following about specifying a maximum throughput:

- You must not set the limit too low because you might underutilize the cluster.
- You must consider the minimum amount of throughput that you want to reserve for workloads that do not have limits.
 For example, you can ensure that your critical workloads get the throughput that they need by limiting noncritical workloads.
- You might want to provide room for growth.
 For example, if you see an average utilization of 500 IOPS, you might specify a limit of 1,000 IOPS.

Rules for assigning storage objects to policy groups

You should be aware of rules that dictate how you can assign storage objects to Storage QoS policy groups.

Storage objects and policy groups must belong to the same SVM

A storage object must be contained by the SVM to which the policy group belongs. You specify the SVM to which the policy group belongs when you create the policy group. Multiple policy groups can belong to the same SVM.

In the following illustration, the policy group pg1 belongs to SVM vs1. You cannot assign volumes vol2 or vol3 to policy group pg1 because those volumes are contained by a different SVM.

![SVM and Policy Group Diagram]

Nested storage objects cannot belong to policy groups

You cannot assign a storage object to a policy group if its containing object or its child objects belong to a policy group. The following table lists the restrictions.

<table>
<thead>
<tr>
<th>If you assign the...</th>
<th>Then you cannot assign...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM to a policy group</td>
<td>Any storage objects contained by the SVM to a policy group</td>
</tr>
<tr>
<td>Volume to a policy group</td>
<td>The volume's containing SVM or any child LUNs to a policy group</td>
</tr>
<tr>
<td>LUN to a policy group</td>
<td>The LUN's containing volume or SVM to a policy group</td>
</tr>
<tr>
<td>File to a policy group</td>
<td>The file's containing volume or SVM to a policy group</td>
</tr>
</tbody>
</table>
In the following illustration, the SVM vs3 is assigned to policy group pg2. You cannot assign volumes vol4 or vol5 to a policy group because an object in the storage hierarchy (SVM vs3) is assigned to a policy group.

Policy group “pg2”

SVM “vs3”

vol4

vol5

QoS Policy Groups window

Storage QoS (Quality of Service) can help you manage risks related to meeting your performance objectives. Storage QoS enables you to limit the throughput of workloads and to monitor workload performance. You can use the QoS Policy groups window to manage your policy groups and view information about them.

- Command buttons on page 341
- QoS Policy Groups list on page 341
- Details area on page 342

Command buttons

Create

Opens the Create QoS Policy Group dialog box, which enables you to create new policy groups.

Edit

Opens the Edit QoS Policy Group dialog box, which enables you to modify the selected policy group.

Delete

Deletes the selected policy groups.

Refresh

Updates the information in the window.

QoS Policy Groups list

The QoS Policy Groups list displays the policy group name and the maximum throughput for each policy group.

Name

Displays the name of the QoS policy group.

Minimum Throughput

Displays the minimum throughput limit specified for the policy group.

If you have not specified any minimum throughput value, the system automatically displays “None” as the value and this value is case-sensitive.
Maximum Throughput
Displays the maximum throughput limit specified for the policy group.

If you have not specified any maximum throughput value, the system automatically displays “Unlimited” as the value and this value is case-sensitive.

Storage Objects Count
Displays the number of storage objects assigned to the policy group.

Details area
The area below the QoS Policy Groups list displays detailed information about the selected policy group.

Assigned Storage Objects tab
Displays the name and type of the storage object that is assigned to the selected policy group.

NIS services
You can use System Manager to add, edit, and manage Network Information Service (NIS) domains.

Related information

NFS configuration

Adding NIS domains
You can maintain host information centrally by using NIS. You can use System Manager to add the NIS domain name of your storage system. Only one NIS domain can be active on a storage virtual machine (SVM) at any given time.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Services pane, click NIS.
4. Click Create.
5. Type the NIS domain name, and then add one or more NIS servers.
6. Click Create.

Editing NIS domains
You can use System Manager to modify NIS domains based on the requirement for storage virtual machine (SVM) authentication and authorization.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Services pane, click NIS.
4. Select the NIS domain, and then click Edit.
5. Make the required changes, and then click **Edit**.

NIS window

The NIS window enables you to view the current NIS settings for your storage system.

Command buttons

Create
- Opens the Create NIS Domain dialog box, which enables you to create NIS domains.

Edit
- Opens the Edit NIS Domain dialog box, which enables you to add, delete, or modify NIS servers.

Delete
- Deletes the selected NIS domain.

Refresh
- Updates the information in the window.

LDAP client services

You can use System Manager to add, edit, and delete LDAP client configurations.

Adding an LDAP client configuration

You can use System Manager to add an LDAP client configuration at the cluster level or the storage virtual machine (SVM) level if you want to use LDAP services. You must first set up an LDAP client to use LDAP services.

About this task

At the SVM level, you can add an LDAP client only for a selected SVM.

Steps

1. Add an LDAP client configuration by using one of the following methods:
 - Cluster level: click **> LDAP**.
 - SVM level: click **SVM > SVM Settings > LDAP Client**.
2. Click **Add**.
3. Type the name of the LDAP client.
4. Add either the Active Directory domain or the LDAP server.
5. Click **(advanced options), select the Schema, and click Apply**.
6. Specify the **Base DN** and **TCP Port**.
7. Click **Binding**, and then specify the authentication details.
8. Click **Save and Close**.
9. Verify that the LDAP client that you added is displayed.
Deleting an LDAP client configuration

You can use System Manager to delete an LDAP client configuration at the cluster level or the storage virtual machine (SVM) level.

About this task

At the SVM level, you can delete an LDAP client only for a selected SVM.

Steps

1. To delete an LDAP client configuration:
 - Cluster level: Click LDAP.
 - SVM level: Click SVM > SVM Settings > LDAP Client.
2. Select the LDAP client that you want to delete, and then click Delete.
3. Select the confirmation check box, and then click Delete.
4. Verify that the LDAP client that you deleted is no longer displayed.

Related concepts

LDAP on page 126

Editing an LDAP client configuration

You can use System Manager to edit an LDAP client configuration at the cluster level or the storage virtual machine (SVM) level.

About this task

At the SVM level, you can edit an LDAP client only for a selected SVM.

Steps

1. To edit an LDAP client configuration:
 - Cluster level: Click LDAP.
 - SVM level: Click SVM > SVM Settings > LDAP Client.
2. Select the LDAP client that you want to modify, and then click Edit.
3. In the Edit LDAP Client dialog box, edit the LDAP client configuration as required.
4. Click Save and Close.
5. Verify that the changes that you made to the LDAP client configuration are displayed.

Related concepts

LDAP on page 126
LDAP Client window
You can use the LDAP Client window to create LDAP clients for user authentication, file access authorization, user search, and mapping services between NFS and CIFS at the storage virtual machine (SVM) level.

Command buttons
Add
Opens the Create LDAP Client dialog box, which enables you to create and configure LDAP clients.

Edit
Opens the Edit LDAP Client dialog box, which enables you to edit LDAP client configurations. You can also edit active LDAP clients.

Delete
Opens the Delete LDAP Client(s) dialog box, which enables you to delete LDAP client configurations. You can also delete an active LDAP client.

Refresh
Updates the information in the window.

LDAP client list
Displays (in tabular format) details about LDAP clients.

LDAP Client Configuration
Displays the name of the LDAP client configuration that you specified.

Storage Virtual Machine
Displays the name of the SVM for each LDAP client configuration.

Schema
Displays the schema for each LDAP client.

Minimum Bind Level
Displays the minimum bind level for each LDAP client.

Active Directory Domain
Displays the Active Directory domain for each LDAP client configuration.

LDAP Servers
Displays the LDAP server for each LDAP client configuration.

Preferred Active Directory Servers
Displays the preferred Active Directory server for each LDAP client configuration.

LDAP configuration services
You can use System Manager to manage LDAP configurations.
Editing active LDAP clients

You can use System Manager to associate an active LDAP client with a storage virtual machine (SVM), which enables you to use LDAP as a name service or for name mapping.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Services pane, click LDAP Configuration.
4. In the LDAP Configuration window, click Edit.
5. In the Active LDAP Client dialog box, select the LDAP client that you want to edit, and perform the following actions:
 - Modify the Active Directory domain servers.
 - Modify the preferred Active Directory servers.
6. Click OK.
7. Verify that the changes that you made are updated in the LDAP Configuration window.

Deleting active LDAP clients

You can use System Manager to delete an active LDAP client when you do not want a storage virtual machine (SVM) to be associated with it.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. Click the SVM Settings tab.
4. In the Services pane, click LDAP Configuration.
5. Click Delete.
6. Select the confirmation check box, and then click Delete.

LDAP Configuration window

You can use the LDAP Configuration window to edit or delete active LDAP clients at the storage virtual machine (SVM) level.

Command buttons

Edit

Opens the Active LDAP Client dialog box, which enables you to edit the properties of the active LDAP client, such as Active Directory domain servers and preferred Active Directory servers.

Delete

Opens the Delete Active LDAP Client dialog box, which enables you to delete the active LDAP client.
Refresh

Updates the information in the window.

LDAP Configuration area

Displays the details about the active LDAP client.

LDAP client name

Displays the name of the active LDAP client.

Active Directory Domain Servers

Displays the Active Directory domain for the active LDAP client.

Preferred Active Directory Servers

Displays the preferred Active Directory server for the active LDAP client.

Kerberos realm services

You can use System Manager to create and manage Kerberos realm services.

Related information

NFS management

Creating a Kerberos realm configuration

If you want to use Kerberos authentication for client access, you must configure the storage virtual machine (SVM) to use an existing Kerberos realm. You can use System Manager to create a Kerberos realm configuration, which enables SVMs to use Kerberos security services for NFS.

Before you begin

- The CIFS license must be installed if CIFS shares are used, and the NFS license must be installed if an LDAP server is used.
- Active Directory (Windows 2003 or Windows 2008) with DES MD5 encryption capability must be available.
- You must have set the time zone and synchronized the time across the cluster by configuring NTP. This prevents authentication errors, and ensures that the timestamps in log files are consistent across the cluster.

About this task

While creating a Kerberos realm, you must set the following attributes in the Create Kerberos Realm wizard:

- Kerberos realm
- KDC IP address and port number
 The default port number is 88.
- Kerberos Key Distribution Center (KDC) vendor
- Administrative server IP address if the KDC vendor is not Microsoft
- Password server IP address
- Active Directory server name and IP address if the KDC vendor is Microsoft
Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Services** pane, click **Kerberos Realm**.
4. In the **Kerberos Realm** window, click **Create**.
5. Type or select information as prompted by the wizard.
6. Confirm the details, and then click **Finish** to complete the wizard.

Related tasks

Setting the time zone for a cluster on page 41

Related information

NetApp Technical Report 4073: Secure Unified Authentication

Editing a Kerberos realm configuration

You can use System Manager to edit a Kerberos realm configuration at the storage virtual machine (SVM) level.

About this task

You can modify the following attributes by using the Kerberos Realm Edit wizard:

- The KDC IP address and port number
- The IP address of the administrative server if the KDC vendor is not Microsoft
- The IP address of the password server
- The Active Directory server name and IP address if the KDC vendor is Microsoft

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Services** pane, click **Kerberos Realm**.
4. In the **Kerberos Realm** window, select the Kerberos realm configuration that you want to modify, and then click **Edit**.
5. Type or select information as prompted by the wizard.
6. Confirm the details, and then click **Finish** to complete the wizard.

Deleting Kerberos realm configurations

You can use System Manager to delete a Kerberos realm configuration.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Services** pane, click **Kerberos Realm**.

4. In the **Kerberos Realm** window, select one or more Kerberos realm configurations that you want to delete, and then click **Delete**.

5. Select the confirmation check box, and then click **Delete**.

Using Kerberos with NFS for strong security

You can use Kerberos to provide strong authentication between SVMs and NFS clients to provide secure NFS communication. Configuring NFS with Kerberos increases the integrity and security of NFS client communications with the storage system.

Kerberos authentication for CIFS

With Kerberos authentication, upon connection to your CIFS server, the client negotiates the highest possible security level. However, if the client cannot use Kerberos authentication, Microsoft NTLM or NTLM V2 is used to authenticate with the CIFS server.

Kerberos Realm window

You can use the Kerberos Realm window to provide authentication between storage virtual machines (SVMs) and NFS clients to ensure secure NFS communication.

Command buttons

- **Create**

 Opens the Kerberos Realm Create wizard, which enables you to configure a Kerberos realm to retrieve user information.

- **Edit**

 Opens the Kerberos Realm Edit wizard, which enables you to edit a Kerberos realm configuration based on the requirement for SVM authentication and authorization.

- **Delete**

 Opens the Delete Kerberos Realm(s) dialog box, which enables you to delete Kerberos realm configuration.

- **Refresh**

 Updates the information in the window.

Kerberos Realm list

Provides details about the Kerberos realms, in tabular format.

- **Realm**

 Specifies the name of the Kerberos realm.

- **KDC Vendor**

 Specifies the name of the Kerberos Distribution Center (KDC) vendor.

- **KDC IP Address**

 Specifies the KDC IP address used by the configuration.

Details area

The details area displays information such as the KDC IP address and port number, KDC vendor, administrative server IP address and port number, Active Directory server and server IP address of the selected Kerberos realm configuration.
Kerberos interface services

You can use System Manager to manage Kerberos interface services.

Editing Kerberos configuration

You can use System Manager to enable Kerberos and to edit a Kerberos configuration that is associated with a storage virtual machine (SVM), which enables the SVM to use Kerberos security services for NFS.

Before you begin

- You must have at least one Kerberos realm configured at the SVM level.
- You must have a minimum of two data LIFs on the SVM. One data LIF is used by the Service Principal Name (SPN) for both the UNIX and CIFS-related Kerberos traffic. The other data LIF is used for accessing non-Kerberos traffic.

 Note: A CIFS server is not required for basic NFS Kerberos access. A CIFS server is required for multiprotocol access or when using Active Directory as an LDAP server for name mapping purposes.

About this task

If you are using Microsoft Active Directory Kerberos, the first 15 characters of any SPNs that are used in the domain must be unique. Microsoft Active Directory has a limitation for SPNs of 15 characters maximum and does not allow duplicate SPNs.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Services** pane, click **Kerberos Interface**.
4. In the **Kerberos Interface** window, select the interface, and then click **Edit**.
5. In the **Edit Kerberos Configuration** dialog box, make the required changes, and then click **OK**.

Related information

NetApp Technical Report 4073: Secure Unified Authentication

Kerberos Interface window

You can use the Kerberos Interface window to enable Kerberos and to edit the Kerberos configuration for storage virtual machines (SVMs).

Command buttons

Edit

Opens the Edit Kerberos Configuration dialog box, which you can use to enable Kerberos and to edit the Kerberos configuration associated with the SVM.

Refresh

Updates the information in the window.
Kerberos Interface list
Provides details about the Kerberos configuration.

Interface Name
Specifies the logical interfaces associated with the Kerberos configuration for SVMs.

Service Principal Name
Specifies the Service Principal Name (SPN) that matches the Kerberos configuration.

Realm
Specifies the name of the Kerberos realm associated with the Kerberos configuration.

Kerberos Status
Specifies whether Kerberos is enabled.

DNS/DDNS Services
You can use System Manager to manage DNS/DDNS services.

Enabling or disabling DDNS
You can use System Manager to enable or disable DDNS on a storage system.

About this task
- DNS is enabled by default.
- DDNS is disabled by default.
- System Manager does not perform any validation checks for the DNS and DDNS settings.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Services pane, click DNS/DDNS.
4. In the DNS/DDNS Services window, click Edit.
5. In the Edit DNS/DDNS Settings dialog box, enable DDNS by selecting the DDNS service check box.
 You can disable DDNS by clearing the DDNS service check box.
6. Click OK.

Related references
 DNS/DDNS Services window on page 352
Editing DNS and DDNS settings

You can maintain host information centrally by using DNS. You can use System Manager to add or modify the DNS domain name of your storage system. You can also enable DDNS on your storage system to update the name server automatically in the DNS server.

Before you begin

You must have set up a CIFS server or an Active Directory account for the storage virtual machine (SVM) for secure DDNS to work.

About this task

System Manager does not perform any validation checks for the DNS and DDNS settings.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Services pane, click DNS/DDNS.
4. Click Edit.
5. In the DNS Domains and Name Servers area, add or modify the DNS domain names and the IP addresses.
6. Select the DDNS service check box to enable DDNS.
 a. Select the Enable Secure DDNS check box to enable secure DDNS.
 b. Specify the fully qualified domain name (FQDN) and the time to live value for the DDNS service.
 By default, time to live is set to 24 hours and FQDN is set to SVM name. domain name.
7. Click OK to save the changes that you made.

Related references

DNS/DDNS Services window on page 352

DNS/DDNS Services window

The DNS/DDNS Services window enables you to view and edit the current DNS and DDNS settings for your system.

Command buttons

Edit

Opens the Edit DNS/DDNS Settings dialog box, which you can use to add or modify DNS or DDNS details. You can also enable or disable DDNS.

Refresh

Updates the information in the window.

Related tasks

Enabling or disabling DDNS on page 351
Editing DNS and DDNS settings on page 352
Users

You can use System Manager to create and manage storage virtual machine (SVM) user accounts.

Adding SVM user accounts

You can use System Manager to add a storage virtual machine (SVM) user account and to specify a user login method for accessing the storage system.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **SVM User Details** pane, click **Users**.
4. Click **Add**.
5. Specify a user name and password for connecting to the storage system, and confirm the password.
6. Add one or more user login methods, and then click **Add**.

 A login method for the new vsadmin account is automatically included that uses HTTP as the application and is authenticated with a certificate.

Changing the password for SVM user accounts

You can use System Manager to reset the password for a storage virtual machine (SVM) user account.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **SVM User Details** pane, click **Users**.
4. Select the user account for which you want to modify the password, and then click **Reset Password**.
5. In the **Reset Password** dialog box, type the new password, confirm the new password, and then click **Change**.

Editing SVM user accounts

You can use System Manager to edit a storage virtual machine (SVM) user account by modifying the user login methods for accessing the storage system.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **SVM User Details** pane, click **Users**.
4. Select the user account that you want to edit, and then click **Edit**.
5. Modify one or more user login methods, and then click Modify.

Locking or unlocking SVM user accounts

You can use System Manager to lock or unlock storage virtual machine (SVM) user accounts.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **SVM User Details** pane, click **Users**.
4. In the **Users** window, select the user account for which you want to modify the account status, and then click either **Lock** or **Unlock**, as required.

Users window

You can use the Users window to manage user accounts, to reset the password of a user, and to view information about all of the user accounts.

Command buttons

Add

Opens the Add User dialog box, which enables you to add user accounts.

Edit

Opens the Modify User dialog box, which enables you to modify user login methods.

Note: It is a best practice to use a single role for all of the access and authentication methods of a user account.

Delete

Enables you to delete a selected user account.

Change Password

Opens the Change Password dialog box, which enables you to reset a selected user's password.

