Options that help maintain security ............................................................... 71
Allowing only secure access to the storage system ........................................ 73

Managing the root aggregate and the root volume ............................... 75
Understanding the root aggregate ............................................................... 75
Understanding the root volume ................................................................. 75
Recommendations for the root volume ......................................................... 76
Sizing considerations for root FlexVol volumes ......................................... 77
Default directories in the root volume ....................................................... 78
Permissions for the default directories ...................................................... 78
The /etc directory ....................................................................................... 79

Ways of accessing the default directories on the storage system ........... 83
Accessing the /etc directory from an NFS client ..................................... 83
Accessing the /etc directory from a CIFS client ....................................... 83
Accessing the /etc directory with FTP ..................................................... 84
Accessing the /etc directory with SFTP .................................................... 84
Accessing the /home directory from an NFS client ................................. 85
Accessing the /home directory from a CIFS client ................................... 85
Accessing the /home directory with FTP ................................................ 86
Accessing the /home directory with SFTP ............................................... 86
Accessing log files using HTTP or HTTPS .............................................. 87

Changing the root volume ......................................................................... 88

Starting or stopping the storage system .................................................. 90
How to boot the storage system ............................................................... 90
Ways to boot the storage system ............................................................... 90
Rebooting the storage system at the system prompt .............................. 91
Booting Data ONTAP at the boot environment prompt .......................... 91
Rebooting the storage system remotely ................................................ 92
Recovering from a corrupted image of the system's boot device .......... 93
Checking available Data ONTAP versions .............................................. 94

About rebooting the storage system ......................................................... 94
Rebooting the storage system from the system console ....................... 94
Rebooting the storage system remotely ................................................ 95

Halting the storage system ....................................................................... 96
Managing the storage system by using the boot menu .......................... 97

How to manage administrator and diagnostic access ............................ 99
Reasons for creating administrator accounts ........................................... 99
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What users, groups, roles, and capabilities are</td>
<td>99</td>
</tr>
<tr>
<td>How users are assigned capabilities</td>
<td>100</td>
</tr>
<tr>
<td>Requirements for naming users, groups, and roles</td>
<td>100</td>
</tr>
<tr>
<td>Windows special groups</td>
<td>101</td>
</tr>
<tr>
<td>About changing capabilities of other groups and roles</td>
<td>101</td>
</tr>
<tr>
<td>Root access to the storage system</td>
<td>102</td>
</tr>
<tr>
<td>Disabling root account access to the storage system</td>
<td>102</td>
</tr>
<tr>
<td>Displaying the status of root access</td>
<td>103</td>
</tr>
<tr>
<td>Ways of managing users</td>
<td>104</td>
</tr>
<tr>
<td>Creating users and assigning them to groups</td>
<td>104</td>
</tr>
<tr>
<td>Granting access to Windows domain users</td>
<td>106</td>
</tr>
<tr>
<td>How to grant permissions for MMC</td>
<td>107</td>
</tr>
<tr>
<td>About changing another user's capabilities</td>
<td>107</td>
</tr>
<tr>
<td>How to manage groups</td>
<td>108</td>
</tr>
<tr>
<td>Predefined groups</td>
<td>108</td>
</tr>
<tr>
<td>Assigning roles to groups by creating or modifying a group</td>
<td>109</td>
</tr>
<tr>
<td>Renaming a group</td>
<td>110</td>
</tr>
<tr>
<td>Loading groups from the lclgroups.cfg file</td>
<td>110</td>
</tr>
<tr>
<td>Setting the maximum number of auxiliary UNIX groups allowed for a</td>
<td>111</td>
</tr>
<tr>
<td>user</td>
<td></td>
</tr>
<tr>
<td>How to manage roles</td>
<td>112</td>
</tr>
<tr>
<td>Predefined roles</td>
<td>112</td>
</tr>
<tr>
<td>Supported capability types</td>
<td>113</td>
</tr>
<tr>
<td>Creating a new role and assigning capabilities to roles</td>
<td>116</td>
</tr>
<tr>
<td>Modifying an existing role or its capabilities</td>
<td>117</td>
</tr>
<tr>
<td>Users, groups, and roles</td>
<td>118</td>
</tr>
<tr>
<td>Commands that list users, domain users, groups, or roles</td>
<td>118</td>
</tr>
<tr>
<td>Commands that delete users, domain users, groups, or roles</td>
<td>123</td>
</tr>
<tr>
<td>Administrative user creation examples</td>
<td>124</td>
</tr>
<tr>
<td>Example of creating a user with custom capabilities</td>
<td>124</td>
</tr>
<tr>
<td>Creating a user with no administrative capabilities</td>
<td>125</td>
</tr>
<tr>
<td>Granting users in LDAP groups access to the system and mapping them to specified roles</td>
<td>125</td>
</tr>
<tr>
<td>How to manage passwords for security</td>
<td>127</td>
</tr>
<tr>
<td>Changing the storage system password</td>
<td>129</td>
</tr>
<tr>
<td>Changing a local user account password</td>
<td>130</td>
</tr>
</tbody>
</table>
Data ONTAP options for managing password rules ........................................ 130
Uses of the systemshell and the diagnostic account ........................................ 134
   Enabling or disabling the diagnostic account .......................................... 134
   Setting the password for the diagnostic account ..................................... 135
   Accessing the systemshell ..................................................................... 136
**General system maintenance** .................................................................. 139
   Special system files ............................................................................... 139
   Managing aggregate Snapshot copies ................................................... 139
      Considerations for increasing the aggregate Snapshot reserve .............. 140
   Managing licenses .................................................................................. 141
      License types ...................................................................................... 142
      Commands for managing licenses ...................................................... 142
   Setting the system date and time ............................................................. 143
   Synchronizing the system time ................................................................. 144
      Data ONTAP options for managing system time .................................... 145
   Displaying and setting the system time zone ............................................ 145
   Managing core dump files ...................................................................... 146
      Considerations for managing core dump files ..................................... 146
      Methods of segmenting core dump files .............................................. 147
      Commands for managing core segmenting ......................................... 148
      Automatic technical support notification upon system reboots ............. 149
   Understanding message logging ............................................................... 149
      The /etc/syslog.conf file ................................................................. 150
      Sample /etc/syslog.conf file ......................................................... 151
      Configuring message logging .......................................................... 152
   Understanding audit logging ..................................................................... 152
      Configuring audit logging .................................................................. 153
      Enabling or disabling read-only API auditing ..................................... 154
   Startup configuration for the storage system ........................................... 154
      Commands in the /etc/rc file ............................................................ 154
      Editing the /etc/rc file ...................................................................... 156
      Recovering from /etc/rc errors .......................................................... 157
   Storage system configuration backup and cloning .................................... 157
      Backing up a storage system configuration ........................................... 158
      Cloning a storage system configuration .............................................. 159
      Restoring a storage system configuration ............................................. 159
### Table of Contents

- Accessing the serial console from the SP .................................................... 204
- SP CLI and system console sessions ........................................................... 204
- Using online help at the SP CLI ................................................................. 205
- Commands for managing a system at the SP admin privilege level .......... 206
- Commands for managing a system at the SP advanced privilege level .... 209
- How to determine the status of a threshold-based SP sensor ................. 209
- Understanding the status of a discrete SP sensor ...................................... 212
- Troubleshooting a system by using the SP .............................................. 215
- Managing the SP with Data ONTAP ......................................................... 216
- Managing a system remotely by using the Remote LAN Module ............. 224
  - What the RLM does ................................................................................. 225
  - Configuring the RLM network ............................................................... 226
  - Accounts that can access the RLM ....................................................... 228
  - Logging in to the RLM from an administration host ............................ 229
  - Accessing the serial console from the RLM ........................................ 231
  - RLM CLI and system console sessions ................................................ 231
  - Using online help at the RLM CLI ....................................................... 232
  - Commands for managing a system at the RLM admin privilege level .... 233
  - Commands for managing a system at the RLM advanced privilege level .. 235
  - Managing the RLM with Data ONTAP ................................................ 236
  - Troubleshooting the storage system by using the RLM ...................... 242
  - Troubleshooting RLM connection problems ....................................... 243

### System information ................................................................. 244

- Displaying storage system configuration information .......................... 244
- Displaying aggregate information .......................................................... 247
- Displaying volume information ............................................................... 248
- Commands for displaying environmental status .................................... 249
- Getting Fibre Channel information ....................................................... 250
- Getting SAS adapter and expander information .................................... 250
- Storage system information and the stats command ......................... 251
  - Viewing available counters ............................................................... 252
  - Getting detailed information about a counter .................................. 253
  - Using the stats command interactively in singleton mode .................. 254
  - Using the stats command interactively in repeat mode ..................... 255
  - Collecting system information with the stats command in background mode ............................................................... 256
Changing the output of a stats command .......................................................... 258
About the stats preset files .............................................................................. 259
How to get system information using perfmon .................................................. 260
How to get system information using perfstat .................................................. 260

**Managing system performance** .......................................................... 261
Managing storage system resources by using FlexShare ........................................ 261
  What FlexShare is .................................................................................. 261
  When to use FlexShare ........................................................................ 262
  FlexShare and priority levels ............................................................. 263
  Considerations for using FlexShare in storage systems with a high-
  availability configuration ...................................................................... 263
  How the default FlexShare queue works ................................................. 264
  FlexShare and the global io_concurrency option ...................................... 264
  FlexShare and the buffer cache policy values .......................................... 265
  Using FlexShare .................................................................................. 265
Increasing WAFL cache memory ........................................................................ 269
  How Flash Pool aggregates and Flash Cache compare ............................... 270
  Enabling and disabling WAFL external cache ........................................... 271
  Caching normal user data blocks .......................................................... 271
  Caching low-priority user data blocks ....................................................... 272
  Caching only system metadata ................................................................ 272
  Displaying the WAFL external cache configuration .................................... 273
  Displaying usage and access information for WAFL external cache .......... 273
  Preserving the cache in the Flash Cache family of modules ......................... 274
Optimizing LUN, file, volume, and aggregate layout ............................................. 276
  What a reallocation scan is .................................................................... 277
  Reasons to use LUN, file, or volume reallocation scans .............................. 278
  Reasons to use aggregate reallocation scans .......................................... 278
  Reasons to use physical reallocation scans ............................................. 279
  How a reallocation scan works ................................................................ 279
  Managing reallocation scans ................................................................... 280
  How to use reallocation scans most efficiently ........................................... 290
Improving read performance ............................................................................ 291
  What read reallocation is ....................................................................... 291
  Enabling or disabling read reallocation .................................................... 292
Improving write performance .......................................................................... 293
Introduction to NetApp storage

NetApp storage systems are hardware- and software-based data storage and retrieval systems. They respond to network requests from clients and fulfill them by writing data to or retrieving data from disk arrays. They provide a modular hardware architecture running the Data ONTAP operating system and WAFL (Write Anywhere File Layout) software.

Data ONTAP is the operating system for all NetApp storage systems. It provides a complete set of storage management tools through its command-line interface, through System Manager, and through remote management devices such as the Service Processor (SP) and the Remote LAN Module (RLM).

For information about all of the models of NetApp storage systems, see the NetApp Products page.

Related information

NetApp Support Site: mysupport.netapp.com

Main components of a storage system

A storage system running Data ONTAP has a main unit, which is the device that receives and sends data. Depending on the platform, a storage system uses storage on disk shelves, storage arrays, or both.

The storage system consists of the following main components:

- The storage controller, which is the component of a storage system that runs the Data ONTAP operating system and controls its disk subsystem
- The disk shelves, which contain disk drives and are attached to a storage system

Related concepts

Data ONTAP systems that can use array LUNs on storage arrays on page 14

Related information

NetApp Support Site: mysupport.netapp.com

Internal components of a storage system

The internal components of a storage system enable the system to function.

The following table describes the internal components of a storage system:
### Component Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>The controller is the component that runs the Data ONTAP operating system and controls its disk subsystem.</td>
</tr>
<tr>
<td>System memory</td>
<td>System memory stores information temporarily.</td>
</tr>
<tr>
<td>Nonvolatile RAM (NVRAM) or nonvolatile memory (NVMEM)</td>
<td>Data ONTAP uses nonvolatile memory (NVRAM or NVMEM, depending on the platform) to log network transactions as a data integrity measure. In case of a system or power failure, Data ONTAP uses the contents of the nonvolatile memory to restore network data to disk.</td>
</tr>
<tr>
<td>Boot device</td>
<td>The storage system automatically boots from a Data ONTAP release stored on the boot device, such as a PC CompactFlash card. The boot device also stores a backup version of Data ONTAP from which to boot the storage system in an emergency.</td>
</tr>
<tr>
<td>LCD and LEDs</td>
<td>The storage system displays status information on the LCD and LEDs.</td>
</tr>
</tbody>
</table>
| Environmental adapter | The environmental adapter performs the following functions:  
  - Monitors the storage system’s temperature and fans  
  - Sends critical information to the storage system’s LCD  
  - Logs information  
  - Shuts down the storage system if its temperature is beyond a critical range or the fans cease operating |
| Remote management device, such as the Service Processor (SP) or the Remote LAN Module (RLM) | The remote management device provides remote platform management capabilities for the storage system. It enables remote access to the storage system console over a network regardless of the operating state of the storage system. It also monitors and maintains hardware event logs for the storage system and generates alerts based on system status. |

### Slots and serial ports of a storage system

The storage system has slots for external connections and serial ports for a console and diagnostic hardware.