Lock

Locks the user account.

Refresh

Updates the information in the window.

Users list

The area below the users list displays detailed information about the selected user.

User

Displays the name of the user account.

Account Locked

Displays whether the user account is locked.

User Login Methods area

Application

Displays the access method that a user can use to access the storage system. The supported access methods include the following:
- System console (console)
- HTTP(S) (http)
- ONTAP API (ontapi)
- Service Processor (service-processor)
- SSH (ssh)

Authentication
Displays the default supported authentication method, which is “password”.

Role
Displays the role of a selected user.

Roles
You can use System Manager to create and manage roles.

Related information

Administrator authentication and RBAC

Adding roles
You can use System Manager to add an access-control role and to specify the command or command directory that the users of the role can access. You can also control the level of access the role has to the command or command directory, and you can specify a query that applies to the command or command directory.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **SVM User Details** pane, click **Roles**.
4. Click **Add**.
5. In the **Add Role** dialog box, specify the role name, and then add the role attributes.
6. Click **Add**.

Editing roles
You can use System Manager to modify the access of an access-control role to a command or command directory and to restrict a user’s access to only a specified set of commands.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **SVM User Details** pane, click **Roles**.
4. Select the role that you want to modify, and then click **Edit**.
5. Modify the role attributes, and then click **Modify**.
Roles window
You can use the Roles window to manage the roles that are associated with user accounts.

Command buttons
Add
Opens the Add Role dialog box, which enables you to create an access-control role and specify the command or command directory that the role's users can access.
Edit
Opens the Edit Role dialog box, which enables you to add or modify role attributes.
Refresh
Updates the information in the window.

Roles list
The roles list provides a list of roles that are available to be assigned to users.

Role Attributes area
The details area displays the role attributes, such as the command or command directory that the selected role can access, the access level, and the query that applies to the command or command directory.

UNIX
You can use System Manager to maintain a list of local UNIX users and groups for each storage virtual machine (SVM).

UNIX window
You can use the UNIX window to maintain a list of local UNIX users and groups for each storage virtual machine (SVM). You can use local UNIX users and groups for authentication and name mappings.

Groups tab
You can use the Groups tab to add, edit, or delete UNIX groups that are local to an SVM.

Command buttons
Add Group
Opens the Add Group dialog box, which enables you to create UNIX groups that are local to SVMs. Local UNIX groups are used with local UNIX users.
Edit
Opens the Edit Group dialog box, which enables you to edit a group ID.
Delete
Deletes the selected group.
Refresh
Updates the information in the window.
Groups list

Group Name
Displays the name of the group.

Group ID
Displays the ID of the group.

Users tab
You can use the Users tab to add, edit, and delete UNIX users that are local to SVMs.

Command buttons

Add User
Opens the Add User dialog box, which enables you to create UNIX users that are local to SVMs.

Edit
Opens the Edit User dialog box, which enables you to edit the User ID, UNIX group to which the user belongs, and the full name of the user.

Delete
Deletes the selected user.

Refresh
Updates the information in the window.

Users list

User Name
Displays the name of the user.

User ID
Displays the ID of the user.

Full Name
Displays the full name of the user.

Primary Group ID
Displays the ID of the group to which the user belongs.

Primary Group Name
Displays the name of the group to which the user belongs.

Windows
You can use System Manager to create and manage Windows groups and user accounts.

Related information

SMB/CIFS management

Creating a local Windows group
You can use System Manager to create local Windows groups that can be used for authorizing access to the data contained in the storage virtual machine (SVM) over an SMB connection. You can also
assign the privileges that define the user rights or capabilities that a member of the group has when performing administrative activities.

Before you begin

CIFS server must be configured for the SVM.

About this task

- You can specify a group name with or without the local domain name.

The local domain is the name of the CIFS server for the SVM. For example, if the CIFS server name of the SVM is “CIFS_SERVER” and you want to create an “engineering” group, you can specify either “engineering” or “CIFS_SERVER\engineering” as the group name.

The following rules apply when using a local domain as part of the group name:

 - You can specify only the local domain name for the SVM to which the group is applied. For example, if the local CIFS server name is “CIFS_SERVER”, you cannot specify “CORP_SERVER\group1” as the group name.
 - You cannot use “BUILTIN” as a local domain in the group name. For example, you cannot create a group with “BUILTIN\group1” as the name.
 - You cannot use an Active Directory domain as a local domain in the group name. For example, you cannot create a group named “AD_DOM\group1”, where “AD_DOM” is the name of an Active Directory domain.

- You cannot use a group name that already exists.

- The group name that you specify must meet the following requirements:
 - Must not exceed 256 characters
 - Must not end in a period
 - Must not include commas
 - Must not include any of the following printable characters: " / \ [] : | < > + = ; ? * @
 - Must not include characters in the ASCII range 1 through 31, which are non-printable

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Host Users and Groups** pane, click **Windows**.
4. In the **Groups** tab, click **Create**.
5. In the **Create Group** dialog box, specify a name for the group and a description that helps you to identify the new group.
6. Assign a set of privileges to the group.

 You can select the privileges from the predefined set of supported privileges.
7. Click **Add** to add users to the group.
8. In the **Add Members to Group** dialog box, perform one of the following actions:
 - Specify the Active Directory user or Active Directory group to be added to a particular local group.
• Select the users from the list of available local users in the SVM.

• Click OK.

9. Click Create.

Result
The local Windows group is created and is listed in the Groups window.

Related references
Windows window on page 366

Editing local Windows group properties
You can manage local group memberships by adding and removing a local user, an Active Directory user, or an Active Directory group by using System Manager. You can modify the privileges that are assigned to a group and the description of a group to easily identify the group.

About this task
You must keep the following in mind when adding members to or removing members from a local Windows group:

• You cannot add users to or remove users from the special Everyone group.

• You cannot add a local Windows group to another local Windows group.

Steps
1. Click Storage > SVMs.

2. Select the SVM, and then click SVM Settings.

3. In the Host Users and Groups pane, click Windows.

4. In the Groups tab, click Edit.

5. Specify a name for the group and a description to identify the new group.

6. Assign a set of privileges to the group.

 You can select the privileges from the predefined set of supported privileges.

7. Click Add to add users to the group.

8. In the Add Members window, perform one of the following actions:

 • Specify the Active Directory user or Active Directory group to be added to a particular local group.

 • Select the users from the list of available local users in the storage virtual machine (SVM).

9. Click Edit.

Result
The local Windows group settings are modified, and the changes are displayed in the Groups tab.

Related references
Windows window on page 366
Adding user accounts to a Windows local group

You can add a local user, an Active Directory user, or an Active Directory group (if you want users to have the privileges that are associated with that group) to a Windows local group by using System Manager.

Before you begin

- The group must exist before you can add a user to the group.
- The user must exist before you can add the user to a group.

About this task

You must keep the following in mind when adding members to a local Windows group:

- You cannot add users to the special Everyone group.
- You cannot add a local Windows group to another local Windows group.
- You cannot add a user account that contains a space in the user name by using System Manager. You can either rename the user account or add the user account by using the command-line interface (CLI).

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Host Users and Groups pane, click Windows.
4. In the Groups tab, select the group to which you want to add a user, and then click Add Members.
5. In the Add Members window, perform one of the following actions:
 - Specify the Active Directory user or Active Directory group to be added to a particular local group.
 - Select the users from the list of available local users in the storage virtual machine (SVM).
6. Click OK.

Result

The user that you added is listed in the Users tab of the Groups tab.

Related references

Windows window on page 366

Renaming a local Windows group

You can use System Manager to rename a local Windows group to identify the group more easily.

About this task

- The new group name must be created in the same domain as the old group name.
- The group name must meet the following requirements:
Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Host Users and Groups pane, click Windows.
4. In the Groups tab, select the group that you want to rename, and then click Rename.
5. In the Rename Group window, specify a new name for the group.

Result
The local group name is changed, and the group is listed with the new name in the Groups window.

Related references
Windows window on page 366

Deleting a local Windows group
You can use System Manager to delete a local Windows group from a storage virtual machine (SVM) if the group is no longer required for determining access rights to the data contained on the SVM or for assigning SVM user rights (privileges) to group members.

About this task
- Removing a local group removes the membership records of the group.
- The file system is not altered.
 Windows Security Descriptors on files and directories that refer to this group are not adjusted.
- The special “Everyone” group cannot be deleted.
- Built-in groups such as BUILTIN\Administrators and BUILTIN\Users cannot be deleted.

Steps
1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Host Users and Groups pane, click Windows.
4. In the Groups tab, select the group that you want to delete, and then click Delete.
5. Click Delete.

Result
The local group is deleted along with its membership records.
Creating a local Windows user account

You can use System Manager to create a local Windows user account that can be used to authorize access to the data contained in the storage virtual machine (SVM) over an SMB connection. You can also use local Windows user accounts for authentication when creating a CIFS session.

Before you begin

- The CIFS server must be configured for the SVM.

About this task

A local Windows user name must meet the following requirements:

- Must not exceed 20 characters
- Must not end in a period
- Must not include commas
- Must not include any of the following printable characters: " / \ : | < > + = ? * @
- Must not include characters in the ASCII range 1 through 31, which are non-printable

The password must meet the following criteria:

- Must be at least six characters in length
- Must not contain the user account name
- Must contain characters from at least three of the following four categories:
 - English uppercase characters (A through Z)
 - English lowercase characters (a through z)
 - Base 10 digits (0 through 9)
 - Special characters: ~ ! @ # $ % ^ & * _ - + = \ | () : ; " ' < > , . ? /

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Host Users and Groups pane, click Windows.
4. In the Users tab, click Create.
5. Specify a name for the local user.
6. Specify the full name of the local user and a description that helps you to identify this new user.
7. Enter a password for the local user, and confirm the password.
 - The password must meet the password requirements.
8. Click Add to assign group memberships to the user.
9. In the Add Groups window, select the groups from the list of available groups in the SVM.
10. Select **Disable this account** to disable this account after the user is created.

11. Click **Create**.

Result

The local Windows user account is created and is assigned membership to the selected groups. The user account is listed in the **Users** tab.

Related references

Windows window on page 366

Editing the local Windows user properties

You can use System Manager to modify a local Windows user account if you want to change an existing user's full name or description, or if you want to enable or disable the user account. You can also modify the group memberships that are assigned to the user account.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Host Users and Groups** pane, click **Windows**.
4. In the **Users** tab, click **Edit**.
5. In the **Modify User** window, make the required changes.
6. Click **Modify**.

Result

The attributes of the local Windows user account are modified and are displayed in the **Users** tab.

Related references

Windows window on page 366

Assigning group memberships to a user account

You can use System Manager to assign group membership to a user account if you want a user to have the privileges that are associated with a particular group.

Before you begin

- The group must exist before you can add a user to the group.
- The user must exist before you can add the user to a group.

About this task

You cannot add users to the special *Everyone* group.

Steps

1. Click **Storage > SVMs**.
2. Select the SVM, and then click **SVM Settings**.
3. In the **Host Users and Groups** pane, click **Windows**.

4. In the **Users** tab, select the user account to which you want to assign group memberships, and then click **Add to Group**.

5. In the **Add Groups** window, select the groups to which you want to add the user account.

6. Click **OK**.

Result

The user account is assigned membership to all of the selected groups, and the user has the privileges that are associated with these groups.

Related references

Windows window on page 366

Renaming a local Windows user

You can use System Manager to rename a local Windows user account to identify the local user more easily.

About this task

- The new user name must be created in the same domain as the previous user name.
- The user name that you specify must meet the following requirements:
 - Must not exceed 20 characters
 - Must not end in a period
 - Must not include commas
 - Must not include any of the following printable characters: " / \ [] : | < > + = ; ? * @
 - Must not include characters in the ASCII range 1 through 31, which are non-printable

Steps

1. Click **Storage > SVMs**.

2. Select the SVM, and then click **SVM Settings**.

3. In the **Host Users and Groups** pane, click **Windows**.

4. In the **Users** tab, select the user that you want to rename, and then click **Rename**.

5. In the **Rename User** window, specify a new name for the user.

6. Confirm the new name, and then click **Rename**.

Result

The user name is changed, and the new name is listed in the **Users** tab.

Related references

Windows window on page 366
Resetting the password of a Windows local user

You can use System Manager to reset the password of a Windows local user. For example, you might want to reset the password if the current password is compromised or if the user has forgotten the password.

About this task

The password that you set must meet the following criteria:

- Must be at least six characters in length
- Must not contain the user account name
- Must contain characters from at least three of the following four categories:
 - English uppercase characters (A through Z)
 - English lowercase characters (a through z)
 - Base 10 digits (0 through 9)
 - Special characters: ~ ! @ # $ % ^ & * _ - + = ` \ | () [] : ; " ' < > , . ? /

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Host Users and Groups pane, click Windows.
4. In the Users tab, select the user whose password you want to reset, and then click Set Password.
5. In the Reset Password dialog box, set a new password for the user.
6. Confirm the new password, and then click Reset.

Related references

Windows window on page 366

Deleting a local Windows user account

You can use System Manager to delete a local Windows user account from a storage virtual machine (SVM) if the user account is no longer required for local CIFS authentication to the CIFS server of the SVM or for determining access rights to the data contained in the SVM.

About this task

- Standard users such as Administrator cannot be deleted.
- ONTAP removes references to the deleted local user from the local-group database, from the local-user-membership, and from the user-rights database.

Steps

1. Click Storage > SVMs.
2. Select the SVM, and then click SVM Settings.
3. In the Host Users and Groups pane, click Windows.
4. In the Users tab, select the user account that you want to delete, and then click Delete.

5. Click Delete.

Result
The local user account is deleted along with its group membership entries.

Related references

Windows window on page 366

Windows window
You can use the Windows window to maintain a list of local Windows users and groups for each storage virtual machine (SVM) on the cluster. You can use the local Windows users and groups for authentication and name mappings.

- Users tab on page 366
- Groups tab on page 367

Users tab
You can use the Users tab to view the Windows users that are local to an SVM.

Command buttons

Create
Opens the Create User dialog box, which enables you to create a local Windows user account that can be used to authorize access to data contained in the SVM over an SMB connection.

Edit
Opens the Edit User dialog box, which enables you to edit local Windows user properties, such as group memberships and the full name. You can also enable or disable the user account.

Delete
Opens the Delete User dialog box, which enables you to delete a local Windows user account from an SVM if it is no longer required.

Add to Group
Opens the Add Groups dialog box, which enables you to assign group membership to a user account if you want the user to have privileges associated with that group.

Set Password
Opens the Reset Password dialog box, which enables you to reset the password of a Windows local user. For example, you might want to reset the password if the password is compromised or if the user has forgotten the password.

Rename
Opens the Rename User dialog box, which enables you to rename a local Windows user account to more easily identify it.

Refresh
Updates the information in the window.
Users list

Name
Displays the name of the local user.

Full Name
Displays the full name of the local user.

Account Disabled
Displays whether the local user account is enabled or disabled.

Description
Displays the description for this local user.

Users Details Area

Group
Displays the list of groups in which the user is a member.

Groups tab
You can use the Groups tab to add, edit, or delete Windows groups that are local to an SVM.

Command buttons

Create
Opens the Create Group dialog box, which enables you to create local Windows groups that can be used for authorizing access to data contained in SVMs over an SMB connection.

Edit
Opens the Edit Group dialog box, which enables you to edit the local Windows group properties, such as privileges assigned to the group and the description of the group.

Delete
Opens the Delete Group dialog box, which enables you to delete a local Windows group from an SVM if it is no longer required.

Add Members
Opens the Add Members dialog box, which enables you to add local or Active Directory users, or Active Directory groups to the local Windows group.

Rename
Opens the Rename Group dialog box, which enables you to rename a local Windows group to more easily identify it.

Refresh
Updates the information in the window.

Groups list

Name
Displays the name of the local group.

Description
Displays the description for this local group.
Groups Details Area

Privileges
Displays the list of privileges associated with the selected group.

Users
Displays the list of local users associated with the selected group.

Related tasks

- Creating a local Windows group on page 357
- Editing local Windows group properties on page 359
- Adding user accounts to a Windows local group on page 360
- Renaming a local Windows group on page 360
- Deleting a local Windows group on page 361
- Creating a local Windows user account on page 362
- Editing the local Windows user properties on page 363
- Assigning group memberships to a user account on page 363
- Renaming a local Windows user on page 364
- Resetting the password of a Windows local user on page 365
- Deleting a local Windows user account on page 365

Name mapping

You can use System Manager to specify name mapping entries to map users from different platforms.

Related information

- SMB/CIFS management

Name mapping conversion rules

An ONTAP system keeps a set of conversion rules for each SVM. Each rule consists of two pieces: a pattern and a replacement. Conversions start at the beginning of the appropriate list and perform a substitution based on the first matching rule. The pattern is a UNIX-style regular expression. The replacement is a string containing escape sequences representing subexpressions from the pattern, as in the UNIX sed program.

Name Mapping window

You can use the Name Mapping window to specify the name mapping entries to map users from different platforms.

Name Mappings

You can create and use name mappings to map your UNIX users to Windows users, Windows users to UNIX users, or Kerberos users to UNIX users.

Command buttons

Add
Opens the Add Name Mapping Entry dialog box, which enables you to create a name mapping on storage virtual machines (SVMs).
Edit
Opens the Edit Name Mapping Entry dialog box, which enables you to edit a name mapping on SVMs.

Delete
Opens the Delete Name Mapping Entries dialog box, which enables you to delete a name mapping entry.

Swap
Opens the Swap Name Mapping Entries dialog box, which enables you to interchange positions of the two selected name mapping entries.

Refresh
Updates the information in the window.

Name mappings list
Position
Specifies the name mapping’s position in the priority list. Name mappings are applied in the order in which they occur in the priority list.

Pattern
Specifies the user name pattern that must be matched.

Replacement
Specifies the replacement pattern for the user name.

Direction
Specifies the direction of the name mapping. Possible values are krb_unix for a Kerberos-to-UNIX name mapping, win_unix for a Windows-to-UNIX name mapping, and unix_win for a UNIX-to-Windows name mapping.

Command buttons
Add
Opens the Add Group Mapping Entry dialog box, which enables you to create a group mapping on SVMs.

Edit
Opens the Edit Group Mapping Entry dialog box, which enables you to edit the group mapping on SVMs.

Delete
Opens the Delete Group Mapping Entries dialog box, which enables you to delete a group mapping entry.

Swap
Opens the Swap Group Mapping Entries dialog box, which enables you to interchange positions of the two selected group mapping entries.

Refresh
Updates the information in the window.

Group mappings list
Position
Specifies the group mapping’s position in the priority list. Group mappings are applied in the order in which they occur in the priority list.
Pattern
Specifies the user name pattern that must be matched.

Replacement
Specifies the replacement pattern for the user names.