The following table describes the slots and serial ports of a storage system.


<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| slots     | The storage system contains expansion slots for the following host adapters:  
• Network interface cards (NICs)  
• Adapters for the disk shelf or tape drive  
• Flash Cache family of modules and Performance Acceleration Modules (PAM)  
• Nonvolatile memory adapters |
| serial ports | The serial ports include the following:  
• The console port, which connects the storage system to a serial terminal that you can use as a console  
• The port for remote management or diagnostics, which can be used for Data ONTAP management activities or connects diagnostic equipment, such as the environmental monitor unit (EMU) of a storage shelf |

For information about how to configure host adapters for your storage system, see the *Hardware Universe* at [hwu.netapp.com](http://hwu.netapp.com).

**What disk shelves do**

Disk shelves collect information about the presence of disks, fan status, power supply status, and temperature. Disk shelves send messages to the console if parameters exceed permissible operating conditions.

For information about disk shelves, see the appropriate hardware service guide for your specific disk shelf.

For information about managing disks, see the *Data ONTAP Storage Management Guide for 7-Mode*.

**Data ONTAP systems that can use array LUNs on storage arrays**

V-Series ("V") systems and new FAS platforms released in Data ONTAP 8.2.1 and later can use array LUNs if the proper license is installed. In discussions in the Data ONTAP and FlexArray Virtualization documentation, these systems are collectively referred to as Data ONTAP systems when it is necessary to make it clear which information applies to them and what information applies to storage arrays.

**Note:** Starting with Data ONTAP 8.2.1, the capability of using LUNs on a storage array, formerly identified as V-Series functionality, has a new name—*Data ONTAP FlexArray Virtualization Software*. The capability of using array LUNs continues to be available as a licensed feature in Data ONTAP.
Systems prior to Data ONTAP 8.2.1 that can use array LUNs

The only systems released prior to Data ONTAP 8.2.1 that can use array LUNs are V-Series systems—systems with a “V” or “GF” prefix. A V-Series system is an open storage controller that virtualizes storage from storage array vendors, native disks, or both into a single heterogeneous storage pool.

Note: Almost all Data ONTAP platforms released prior to Data ONTAP 8.2.1 were released with FAS and V-Series equivalent models (for example, a FAS6280 and a V6280). (For a few systems, there were no “V” equivalent models.) Although both types of models could access native disks, only the V-Series systems (a “V” or “GF” prefix) could attach to storage arrays.

Systems in Data ONTAP 8.2.1 and later that can use array LUNs

Starting with Data ONTAP 8.2.1, the model for how platforms are released and the storage they can use changes. Attaching to storage arrays is no longer limited to V-Series systems.

Starting with Data ONTAP 8.2.1, all new platforms are released as a single hardware model. This single hardware model has a FAS prefix; there are no longer separate “V” and FAS models for new platforms. If the V_StorageAttach license package is installed on a new FAS model, it can attach to storage arrays. (This is the same license required on a V-Series system.)

Important: FAS systems released prior to Data ONTAP 8.2.1 cannot use LUNs on storage arrays, even if they are upgraded to Data ONTAP 8.2.1 or later; only the “V” equivalent of a platform can use array LUNs.

Components of a Data ONTAP-v storage system

A storage system based on Data ONTAP-v technology is a software-based data storage and retrieval system.

The software version of a NetApp storage controller executes Data ONTAP within a virtual machine on a host server. This enables Data ONTAP to run on servers supported by VMware vSphere to manage storage in virtualized environments.

The virtual storage system includes:

- A storage system main unit and storage disks collocated within a single chassis.
- Data ONTAP software stored on the boot device located on a storage disk.
- Network access to Data ONTAP without the use of dedicated ports.
- The Data ONTAP CLI and System Manager to perform storage management.
- The Data ONTAP-v Administration tool (dvadmin) to perform system management.

The virtual storage system does not include dedicated remote management devices. Management is done using the network.
Monitoring, troubleshooting, logging, reporting, and collection of environmental and other system information are performed by the host server.

**Key features for Data ONTAP**

Data ONTAP provides features for network file service, multiprotocol file and block sharing, data storage management, data organization management, data access management, data migration management, data protection system management, and AutoSupport.

**Network file services**

Data ONTAP enables users on client workstations (or hosts) to create, delete, modify, and access files or blocks stored on the storage system.

Storage systems can be deployed in network-attached storage (NAS) and storage area network (SAN) environments for accessing a full range of enterprise data for users on a variety of platforms. Storage systems can be fabric-attached, network-attached, or direct-attached to their clients. Supported protocols for NAS are NFS, CIFS, HTTP, and FTP for file access. Supported protocols for SAN (block) are iSCSI, FC, and FCoE for block-storage access.

Client workstations are connected to the storage system through direct-attached or TCP/IP network-attached connections, or through FC, fabric-attached connections.

For information about configuring a storage system in a NAS network, see the *Data ONTAP Network Management Guide for 7-Mode*.

For information about configuring a storage system in a SAN fabric, see the *Data ONTAP SAN Administration Guide for 7-Mode*.

**Multiprotocol file and block sharing**

You can use several protocols to access data on the storage system.

You can use the following protocols for sharing files or blocks:

- **NFS (Network File System)**—used by UNIX systems
- **(PC)NFS (Personal Computer NFS)**—used by PCs to access NFS
- **CIFS (Common Internet File System)**—used by Windows clients
- **FTP (File Transfer Protocol)**—used for file access and retrieval
- **HTTP (HyperText Transmission Protocol)**—used by the World Wide Web and corporate intranets
- **WebDAV (Web-based Distributed Authoring and Versioning)**—used by HTTP clients for distributed web content authoring operations
- **FC (Fibre Channel)**—used for block access in storage area networks
Data storage management introduction

Data ONTAP stores data on disks in disk shelves connected to storage systems or uses storage on storage arrays.

For native storage, Data ONTAP uses RAID-DP or RAID4 groups to provide parity protection. For array LUNs, Data ONTAP uses RAID0 groups to optimize performance and storage utilization. The storage arrays provide the parity protection for array LUNs. Data ONTAP RAID groups are organized into plexes, and plexes are organized into aggregates.

For more information about data storage management, see the Data ONTAP Storage Management Guide for 7-Mode.

Data organization management

Data ONTAP organizes the data in user and system files and volumes, optionally in qtrees, and, for SAN environments, in Logical Unit Numbers (LUNs). Aggregates provide storage to the volumes that they contain.

For more information about data organization management, see the Data ONTAP Storage Management Guide for 7-Mode and the Data ONTAP SAN Administration Guide for 7-Mode.

Related concepts

Understanding the root volume on page 75

Data access management

Data ONTAP enables you to manage access to data.

Data ONTAP performs the following operations for data access management:

- Checks file access permissions against file access requests
- Checks write operations against file and disk usage quotas that you set

For more information, see the Data ONTAP File Access and Protocols Management Guide for 7-Mode.
• Creates Snapshot copies and makes them available so that users can access deleted or overwritten files.
  Snapshot copies are read-only copies of the entire file system. For more information, see the *Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode*.

**Data migration management**

Data ONTAP enables you to manage data migration in several ways.

You can use the following Data ONTAP functionality to manage data migration:

• Snapshot copies
• Asynchronous mirroring
• Synchronous mirroring
• Backup to tape
• Aggregate copy
• Volume copy
• FlexClone
• ndmpcopy

**Data protection capabilities**

Data ONTAP provides a wide range of data protection capabilities, such as the *aggr copy*, MetroCluster, NDMP, NVFAIL, SnapLock, SnapMirror, SnapRestore, Snapshot copies, SnapVault, SyncMirror, tape backup and restore, virus scan support, and *vol copy* functionality.

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Description</th>
</tr>
</thead>
</table>
| *aggr copy*             | This is fast block copy of data stored in aggregates; it enables you to copy blocks of stored system data from one aggregate to another.  
  For information about aggregates and *aggr copy*, see the *Data ONTAP Storage Management Guide for 7-Mode*. |
| MetroCluster configurations | MetroCluster configurations enhance SyncMirror functionality for disaster recovery by providing continuous volume mirroring over 500-meter to 30-kilometer distances.  
  For information about disaster protection using MetroCluster configurations, see the *Data ONTAP High Availability and MetroCluster Configuration Guide for 7-Mode*. |
<table>
<thead>
<tr>
<th>Functionality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMP (Network Data Management Protocol)</td>
<td>NDMP support enables third-party applications that use NDMP to manage tape backup operations of system data. The <code>ndmpcopy</code> command carries out NDMP-compliant backups and restores. Security login restricts access to NDMP operations. For information about NDMP, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>NVFAIL</td>
<td>The <code>nvfail</code> option provides protection against data corruption by nonvolatile RAM (NVRAM) failures. For information about NVFAIL, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>SnapLock software</td>
<td>The SnapLock functionality provides an alternative to traditional optical WORM (write-once-read-many) storage systems for nonrewritable data. For information about SnapLock, see the <em>Data ONTAP Archive and Compliance Management Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>SnapMirror software</td>
<td>System-to-system Snapshot mirroring enables you to mirror Snapshot copies on one storage system to a partner system. If the original storage system is disabled, this ensures quick restoration of data from the point of the last Snapshot copy. For information about the SnapMirror functionality, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>SnapRestore software</td>
<td>The SnapRestore functionality performs fast restoration of backed-up data on request from Snapshot copies on an entire volume. For information about SnapRestore, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>Snapshot software</td>
<td>Manual or automatically scheduled multiple backups (or Snapshot copies) of data using a minimal amount of additional disk space at no performance cost. For information about how Data ONTAP organizes and manages data, see the <em>Data ONTAP Storage Management Guide for 7-Mode</em>. For information about Snapshot copies, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>Functionality</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SnapVault software</td>
<td>The SnapVault functionality combines Snapshot schedules and Qtree SnapMirror to provide disk-based data protection for storage systems.</td>
</tr>
<tr>
<td></td>
<td>Using the SnapVault functionality, you can periodically replicate selected Snapshot copies from multiple client systems to a common Snapshot copy on the SnapVault server. The Snapshot copies on the server become the backups. You decide when to dump data from the SnapVault server to tape. As a result, you avoid the bandwidth limitations of tape drives, you restore data faster, and you do not need to perform full dumps from primary storage, so you do not need to schedule a backup window. For information about the SnapVault functionality, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>Storage Encryption</td>
<td>Storage Encryption protects your data at rest by storing it encrypted on the disk. In a standard storage environment, data is written to disk in cleartext format. This makes the data vulnerable to potential exposure to unauthorized users when disks removed from a storage system are lost or stolen. Storage Encryption is an optional feature that you can enable for additional data protection. It is available on certain supported storage controllers and disk shelves that contain disks with encryption functionality. It does not require a separate license key. It happens without a perceptible disk performance decrease or boot time increase. The only additional hardware required is an external key management server. The self-encrypting disks in the storage system automatically encrypt the data for storage. When you enable Storage Encryption, the disks require authentication to access and decrypt the data. The authentication key is stored securely on an external key management server that is linked to the storage system.</td>
</tr>
<tr>
<td>SyncMirror (high-availability configuration required)</td>
<td>The SyncMirror functionality performs real-time RAID-level—that is, RAID4 or RAID-DP (RAID double-parity)—mirroring of data to two separate plexes that are physically connected to the same storage system controller. If there is an unrecoverable disk error on one plex, the storage system automatically switches access to the mirrored plex. Data ONTAP supports RAID4 and RAID-DP only for disk shelves. The SyncMirror functionality can be used for mirroring of aggregates composed of array LUNs. In the case of an unrecoverable error, Data ONTAP automatically switches access to the mirrored plex on the other storage array. Data ONTAP uses RAID0 for managing storage on array LUNs, but the storage arrays provide RAID protection for array LUNs. For information about supported RAID levels and plexes, see the <em>Data ONTAP Storage Management Guide for 7-Mode</em>. For information about SyncMirror, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
</tbody>
</table>
### Functionality

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape backup and restore</td>
<td>Tape backup dump and restore commands enable you to back up system or SnapVault Snapshot copies to tape. Because the Snapshot copy, rather than the active file system, is backed up to tape, the storage system can continue its normal functions while the tape backup is occurring. For information about tape backup, see the <em>Data ONTAP Data Protection Tape Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>Virus scan support</td>
<td>Data ONTAP provides support for third-party scanning software for files accessed by CIFS clients. For information about virus protection for CIFS, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
<tr>
<td>vol copy</td>
<td>This is fast block copy of data stored in volumes; it enables you to copy blocks of stored system data from one volume to another. For information about volumes and vol copy, see the <em>Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode</em>.</td>
</tr>
</tbody>
</table>

### System management

Data ONTAP enables you to manage system activities and resources.

You can use Data ONTAP to perform the following system management tasks:

- Manage network connections
- Manage adapters
- Manage protocols
- Configure a pair of storage systems into high-availability configuration for failover
- Configure SharedStorage storage systems into a community
- Manage storage and quotas
- Dump data to tape and restore it to the storage system
- Mirror volumes (synchronously and asynchronously)
- Create vFiler units
  
  For information about vFiler units, see the *Data ONTAP MultiStore Management Guide for 7-Mode*.