Direction
Specifies the direction of the group mapping. Possible values are `krb_unix` for a Kerberos-to-UNIX group mapping, `win_unix` for a Windows-to-UNIX group mapping, and `unix_win` for a UNIX-to-Windows group mapping.
Managing data protection

You can use System Manager to protect your data by creating and managing mirror relationships, vault relationships, and mirror and vault relationships. You can also create and manage the Snapshot policies and schedules.

Mirror relationships

You can use System Manager to create and manage mirror relationships by using the mirror policy.

Creating a mirror relationship from a destination SVM

You can use ONTAP System Manager to create a mirror relationship from the destination storage virtual machine (SVM) and to assign a policy and schedule to the mirror relationship. The mirror copy enables quick availability of data if the data on the source volume is corrupted or lost.

Before you begin

- The source cluster must be running ONTAP 8.2.2 or later.
- The SnapMirror license must be enabled on the source cluster and destination cluster.

 Note: For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license and Data Protection Optimization (DPO) license enabled.
- While mirroring a volume, if you select a SnapLock volume as the source, then the SnapMirror license and SnapLock license must be installed on the destination cluster.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The destination SVM must have space available.
- A source volume of type read/write (rw) must exist.
- The FlexVol volumes must be online and must be of type read/write.
- The SnapLock aggregate type must be of the same type.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task

- System Manager does not support a cascade relationship.
 For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You cannot create a mirror relationship between a sync-source SVM and a sync-destination SVM in a MetroCluster configuration.
- You can create a mirror relationship between sync-source SVMs in a MetroCluster configuration.
- You can create a mirror relationship from a volume on a sync-source SVM to a volume on a data-serving SVM.
• You can create a mirror relationship from a volume on a data-serving SVM to a data protection (DP) volume on a sync-source SVM.

• You can create a mirror relationship between SnapLock volumes of the same type only. For example, if the source volume is a SnapLock Enterprise volume, then the destination volume must also be a SnapLock Enterprise volume. You must ensure that the destination SVM has aggregates of the same SnapLock type available.

• The destination volume that is created for a mirror relationship is not thin provisioned.

• A maximum of 25 volumes can be protected in one selection.

• You cannot create a mirror relationship between SnapLock volumes if the destination cluster is running a version of ONTAP that is older than the ONTAP version that the source cluster is running.

Steps
1. Click Protection > Volume Relationships.
2. In the Volume Relationships window, click Create.
3. In the Browse SVM dialog box, select an SVM for the destination volume.
4. In the Create Protection Relationship dialog box, select Mirror from the Relationship Type drop-down list.
5. Specify the cluster, the SVM, and the source volume.
 If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
6. For FlexVol volumes, specify a volume name suffix.
 The volume name suffix is appended to the source volume names to generate the destination volume names.
7. Optional: Click Browse, and then change the mirror policy.
8. Select a schedule for the relationship from the list of existing schedules.
9. Optional: Select Initialize Relationship to initialize the mirror relationship.
10. Enable FabricPool-enabled aggregates, and then select an appropriate tiering policy.
11. Click Create.

Result
If you chose to create a destination volume, a destination volume of type dp is created, with the language attribute set to match the language attribute of the source volume.

A mirror relationship is created between the source volume and the destination volume. The base Snapshot copy is transferred to the destination volume if you have opted to initialize the relationship.

Related references
Protection window on page 401
Deleting mirror relationships

You can delete a mirror relationship and permanently end the mirror relationship between the source and destination volumes. When a mirror relationship is deleted, the base Snapshot copy on the source volume is deleted.

About this task

It is a best practice to break the mirror relationship before deleting the relationship.

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror relationship that you want to delete and click Delete.
3. Select the confirmation check boxes to delete the mirror relationship and to release the base Snapshot copies, and then click Delete.

Result

The relationship is deleted, and the base Snapshot copy on the source volume is deleted.

Related references

Protection window on page 401

Editing mirror relationships

You can use System Manager to edit a mirror relationship either by selecting an existing policy or schedule in the cluster, or by creating a policy or schedule.

About this task

• You cannot edit a mirror relationship that is created between a volume in Data ONTAP 8.2.1 and a volume in ONTAP 8.3 or later.
• You cannot edit the parameters of an existing policy or schedule.
• You can modify the relationship type of a version-flexible mirror relationship, vault relationship, or mirror and vault relationship by modifying the policy type.

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror relationship for which you want to modify the policy or schedule, and then click Edit.
3. In the Edit Relationship dialog box, select an existing policy or create a policy:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Do the following…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select an existing policy</td>
<td>Click Browse, and then select an existing policy.</td>
</tr>
</tbody>
</table>
If you want to… | Do the following…
---|---
Create a policy | a. Click Create Policy.
| b. Specify a name for the policy.
| c. Set the priority for scheduled transfers.
 Low indicates that the transfer has the least priority and is usually scheduled after normal priority transfers. By default, the priority is set to Normal.
| d. Select the Transfer All Source Snapshot Copies check box to include the “all_source_snapshots” rule to the mirror policy, which enables you to back up all of the Snapshot copies from the source volume.
| e. Select the Enable Network Compression check box to compress the data that is being transferred.
| f. Click Create.

4. Specify a schedule for the relationship:

If…	Do the following…
You want to assign an existing schedule | From the list of schedules, select an existing schedule.

You want to create a schedule | a. Click Create Schedule.
| b. Specify a name for the schedule.
| c. Select either Basic or Advanced.
 • Basic specifies only the day of the week, time, and the transfer interval.
 • Advanced creates a cron-style schedule.
| d. Click Create.

You do not want to assign a schedule | Select None.

5. Click OK to save the changes.

Related references

Protection window on page 401

Initializing mirror relationships

When you start a mirror relationship, you must initialize that relationship. Initializing a relationship consists of a complete baseline transfer of data from the source volume to the destination. You can use System Manager to initialize a mirror relationship if you have not already initialized the relationship while creating it.

About this task

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror relationship that you want to initialize.
3. Click **Operations > Initialize**.
4. Select the confirmation check box and click **Initialize**.
5. Verify the status of the mirror relationship in the **Protection** window.

Result

A Snapshot copy is created and transferred to the destination. This Snapshot copy is used as a baseline for subsequent incremental Snapshot copies.

Related references

Protection window on page 401

Updating mirror relationships

You can initiate an unscheduled mirror update of the destination. You might have to perform a manual update to prevent data loss due to an upcoming power outage, scheduled maintenance, or data migration.

Before you begin

The mirror relationship must be in a Snapmirrored state.

About this task

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror relationship for which you want to update the data, and click **Operations > Update**.
3. Choose one of the following options:
 - Select **On demand** to perform an incremental transfer from the recent common Snapshot copy between the source and destination volumes.
 - Select **Select Snapshot copy** and specify the Snapshot copy that you want to transfer.
4. Optional: Select **Limit transfer bandwidth to** to limit the network bandwidth used for transfers and specify the maximum transfer speed.
5. Click **Update**.
6. Verify the transfer status in the **Details** tab.

Related references

Protection window on page 401
Quiescing mirror relationships

You can use System Manager to quiesce a mirror destination to stabilize it before creating a Snapshot copy. The quiesce operation enables active mirror transfers to finish and disables future transfers for the mirroring relationship.

About this task

You can quiesce only mirror relationships that are in the Snapmirrored state.

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror relationship that you want to quiesce.
3. Click Operations > Quiesce.
4. Select the confirmation check box and click Quiesce.

Related references

Protection window on page 401

Resuming mirror relationships

You can resume a quiesced mirror relationship. When you resume the relationship, normal data transfer to the mirror destination is resumed and all the mirror activities are restarted.

About this task

If you have quiesced a broken mirror relationship from the command-line interface (CLI), you cannot resume the relationship from System Manager. You must use the CLI to resume the relationship.

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror relationship that you want to resume.
3. Click Operations > Resume.
4. Select the confirmation check box and click Resume.

Result

Data transfer to the mirror destination resumes for the selected mirror relationship.

Related references

Protection window on page 401

Breaking SnapMirror relationships

You must break a SnapMirror relationship if a SnapMirror source becomes unavailable and you want client applications to be able to access the data from the mirror destination. After the SnapMirror
relationship is broken, the destination volume type changes from "data protection" (DP) to "read/write" (RW).

Before you begin

- The SnapMirror destination must be in the quiesced state or idle state.
- The destination volume must be mounted on the destination storage virtual machine (SVM) namespace.

About this task

- You can use the destination volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.
- You can break SnapMirror relationships between ONTAP systems and SolidFire storage systems.
- If you are breaking a FlexGroup volume relationship, you must refresh the page to view the updated status of the relationship.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror relationship that you want to break.
3. Click **Operations > Break**.
4. Select the confirmation check box, and then click **Break**.

Result

The data protection SnapMirror relationship is broken. The destination volume type changes from data protection (DP), read-only, to read/write (RW). The system stores the base Snapshot copy for the data protection mirror relationship for later use.

Related references

Protection window on page 401

Resynchronizing mirror relationships

You can reestablish a mirror relationship that was broken earlier. You can perform a resynchronization operation to recover from a disaster that disabled the source volume.

Before you begin

The source cluster and destination cluster and the source SVM and destination SVM must be in peer relationships.

About this task

- When you perform a resynchronization operation, the contents on the mirror destination are overwritten by the contents on the source volume.

Attention:

- For SnapLock compliance volumes, all data changes in the active file system with reference to the common Snapshot copy are preserved in a locked Snapshot copy until the expiry time that is set for the current volume.
If the volume expiry time is in the past or has not been set, then the Snapshot copy and the common Snapshot copy are locked for a duration of 30 days. All of the intermediate Snapshot copies between the common Snapshot copy and the latest locked Snapshot copy are deleted.

- For all volumes other than SnapLock compliance volumes, the resynchronization operation might cause loss of newer data that is written to the destination volume after the base Snapshot copy was created.

- If the Last Transfer Error field in the Protection window recommends a resynchronization operation, you must first break the relationship, and then perform the resynchronization operation.

Steps
1. Click Protection > Volume Relationships.
2. Select the mirror relationship that you want to resynchronize.
3. Click Operations > Resync.
4. Select the confirmation checkbox, and then click Resync.

Related references
Protection window on page 401

Reverse resynchronizing mirror relationships
You can use System Manager to reestablish a mirror relationship that was previously broken. In a reverse resynchronization operation, you reverse the functions of the source volume and destination volume.

Before you begin
The source volume must be online.

About this task
- You can use the destination volume to serve data while you repair or replace the source volume, update the source volume, and reestablish the original configuration of the systems.
- When you perform reverse resynchronization, the contents on the mirror source are overwritten by the contents on the destination volume.

Attention:
- For SnapLock compliance volumes, all data changes in the active file system with reference to the common Snapshot copy are preserved in a locked Snapshot copy until the expiry time that is set for the current volume.
 If the volume expiry time is in the past or has not been set, then the Snapshot copy and the common Snapshot copy are locked for a duration of 30 days. All of the intermediate Snapshot copies between the common Snapshot copy and the latest locked Snapshot copy are deleted.
- For all volumes other than SnapLock compliance volumes, the resynchronization operation might cause loss of newer data that is written to the source volume after the base Snapshot copy was created.
When you perform reverse resynchronization, the mirror policy of the relationship is set to DPDefault, and the mirror schedule is set to None.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror relationship that you want to reverse.
3. Click **Operations > Reverse Resync**.
4. Select the confirmation checkbox, and then click **Reverse Resync**.

Related references

Protection window on page 401

Aborting a mirror transfer

You can abort a volume replication operation before the data transfer is complete. You can abort a scheduled update, a manual update, or an initial data transfer.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the relationship for which you want to stop the data transfer, and click **Operations > Abort**.
3. Click the **Yes, I want to abort the transfer** check box to confirm the operation.
4. Optional: Click the **Keep any partially transferred data** check box to retain the data that is already transferred to the destination volume.
5. Click **Abort**.

The transfer status is displayed as “Aborting” until the operation is complete and displayed as “Idle” after the operation is complete.

Related references

Protection window on page 401

Restoring a volume in a mirror relationship

For a version-independent mirror relationship, you can use System Manager to restore Snapshot copies to a source volume or to other volumes if the source data is corrupted and is no longer usable. You can replace the original data with the Snapshot copies in the destination volume.

Before you begin

- The SnapMirror license must be enabled on both the source cluster and the destination cluster or on the nodes that contain the source volume and destination volume.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The source aggregate or any other aggregate that you select for the restore operation must be a 64-bit aggregate.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security Assertion Markup Language (SAML) authentication is enabled, password-based authentication must also be enabled on the remote cluster.
About this task

• You cannot restore a volume that is in a mirror relationship between a source storage virtual machine (SVM) and a destination SVM in a MetroCluster configuration.

• You cannot perform a restore operation on SnapLock volumes.

• You can restore a mirror relationship between sync-source SVMs in a MetroCluster configuration.

• You can restore a mirror relationship from a volume on a sync-source SVM to a default SVM.

• You can restore a mirror relationship from a volume on a default SVM to a DP volume on a sync-source SVM.

Steps

1. Click Protection > Volume Relationships.

2. Select the mirror relationship, and then click Operations > Restore.

3. In the Restore dialog box, restore the data to the source volume in the mirror relationship or select any other volume:

<table>
<thead>
<tr>
<th>If you want to restore the data to…</th>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>The source volume</td>
<td>a. Select Source volume.</td>
</tr>
<tr>
<td></td>
<td>b. Go to Step 7.</td>
</tr>
<tr>
<td>Any other volume</td>
<td>Select Other volume, and then select the cluster and SVM from the list.</td>
</tr>
</tbody>
</table>

4. Restore the data to a new volume or to an existing volume:

<table>
<thead>
<tr>
<th>If you want to restore the data to…</th>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new volume</td>
<td>If you want to change the default name, displayed in the format destination_SVM_name_destination_volume_name_restore, specify a new name, and then select the containing aggregate for the volume.</td>
</tr>
<tr>
<td>An existing volume</td>
<td>Select the Select Volume option. You must select a volume other than the source volume, or a read/write volume with some data in it and with a common Snapshot copy. Only those volumes with the same language attribute as the source volume are listed.</td>
</tr>
</tbody>
</table>

5. Select either the latest Snapshot copy or the specific Snapshot copy that you want to restore.

6. Select the confirmation checkbox to restore the volume from the Snapshot copy.

7. Optional: Select the Enable Network Compression checkbox to compress the data that is being transferred during the restore operation.

8. Click Restore.
How SnapMirror relationships work

You can create a data protection mirror relationship to a destination within a cluster to protect your data. For greater disaster protection, you can also create a mirror relationship to a destination in a different cluster in a different location.

A data protection mirror configuration consists of a source volume that can be replicated to one or more destination volumes. Each data protection mirror relationship is independent from the other data protection mirror relationships.

Note: The destination volume must be running either the same ONTAP version as that of the source volume or a later version of ONTAP than that of the source volume.

Snapshot copies are used to update destination volumes. Snapshot copies are transferred from the source volume to the destination volume by using an automated schedule or manually; therefore, mirrors copies are updated asynchronously.

You can create data protection mirror relationships to destinations that are on the same aggregate as the source volume as well as to destinations that are on the same storage virtual machine (SVM) or on a different SVM. For greater protection, you can create the relationships to destinations on a different aggregate, which enables you to recover from any failure of the source volume's aggregate. However, these two configurations do not protect against a cluster failure.

To protect against a cluster failure, you can create a data protection mirror relationship in which the source volume is on one cluster and the destination volume is on a different cluster. If the cluster on which the source volume resides experiences a disaster, you can direct user clients to the destination volume on the cluster peer until the source volume is available again.

Vault relationships

You can use System Manager to create and manage vault relationships by using the vault policy.

Creating a vault relationship from a destination SVM

You can use System Manager to create a vault relationship from the destination storage virtual machine (SVM), and to assign a vault policy to create a backup vault. In the event of data loss or corruption on a system, backed-up data can be restored from the backup vault destination.

Before you begin

• The source cluster must be running ONTAP 8.2.2 or later.
• SnapVault license or SnapMirror license must be enabled on both the source cluster and the destination cluster.

 Note: For some platforms, it is not mandatory for the source cluster to have the SnapVault license or the SnapMirror license enabled if the destination cluster has the SnapVault license or the SnapMirror license, and DPO license enabled.
• The source cluster and destination cluster must be in a healthy peer relationship.
• The destination SVM must have space available.
• The source aggregate and the destination aggregate must be 64-bit aggregates.
• A source volume of type read/write (rw) must exist.
• A vault (XDP) policy must exist.
If a vault policy does not exist, you must create a vault policy or accept the default vault policy (XDPDefault) that is automatically assigned.

- FlexVol volumes must be online and read/write.
- The SnapLock aggregate type must be the same.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task

- System Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You cannot create a vault relationship between a sync-source SVM and a sync-destination SVM in a MetroCluster configuration.
- You can create a vault relationship between sync-source SVMs in a MetroCluster configuration.
- You can create a vault relationship from a volume on a sync-source SVM to a volume on a data-serving SVM.
- You can create a vault relationship from a volume on a data-serving SVM to a data protection (DP) volume on a sync-source SVM.
- You can create a vault relationship only between a non-SnapLock (primary) volume and a SnapLock destination (secondary) volume.
- A maximum of 25 volumes can be protected in one selection.

Steps

1. Click **Protection > Volume Relationships**.
2. In the **Relationships** window, click **Create**.
3. In the **Browse SVM** dialog box, select an SVM for the destination volume.
4. In the **Create Protection Relationship** dialog box, select **Vault** from the **Relationship Type** drop-down list.
5. Specify the cluster, the SVM, and the source volume.
 If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
6. Enter a volume name suffix.
 The volume name suffix is appended to the source volume names to generate the destination volume names.
7. If you are creating a SnapLock volume, specify the default retention period.
 The default retention period can be set to any value between 1 day through 70 years or Infinite.
8. Optional: Click **Browse**, and then change the vault policy.
9. Select a schedule for the relationship from the list of existing schedules.
10. Optional: Select **Initialize Relationship** to initialize the vault relationship.
11. Enable SnapLock aggregates, and then select a SnapLock Compliance aggregate or a SnapLock Enterprise aggregate.

12. Enable FabricPool-enabled aggregates, and then select an appropriate tiering policy.

13. Click Validate to verify whether the selected volumes have matching labels.

14. Click Create.

Result
If you chose to create a destination volume, a volume of type dp is created with the following default settings:

- Autogrow is enabled.
- Deduplication is enabled or disabled according to the user preference or the source volume deduplication setting.
- Compression is disabled.
- The language attribute is set to match the language attribute of the source volume.

A vault relationship is created between the destination volume and the source volume. The base Snapshot copy is transferred to the destination volume if you have opted to initialize the relationship.

Related references
Protection window on page 401

Deleting vault relationships
You can use System Manager to end a vault relationship between a source and destination volume, and release the Snapshot copies from the source.

About this task
Releasing the relationship permanently removes the base Snapshot copies used by the vault relationship on the source volume. To re-create the vault relationship, you must run the resynchronization operation from the source volume by using the command-line interface (CLI).