For information about all Data ONTAP commands, see the *Data ONTAP Commands: Manual Page Reference for 7-Mode, Volume 1* and the *Data ONTAP Commands: Manual Page Reference for 7-Mode, Volume 2*.
AutoSupport

AutoSupport automatically sends AutoSupport Mail notifications about storage system problems to technical support and designated recipients.

Related concepts

  Managing AutoSupport on page 165
How to interface with Data ONTAP

You interface with Data ONTAP to administer your storage system.

Methods for administering a storage system

You can use Data ONTAP, the remote management device, Windows, configuration files, OnCommand System Manager, or the NetApp Manageability SDK software to administer a storage system.

- Command execution through the storage system’s CLI
  The storage system's CLI enables you to execute all Data ONTAP administrative commands, with the exception of some Windows server administrative commands. The Data ONTAP command line enables you to enter a maximum of 2,046 characters, and it supports a maximum number of 255 arguments for a single command. You can access the storage system’s command line in the following ways:
  - A serial terminal connected to the console port of the storage system
  - An Ethernet connection to the remote management device in the storage system
  - A Telnet session to the storage system
  - A remote shell program, such as the UNIX RSH utility (provides access for a limited set of commands)
  - A secure shell application program, such as SSH or OpenSSH for UNIX

- Command execution through the remote management device
  The redirection feature of the remote management device enables you to remotely execute all Data ONTAP administrative commands.

- Command execution through the Windows operating system
  You can use Windows commands to perform system administrative tasks related to Windows network operations. You can also use a secure shell application program, such as PuTTY. You can execute Windows commands that affect the storage system by using native Windows administration tools, such as Server Manager and User Manager.

- Configuration file editing
  You can edit configuration files to supply information that Data ONTAP needs to perform certain tasks. You can access configuration files by mounting the root directory of the storage system on a UNIX client or by mapping the administrative share (C$) to a drive on a Windows client, and then editing the file from the client.
Note: For information about how to set up CIFS so that you can use a Windows client to access files on the storage system, see the *Data ONTAP Software Setup Guide for 7-Mode*.

- **OnCommand System Manager**
  OnCommand System Manager is a web-based graphical management interface that enables you to manage storage systems and storage objects, such as disks, volumes, and aggregates. For more information about OnCommand System Manager, see the NetApp Support Site.

- **NetApp Manageability SDK**
  The NetApp Manageability SDK software contains resources necessary to develop third-party applications that monitor and manage storage systems. The NetApp Manageability SDK is available to all users of the NetApp Support Site for free download. It contains libraries, code samples, and bindings in Java, C, and Perl for the new ONTAPI programming interface set. A NetApp storage system simulator that runs on Linux or Solaris and simulates the NetApp storage system to a very low level is also available as a separate distribution. For more information, see the NetApp Manageability SDK page.

**Related concepts**
- *Managing a storage system remotely* on page 196
- *Default directories in the root volume* on page 78
- *Understanding OnCommand System Manager* on page 64

**Related information**
- *NetApp Support Site: mysupport.netapp.com*
- *NetApp Manageability SDK: communities.netapp.com/docs/DOC-1152*

**Methods for administering a Data ONTAP-v storage system**

You interface with the Data ONTAP-v administration tool (dvadmin) in order to install, configure, and manage the Data ONTAP-v storage software.

Because there is no physical serial port on the Data ONTAP-v virtual machine, you connect to both Data ONTAP-v and Data ONTAP over the network.

There are multiple ways to configure and manage a Data ONTAP-v storage system:

- Connect to the Data ONTAP-v virtual machine over the network and use the dvadmin CLI to manage the virtual machine configuration.

- Connect to Data ONTAP over the network and use the storage system CLI or System Manager to manage the storage system.

See the *Data ONTAP Edge Installation and Administration Guide* for more information.
Data ONTAP command-line interface

Data ONTAP provides several features to assist you when you enter commands on the command line.

When using the Data ONTAP command line, be aware of the following general rules:

• If you are entering a command with an element that includes a space, you must enclose that element in quotation marks, as shown in the following example:

  toaster> environment status chassis "Power Supply"

• Do not use a # character in the command string. A # character always means to comment out the rest of the line, so Data ONTAP ignores any information following the #.

Displaying command history

Data ONTAP enables you to scroll through recently entered commands.

Step

1. Do one of the following:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scroll back through commands</td>
<td>Press the Up arrow key or press Ctrl-p.</td>
</tr>
<tr>
<td>Scroll forward through commands</td>
<td>Press the Down arrow key or press Ctrl-n.</td>
</tr>
</tbody>
</table>

Using the command-line editor

The command-line editor enables you to position the cursor anywhere in a partially typed command and insert characters at the cursor position.

Step

1. Use the applicable key combination to move the cursor within the same line and edit the command:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then press...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move the cursor right one position</td>
<td>Ctrl-f or the Right arrow key</td>
</tr>
</tbody>
</table>
If you want to... | Then press...
---|---
Move the cursor left one position | Ctrl-b or the Left arrow key
Move the cursor to the end of the line | Ctrl-e
Move the cursor to the beginning of the line | Ctrl-a
Delete all characters from the cursor to the end of the line | Ctrl-k
Delete the character to the left of the cursor and move the cursor left one position | Ctrl-h
Delete the line | Ctrl-u
Delete a word | Ctrl-w
Reprint the line | Ctrl-r
Abort the current command | Ctrl-c

**How to use online command-line help**

You can get command-line syntax help from the command line by entering the name of the command followed by `help` or the question mark (`?`).

The fonts or symbols used in syntax help are as follows:

**keyword**

Specifies the name of a command or an option that must be entered as shown.

< > (less than, greater than symbols)

Specify that you must replace the variable identified inside the symbols with a value.

| (pipe)

Indicates that you must choose one of the elements on either side of the pipe.

[ ] (brackets)

Indicate that the element inside the brackets is optional.

{ } (braces)

Indicate that the element inside the braces is required.

You can also type the question mark at the command line for a list of all the commands that are available at the current level of administration (administrative or advanced).

The following example shows the result of entering the `environment help` command at the storage system command line. The command output displays the syntax help for the `environment` commands.
Related concepts

*Data ONTAP commands at different privilege levels* on page 27

Data ONTAP commands at different privilege levels

Data ONTAP provides two sets of commands, depending on the privilege level you set. The administrative level enables you to access commands that are sufficient for managing your storage system. The advanced level provides commands for troubleshooting, in addition to all the commands available at the administrative level.

**Attention:** Commands accessible only at the advanced level should be used under the guidance of technical support. Using some advanced commands without consulting technical support might result in data loss.

How different privilege settings apply to different sessions

Sessions opened through the console, Telnet, and secure shell applications share the same privilege setting. However, you can set a different privilege level for each RSH invocation.

For example, if you set the privilege level to advanced at the console, the advanced commands also become available to an administrator who is connected to the storage system using Telnet.

However, if your privilege level at the console is administrative and, through RSH, another administrator sets the privilege level to advanced, your privilege level at the console remains unchanged.

Initial privilege level

The initial privilege level for the console and for each RSH session is administrative.

Data ONTAP resets the privilege level to administrative for each RSH session. If a script invokes multiple RSH connections and you want to execute advanced commands in each connection, you must set the privilege level accordingly for each RSH session. If you set the privilege level for the first RSH session only, Data ONTAP fails to execute the advanced commands in the subsequent RSH sessions, because the privilege level for each subsequent session is reset to administrative.
Setting the privilege level

You set the privilege level to access commands at either the administrative or the advanced level.

Step

1. Enter the following command:

   `priv set [-q] [admin | advanced]`

   - `admin` sets the privilege level to administrative.
   - `advanced` sets the privilege level to advanced.
   - `-q` enables quiet mode. It suppresses the warning that normally appears when you set the privilege level to advanced.

   **Note:** If no argument is given, the default, `admin`, is applied.

Example

Assuming the name of the storage system is `sys1`, the storage system prompt is `sys1>`, as shown in the following example.

```
sys1> priv set advanced
```

The following message is displayed, followed by the advanced mode storage system prompt.

Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical personnel.

```
sys1>*
```
How to access the storage system

You can access the storage system from the console or through a Telnet session, a Remote Shell connection, or a secure shell client application.

Methods for accessing a storage system

To access the storage system, you only need network connectivity to the storage system and authentication privileges, and no licenses are required. To store and retrieve data on the storage system, you must have an NFS or a CIFS license installed.

Methods for administering the system

You can access a storage system to administer it by using a serial console or through a NIC installed in the storage system.

You can use the following methods:

- Through a console that is attached by a cable to the storage system’s serial port
- Through the Ethernet network interface card (NIC) that is preinstalled in the storage system
  The NIC enables you to connect to a TCP/IP network and administer the storage system from a client that uses the following:
    - A Telnet session
    - A Remote Shell connection
    - A web browser
    - A secure shell client application, such as SSH, OpenSSH for UNIX hosts, or PuTTY for Windows hosts

Note: If you use the wrfile command to redirect input into non-interactive SSH sessions, the command fails if SSH is configured to automatically send an End-Of-File (EOF) or used with the option –n.
Controlling the sharing of a console session

A console session can be shared with a Telnet or an SSH-interactive session at the same time, or it can be a distinct user environment, separate from Telnet and SSH-interactive sessions.

About this task

You use the `telnet.distinct.enable` option to control whether the console session is shared with a Telnet or an SSH-interactive session at the same time or the console session is a distinct user environment separate from Telnet and SSH-interactive sessions. To enhance security, you should ensure that the option is set to `on` to keep the console session separate from a Telnet or an SSH-interactive session.

The console session is always shared with the remote management device, regardless of the `telnet.distinct.enable` option setting.

Step

1. To control the sharing of a console session, enter the following command:

   ```
   options telnet.distinct.enable [on|off]
   ```

   Setting the option to `on` enhances security by keeping the console session separate from a Telnet or an SSH-interactive session. On storage systems shipped with Data ONTAP 8.0 or later, the default for this option is `on`.

   Setting the option to `off` causes the console session to share with a Telnet or an SSH-interactive session. You cannot set the option to `off` if a user is currently assigned to the Compliance Administrators group.

   If the `telnet.distinct.enable` option setting is changed during a Telnet or an SSH-interactive session, the change does not go into effect until the next Telnet or SSH login.

   If you change the option setting after upgrading to Data ONTAP 8.0 or later, the changes are preserved even if the system reverts back to the previous Data ONTAP version.

   **Note:** You can initiate an SSH-interactive session by opening the session without entering a command. For example, you would enter the following command:

   ```
   ssh storage_system -l root:
   ```

   If you enter the following command instead, you would initiate a non-interactive session:

   ```
   ssh storage_system -l root:"" command
   ```

Related concepts

- *Options that help maintain security* on page 71
- *Predefined groups* on page 108
Rules that apply to console, Telnet, and SSH-interactive sessions

You cannot open both a Telnet and an SSH-interactive session at the same time. However, you can configure for the console to share a session with a Telnet or an SSH-interactive session.

The following rules apply to console, Telnet, and SSH-interactive sessions.

• Sharing the console session
  If the `telnet.distinct.enable` option is set to `off`, the console shares a session with a Telnet or an SSH-interactive session, and the following rules apply:
  ◦ Commands typed at either the console or the Telnet or SSH-interactive session are echoed to the other location.
  ◦ Pressing Ctrl-c aborts the current command regardless of where the command was entered.
  ◦ Messages are displayed at both locations.
  ◦ Audit-log entries identify all console commands as “console shell,” as shown in the following example:
  ◦ Audit-log entries identify all Telnet and SSH-interactive commands as “telnet shell.”
  ◦ If the `autologout.telnet.enable` option is set to `on`, the autologout program logs the user out of the Telnet or SSH-interactive session after the number of minutes specified by the `autologout.telnet.timeout` option has elapsed.
    The timeout counter starts after the Enter or Return key is pressed. For example, if the `autologout.telnet.timeout` option is set to 10 minutes, every time you press Enter, the timeout counter starts counting. If 10 minutes elapse before you press Enter again, the autologout program logs you out.

• Not sharing the console session
  If the `telnet.distinct.enable` option is `on`, the console session has a distinct user environment and the following rules apply:
  ◦ Commands that are typed at one location are not echoed to the other location.
  ◦ Messages are not displayed at both locations.
  ◦ User privileges are not shared among console, Telnet, and SSH-interactive sessions.
Audit-log entries identify all console, Telnet, and SSH-interactive commands as “console shell.”

If the `autologout.telnet.enable` option is set to `on`, the autologout program logs the user out of the Telnet or SSH-interactive session after the number of minutes specified by the `autologout.telnet.timeout` option has elapsed.

The timeout counter starts after the command is executed.

You can prevent commands from being aborted at the console or through a Telnet or an SSH session by using the `rsh` command to initiate commands from an administration host.

The `autologout.telnet.enable` and `autologout.telnet.timeout` options control the automatic timeout for both Telnet and SSH-interactive sessions. Even if you disable Telnet connections to the storage system, you can still enable and configure the automatic timeout period for only SSH-interactive sessions by setting the `autologout.telnet.enable` option to `on` and setting the `autologout.telnet.timeout` option to the desired timeout period.