Steps
1. Click Protection > Volume Relationships.
2. Select the volume for which you want to delete the vault relationship, and click Delete.
3. Select the confirmation check box, and then click Delete.
 - You can also select the release base Snapshot copies check box to delete the base Snapshot copies used by the vault relationship on the source volume.
 - If the relationship is not released, then you must use the CLI to run the release operation on the source cluster to delete the base Snapshot copies that were created for the vault relationship from the source volume.

Related references
Protection window on page 401
Editing vault relationships

You can use System Manager to edit a vault relationship either by selecting an existing policy or schedule in the cluster, or by creating a new policy or schedule. However, you cannot edit the parameters of an existing policy or schedule.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

Steps

1. Click Protection > Volume Relationships.

2. Select the vault relationship for which you want to modify the policy or schedule, and then click Edit.

3. In the Edit Relationship dialog box, select the appropriate action:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Do the following…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select an existing policy</td>
<td>Click Browse, and then select an existing policy. You can select a policy that has the maximum number of matching labels with the Snapshot policy that is attached to the source volume.</td>
</tr>
</tbody>
</table>
| Create a new policy | a. Click Create Policy.
 b. Specify a name for the policy.
 c. Set the priority for scheduled transfers. Low indicates that the transfer has the least priority and is usually scheduled after normal priority transfers. By default, the priority is set to Normal.
 d. Select the Enable Network Compression check box to compress the data that is being transferred.
 e. Specify a SnapMirror label and destination retention count for the vault policy. You must ensure that a Snapshot copy with the same label is created on the source volume for the new SnapMirror label to be effective.
 f. Click Create. |

4. Specify a schedule for the relationship:

<table>
<thead>
<tr>
<th>If…</th>
<th>Do the following…</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to assign an existing schedule</td>
<td>Select an existing schedule from the list.</td>
</tr>
</tbody>
</table>
If… | Do the following…
---|---
You want to create a new schedule | a. Click **Create Schedule**.
b. Specify a name for the schedule.
c. Select one of the following options:
 • **Basic**
 You can select this option to specify only the day of the week, time, and the transfer interval.
 • **Advanced**
 You can select this option to specify a cron-style schedule.
d. Click **Create**.
You do not want to assign a schedule | Select **None**.

5. Click **OK**.

Related references

Protection window on page 401

Initializing a vault relationship

You can use System Manager to initialize a vault relationship if you have not already initialized it while creating the relationship. A baseline transfer of data is initiated from the source FlexVol volume to the destination FlexVol volume.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the relationship you want to initialize, and click **Operations > Initialize**.
3. In the **Initialize** window, click **Initialize**.

Result

A Snapshot copy is created and transferred to the destination.

This Snapshot copy is used as a baseline for subsequent incremental Snapshot copies.

Related references

Protection window on page 401

Updating a vault relationship

You can use System Manager to manually initiate an unscheduled incremental update. You might require a manual update to prevent data loss due to an upcoming power outage, scheduled maintenance, or data migration.

Before you begin

The vault relationship must be initialized.
Steps
1. Click Protection > Volume Relationships.
2. Select the relationship for which you want to update the data, and click Operations > Update.
3. Choose one of the following options:
 - Select As Per Policy to perform an incremental transfer from the recent common Snapshot copy between the source and destination volumes.
 - Select Select Snapshot copy and specify the Snapshot copy that you want to transfer.
4. Optional: Select Limit transfer bandwidth to to limit the network bandwidth that is used for transfers and specify the maximum transfer speed.
5. Click Update.
6. Verify the transfer status in the Details tab.

Related references
 Protection window on page 401

Quiescing a vault relationship
You can use System Manager to disable data transfers to the destination FlexVol volume by quiescing the vault relationship.

Steps
1. Click Protection > Volume Relationships.
2. Select the relationship for which you want to stop the scheduled data transfers, and click Operations > Quiesce.
3. In the Quiesce window, click Quiesce.

Result
If there is no transfer in progress, the transfer status is displayed as Quiesced. If a transfer is in progress, the transfer is not affected, and the transfer status is displayed as Quiescing until the transfer is complete.

Related references
 Protection window on page 401

Resuming a vault relationship
You can resume a quiesced vault relationship by using System Manager. When you resume the relationship, normal data transfer to the destination FlexVol volume is resumed and all vault activities are restarted.

Steps
1. Click Protection > Volume Relationships.
2. Select the relationship for which you want to resume the data transfer, and click Operations > Resume.
3. In the Resume window, click Resume.
Result
Normal data transfers are resumed. If there is a scheduled transfer for the relationship, the transfer is started from the next schedule.

Related references
Protection window on page 401

Aborting a Snapshot copy transfer
You can use System Manager to abort or stop a data transfer that is currently in progress.

Steps
1. Click Protection > Volume Relationships.
2. Select the relationship for which you want to stop the data transfer, and click Operations > Abort.
3. Select the Yes, I want to abort the transfer check box to confirm the operation.
4. Optional: Select the Keep any partially transferred data check box to retain the data that is already transferred to the destination volume.
5. Click Abort.

Result
The transfer status is displayed as “Aborting” until the operation is complete and displayed as “Idle” after the operation is complete.

Related references
Protection window on page 401

Restoring a volume in a vault relationship
You can use System Manager to restore Snapshot copies to a source volume or to other volumes if the source data is corrupted and is no longer usable. You can replace the original data with the Snapshot copies in the destination volume.

Before you begin
• The SnapMirror license must be enabled on both the source storage system and the destination storage system or on the nodes that contain the source volume and destination volume.
• The source cluster and destination cluster must be in a healthy peer relationship.
• The source aggregate or any other aggregate that you select for the restore operation must be a 64-bit aggregate.
• If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must also be enabled on the remote cluster.

About this task
• You cannot restore a volume that is in a vault relationship between a source storage virtual machine (SVM) and a destination SVM in a MetroCluster configuration.
• You can restore a vault relationship between sync-source SVMs in a MetroCluster configuration.
• You can restore a vault relationship from a volume on a sync-source SVM to a default SVM.
• You can restore a vault relationship from a volume on a default SVM to a DP volume on a sync-
source SVM.

Steps
1. Click Protection > Volume Relationships.
2. Select the vault relationship, and then click Operations > Restore.
3. In the Restore dialog box, restore the data to the source volume in the vault relationship or select
any other volume:

<table>
<thead>
<tr>
<th>If you want to restore the data to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The source volume</td>
<td>a. Select Source volume.</td>
</tr>
<tr>
<td></td>
<td>b. Go to Step 6.</td>
</tr>
<tr>
<td>Any other volume</td>
<td>Select Other volume, and then select the cluster and SVM from the list.</td>
</tr>
</tbody>
</table>

4. Restore the data to a new volume or select any existing volume:

<table>
<thead>
<tr>
<th>If you want to restore the data to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new volume</td>
<td>If you want to change the default name, displayed in the format destination_SVM_name_destination_volume_name_restore, specify a new name, and then select the containing aggregate for the volume.</td>
</tr>
<tr>
<td>An existing volume</td>
<td>Select the Select Volume option.</td>
</tr>
<tr>
<td></td>
<td>You must select a volume other than the source volume, or a read/write volume with some data in it and with a common Snapshot copy.</td>
</tr>
<tr>
<td></td>
<td>Only those volumes with the same language attribute as the source volume are listed.</td>
</tr>
</tbody>
</table>

5. Select either the latest Snapshot copy or the specific Snapshot copy that you want to restore.
6. Select the confirmation check box to restore the volume from the Snapshot copy.
7. Optional: Select the Enable Network Compression check box to compress the data that is being transferred during the restore operation.
8. Click Restore.

Related references
Protection window on page 401

What a SnapVault backup is
A SnapVault backup is a collection of Snapshot copies on a FlexVol volume that you can restore data from if the primary data is not usable. Snapshot copies are created based on a Snapshot policy. The SnapVault backup backs up Snapshot copies based on its schedule and SnapVault policy rules.

A SnapVault backup is a disk-to-disk backup solution that you can also use to offload tape backups. In the event of data loss or corruption on a system, backed-up data can be restored from the SnapVault secondary volume with less downtime and uncertainty than is associated with conventional tape backup and restore operations.
The following terms are used to describe SnapVault backups:

baseline transfer
An initial complete backup of a primary storage volume to a corresponding volume on the secondary system.

secondary volume
A volume to which data is backed up from a primary volume. Such a volume can be a secondary or tertiary (and onward) destination in a cascade or fanout backup configuration. The SnapVault secondary system maintains Snapshot copies for long-term storage and possible restore operations.

incremental transfer
A follow-up backup to the secondary system that contains only the changes to the primary data since the last transfer action.

SnapMirror label
An attribute that identifies Snapshot copies for the purpose of selection and retention in SnapVault backups. Each SnapVault policy configures the rules for selecting Snapshot copies on the primary volume and transferring the Snapshot copies that match a given SnapMirror label.

Snapshot copy
The backup images on the source volume that are created manually or automatically as scheduled by an assigned policy. Baseline Snapshot copies contain a copy of the entire source data being protected; subsequent Snapshot copies contain differential copies of the source data. Snapshot copies can be stored on the source volume or on a different destination volume in a different storage virtual machine (SVM) or cluster.

Snapshot copies capture the state of volume data on each source system. For SnapVault and mirror relationships, this data is transferred to destination volumes.

primary volume
A volume that contains data that is to be backed up. In cascade or fanout backup deployments, the primary volume is the volume that is backed up to a SnapVault backup, regardless of where in the chain the SnapVault source is. In a cascade chain configuration in which A has a mirror relationship to B and B has a SnapVault relationship to C, B serves as the source for the SnapVault backup even though it is a secondary destination in the chain.

SnapVault relationship
A backup relationship, configured as a SnapVault relationship, between a primary volume and a secondary volume.

Related references
Protection window on page 401

Mirror and vault relationships
You can use System Manager to create and manage mirror and vault relationships by using the mirror and vault policy.

Creating a mirror and vault relationship from a destination SVM
You can use System Manager to create a mirror and vault relationship from the destination storage virtual machine (SVM). Creating this relationship enables you to better protect your data by
periodically transferring data from the source volume to the destination volume. It also enables you to retain data for long periods by creating backups of the source volume.

Before you begin

- The destination cluster must be running ONTAP 8.3.2 or later.
- SnapMirror license must be enabled on the source cluster and destination cluster.

 Note: For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license and Data Protection Optimization (DPO) license enabled.

- The source cluster and destination cluster must be in a healthy peer relationship.
- The destination SVM must have space available.
- The source aggregate and destination aggregate must be 64-bit aggregates.
- A source volume of type read/write (rw) must already exist.
- The SnapLock aggregate type must be the same.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task

- System Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You cannot create a mirror and vault relationship between a sync-source SVM and a sync-destination SVM in a MetroCluster configuration.
- You can create a mirror and vault relationship between sync-source SVMs in a MetroCluster configuration.
- You can create a mirror and vault relationship from a volume on a sync-source SVM to a volume of a data-serving SVM.
- You can create a mirror and vault relationship from a volume on a data-serving SVM to a DP volume on a sync-source SVM.
- A maximum of 25 volumes can be protected in one selection.

Steps

1. Click **Protection > Volume Relationships**.

2. In the **Relationships** window, click **Create**.

3. In the **Browse SVM** dialog box, select an SVM for the destination volume.

4. In the **Create Protection Relationship** dialog box, select **Mirror and Vault** from the **Relationship Type** drop-down list.

5. Specify the cluster, the SVM, and the source volume.

 If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
6. Enter a volume name suffix.
 The volume name suffix is appended to the source volume names to generate the destination
 volume names.

7. Optional: Click Browse, and then change the mirror and vault policy.
 You can select the policy that has the maximum number of matching labels with the Snapshot
 policy that is attached to the source volume.

8. Select a schedule for the relationship from the list of existing schedules.

9. Optional: Select Initialize Relationship to initialize the relationship.

10. Enable FabricPool-enabled aggregates, and then select an appropriate tiering policy.

11. Click Validate to verify whether the selected volumes have matching labels.

12. Click Create.

Deleting mirror and vault relationships

You can use System Manager to end a mirror and vault relationship between a source and destination
volume, and release the Snapshot copies from the source volume.

About this task

- It is a best practice to break the mirror and vault relationship before deleting the relationship.
- To re-create the relationship, you must run the resynchronization operation from the source
 volume by using the command-line interface (CLI).

Steps

1. Click Protection > Volume Relationships.

2. Select the mirror and vault relationship that you want to delete and click Delete.

3. Select the confirmation check box, and then click Delete.
 You can also select the release base Snapshot copies check box to delete the base Snapshot copies
 used by the mirror and vault relationship on the source volume.
 If the relationship is not released, then you must use the CLI to run the release operation on the
 source cluster to delete the base Snapshot copies that were created for the mirror and vault
 relationship from the source volume.

Result

The relationship is deleted and the base Snapshot copies on the source volume are permanently
deleted.

Editing mirror and vault relationships

You can use System Manager to edit a mirror and vault relationship by modifying the selected policy
or schedule. However, you cannot edit the parameters of an existing policy or schedule.

Before you begin

The source and destination clusters must be in a healthy peer relationship.
About this task

You can modify the relationship type of a version-flexible mirror relationship, vault relationship, or mirror and vault relationship by modifying the policy type.

Steps

1. Click Protection > Volume Relationships.

2. Select the mirror and vault relationship that you want to modify, and then click Edit.

3. In the Edit Relationship dialog box, select the appropriate action:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Do the following…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select an existing policy</td>
<td>Click Browse, and then select an existing policy. You can select a policy that has the maximum number of matching labels with the Snapshot policy that is attached to the source volume.</td>
</tr>
<tr>
<td>Create a new policy</td>
<td>a. Click Create Policy. b. Specify a name for the policy. c. Set the priority for scheduled transfers. Low indicates that the transfer has the least priority and is usually scheduled after normal priority transfers. By default, the priority is set to Normal. d. Select the Enable Network Compression check box to compress the data that is being transferred. e. Specify a SnapMirror label and destination retention count for the vault policy. You must ensure that a Snapshot copy with the same label is created on the source volume for the new SnapMirror label to be effective. f. Click Create.</td>
</tr>
</tbody>
</table>

4. Specify a schedule for the relationship:

<table>
<thead>
<tr>
<th>If…</th>
<th>Do the following…</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to assign an existing schedule</td>
<td>Click Browse, and then select an existing schedule.</td>
</tr>
<tr>
<td>You want to create a new schedule</td>
<td>a. Click Create Schedule. b. Specify a name for the schedule. c. Select one of the following options: • Basic You can select this option to specify only the day of the week, time, and the transfer interval. • Advanced You can select this option to specify a cron style schedule. d. Click Create.</td>
</tr>
<tr>
<td>You do not want to assign a schedule</td>
<td>Select None.</td>
</tr>
</tbody>
</table>

5. Click OK.
Initializing mirror and vault relationships

You can use System Manager to initialize a mirror and vault relationship if you have not already initialized the relationship while creating it. When you initialize a relationship, a complete baseline transfer of data is performed from the source volume to the destination.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror and vault relationship that you want to initialize, and then click Operations > Initialize.
3. Select the confirmation check box, and then click Initialize.
4. Verify the status of the relationship in the Protection window.

Result

A Snapshot copy is created and transferred to the destination.

This Snapshot copy is used as a baseline for subsequent incremental Snapshot copies.

Updating mirror and vault relationships

You can use System Manager to manually initiate an unscheduled incremental update. You might require a manual update to prevent data loss due to an upcoming power outage, scheduled maintenance, or data migration.

Before you begin

The mirror and vault relationship must be initialized and in a Snapmirrored state.

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror relationship for which you want to update the data, and then click Operations > Update.
3. Choose one of the following options:
 - Select As Per Policy to perform an incremental transfer from the recent common Snapshot copy between the source and destination volumes.
 - Select Select Snapshot copy and specify the Snapshot copy that you want to transfer.
4. Optional: Select Limit transfer bandwidth to to limit the network bandwidth that is used for transfers, and then specify the maximum transfer speed.
5. Click Update.
6. Verify the transfer status in the Details tab.
Quiescing mirror and vault relationships

You can use System Manager to quiesce a destination volume to stabilize the destination before creating a Snapshot copy. The quiesce operation enables active data transfers to finish and disables future transfers for the mirror and vault relationship.

Before you begin

The mirror and vault relationship must be in a Snapmirrored state.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror and vault relationship that you want to quiesce, and then click **Operations > Quiesce**.
3. Select the confirmation check box, and then click **Quiesce**.

Result

If there is no transfer in progress, the transfer status is displayed as Quiesced. If a transfer is in progress, the transfer is not affected, and the transfer status is displayed as Quiescing until the transfer is complete.

Resuming mirror and vault relationships

If you have a quiesced mirror and vault relationship, you can resume the relationship by using System Manager. When you resume the relationship, normal data transfer to the destination volume is resumed and all the protection activities are restarted.

About this task

If you have quiesced a broken mirror and vault relationship from the command-line interface (CLI), you cannot resume the relationship from System Manager. You must use the CLI to resume the relationship.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror and vault relationship that you want to resume, and then click **Operations > Resume**.
3. Select the confirmation check box, and then click **Resume**.

Result

Normal data transfers are resumed. If there is a scheduled transfer for the relationship, the transfer is started from the next schedule.

Breaking mirror and vault relationships

You can use System Manager to break a mirror and vault relationship if a source volume becomes unavailable and you want client applications to access the data from the destination volume. You can
use the destination volume to serve data while you repair or replace the source volume, update the source volume, and reestablish the original configuration of the systems.

Before you begin

- The mirror and vault relationship must be in the quiesced state or idle state.
- The destination volume must be mounted on the destination storage virtual machine (SVM) namespace.

About this task

You can break mirror relationships between ONTAP systems and SolidFire storage systems.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror and vault relationship that you want to break, and then click **Operations > Break**.
3. Select the confirmation check box, and then click **Break**.

Result

The mirror and vault relationship is broken. The destination volume type changes from data protection (DP) read-only to read/write. The system stores the base Snapshot copy for the mirror and vault relationship for later use.

Resynchronizing mirror and vault relationships

You can use System Manager to reestablish a mirror and vault relationship that was broken earlier. You can perform a resynchronization operation to recover from a disaster that disabled the source volume.

Before you begin

The source and destination clusters and the source and destination storage virtual machines (SVMs) must be in peer relationships.

About this task

You should be aware of the following before performing a resynchronization operation:

- When you perform a resynchronization operation, the contents on the destination volume are overwritten by the contents on the source.

 Attention: The resynchronization operation can cause loss of newer data written to the destination volume after the base Snapshot copy was created.

- If the Last Transfer Error field in the Protection window recommends a resynchronization operation, you must first break the relationship and then perform the resynchronization operation.

Steps

1. Click **Protection > Volume Relationships**.
2. Select the mirror and vault relationship that you want to resynchronize, and then click **Operations > Resync**.
3. Select the confirmation check box, and then click **Resync**.
Reverse resynchronizing mirror and vault relationships

You can use System Manager to reestablish a mirror and vault relationship that was previously broken. In a reverse resynchronization operation, the functions of the source and destination volumes are reversed. You can use the destination volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.