**What the e0M interface is**

Some storage system models have an interface named e0M. The e0M interface is dedicated to Data ONTAP management activities. It enables you to separate management traffic from data traffic on your storage system for security and throughput benefits.

On a storage system that has the e0M interface, the Ethernet port (indicated by a wrench icon on the rear of the chassis) is connected to an internal Ethernet switch. The internal Ethernet switch provides connectivity to the e0M interface and the remote management device, such as the SP, or the RLM.

The following diagram illustrates the connections:

![Diagram of e0M interface connections](image)

When you set up a system that includes the e0M interface, the Data ONTAP setup script recommends that you use the e0M as the preferred management interface for environments that use
dedicated LANs to isolate management traffic from data traffic. The setup script then prompts you to configure e0M. The e0M configuration is separate from the configuration of the remote management device. Both configurations require unique IP addresses to allow the Ethernet switch to direct traffic to either the e0M interface or the remote management device. For information about how to set up the e0M interface, see the *Data ONTAP Software Setup Guide for 7-Mode*.

After you set up the e0M interface, you can use it to access the storage system with the following management protocols, if they have been enabled:

- Telnet
- RSH
- HTTP or HTTPS
- SSH
- SNMP

The e0M is a low bandwidth interface that should be configured for management traffic only. Running data traffic over the e0M interface can cause performance degradation and routing problems. For information about blocking data transfer over the e0M interface, see the *Data ONTAP Network Management Guide for 7-Mode*.

**Related concepts**

*Managing a system remotely by using the Service Processor* on page 196  
*Managing a system remotely by using the Remote LAN Module* on page 224

**Using the e0M interface to perform a Data ONTAP management task**

You can use the e0M interface to access the storage system to manage Data ONTAP.

**Steps**

1. Open a session on a client by using a management protocol such as SSH.
   
   For information about how to use the e0M interface with SNMP, see the *Data ONTAP Network Management Guide for 7-Mode*.

2. Connect to the storage system by using the IP address of the e0M interface.

3. Log in to the storage system with an appropriate user name and a valid password.

4. At the storage system prompt, enter a Data ONTAP CLI command.

**Related concepts**

*How to access a storage system by using Telnet* on page 54  
*How to access a storage system by using a Remote Shell connection* on page 58
Differences between the e0M interface and the remote management device

Both the e0M interface and the remote management device connect to the internal Ethernet switch that connects to the Ethernet port. (The Ethernet port is indicated by a wrench icon on the rear of the chassis.) However, the e0M interface serves as the dedicated interface for management traffic, and the remote management device provides remote management capabilities.

The e0M interface serves as the dedicated interface for environments that have dedicated LANs for management traffic. You use the e0M interface for Data ONTAP administrative tasks.

The remote management device (which can be the SP or the RLM, depending on the storage system model) not only can be used for managing Data ONTAP but also provides remote management capabilities for the storage system, including remote access to the console, monitoring, troubleshooting, logging, and alerting features. Also, the remote management device stays operational regardless of the operating state of the storage system and regardless of whether Data ONTAP is running.

How to access a storage system from the console

You can access the console to manage the storage system by using the serial port or a remote management device.

Related concepts

Rules that apply to console, Telnet, and SSH-interactive sessions on page 31

Accessing the storage system by using the serial port

You can access the storage system directly from a console that is attached to the serial port by a cable.

About this task

If the values of the following options are changed, the new values take effect only after the console session is reestablished:

- autologout.console.enable
- autologout.console.timeout
- autologout.telnet.enable
- autologout.telnet.timeout

For more information about these options, see the na_options(1) man page.
Steps

1. At the console, press Enter.
   The system responds with the login prompt.

2. At the login prompt, do one of the following:

<table>
<thead>
<tr>
<th>To access the storage system with...</th>
<th>Enter the following account name...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default system account</td>
<td>root</td>
</tr>
<tr>
<td>An alternative administrative user account</td>
<td>username</td>
</tr>
</tbody>
</table>

   The system responds with the password prompt.

3. Enter the password for the root or administrative user account, and then press Enter.

4. If you see the system prompt followed by a system message, press Enter to get to the system prompt.

Example

```
```

(Press Enter.)

```
toaster>
```

**Note:** You can abort commands entered at the console by pressing Ctrl-C.

Accessing the system by using the remote management device

You can access the system remotely by using the remote management device. Depending on your storage system model, the remote management device can be the SP or the RLM.

Steps

1. From the administration host, log in to the remote management device by entering the following command:

   ```
   ssh remote_management_username@IP_for_remote_management_device
   ```

   `remote_management_username` is the “naroot” account or a Data ONTAP local user account with the credentials of the “admin” role or a role with the `login-sp` capability.

   The system responds by displaying the CLI prompt for the remote management device.
2. Enter the following command at the CLI prompt for the remote management device:
   
   ```
   system console
   ```
   
3. When the system displays the login prompt, enter an appropriate account name for the storage system:

<table>
<thead>
<tr>
<th>If you are using...</th>
<th>Enter the following account name...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system root account</td>
<td>root</td>
</tr>
<tr>
<td>An administrative user account</td>
<td><code>storage_system_username</code></td>
</tr>
</tbody>
</table>

   **Note:**
   `storage_system_username` is an administrative user account for the storage system.

4. Enter the password for the account, and then press Enter.

   The storage system prompt appears.

5. To exit the console and return to the SP prompt or the RLM prompt, press Ctrl-D.

**Related concepts**

*Managing a storage system remotely* on page 196

**Secure protocols and storage system access**

Using secure protocols improves the security of your storage system by making it very difficult for someone to intercept a storage system administrator's password over the network, because the password and all administrative communication are encrypted.

If your storage system does not have secure protocols enabled, you can set up SecureAdmin, which provides a secure communication channel between a client and the storage system by using one or both of the following protocols—SSH and SSL.

**Note:** SecureAdmin is set up automatically on storage systems shipped with Data ONTAP 8.0 or later.

- Secure Shell (SSH) protocol
  SSH provides a secure remote shell and interactive network session.

- Secure Sockets Layer (SSL) protocol
  SSL provides secure web access for Data ONTAP APIs.
The default security settings

On storage systems shipped with Data ONTAP 8.0 or later, secure protocols are enabled and nonsecure protocols are disabled by default.

SecureAdmin is set up automatically on storage systems shipped with Data ONTAP 8.0 or later. For these systems, the following are the default security settings:

- Secure protocols (including SSH, SSL, and HTTPS) are enabled by default.
- Nonsecure protocols (including RSH, Telnet, FTP, and HTTP) are disabled by default.