Before you begin

The source volume must be online.

About this task

• When you perform reverse resynchronization, the contents on the source volume are overwritten by the contents on the destination volume.

 Attention: The reverse resynchronization operation can cause data loss on the source volume.

• When you perform reverse resynchronization, the policy of the relationship is set to MirrorAndVault and the schedule is set to None.

Steps

1. Click Protection > Volume Relationships.

2. Select the mirror and vault relationship that you want to reverse, and then click Operations > Reverse Resync.

3. Select the confirmation check box, and then click Reverse Resync.

Aborting mirror and vault relationships

You can abort a volume replication operation if you want to stop the data transfer. You can abort a scheduled update, a manual update, or an initial data transfer.

Steps

1. Click Protection > Volume Relationships.

2. Select the mirror and vault relationship for which you want to stop the data transfer, and then click Operations > Abort.

3. Select the Yes, I want to abort the transfer check box to confirm the operation.

4. Optional: Select the Keep any partially transferred data check box to retain the data that is already transferred to the destination volume.

5. Click Abort.

Result

The transfer status is displayed as “Abort” until the operation is complete and displayed as “Idle” after the operation is complete.
Restoring a volume in a mirror and vault relationship

You can use System Manager to restore Snapshot copies to a source volume or to other volumes if the source data is corrupted and is no longer usable. You can replace the original data with the Snapshot copies in the destination volume.

Before you begin

- The SnapMirror license and SnapVault license must be enabled on both the source cluster and the destination cluster or on the nodes that contain the source volume and destination volume.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The source aggregate or any other aggregate that you select for the restore operation must be a 64-bit aggregate.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must also be enabled on the remote cluster.

About this task

- You cannot restore a volume that is in a mirror and vault relationship between a source storage virtual machine (SVM) and a destination SVM in a MetroCluster configuration.
- You can restore a mirror and vault relationship for the following configurations:
 - Between sync-source SVMs in a MetroCluster configuration
 - From a volume on a sync-source SVM to a default SVM
 - From a volume on a default SVM to a DP volume on a sync-source SVM

Steps

1. Click Protection > Volume Relationships.
2. Select the mirror and vault relationship that you want to restore, and then click Operations > Restore.
3. In the Restore dialog box, restore the data to the source volume in the relationship or select any other volume:

<table>
<thead>
<tr>
<th>If you want to restore the data to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The source volume</td>
<td>a. Select Source volume.</td>
</tr>
<tr>
<td></td>
<td>b. Go to step 6 on page 398.</td>
</tr>
<tr>
<td>Any other volume</td>
<td>Select Other volume, and then select the cluster and the SVM.</td>
</tr>
</tbody>
</table>

4. Restore the data to a new volume or to an existing volume:

<table>
<thead>
<tr>
<th>If you want to restore the data to...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new volume</td>
<td>If you want to change the default name, displayed in the format “destination_SVM_name_destination_volume_name_restore”, specify a new name, and then select the containing aggregate for the volume.</td>
</tr>
</tbody>
</table>
If you want to restore the data to...

<table>
<thead>
<tr>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>An existing volume</td>
</tr>
<tr>
<td>Select the Select Volume option.</td>
</tr>
<tr>
<td>You must select a volume other than the source volume, or a read/write volume with some data in it and with a common Snapshot copy.</td>
</tr>
<tr>
<td>Only those volumes with the same language attribute as the source volume are listed.</td>
</tr>
</tbody>
</table>

5. Select either the latest Snapshot copy or the specific Snapshot copy that you want to restore.

6. Select the confirmation check box to restore the volume from the Snapshot copy.

7. Optional: Select the Enable Network Compression check box to compress the data that is being transferred during the restore operation.

8. Click Restore.

What lag time is

Lag time is the amount of time by which the destination system lags behind the source system.

The lag time is the difference between the current time and the timestamp of the Snapshot copy that was last successfully transferred to the destination system. The lag time will always be at least as much as the duration of the last successful transfer, unless the clocks on the source and destination systems are not synchronized. The time zone difference is automatically calculated into the lag time.

Types of data protection relationships

Depending on your data protection and backup requirements, ONTAP System Manager provides different types of protection relationships that enable you to protect data against accidental, malicious, or disaster-induced loss of data.

Asynchronous replication type

Mirror relationship

A mirror relationship provides asynchronous disaster recovery. Data protection mirror relationships enable you to periodically create Snapshot copies of the data on one volume, to copy those Snapshot copies to a partner volume (the destination volume), which is usually on another cluster, and then to retain those Snapshot copies. If the data on the source volume is corrupted or lost, the mirror copy on the destination volume ensures quick availability and restoration of data from the time of the latest Snapshot copy.

For mirror relationships, the version of ONTAP that is running on the destination cluster must be the same version as or a later version than the ONTAP version running on the source cluster. However, version-flexible mirror relationships are not dependent on the ONTAP version. Therefore, you can create a version-flexible mirror relationship with a destination cluster that is running either a later ONTAP version or an earlier ONTAP version than the ONTAP version of the source cluster or an earlier version of ONTAP than the ONTAP version of the source cluster.

Note:

- The SnapMirror license is required to enable mirror relationship.
- The version-flexible mirror relationship feature is available only from ONTAP 8.3 onward. You cannot have a version-flexible mirror relationship with a volume in Data ONTAP 8.3 or earlier.
Vault relationship

A vault relationship provides storage-efficient and long-term retention of backups. Vault relationships enable you to back up selected Snapshot copies of volumes to a destination volume and to retain the backups.

Note: The SnapMirror or SnapVault license is required to enable vault relationship.

Mirror and vault relationship

A mirror and vault relationship provides data protection by periodically transferring data from the source volume to the destination volume and also facilitates long-term retention of data by creating backups of the source volume.

Note:

- The SnapMirror license is required to enable mirror and vault relationship.
- The mirror and vault relationship feature is available only from ONTAP 8.3.2 onward. You cannot have a mirror and vault relationship with a volume in Data ONTAP 8.3.2 or earlier.

Synchronous replication policy (SnapMirror Synchronous license required)

StrictSync

A StrictSync replication policy will impose input/output (I/O) restrictions on the source volume in case of a replication failure post initialization. A StrictSync replication policy provides data protection by ensuring that the source volume and the destination volume are up to date.

Note:

- If the destination is not Data Protection Optimization (DPO), then the SnapMirror license is required on the source cluster and the destination cluster and the SnapMirror Synchronous license is required on the source cluster.
- If the destination is DPO, then the SnapMirror Synchronous license and the SnapMirror license is required on the source cluster and the DPO license is required on the destination cluster.

Sync

A Sync replication policy does not impose I/O restrictions on the source volume in case of a replication failure post initialization. A Sync replication policy does not transfer data to destination volume after the failure. You need to perform a resynchronization operation to ensure that the source volume and destination volume are up to date.

Note:

- If the destination is not Data Protection Optimization (DPO), then the SnapMirror license is required on the source cluster and the destination cluster and the SnapMirror Synchronous license is required on the source cluster.
- If the destination is DPO, then the SnapMirror Synchronous license and the SnapMirror license is required on the source cluster and the DPO license is required on the destination cluster.
Understanding workloads supported by StrictSync and Sync policies

StrictSync and Sync policies support all LUN-based applications with FC and iSCSI protocols, as well as NFSv3 and NFSv4 protocols for enterprise applications such as databases, VMWare, quota, CIFS, and so on. Starting with ONTAP 9.6, SnapMirror Synchronous can be used for enterprise file services such as electronic design automation (EDA), home directories, and software build workloads.

For a Sync policy, you need to consider a few important aspects while selecting the NFSv3 or NFSv4 workloads. The amount of data read or write operations by workloads is not a consideration, as Sync policy can handle high read or write IO workloads. In ONTAP 9.5, workloads that have excessive file creation, directory creation, file permission changes, or directory permission changes may not be suitable (these are referred to as high-metadata workloads). A typical example of a high-metadata workload is a DevOps workload in which you create multiple test files, run automation, and delete the files. Another example is parallel build workload that generate multiple temporary files during compilation. The impact of a high rate of write metadata activity is that it can cause synchronization between mirrors to temporarily break which stalls the read and write IOs from the client.

Starting with ONTAP 9.6, these limitations are removed and SnapMirror Synchronous can be used for enterprise file services workloads that include multiuser environments, such as home directories and software build workloads.

For information about best practices and sizing of StrictSync policy and Sync policy, see NetApp ONTAP & System Manager Documentation Resources page.

SnapMirror licensing

A SnapMirror license is required on both the source and destination clusters, with limited exceptions as defined below. A SnapVault license is not required if a SnapMirror license is already installed.

DP_Optimized (DPO) license

Starting with ONTAP 9.3, a new DP_Optimized (DPO) license is available that supports an increased number of volumes and peer relationships. A SnapMirror license is still required on both the source and destination.

On the following platforms, a DPO license is required only on the destination cluster. Otherwise, it is required on both the source and destination:

- FAS22xx
- FAS25xx
- FAS26xx
- FAS62xx
- FAS80xx
- FAS82xx
- FAS9000

SnapMirror license exceptions for DPO destinations

Starting with ONTAP 9.3, the following platforms do not need a SnapMirror license on the source when the destination has a DPO license:

- AFF80xx : 8020, 8040, 8060, 8080
- FAS80xx : 8020, 8040, 8060, 8080
- FAS22xx : 2220, 2240
• FAS25xx : 2520, 2552, 2554
• FAS62xx : 6210, 6220, 6240, 6250, 6280, 6290
• V32xx : 3220, 3240, 3250, 3270
• V62xx : 6210, 6220, 6240, 6250, 6280, 6290

SnapMirror Synchronous license

Starting with ONTAP 9.5, SnapMirror Synchronous relationships are supported. You require the following licenses for creating a SnapMirror Synchronous relationship:

- The SnapMirror Synchronous license is required on the source cluster.
- The SnapMirror license is required on both the source cluster and the destination cluster.

Protection window

You can use the Protection window to create and manage mirror relationships, vault relationships, and mirror and vault relationships and to display details about these relationships. The Protection window does not display load-sharing (LS) relationships and transition data protection (TDP) relationships.

- **Command buttons** on page 401
- **Protection relationships list** on page 401
- **Details area** on page 402

Command buttons

Create

Opens the Create Protection Relationship dialog box, which you can use to create a mirror relationship, vault relationship, or mirror and vault relationship from a destination volume.

System Manager does not display any storage virtual machine (SVM) that is configured for disaster recovery (DR) in the Create Protection Relationship dialog box.

Edit

Opens the Edit Protection Relationship dialog box, which you can use to edit the schedule and policy of a relationship.

For a vault relationship, mirror and vault relationship, or version-flexible mirror relationship, you can modify the relationship type by modifying the policy type.

Delete

Opens the Delete Protection Relationship dialog box, which you can use to delete a relationship.

Operations

Displays the operations that can be performed on a protection relationship.

Refresh

Updates the information in the window.

Protection relationships list

Source Storage Virtual Machine

Displays the SVM that contains the volume from which data is mirrored or vaulted in a relationship.
Source Volume
Displays the volume from which data is mirrored or vaulted in a relationship.

Destination Volume
Displays the volume to which data is mirrored or vaulted in a relationship.

Is Healthy
Displays whether the relationship is healthy or not.

Object Type
Displays the object type of the relationship, such as Volume, FlexGroup, or SVM.

Relationship State
Displays the state of the relationship, such as Snapmirrored, Uninitialized, or Broken Off.

Transfer Status
Displays the status of the relationship.

Relationship Type
Displays the type of relationship, such as mirror, vault, or mirror and vault.

Lag Time
Displays the difference between the current time and the timestamp of the Snapshot copy that was last transferred successfully to the destination storage system. Lag time indicates the time difference between the data that is currently on the source system and the latest data that is stored on the destination system. The value that is displayed can be positive or negative. The value is negative if the time zone of the destination system is behind the time zone of the source storage system.

Policy Name
Displays the name of the policy that is assigned to the relationship.

Policy Type
Displays the type of policy that is assigned to the relationship. The policy type can be StrictSync, Sync, Asynchronous Mirror, Asynchronous Vault, or Asynchronous Mirror Vault.

Details area

Details tab
Displays general information about the selected relationship, such as the source cluster and destination cluster, data transfer rate, state of the relationship, details about the network compression ratio, data transfer status, type of current data transfer, type of last data transfer, latest Snapshot copy, and timestamp of the latest Snapshot copy.

Policy Details tab
Displays details about the policy that is assigned to the selected protection relationship. This tab also displays the SnapMirror label and the Snapshot copy schedules in the source volume that match the specified label.

Snapshot Copies tab
Displays the count of Snapshot copies with the SnapMirror label attribute for the selected protection relationship and the timestamp of the latest Snapshot copy.

Related concepts
What a SnapVault backup is on page 388

Related tasks
Creating a mirror relationship from a source SVM on page 232
SVM Relationships

Storage virtual machine (SVM) disaster recovery (DR) provides disaster recovery capability at the SVM level by enabling the recovery of the data that is present in the constituent volumes of the SVM and the recovery of the SVM configuration.

You can use System Manager to create and manage mirror relationships and mirror and vault relationships between SVMs.

Creating SVM relationships

You can use System Manager to create SVM relationships to transfer data from the source SVM to the destination SVM. Creating an SVM relationship helps in recovering from a disaster as data is available on the source SVM and on the destination SVM.

Before you begin

- The destination cluster and source cluster must be running ONTAP 9.5 or later.
- The destination cluster must not be in a MetroCluster configurations.
- Starting with System Manager 9.6, Fabric Pool is supported.

Steps

1. Click Protection > SVM Relationship > Create.
2. Select the SVM relationship type from the SVM Relationship Type list.
3. From the Source Storage Virtual Machine pane, select the cluster and the SVM.
4. Optional: To view SVMs that do not have the required permissions, click Navigate to the source cluster, and then provide the required permissions.
5. From the **Destination Storage Virtual Machine** pane, specify the name of the SVM that will be created on the destination cluster.

6. Select the option to copy the source SVM configuration.

7. Optional: Click 🔄, update the protection policy and protection schedule, select aggregate, and then initialize the protection relationship.

8. Click **Save** to create the SVM relationship.
 The SVM Relationships: Summary window is displayed.

9. Click **Done** to complete the process.

Editing SVM relationships

You can use System Manager to modify the properties of an SVM relationship.

Steps

1. Click **Protection > SVM Relationship**.

2. Select the SVM relationship that you want to modify, and then click **Edit**.

3. Select the SVM relationship type.
 If the SVM relationships were created before ONTAP 9.3, then changing the SVM relationship type from mirror to mirror and vault is not allowed.

4. Modify the protection policy, the protection schedule, and the option to copy the source SVM configuration, as required.

5. Click **Save** to save the changes.

Managing SVM relationships

You can use System Manager to perform various operations on SVM relationships such as initializing SVM relationships, updating SVM relationships, activating the destination SVM, resynchronizing data from the source SVM, resynchronizing data from the destination SVM, and reactivating the source SVM.

Before you begin

- To initialize the SVM relationship, the source and destination clusters must be in a healthy peer relationship.
- To update the SVM relationship, the SVM relationship must be initialized and in a Snapmirrored state.
- To reactivate the source SVM, the resynchronize data from the destination SVM (reverse resync) operation must have been performed.
- If you had selected the option to copy the source SVM configuration while creating the SVM relationship, then to activate the SVM relationship, the source SVM must be stopped.
- SnapMirror license must be enabled on the source cluster and destination cluster.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The destination cluster must have space available.
- The source SVM must have permission for SVM peering.
You must break the SVM relationship to activate destination SVM, resync from source SVM, resync from destination SVM (Reverse Resync), and reactivate source SVM.

To reactivate the source SVM, the SVM reverse relationship must exist and be in a Snapmirrored state.

Steps

1. Click **Protection > SVM Relationship**.

2. Select the SVM relationship, and then perform the appropriate action:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Do the following…</th>
</tr>
</thead>
</table>
| Initialize the SVM relationship | a. Click **Operations > Initialize**.
The Initialize dialog box is displayed.
b. Click **Initialize**. |
| Update the SVM relationship | a. Click **Operations > Update**.
The Update dialog box is displayed.
b. Click **Update**. |
| Activate the destination SVM | a. Click **Operations > Activate Destination SVM**.
The Activate Destination SVM dialog box is displayed.
b. Select the **Ok to activate destination SVM and break the relationship** checkbox.
c. Click **Activate**. |
| Resynchronize data from the source SVM | a. Click **Operations > Resync from Source SVM**.
The Resync from Source SVM dialog box is displayed.
b. Select the **Ok to delete any newer data in the destination SVM** checkbox.
c. Click **Resync**. |
SVM Relationships Window

You can use the SVM Relationships window to create and manage mirror relationships, and mirror and vault relationships between SVMs.

- **Command buttons** on page 406
- **SVM relationships list** on page 407
- **Details area** on page 408

Command buttons

Create

Opens the SVM Disaster Recovery page, which you can use to create a mirror relationship, or mirror and vault relationship from a destination volume.

Edit

Enables you to edit the schedule and policy of a relationship.

For mirror and vault relationship, or version-flexible mirror relationship, you can modify the relationship type by modifying the policy type.

Delete

Enables you to delete a relationship.

Operations

Provides the following options:

- **Initialize**

 Enables you to initialize the SVM relationship to perform a baseline transfer from the source SVM to the destination SVM.

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Do the following…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resynchronize data from the destination SVM (Reverse Resync)</td>
<td></td>
</tr>
</tbody>
</table>
 You can resync from the destination SVM to create a new relationship between the two SVMs. During this operation, the destination SVM continues to serve data with the source SVM backing up the configuration and data of the destination SVM. |
| a. Click [Operations > Resync from Destination SVM (Reverse Resync)](#). |
| b. If the SVM has multiple relationships, select the **This SVM has multiple relationships, Ok to release to other relationships** checkbox. |
| c. Select the **Ok to delete the new data in the source SVM** checkbox. |
| d. Click [Reverse Resync](#). |

<table>
<thead>
<tr>
<th>Reactivate the source SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivating the source SVM involves protecting and recreating the SVM relationships between the source and destination SVM. If you had selected the option to copy the source SVM configuration while creating the SVM relationship, then the destination SVM will stop processing data.</td>
</tr>
<tr>
<td>a. Click Operations > Reactivate Source SVM.</td>
</tr>
<tr>
<td>b. Click Initiate Reactivation to initiate reactivation to the destination SVM.</td>
</tr>
<tr>
<td>c. Click Done.</td>
</tr>
</tbody>
</table>
Update
 Enables you to update data from the source SVM to the destination SVM.

Activate Destination SVM
 Enables you to activate the destination SVM.

Resync from Source SVM
 Enables you to initiate resynchronization of a broken relationship.

Resync from Destination SVM (Reverse Resync)
 Enables you to resynchronize the relationship from the destination SVM to the source SVM.

Reactivate Source SVM
 Enables you to reactivate the source SVM.

Refresh
 Updates the information in the window.

SVM relationships list

Source Storage Virtual Machine
 Displays the SVM that contains the volume from which data is mirrored and vaulted in a relationship.

Destination Storage Virtual Machine
 Displays the SVM that contains the volume to which data is mirrored and vaulted in a relationship.

Is Healthy
 Displays whether the relationship is healthy or not.

Relationship State
 Displays the state of the relationship, such as Snapmirrored, Uninitialized, or Broken Off.

Transfer Status
 Displays the status of the relationship.

Relationship Type
 Displays the type of relationship, such as mirror, or mirror and vault.

Lag Time
 Displays the difference between the current time and the timestamp of the Snapshot copy that was last transferred successfully to the destination storage system. Lag time indicates the time difference between the data that is currently on the source system and the latest data that is stored on the destination system. The value that is displayed can be positive or negative. The value is negative if the time zone of the destination system is behind the time zone of the source storage system.

Policy Name
 Displays the name of the policy that is assigned to the relationship.

Policy Type
 Displays the type of policy that is assigned to the relationship. The policy type can be StrictSync, Sync, Asynchronous Mirror, Asynchronous Vault, or Asynchronous Mirror Vault.
Details area

Details tab
Displays general information about the selected relationship, such as the source cluster and destination cluster, the protection relationship that is associated with the SVM, data transfer rate, state of the relationship, details about the network compression ratio, data transfer status, type of current data transfer, type of last data transfer, latest Snapshot copy, timestamp of the latest Snapshot copy, the status of the identity preserve, and the number of volumes protected.

Policy Details tab
Displays details about the policy that is assigned to the selected protection relationship.

Protection policies

You can use System Manager to create, edit, and delete protection policies.

Creating protection policies

You can use System Manager to create cluster-level asynchronous mirror policies, vault policies, or mirror and vault policies, and to apply these policies to a cluster-level data protection relationship.

Steps
2. Click Create.
3. In the Create Policy dialog box, select the type of policy that you want to create.
4. Specify the policy name and transfer priority.
 Low indicates that the transfer has the lowest priority. Low priority transfers are usually scheduled after normal priority transfers. By default, the transfer priority is set to Normal.
5. Optional: Select the Enable Network Compression check box to compress the data that is being transferred during a data transfer.
6. Optional: For an asynchronous mirror policy, select the Transfer All Source Snapshot Copies check box to include the “all_source_snapshots” rule to the mirror policy, which backs up all of the Snapshot copies from the source volume.
7. Optional: Click Add Comments to add additional comments for the policy.
8. For a vault policy or mirror vault policy, specify a SnapMirror label and a destination retention count.
9. Click Create.

Protection Policies window

You can use the Protection Policies window to create, manage, and display information about mirror, vault, and mirror vault policies.

- Command buttons on page 409
- Protection policies list on page 409
- Details area on page 409
Command buttons

Create
- Opens the Create Policy dialog box, which enables you to create a mirror, vault, or mirror vault policy.

Edit
- Opens the Edit Policy dialog box, which enables you to edit a policy.

Delete
- Opens the Delete Policy dialog box, which enables you to delete a policy.

Refresh
- Updates the information in the window.

Protection policies list

Name
- Displays the name of the protection policy.

Type
- Displays the policy type, which can be Vault, Mirror Vault, or Asynchronous Mirror.

Comment
- Displays the description specified for the policy.

Transfer Priority
- Displays the data transfer priority, such as Normal or Low.

Details area

Policy Details tab
- Displays details of the protection policy, such as the user who created the policy, number of rules, retention count, and status of network compression.

Policy Rules tab
- Displays details of the rules that are applied to the policy. The Policy Rules tab is displayed only if the selected policy contains rules.

Snapshot policies

You can use System Manager to create and manage Snapshot policies in your storage system.

Creating Snapshot policies

You can create a Snapshot policy in System Manager to specify the maximum number of Snapshot copies that can be automatically created and the frequency of creating them.

Steps

1. Click Protection > Snapshot Policies.
2. Click Create.
3. In the Create Snapshot Policy dialog box, specify the policy name.
4. Click Add, and then specify the schedule name, the maximum number of Snapshot copies that you want to retain, and the SnapMirror label name.
 The maximum number of Snapshot copies that can be retained by the specified schedules must not exceed 254.
5. Click OK, and then click Create.

Editing Snapshot policies

You can modify the details of an existing Snapshot policy, such as the schedule name, SnapMirror label, or the maximum number of Snapshot copies that are created, by using the Edit Snapshot Policy dialog box in System Manager.

Steps

1. Click Protection > Snapshot Policies.
2. In the Snapshot Policies window, select the Snapshot policy that you want to modify and click Edit.
3. In the Edit Snapshot Policy dialog box, select the schedule that you want to modify and click Edit.
4. Click OK.
5. Verify the changes you made to the selected Snapshot policy in the Edit Snapshot Policy dialog box and click Save.

Deleting Snapshot policies

You can use System Manager to delete Snapshot policies. If you delete a Snapshot policy that is being used by one or more volumes, Snapshot copies of the volume or volumes are no longer created according to the deleted policy.

Before you begin

You must have dissociated the Snapshot policy from each volume that uses it.

Steps

1. Click Protection > Snapshot Policies.
2. Select the Snapshot policy and click Delete.
3. Select the confirmation check box, and then click Delete.

About Snapshot policies

When applied to a volume, a Snapshot policy specifies a schedule or schedules according to which Snapshot copies are created and specifies the maximum number of Snapshot copies that each schedule can create. A Snapshot policy can include up to five schedules.

For vault relationships, the SnapMirror Label attribute is used to select Snapshot copies on the source volumes. Only Snapshot copies with the labels configured in the vault policy rules are replicated in backup vault operations. The Snapshot policy assigned to the source volume must include the SnapMirror Label attribute.
Snapshot Policies window

You can use the Snapshot Policies window to manage Snapshot policy tasks, such as adding, editing, and deleting Snapshot policies.

Command buttons

Create
Opens the Create Snapshot Policy dialog box, which enables you to add backup schedules and specify the maximum number of Snapshot copies to be retained in a policy.

Edit
Opens the Edit Snapshot Policy dialog box, which enables you to modify the frequency at which Snapshot copies should be created and the maximum number of Snapshot copies to be retained.

Delete
Opens the Delete dialog box, which enables you to delete the selected Snapshot policy.

View as
Enables you to view the Snapshot policies either as a list or as a tree.

Status
Opens the menu, which you can use to either enable or disable the selected Snapshot policy.

Refresh
Updates the information in the window.

Snapshot policy list

Policy/Schedule Name
Specifies the name of the Snapshot policy and the schedules in the policy.

Storage Virtual Machine
Specifies the name of the storage virtual machine (SVM) to which the Snapshot copies belong.

Status
Specifies the status of the Snapshot policy, which can be Enabled or Disabled.

Maximum Snapshots to be retained
Specifies the maximum number of Snapshot copies to be retained.

SnapMirror Label
Specifies the name of the SnapMirror label attribute of the Snapshot copy generated by the backup schedule.
Schedules

You can use System Manager to create and manage schedules in your storage system.

Creating schedules

You can create schedules to run a job at a specific time or at regular periods by using System Manager.

About this task

When you create a schedule in a MetroCluster configuration, it is a best practice to create an equivalent schedule on the cluster in the surviving site as well.

Steps

1. Click Protection > Schedules.
2. Click Create.
3. In the Create Schedule dialog box, specify the schedule name.
4. Create a schedule based on your requirements:

<table>
<thead>
<tr>
<th>If you want to create...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A daily or a specific schedule on certain days</td>
<td>Select Basic, and specify the schedule and recurrence details (in hours and minutes).</td>
</tr>
<tr>
<td>A schedule that runs at a specific interval</td>
<td>Select Interval, and specify the schedule and recurrence details (in days, hours, and minutes).</td>
</tr>
<tr>
<td>A schedule that runs at a specific period</td>
<td>Select Advanced, and specify the schedule and recurrence details (in months, days, weekdays, hours, and minutes).</td>
</tr>
</tbody>
</table>
5. Click Create.

Editing schedules

You can make changes to a previously created cron schedule or an interval schedule if it does not meet your requirements by using System Manager. You can modify schedule details such as recurring days and hours, interval options, and advanced cron options.

About this task

When you edit a schedule in a MetroCluster configuration, it is a best practice to edit the equivalent schedule on the surviving site cluster as well.

Steps

1. Click Protection > Schedules.
2. Select the schedule that you want to modify and click Edit.
3. In the Edit Schedule dialog box, modify the schedule by performing the appropriate action:

<table>
<thead>
<tr>
<th>If you select the schedule option as...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Specify the recurring days and recurring schedule details.</td>
</tr>
</tbody>
</table>
If you select the schedule option as... | Do this...
--- | ---
Interval | Specify the interval options in days, hours, and minutes.
Advanced | Specify the advanced cron options in months, days, week days (if applicable), hours, and minutes.

4. Click OK.

Deleting schedules

You can use System Manager to delete the schedules that run specific storage management tasks.

Steps

1. Click Protection > Schedules.
2. Select the schedule that you want to delete and click Delete.
3. Select the confirmation check box, and then click Delete.

Schedules

You can configure many tasks (for instance, volume Snapshot copies and mirror replications) to run on specified schedules. Schedules that are run at specified schedules are known as cron schedules because of their similarity to UNIX cron schedules. Schedules that are run at intervals are known as interval schedules.

You can manage schedules in the following ways:

- Creating a cron schedule or an interval schedule
- Displaying information about all the schedules
- Modifying a cron schedule or an interval schedule
- Deleting a cron schedule or an interval schedule
 You cannot delete a schedule that is currently in use by a running job.

The cluster administrator can perform all the schedule management tasks.

Schedules window

You can use the Schedules window to manage scheduled tasks, such as creating, displaying information about, modifying, and deleting schedules.

Command buttons

Create

Opens the Create Schedule dialog box, which enables you to create time-based and interval schedules.

Edit

Opens the Edit Schedule dialog box, which enables you to edit the selected schedules.

Delete

Opens the Delete Schedule dialog box, which enables you to delete the selected schedules.

Refresh

Updates the information in the window.
Schedules list

Name
 Specifies the name of the schedule.

Type
 Specifies the type of the schedule—time-based or interval-based.

Details area
The details area displays information about when a selected schedule is run.
Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
• Telephone: +1 (408) 822-6000
• Fax: +1 (408) 822-4501
• Support telephone: +1 (888) 463-8277
Index

A

ABE
 enabling 263
aborting
 a mirror and vault relationship 396
access
 modifying for access-control roles 131
 stopping share 263
 user accounts 129
access control
 adding roles 355
access-based enumeration
 See ABE
access-control roles
 adding 130
 modifying the attributes 131
accounts
 changing passwords for cluster user 128
activating
 quotas 296
Active Directory
 adding users 360
 adding
 AutoSupport email recipients 197
 CIFS server preferred domain controllers 306
 cluster user accounts 128
 disks to storage pools 174
 export rules 326
 group memberships to users 363
 home directory path for CIFS 302
 initiators 276
 LDAP client configuration 343
 NIS domains 342
 preferred domain controllers 306
 roles 130, 355
 rules to export policies 327
 Snapshot policies 409
 users to local Windows groups 360
 VLAN interfaces 140

adding
 members
 to local Windows groups 359
 adding Microsoft SQL Server over SAN to ONTAP System Manager 82
administration
 configuring details of SVM administrators 90
 delegating to SVM administrators 58
advanced options
 specifying for FlexCache volumes 246
 specifying for FlexGroup volumes 242
AFF clusters
 creating LUNs during initial setup 267
aggregate
 storage service level 81
aggregate creation
 based on storage recommendations 162
aggregates
 adding capacity disks to 154
 assigning array LUNs to 186
 assigning disks to increase capacity 43
 attaching to cloud tiers 167
 changing the RAID group while adding capacity disks 155
 considerations for sizing RAID groups 182
 considerations when moving volumes in a Flash Pool aggregate 253
 considerations when moving volumes in HDD 253
 creating LUNs 271
 creating storage pools 173
 deleting 151
 deleting storage pools 175
 editing the settings 150
 how you use storage pools with Flash Pool 175
 managing 171
 mirrored, explained 160
 mirroring 157
 modifying RAID group size 151
 modifying RAID type 151
 moving volumes 228
 provisioning cache by adding SSDs 152
 provisioning storage based on storage recommendations 44, 45
 provisioning storage by creating HDD and SSD 45
 provisioning storage by creating manually 44
 reassigning array LUNs to nodes 186
 reassigning disks to increase capacity 179
 requirements and best practices for using storage pools with Flash Pool 176
 viewing information about 157
 zeroing spare array LUNs 187
 zeroing spare disks 44
Aggregates window
 using to create, manage, and display information about aggregates 171
alerts
 acknowledging system health 192
 dashboard for viewing details 78
 deleting system health 193
 responding to 194
 suppressing system health 193
aliases
 creating iSCSI 320
all-share cache
 creating for BranchCache configuration 304
application templates
 list of available in ONTAP System Manager 80
application-specific LUN settings
 for Oracle and SQL 268
applications
 deleting applications 88
 displaying a list of 88
 editing applications 87
 provision settings 82
 storage service level 81
Applications window
 displaying applications list 88
array LUNs
 about 187
assigning 186
considerations for sizing RAID groups for 182
erasing data from 187
formatting 187
managing 185
reassigning to nodes 186
zeroing 187
Array LUNs window
using to assign ownership 187
assigning
array LUNs 186
disks to nodes 43
export policies to qtrees 293
group memberships to users 363
ASUP
See AutoSupport
ATA drives
how ONTAP reports disk types 180
authenticating remote users
by using SAML 69
authentication
changing the default method for iSCSI initiators 322
Kerberos 349
modifying the security style for iSCSI initiators 322
requirements for using Kerberos with NFS 349
authorizing peering requests
using a passphrase 76
AutoSupport
editing settings 40
email recipients, adding 197
enabling or disabling 196
generating data for a single node or all nodes 197
setting up 196
testing the configuration 197
viewing summary 198
AutoSupport messages
severity types 198
AutoSupport notifications
managing 196
AutoSupport window
using to view and edit AutoSupport settings 198
available health monitors
for clusters 193

B
Baseboard Management Controller 92
baseline transfers
defined 388
benefits
of storage efficiency 250
best practices
for using storage pools 176
BranchCache
deleting the configuration 306
enabling 263
modifying settings 305
setting up 304
breaking
mirror and vault relationships 394
broadcast domains
creating 42
deleting 134
managing 134
modifying the attributes 134
BSAS drives
how ONTAP reports disk types 180

C
CA certificates
installing if you use StorageGRID 157
cache
increasing for Flash Pool aggregates by adding SSDs 153
provisioning by adding SSDs 152
provisioning to aggregates by adding SSDs 152
cache disks
viewing details about 180
cache size
adding disks to storage pools to increase 174
cache storage
requirements and best practices for using storage pools for Flash Pool aggregate 176
caching
configuring BranchCache for 304
capacity disks
adding to aggregates 154
viewing details about 180
carriers
determining when to remove multi-disk 182
spare requirements for multi-disk 182
certificates
automatic adding on SVM vsadmin account 353
changing
the default authentication method for iSCSI initiators 322
CIFS
adding the home directory 302
configuring on the SVM 52
creating a local Windows user account 362
creating home directory shares 263
deleting the home directory 303
deleting the home directory path 303
editing general properties 302
enabling or disabling a group policy 304
Kerberos authentication 349
reloading the group policy 304
resetting domain controllers 303
setting up 301
stopping share access 263
updating group policy configuration 304
updating the group policy 304
viewing domain information 307
CIFS protocol
managing 301
Trace File Access window for diagnosing SVM issues 212
CIFS servers
adding preferred domain controllers 306
configuring BranchCache on 304
deleting preferred domain controllers 307
modifying BranchCache configurations for 305
modifying the IP addresses of preferred domain controllers 306
CIFS shares
creating 262
CIFS window
 using to manage CIFS server 307
client access
 adding rules to export policies 327
 creating export policies 326
 creating export policy for 326
 setting up CIFS 301
clients
 adding an LDAP configuration 343
 deleting active LDAP 346
 viewing LDAP configuration 126
clones
 creating NVMe namespaces with the same configurations
 NVMe 312
 creating, of LUNs 277
Cloud Tier window
 how to create, edit, and delete cloud tiers 170
 how to view cloud tier details 170
cloud tiers
 adding 165
 attaching aggregates 167
 deleting 169
 editing 169
 managing 164
 modifying configuration details 169
 storage of infrequently used data 169
 using to store infrequently used data 165
cluster
 creating manually 28
 peering 72
cluster details
 dashboard for viewing details 78
cluster expansion
 managing 106
cluster management
 creating a cluster 24
cluster peer relationships
 deleting 98
 prerequisites for 72
 role of Cluster Peers window in managing 99
cluster peers
 changing the peering encryption status 97
 creating relationships 73
 generating the peering passphrase 95
 managing 95
 modifying the passphrase 96
Cluster Peers window
 role in managing peer cluster relationships 99
cluster setup
 setting up a network 29
cluster subsystems
 NVMe Subsystems window for managing 316
cluster switch health monitors
 about 193
cluster update
 managing 108
 managing in a MetroCluster configuration 108
 managing in a non MetroCluster configuration 108
 updating 108
Cluster Update window
 for performing automated cluster upgrade 114
for performing nondisruptive cluster upgrade 114
cluster user accounts
 adding 128
 changing passwords for 128
 editing 128
 locking 129
 unlocking 129
clusters
 adding a user account for 128
 changing passwords for 37
 creating LIFs for managing 37
 creating LUNs during initial setup 267
 creating peer relationships between 73
 deleting a peer relationship 98
 expanding by adding new nodes 106
 locking or unlocking user accounts 129
 managing 77
 monitoring the health of 79
 setting up by using the template file 26
 understanding how a nondisruptive update is performed 114
 understanding quorum and epsilon 77
 updating nondisruptively by using ONTAP System Manager 112
 updating the name 37
cold data
 definition 170
comments
 how to send feedback about documentation 417
communities
 specifying information for SNMP 124
compatible spare disks
 what they are 159
ComplianceClock time
 initializing 188
compression
 configuring on a volume 226
configuration
 creating a Kerberos realm 347
 managing 90
 modifying a Kerberos realm 348
configuration updates window
 using to manage cluster, SVM, and node configuration updates 91
configuring
 BranchCache 304
 CIFS and NFS on the SVM 52
 FC protocol 56
 FCoE protocol 56
 iSCSI protocol 54
 log levels and inactivity timeout value 34
 network details of the nodes 107
 node management LIFs 107
 Service Processor settings 107
contact personnel
 specifying information for SNMP 124
continuous availability
 enabling or disabling for shares 263
controllers
 adding CIFS server preferred domain 306
conversion rules
 name mapping 368
core files
spare disk requirement for 181
creating
a cluster by using ONTAP System Manager 24
a Kerberos realm 347
a mirror and vault relationship from a destination SVM 389
a vault relationship from a destination SVM 381
broadcast domains 42
CIFS shares 262
cluster
setting up 28
cluster manually 28
cluster peer relationships 73
export policies 326
home directory shares 263
initiator groups 275
intercluster LIF 72
interface groups 139
IPspaces 42
iSCSI aliases 320
local Windows groups 357
LUN clones 277
LUNs 271
LUNs during initial setup 267
mirror policies 334, 408
mirror vault policies 334, 408
port sets 276
QoS policy groups 336
qtrees 291
quotas 295
schedules 412
setting up
cluster 28
Snapshot policies 409
storage pools 173
subnets 43
vault policies 334, 408
Windows local users 362
creating a cluster
event notifications 24
customization
ways to customize window layouts 19

cutover
manually triggering the phase 229

D
dashboard
using to monitor cluster health and performance 79
using to monitor SVM health and performance 203
dashboard icons
described 17
dashboard window
SVM information provided in 202
Dashboard window
for viewing cluster and storage object details 78
data compression’s interoperability
with deduplication 251
data LIFs
enabling management access for 138
data protection
managing relationships 371
managing Snapshot policies and schedules 371
mirror relationships 381
Protection window 401
SVM Relationships window 406
data protection mirror copies
FlexVol volumes 381
data protection relationships
mirror 398
mirror and vault 398
overview of types of 398
vault 398
version-flexible mirror 398
data protection volumes
editing properties of 216
data SVMs
described 207
Date and Time window
how to view and modify date and time settings 123
DDNS
enabling 352
enabling or disabling 351
deactivating
quotas 296
dedicated SSDs
adding to Flash Pool aggregates 153
deduplication
adding efficiency policies on a volume for 331
changing schedule 227
configuring on a volume 226
efficiency policies for FlexVol volumes 332
FlexVol volumes
guidelines for using deduplication 252
guides for using 252
running on FlexVol volumes 228
default initiator security
editing 321
default predefined efficiency policy
understanding 332
delegating
SVMs administration 90
SVMs to administrators 58
deleting
active LDAP clients 346
BranchCache configuration 306
broadcast domains 134
efficiency policies 332
export policies 327
export policy rules 329
FlexCache volumes 248
FlexGroup volumes 244
home directory path 303
initiator groups 275
initiators from an initiator group 276
IPspaces 133
Kerberos realm configurations 348
licenses 102
local Windows groups 361
LUNs 274
mirror and vault relationships 391
mirror policies 335
mirror vault policies 335
network interfaces 138
port sets 277
preferred domain controllers 307
protection policies 335
QoS policy groups 337
qtrees 292
quotas 296
schedules 413
Snapshot copies 225
Snapshot policies 410
storage pools 175
subnets 135
vault policies 335
VLANs 141
Windows local user accounts 365
deleting rules
extport policies 329
demo licenses
description of 103
destination volumes
change that occurs when SnapMirror relationship is broken 376
directory shares
creating home 263
disabling
AutoSupport settings 196
CIFS group policy 304
DDNS 351
efficiency policies 332
iSCSI service on the interfaces 320
MFA 71
SNMP 123
SNMP traps 124
disabling user accounts
local Windows users 363
disaster recovery
performing a negotiated switchover 119
disk RPM
rules for displaying 160
disk shelves
configuration requirements for multi-disk carrier 182
disk space
hard limits for 298
soft limits for 298
disk types
rules for displaying 160
disks
about 187
adding to storage pools 174
assigning to nodes 43
changing the RAID group when adding HDDs to aggregates 155
description of compatible spare 159
erasing data from 44
formatting 44
how hot spares are calculated 159
how ONTAP reports types 180
increasing the size of aggregates by adding 154
managing 179
minimum required hot spare 181
mirroring aggregates 157
reassigning to nodes 179
spare requirements for multi-disk carrier 182
viewing
disk information 180
viewing information 180
why you add to storage pools 177
zeroing 44
Disks window
using to view disk details 183
DNS
editing settings 37, 352
DNS/DDNS services
managing 351
DNS/DDNS Services window
using to view DNS and DDNS settings 352
documentation
how to receive automatic notification of changes to 417
how to send feedback about 417
domain controllers
adding preferred 306
editing the IP address of preferred 306
resetting 303
viewing information about 307
domain information
viewing 307
domain names
DNS, editing 37
domains
creating broadcast 42
deleting broadcast 134
editing NIS 342
downgrades
obtaining ONTAP software images 110
drives
considerations for sizing RAID groups for 182
See also disks
E
editing
access protocols and details 328
active LDAP clients 346
aggregate settings 150
AutoSupport settings 40
BranchCache settings 305
broadcast domain attributes 134
cluster user accounts 128
data protection volumes 216
default security settings 321
DNS domain name 352
DNS domain names 37
efficiency policies 331
Ethernet port settings 140
export policy rules 328
initiator groups 282
initiator name 283
interface group settings 141
IP address of preferred domain controllers 306
IP addresses of preferred domain controllers 306
IPspace name 133
Kerberos configurations 350
LUNs 277
mirror and vault relationships 391
mirror policies 335
mirror relationships 373
mirror vault policies 335
network interfaces 138
NIS domains 342
node name 38
port sets 283
QoS policy groups 337
qtrees 292
quotas 296
schedules 412
share settings 263
subnet attributes 135
SVMs user accounts 353
the security style for iSCSI initiators 322
vault policies 335
vault relationships 384
effective ONTAP disk types
mixing HDDs 158
efficiency
benefits of storage 250
efficiency policies
adding for a volume to run deduplication 331
deleting 332
described for FlexVol volumes 332
disabling 332
editing 331
enabling 332
enabling or disabling 332
managing 331
settings in the Efficiency Policy window for managing 333
Efficiency Policies window
fields in the 333
efficiency policies, predefined
understanding inline-only and default 332
email messages
editing for AutoSupport 40
setting up AutoSupport 196
emails
adding recipients for AutoSupport messages 197
enabling
AutoSupport settings 196
CIFS group policy 304
DDNS 351, 352
DNS and DDNS 352
efficiency policies 332
iSCSI service on the interfaces 320
management access for LIFs 138
MFA 70
SNMP 123
SNMP traps 124
storage efficiency 216
storage efficiency on a volume 226
enabling user accounts
local Windows users 363
encrypt data
while accessing this share 263
encryption
role of Cluster Peers window in managing 99
encryption status
changing for cluster peers 97
entitlement risks
for licenses 103
licenses 103
node-locked licenses 103
epsilon
understanding cluster 77
Ethernet
editing port settings 140
Ethernet ports
managing 139
evaluation licenses
description of 103
event log
viewing 191
event notification
viewing 191
events
severity of 191
viewing 191
Events window
viewing event log 191
viewing event notification 191
existing storage pools
considerations for adding SSDs to 177
expiry dates
extending for Snapshot copies 224
export policies
adding export rules to 326
adding rules 327
assigning new or existing for qtrees 292
assigning to qtrees 293
changing 261
creating 326
deleting 327
deleting rules 329
how they control client access to qtrees 329
how they control client access to volumes 329
managing 326
renaming 327
Export Policies window
using to manage export policies and rules 329
export policy rules
deleting 329
editing client specification, access protocols, and access details 328
export rules
adding to export policies 326, 327
exporting
qtrees 293
external services
requirements for using Kerberos with NFS 349

F
fabric health monitors
about 193
FabricPool
using for managing data 161
FabricPool-enabled aggregates
creating 167
creating manually 49
installing a CA certificate if you use StorageGRID 157
provisioning storage by creating 44
provisioning storage by creating manually 49
FC
starting or stopping 325
FC protocol
configuring on the SVM 56
FC SAN optimized LUNs
creating during cluster setup 267
FC/FCoE
changing the node name 325
FC/FCoE adapters
creating and managing 142
editing the speed settings for using ONTAP System Manager 142
FC/FCoE protocols
managing 324
FC/FCoE window 326
FCAL drives
how ONTAP reports disk types 180
FCoE
converged network adapters 325
data center bridging 325
Ethernet switch 325
starting or stopping 325
traditional FC 325
FCoE protocol
configuring on the SVM 56
FCP
changing node name 325
feedback
how to send comments about documentation 417
Fibre Channel protocol
starting or stopping 325
file access tracing 206
files
hard limits for 298
rules for assigning to Storage QoS policy groups 340
soft limits for 298
Flash Cache modules
enabling or disabling 190
how they improve performance 190
information about in the Hardware Cache window 190
managing 190
Flash Pool aggregate
managing 200
Flash Pool aggregates
considerations when moving volumes in 253
creating manually 46
creating storage pools 173
deleting storage pools 175
how you use storage pools with 175
increasing the size by adding SSDs 153
provisioning cache by adding SSDs 152
provisioning storage by creating 44, 46
requirements and best practices for using storage pools with 176
using the statistics window 200
Flash Pool Statistics window
using to monitor Flash Pool aggregates 200
FlexCache volume
changing status 247
FlexCache volumes
deleting 248
editing 246
resizing 247
specifying advanced options 246
viewing information about 245
FlexClones
creating 218
FlexClone volumes
creating 217
space guarantees and 249
splitting from the parent volume 219
viewing the hierarchy 220
FlexGroup volume
changing the status 243
FlexGroup volume status
changing 243
modifying 243
FlexGroup volumes
assigning to storage QoS policy groups 229
creating 239
deleting 244
editing 241
resizing 243
specifying advanced options 242
viewing information about 240
FlexVol volumes
assigning to storage QoS policy groups 229
changing the status 220
creating 59
creating Snapshot copies 221
deleting 217
editing properties 214
hiding the Snapshot copy directory 222
how moving them works 158
how volume guarantees work with 248
initializing a vault relationship 385
mirror relationships for 381
moving 156
moving nondisruptively from an SVM 228
renaming Snapshot copies 224
rules for assigning to Storage QoS policy groups 340
running deduplication 228
setting reserve for Snapshot copies 222
thick provisioning for 248
unmounting 260
FSAS drives
how ONTAP reports disk types 180

G
gateway addresses
editing subnet attributes 135
generating
AutoSupport
monitoring storage system health 197
AutoSupport data for nodes 197
getting started tasks
for ONTAP System Manager 24
group memberships
of local Windows users, removing 363
group policies
enabling or disabling for CIFS 304
reloading 304
group policy
updating CIFS 304
groups
adding Windows local users 360
assigning to a user account 363
guarantees, volume
 how they work with FlexVol volumes 248

guidelines
 for using deduplication 252
 for using LUN types 285
 for working with FlexVol volumes containing LUNs 284

H

HA pairs
 monitoring 42

hard limits
 editing quota 296
 for files and disk space for quotas 298

Hardware Cache window
 read-workload statistics displayed in 190

hardware model
 of an HA node, viewing 42

hash stores
 BranchCache, modifying the size of 305
 specifying path and maximum size for BranchCache configuration 304

HDD aggregates
 considerations when moving volumes in 253
 converting existing aggregate to a Flash Pool aggregate 46
 creating manually 45

HDD RAID groups
 sizing considerations for 182

HDDs
 changing the RAID group when adding to aggregates 155
 compatible disk types 158
 using effective disk types for mixing 158

HDDs and SSDs
 adding to aggregates 154

healing
 MetroCluster switchover and switchback 116

health
 monitoring clusters 79
 monitoring SVMs 203

health alerts
 acknowledging system 192
 deleting system 193
 suppressing system 193

health monitoring
 ways to respond to alerts 194

health monitors
 available cluster 193

high availability
 managing 101

High Availability window
 using the view details of HA pairs 101

home directories
 how ONTAP enables dynamic SMB 264

home directory
 adding for CIFS 302
 deleting for CIFS 303

host operating systems
 guidelines for using LUN multiprotocol type 285

hot spares
 how ONTAP System Manager works with 159
 minimum required 181

I

icons used in the dashboard
 described 17

icons used in the interface
 described 17

identity provider
 using to authenticate remote users 71

identity providers
 using to authenticate remote users 70

IdP
 identity provider 70

ifgroups
 See interface groups

inactive data
 definition 170

inactivity timeout
 configuring 34

incremental transfers
 defined 388

information
 how to send feedback about improving documentation 417

initial setup
 clusters, creating LUNs 267

initializing
 a vault relationship 385
 ComplianceClock time 188
 mirror and vault relationships 393

initiator groups
 adding initiators 276
 creating 275
 deleting 275
 deleting initiators 276
 editing 282
 editing initiators 283
 name rules 287
 naming 287
 ostype of 287
 type 287
 viewing 284

initiator security
 viewing iSCSI 323

initiators
 adding 276
 adding security for iSCSI 321
 changing the default authentication method for iSCSI 322
 changing the name 283
 deleting from an initiator group 276
 editing the security style for iSCSI 322
 setting default security for iSCSI 323

inline compression
 configuring on a volume 226

inline-only predefined efficiency policy
 understanding 332

intercluster interfaces
 modifying 96

intercluster LIF
creating 72
intercluster LIFs 73
creating 73
interconnect status
viewing 42
interface groups
creating 139
editing the settings 141
interface icons
described 17
interfaces
deleting broadcast domains 134
deleting subnets 135
deleting VLANs 141
enabling or disabling iSCSI service 320
logical, migrating to a different port 139
modifying, network 138
IP address disabled
setting up a network 30
IP address range enabled
using for setting up a network 29
IP addresses
assigning to multiple Service Processors 93
editing for a Service Processor 94
editing subnets attributes 135
modifying for domain controllers 306
IPSpaces
creating 42
deleting 133
managing 133
renaming 133
iSCSI
changing the default authentication method for initiators 322
configuring on the SVM 54
creating aliases 320
editing the security style for initiators 322
initiator security, viewing 323
setting default security for initiators 323
iSCSI initiators
adding security 321
iSCSI protocol
managing 319
iSCSI service
disabling on the interfaces 320
enabling on the interfaces 320
starting 323
stopping 323
iSCSI window
using to manage iSCSI settings 324

J
job schedules
efficiency policies for FlexVol volumes 332
Job window 200
jobs
about 199
managing 199
Junction Path window
using to manage NAS namespace 261

K
Kerberos
authentication 349
creating a realm configuration 347
editing configurations 350
introduction to using with NFS for strong security 349
modifying a realm configuration 348
requirements for external services 349
Kerberos interface services
managing 350
Kerberos Interface window
using to manage Kerberos configuration 350
Kerberos realm configurations
creating 347
deleting 348
editing 348
Kerberos realm services
creating 347
Kerberos Realm window
using to manage Kerberos realms 349

L
lag time
description of 398
LDAP
adding a client configuration 343
associating clients with SVMs 346
deleting a client configuration 344
deleting active clients 346
editing a client configuration 344
fields in the LDAP Configuration window 346
using 126
viewing information about clients 126
LDAP client configurations
deleting 344
editing 344
LDAP client services
managing 343
LDAP Client window
how to create LDAP clients 345
LDAP clients
associating with SVMs 346
viewing 126
LDAP configuration services
managing 345
LDAP Configuration window
using to edit or delete active LDAP clients 346
LDAP server
managing 126
LDAP window
how to view LDAP clients 127
license types
associated entitlement risk 103
licenses
adding 40
deleting 102
for SnapMirror 400
managing 102
Licenses window
using to add or remove licenses 104
LIFs
- creating for cluster management 37
- creating for node management 39
- creating to access data from SVMs 136
- editing network interfaces 138
- migrating to a different port 139
- modifying IPspace and intercluster 96

limits
- editing quota hard and soft limits 296

local groups
- creating on Windows 357
- renaming on Windows 360

local user accounts
- deleting on Windows 365

local users
- creating on Windows 362
- on Windows, changing the password 365
- renaming on Windows 364

local Windows groups
- adding members 359
- modifying the description 359
- modifying the privileges 359
- removing members 359

local Windows users
- assigning group memberships 363
- disabling user accounts 363
- enabling user accounts 363
- modifying the description 363
- removing group memberships 363

locking
- cluster user accounts 129
- SVM user accounts 354

log files
- viewing 35

log levels
- configuring 34

logical storage
- managing 202

LUN clones
- creating 277
- described 286

LUN size
- for Oracle and SQL application types 268

LUNs
- assigning to storage QoS 280
- bringing them online 278
- cloning 277
- creating 271
- creating clones 277
- creating during initial setup 267
- deleting 274
- editing 277
- guidelines for host operating system type 285
- guidelines for working with FlexVol volumes with 284
- initiator hosts 287
- managing 267
- moving 278
- non-space-reserved, described 285
- rules for assigning to Storage QoS policy groups 340
- settings for different application types 268
- space reservation, affect on how space is set aside for 285
- space reservations disabled 285
- space reservations enabled 285
- space-reserved, described 285
- taking offline 278
- viewing information about 283
- viewing initiator groups 284

LUNs window
- tabs to manage LUNs 287

LUNs, array
- assigning 186
- reassigning spares to nodes 186

M
- maintenance
- performing a negotiated switchover 119
- management devices
- remote, understanding the Service Processor 94
- managing
- local Windows group memberships 360
- SVM 206
- mappings, name conversion rules 368
- master licenses
- description of 103
- media
- storage service level 81
- messages, AutoSupport
- severity types 198
- MetroCluster
- switchover and switchback 116
- Switchover and Switchback Operations window 122
- MetroCluster configurations
- adding licenses 40
- MetroCluster switchover
- preparing for 118
- renaming local site 119
- Microsoft SQL Server over SAN
- adding an instance to ONTAP System Manager 82
- migrating
- LIFs to a different port 139
- mirror and vault
- creating a relationship from a source volume 236
- deleting a relationship 391
- editing a relationship 391
- mirror and vault relationship
- creating from a destination SVM 389
- mirror and vault relationships
- aborting 396
- breaking 394
- creating from a source volume 236
- deleting 391
- initializing 393
- managing 389
- overview 398
- quiescing 394
- restoring Snapshot copies 397
- resuming 394
- updating 393
- mirror d vault relationships
- reverse resynchronizing 396
- mirror policies
- deleting 335
creating for VMware 238
NFS protocol
managing 309
 Trace File Access window for diagnosing SVM issues 212
NFS window
 using to display and configure NFS settings 310
NIS
 adding domains 342
 editing domains 342
NIS domains
 editing 342
 managing 342
NIS window
 using to view NIS settings 343
NL-SAS drives
 how ONTAP reports disk types 180
node
 storage service level 81
node connectivity health monitors
 about 193
node management
 creating a cluster 24
node management LIFs
 configuring for new nodes 107
 creating 39
node names
 changing for FC/FCoE 325
node status
 viewing 42
node SVMs
 described 207
node-locked licenses
 description of 103
nodes
 adding to expand a cluster 106
 assigning disks 43
 configuring network details 107
 creating LIFs for managing 39
 generating AutoSupport data 197
 managing 188
 moving volumes 228
 reassigning array LUNs 186
 reassigning disks to 179
 updating nondisruptively by using ONTAP System Manager 112
 updating the name 38
 viewing AutoSupport data 198
Nodes window
 content and purpose of 189
non-root aggregates
 adding capacity disks to 154
nondisruptive updates
 how it works 114
 performing for clusters by using ONTAP System Manager 112
 performing for nodes by using ONTAP System Manager 112
nondisruptive volume move
 between aggregates or nodes 228
 performing 156
NVMe
 creating namespaces and connecting to hosts in SVMs 311
 description of as transport protocol 313
 namespaces
 role in setting up and managing namespaces 318
 NVMe adapters
 creating and managing 142
 editing the speed settings for using ONTAP System Manager 142
 NVMe namespaces
 cloning to create namespaces with the same configurations 312
 editing in ONTAP System Manager 312
 NVMe protocol
 advantages of using with flash-based network storage 310
 configuring on SVMs using ONTAP System Manager 57
 how NVMe uses namespaces 317
 NVMe service
 service
 starting and stopping using ONTAP System Manager 313
 NVMe subsystem
 what it is 314
 NVMe subsystems
 creating an NVMe subsystem 314
 deleting an NVMe subsystem from a cluster 315
 editing the details of an NVMe subsystem 315
 NVMe Subsystems window
 for managing NVMe subsystems 316

O
offlining
 LUNs 278
ONTAP
 cloud deregistration 100
 cloud registration 100
 cloud reregistration 100
ONTAP clusters
 registering to NetApp Data Availability Services 100
ONTAP disk types
 comparison with industry standard 180
ONTAP software images
 obtaining 110
ONTAP System Manager
 adding an instance of Microsoft SQL Server over SAN 82
 creating a cluster 24
 creating FlexCache volumes with 244
 enhancements to ONTAP System Manager 20
 FlexCache volumes 244
 for managing storage and other resources 16
 new in this release 20
 overview of enhancements 20
 prerequisites for configuring a cluster 36
 using to start or stop the NVMe service 313
ONTAP System Manager log files
 viewing 35
ONTAP System Manager window layouts
 sample of typical 18
ONTAP System Manager creating a cluster
setting up a cluster 28
operating mode
modifying BranchCache 305
oplocks
enabling 263
enabling or disabling for qtrees 292
opportunistic locks
See oplocks
options
settings when creating qtrees 293
Oracle RAC
LUN settings 268

P
passphrase
generating for cluster peers 95
passphrases
custom 76
modifying for cluster peers 96
role of Cluster Peers window in managing 99
system-generated 76
using to authorize peering requests 76
passwords
changing cluster user account 128
changing for clusters 37
changing for local Windows users 365
changing for SVM user accounts 353
peer relationships
creating between clusters 73
creating between SVMs 75
deleting for clusters 98
peered cluster
SnapMirror technology 95
SnapVault technology 95
peering
cluster 72
SVM 72
per-share cache
creating for BranchCache configuration 304
performance
monitoring clusters 79
monitoring SVMs 203
physical storage
managing 150
plexes
mirrored aggregate, explained 160
policies
assigning export, to qtrees 293
assigning QoS policy groups 280
creating mirror 334, 408
creating mirror vault 334, 408
creating QoS policy groups 336, 337
creating vault 334, 408
deleting efficiency 332
deleting export 327
editing protection policies 335
editing QoS policy groups 337
editing Snapshot policies 410
reloading group 304
renaming export 327
Snapshot, about 410
policies, predefined efficiency
understanding inline-only and default 332
policy groups
deleting, QoS 337
how maximum throughput works 339
rules for assigning storage objects to 340
types of 339
what they are 339
pools
considerations for when to use SSD storage 176
requirements and best practices for using storage 176
port sets
creating 276
deleting 277
editing 283
ports
adding or removing in interface groups 141
editing broadcast domain attributes 134
editing Ethernet settings 140
migrating LIFs to different 139
portsets
See port sets
predefined efficiency policies
understanding inline-only and default 332
predefined templates
list of available in ONTAP System Manager 80
preferred domain controllers
adding 306
deleting 307
editing the IP address 306
prerequisites
for configuring a cluster using ONTAP System
Manager 36
primary volumes
defined 388
protection policies
cluster-level 408
creating 334, 408
deleting 335
editing 335
managing 334, 408
Protection policies window
using to create, manage, and view details of policies
335, 408
Protection window
create and manage mirror and vault relationships 401
create and manage mirror relationships 401
create and manage vault relationships 401
protocols
configuring CIFS and NFS on the SVM 52
dashboard for viewing configured 202
provisioned applications
deleting 88
editing 87
provisioning
configuring basic templates 80
provisioning requirements
for NVMe subsystems 317

Q
QoS policy groups
assigning 280
creating 336
editing 337
managing 336
QoS Policy Groups window
using to manage and view details about policy groups 341
qtrees
assigning an export policy to 293
assigning new or existing export policies 292
creating 291
creating LUNs 271
creating quotas 295
deleting 292
description of and options for 293
editing the security style 292
enabling or disabling oplocks 292
exporting 293
how export policies control client access to 329
viewing information 293
Qtrees
managing 291
Qtrees window
using to manage qtrees 294
Quality of Service
See Storage QoS
quiescing
mirror and vault relationships 394
vault relationships 386
quorum
understanding cluster 77
quotas
activating or deactivating 296
creating 295
default quotas
description of 298
deleting 296
description of default 298
description of group 298
description of qtree 298
description of user 298
editing 296
limits for 298
management of 299
managing 295
qtree quotas
description of 298
resizing 297
user quotas
description of 298
viewing information about 297
Quotas window
using to manage quotas 299
RAID types
editing 150, 151
modifying 151
read-workload statistics
displayed in the Hardware Cache window 190
reassigning
array LUNs to nodes 186
disks to nodes 179
relationships
mirror and vault, creating from a destination SVM 389
mirror and vault, reverse resynchronizing 396
resuming mirror 376
resynchronizing mirror and vault 395
vault, creating from a destination SVM 381
relationships, mirror and vault
aborting 396
initializing 393
quiescing 394
restoring a volume 397
resuming 394
reverse resynchronizing 396
updating 393
remote management devices
understanding the Service Processor 94
removing
multi-disk carriers, determining when it is safe 182
preferred domain controllers 307
removing members
from local Windows groups 359
renaming
IPspaces 133
local Windows groups 360
local Windows users 364
requirements
for using storage pools 176
requirements for cluster peering relationships
listed 72
resetting
the password for Windows local users 365
resizing
options for resizing volumes 252
quotas 297
respond to
alerts 194
system health alerts 194
restarting
a vault relationship 386
mirror and vault relationships 394
restoring
a volume in a mirror and vault relationship 397
to a volume in a vault relationship 387
resuming
a vault relationship 386
mirror and vault relationships 394
resync
reverse resynchronizing mirror and vault relationships 396
resynchronization
mirror relationships 377
reverse resynchronization
mirror relationships 378
reverse resynchronizing
R
RAID group sizes
modifying 151
RAID groups
changing 155
changing while adding capacity disks 155
editing the size of 150
how hot spares are calculated 159
sizing considerations for 182
mirror and vault relationships 396
reversions
 obtaining ONTAP software images 110
reviewing
 storage recommendations 31
roles
 adding 130, 355
 managing 130, 355
 modifying an access-control role's access 355
Roles window 132, 356
root aggregates
 adding capacity disks to 154
RPM
 rules for displaying disk 160
rules
 applied for displaying disk types and disk RPM 160
rules, conversion
 name mapping 368

S

SAML
 Security Assertion Markup Language 70
SAML authentication
 disabling 71
 enabling 70
 setting up 69
 using to authenticate remote users 69, 70
SAS drives
 how ONTAP reports disk types 180
SATA drives
 how ONTAP reports disk types 180
schedules
 changing deduplication 227
 creating 412
 deleting 413
 editing 412
 setting up for creating Snapshot copies 222
schedules window 413
secondary volumes
 defined 388
security
 adding for iSCSI initiators 321
 editing the default settings 321
 modifying roles 355
 requirements for using Kerberos with NFS 349
 setting the default for iSCSI initiators 323
 viewing iSCSI initiator 323
security styles
 editing for qtrees 292
server keys
 specifying for BranchCache configuration 304
Service Processor
 managing 92
Service Processor settings
 configuring for new nodes 107
Service Processors
 assigning IP addresses globally 93
 editing the settings for 94
 understanding 94
service processors window
 using to view and edit Service Processors 94
setting
 the time zone 41
setting up
 AutoSupport 196
 BranchCache 304
 CIFS 301
 cluster environment 24
 clusters
 setting up 37
 logical storage
 setting up 50
 physical storage
 setting up 43
 the cluster 37
 the network 42
setting up a cluster
 using ONTAP System Manager in your data center 28
setting up a network
 by using ONTAP System Manager 29
 for managing cluster, nodes, Services Processors 29
 when the IP address range is disabled 30
 when the IP address range is enabled 29
setting up a support page
 cluster setup 31
 using ONTAP System Manager 31
settings
 for provisioning and editing applications 82
severity types
 AutoSupport message 198
shares
 disabling 263
 editing permissions and options 263
 managing 262
Shares window
 using to manage shares 265
shelves
 configuration requirements for multi-disk carrier 182
single-node clusters
 updating by using ONTAP System Manager 110
site licenses
 description of 103
sizing
 RAID groups, considerations for 182
SMB
 configuring BranchCache on 304
 modifying BranchCache configurations for 305
SMB encryption
 setting up 301
SMB home directories
 how ONTAP enables dynamic 264
SMB shares
 how ONTAP enables dynamic home directories on 264
SnapLock aggregates
 provisioning storage by creating 44
SnapLock Compliance aggregates
 creating manually 48
 provisioning storage by manually creating 48
SnapLock Compliance volumes
 creating 64
SnapLock Enterprise aggregates
 creating manually 48
 provisioning storage by manually creating 48
advantages of SSD 176
assigning disks to increase capacity 43
considerations for adding SSDs to new versus existing 177
considerations for when to use SSD 176
creating 173
deleting 175
disadvantages of SSD 176
how they work 177
how you use 175
managing 173
reassigning disks to increase capacity 179
requirements and best practices for 176
why you add disks to 177
Storage Pools window
using to create, display, and manage SSDs 178
storage provisioning
by creating Flash Pool aggregates 46
by creating HDD aggregates and SSD aggregates manually 45
creating aggregates based on storage recommendations 45
manually creating SnapLock aggregates 48
manually creating SnapLock Compliance aggregates 48
manually creating SnapLock Enterprise aggregates 48
storage QoS
assigning LUNs to 280
creating policy groups 336
editing policy groups 337
Storage QoS
deleting policy groups 337
how it helps 338
how it works 339
how maximum throughput works 339
rules for assigning storage objects to policy groups 340
types of policy groups 339
types of workloads 339
what it is 338
workflow 338
storage QoS policy groups
assigning volumes to 229
storage recommendations
for aggregate creation 162
provisioning storage by creating aggregates 44
reviewing 31
using to provision storage by creating aggregates 45
storage service level 81
storage system access
editing login methods 128
storage system dashboard icons
described 17
storage system location
specifying information for SNMP 124
storage systems
benefits of using SVMs 208
how ONTAP System Manager can help manage resources 16
storage tiers
manage 150
Storage Tiers window
add and view aggregate details 162
view cluster-wide space details 162
StorageGRID
installing a CA certificate if you use 157
StrictSync policy
other workloads that are supported 400
strong security
requirements for using Kerberos with NFS 349
subnets
creating 43
deleting 135
managing 135
modifying the attributes 135
subsystems
creating NVMe subsystems 314
deleting an NVMe subsystem from a cluster 315
editing the details of an NVMe subsystem 315
provisioning requirements for NVMe 317
suggestions
how to send feedback about documentation 417
SVM
peering 72
SVM administrators
capabilities of 206
SVM peer relationships
creating 75
SVM relationships
activating destination SVM 404
creating 403
disaster recovery 403
editing 404
initializing 404
managing 404
mirror and vault relationship 403
mirror relationship 403
reactivating source SVM 404
resynchronizing 404
updating 404
SVM Relationships window
create and manage mirror and vault relationships 406
create and manage mirror relationships 406
SVMs
adding CIFS server preferred domain controllers 306
adding user accounts for 353
associating LDAP clients with 346
benefits of using 208
changing the user account password 353
configuring basic details 50
configuring CIFS protocol 52
configuring DNS 50
configuring FC protocol 56
configuring FCoE protocol 56
configuring for SVM administrators 90
configuring iSCSI protocol 54
configuring NFS protocol 52
creating for serving data 32
creating in clusters 50
creating LUNs during initial setup 267
creating network interfaces of LIFs to access 136
creating NVMe namespaces and connecting to hosts in 311
creating vault relationships from destination 381
delegating to SVM administrators 58
deleting active LDAP clients 346
deleting preferred domain controllers on 307
editing Kerberos configurations 350
editing settings for 203
editing user accounts 353
locking or unlocking user accounts 354
managing 202, 206
managing user accounts 353
monitoring the health of 203
monitoring the performance of 203
rules for assigning to Storage QoS policy groups 340
setting up BranchCache on 304
starting 205
stopping 205
types of 207
unmounting FlexVol volumes from the namespace 260
using ONTAP System Manager to delete 204

SVMs SNMP
enabling or disabling 123
SVMs window
for managing SVMs 210
SVMs>
file access tracing on 206
Trace File Access window for diagnosing issues when using NFS or CIFS 212
SVMsdashboard for viewing details and performance information 202
switch name services
how ONTAP uses 209
switchback
overview of MetroCluster operation 116
performing to restore control to original MetroCluster site 121
role of Switchover and Switchback Operations window 122
switchover
negotiated (planned) 119
overview of MetroCluster operation 116
performing switchback after 121
performing unplanned of a MetroCluster site 120
preparing for 118
renaming local MCC site 119
role of Switchover and Switchback Operations window 122
symbolic links
editing the settings of 263
Sync policy
other workloads that are supported 400
system alerts
managing 192
System Alerts window
using to acknowledge, delete, or suppress alerts 195
system connectivity health monitors
about 193
system health alerts
acknowledging 192
deleting 193
responding to 194
suppressing 193
system logging
about 35
log levels 35
System Manager
creating FlexGroup volumes with 239
deleting aggregates 151
editing the properties of existing FlexCache volumes 246
editing the properties of existing FlexGroup volumes 241
properties 203
using to edit SVM properties 203
system SVMs
described 207

T
template files
using to step up a cluster 26
templates 80
temporary licenses
description of 103
testing
AutoSupport configuration 197
trap host configuration 125
thick provisioning
about 250
thin provisioning
about 250
using FlexVol volumes 249
threshold
disk space limits for 298
tiering policies
move data to cloud tiers 169
tiering policy of a volume
changing 168, 239
tiers
cloud tiers, configuring and managing 164
time zone
setting for clusters 41
timeout
configuring inactivity 34
tracing file access on SVMs 206
trap hosts
testing the configuration 125
traps
enabling or disabling SNMP 124
troubleshooting
viewing log files 35
Twitter
how to receive automatic notification of
documentation changes 417
types
overview of data protection relationships 398
rules for displaying disk 160

U
UI icons
described 17
understanding
how a nondisruptive update is performed 114
space reservation setting 285
UNIX
managing users and groups 356
UNIX users
editing properties 302
unlocking
 cluster user accounts 129
 SVM user accounts 354
unowned disks
 assigning ownership 43
updates
 batch and rolling update 114
 to mirror and vault relationships 393
 to mirror relationships 375
updating
 node name 38
upgrades
 obtaining ONTAP software images 110
 See also nondisruptive updates
user accounts
 adding for a cluster 128
 adding to SVMs 353
 changing passwords for cluster 128
 changing the password for SVMs 353
 editing for a cluster 128
 editing SVM user accounts 353
 locking or unlocking on clusters 129
 locking or unlocking SVM 354
 managing 129
users
 adding the home directory path for CIFS 302
 adding to Windows local group 360
 assigning group memberships 363
 changing the password, Windows local 365
 managing 127
Users window
 using to manage accounts, reset user passwords, and display information 129, 354

V
vault policies
 deleting 335
 editing 335
vault relationships
 creating from a source SVM 234
 initializing 385
 managing 381
 overview 398
 quiescing 386
 restoring a volume 387
 resuming 386
 resynchronizing 395
 stopping 387
 updating 385
vauls
 creating a relationship from a destination SVM 381
 creating a relationship from a source SVM 234
 deleting a relationship 383
 editing a relationship 384
versions
 modifying BranchCache 305
viewing
 aggregate information 157
 AutoSupport
 viewing status 198
 AutoSupport data 198
initiator groups 284
iSCSI initiator security 323
LDAP client configuration 126
log files 35
LUN information 283
qtree information 293
quota information 297
VLAN interfaces
 creating 140
VLANs
 deleting 141
 modifying the settings 141
VMware
 creating NFS datastores 238
volume encryption
 what NetApp Volume Encryption does 248
volume guarantees
 effect on maximum FlexVol volume size 248
 how they work with FlexVol volumes 248
volume move
 manually triggering the cutover 229
volume status
 changing for FlexVol volumes 220
volumes
 aborting a mirror and vault relationship 396
 aborting a mirror relationship 379
 adding efficiency policies to run deduplication 331
 changing tiering policy 168, 239
 considerations when moving 253
 creating an export policy for client access to 326
 creating LUNs 271
 creating qtrees 291
 creating quotas 295
 creating Snapshot copies 221
 data protection, editing 216
 deduplication
 changing schedule 227
 deleting FlexVol volumes 217
 deleting mirror relationships between 373
 deleting Snapshot copies 225
 editing the properties 214
 enabling storage efficiency 226
 how export policies control client access to 329
 how moving FlexVol volumes works 158
 initializing mirror relationships 374
 managing 214
 manually triggering cutover for a volume move 229
 mounting 260
 moving LUNs across 278
 moving nondisruptively 156
 options for resizing 252
 resizing 226
 restoring from Snapshot copies 223
 restoring Snapshot copies to volumes in mirror and vault relationships 397
 restoring Snapshot copies to volumes in mirror relationships 379
 resuming a vault relationship 386
 scheduling creation of Snapshot copies 222
 stopping a vault relationship 387
 updating a vault relationship 385
 viewing list of Snapshot copies 221
 viewing the saved Snapshot copies 221
Volumes window
 use in managing volumes 253

W
ways to respond to alerts
 health monitoring 194
window layout, sample 18
window layouts
 ways to customize 19
Windows
 managing 357
Windows local groups
 creating 357
 deleting 361
 renaming 360
Windows local user accounts
 deleting 365
Windows local users
 changing the password 365
 creating 362
 renaming 364
Windows users
 editing properties 302
Windows window 366
 workflow illustrations
 for setting up NVMe 310
workloads
 supported by StrictSync policy 400
 supported by Sync policy 400
 types of 339
 what they are 339

Z
zeroing
 array LUNs 187
 disks 44