On storage systems shipped with Data ONTAP 8.0 or later, the following are the default option settings for SSH and SSL:

- `options ssh.enable on`
- `options ssh2.enable on`
- `options ssh1.enable off`
- `options ssh.passwd_auth.enable on`
- `options ssh.pubkey_auth.enable on`
- `options httpd.admin.ssl.enable on`

Also on storage systems shipped with Data ONTAP 8.0 or later, the following are the default option settings for the nonsecure protocols:

- `options ftpd.enable off`
- `options httpd.admin.enable off`
- `options httpd.enable off`
- `options rsh.enable off`
- `options telnet.distinct.enable on`
- `options telnet.enable off`

**Note:** These default settings apply only to storage systems shipped with Data ONTAP 8.0 or later. For storage systems upgraded from an earlier version to Data ONTAP 8.0 or later, the above default settings do not apply. Instead, for those upgraded systems, the settings remain unchanged after the upgrade. Also, if you make security setting modifications after upgrading to Data ONTAP 8.0 or later, the modifications are preserved even if the system reverts back to the previous Data ONTAP version.
Understanding the SSH protocol

The Secure Shell (SSH) protocol performs public-key encryption using a host key and a server key. SSH improves security by providing a means for the storage system to authenticate the client and by generating a session key that encrypts data sent between the client and storage system.

The SSH server version running on Data ONTAP is Data ONTAP SSH version 1.0. For information about the Common Vulnerabilities and Exposures (CVE) fixes implemented in Data ONTAP, see the Suspected Security Vulnerabilities page on the NetApp Support Site.

Data ONTAP supports the SSH 1.x protocol and the SSH 2.0 protocol.

Data ONTAP supports the following SSH clients:

- OpenSSH client version 4.4p1 on UNIX platforms
- SSH Communications Security client (SSH Tectia client) version 6.0.0 on Windows platforms
- Vandyke SecureCRT version 6.0.1 on Windows platforms
- PuTTY version 0.6.0 on Windows platforms
- F-Secure SSH client version 7.0.0 on UNIX platforms

SSH uses three keys to improve security:

- Host key
  SSH uses the host key to encrypt and decrypt the session key. You determine the size of the host key, and Data ONTAP generates the host key when you configure SecureAdmin.

  **Note:** SecureAdmin is set up automatically on storage systems shipped with Data ONTAP 8.0 or later.

- Server key
  SSH uses the server key to encrypt and decrypt the session key. You determine the size of the server key when you configure SecureAdmin. If SSH is enabled, Data ONTAP generates the server key when any of the following events occur:

  - You start SecureAdmin
  - An hour elapses
  - The storage system reboots

- Session key
  SSH uses the session key to encrypt data sent between the client and storage system. The session key is created by the client. To use the session key, the client encrypts the session key using the host and server keys and sends the encrypted session key to the storage system, where it is
decrypted using the host and server keys. After the session key is decrypted, the client and storage system can exchange encrypted data.

The following table shows how Data ONTAP creates a secure session between the storage system and client.

<table>
<thead>
<tr>
<th>Stage</th>
<th>What the client does</th>
<th>What the storage system does</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The client sends an SSH request to the storage system.</td>
<td>The storage system receives the SSH request from the client.</td>
</tr>
<tr>
<td>2</td>
<td>The storage system sends the public portion of the host key, and the server key if SSH 1.x is used, to the client.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The client stores the public portion of the host key for future host authentication.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>The client generates a random session key.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The client encrypts the session key by using the public portion of the host key, and the server key if SSH 1.x is used, and sends it to the storage system.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>The storage system decrypts the session key using the private portions of the host key, and the server key if SSH 1.x is used.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The storage system and the client exchange information that they encrypt and decrypt using the session key.</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** Some characters, such as question mark (?) , period (.), asterisk (*), and caret (^), can have special meaning for the command interpreter running on the client. The client command interpreter might replace the character with an environment-specific value prior to passing it to the SSH program. To prevent a replacement, you can use an escape sequence before the character (ssh ip_address \?) or enclose the character in quotes (ssh ip_address '"').

Data ONTAP supports password authentication and public-key-based authentication. It does not support the use of a .rhosts file or the use of a .rhosts file with RSA host authentication.

Data ONTAP supports the following encryption algorithms:

- RSA/DSA 1024 bit
- 3DES in CBC mode
- HMAC-SHA1
- HMAC-MD5
How to manage SSH

If your storage system does not have SSH enabled, you can set up SecureAdmin to enable secure sessions using SSH. A few options enable you to control password-based authentication and public key authentication, control access to a storage system, and assign the port number to a storage system.

SecureAdmin is set up automatically on storage systems shipped with Data ONTAP 8.0 or later. SecureAdmin uses the following options to enable secure sessions using SSH:

- **options ssh.passwd_auth.enable**—Controls password-based authentication. The default is **on**.
- **options ssh.pubkey_auth.enable**—Controls public key authentication. The default is **on**.
- **options ssh.access**—Controls access to a storage system. The default value allows everyone to access the storage system.
- **options ssh.port**—Assigns the port number to a storage system. The default value is 22.

For more information about the SSH options, see the na_options(1) man page.

**Note:** SSH does not support force commands. It does not support internal role-based access control. Access control is governed by the Administrative Roles feature.

Related concepts

- How to manage administrator and diagnostic access on page 99
- The default security settings on page 37

Related tasks

- Restricting protocol access on page 68

Setting up and starting SSH

The SSH setup process involves creating host and server keys.

**About this task**

You can determine the size of the host and server keys by using the following guidelines:
If you are using SSH 1.x, the size of the host and server keys can range from 384 bits to 2,048 bits.

If you are using SSH 2.0, the size of the host and server keys can range from 768 to 2,048 bits.

As the size increases, the security increases; however, initiating a new SecureAdmin session takes longer and storage system performance might decrease.

The size of the host key must differ from the size of the server key by at least 128 bits. It does not matter which key is larger.

If you are using SSH 1.x, the host key is stored in the /etc/sshd/ssh_host_key file.

If you are using SSH 2.0, the RSA host key is stored in the /etc/sshd/ssh_host_rsa_key file, and the DSA host key is stored in the /etc/sshd/ssh_host_dsa_key file.

**Note:** The setup procedure requires you to enter key sizes for the SSH 1.x and SSH 2.0 protocols, regardless of the protocol you use. For example, if you plan to use SSH 2.0, you still must enter values for the SSH 1.x host key and server key sizes. You can accept the default value for keys that you do not use.

**Steps**

1. Enter the following command:
   ```bash
   secureadmin setup [-f] [-q] ssh
   ```
   The `-f` option forces setup to run even if the SSH server has already been configured.
   The `-q` option is the non-interactive mode for setting up SSH. See the na_secureadmin(1) man page for more information.

2. When prompted, enter a size for the SSH 1.x host key.
   The default size for the host key is 768 bits.

3. When prompted, enter a size for the SSH 1.x server key.
   The default size for the server key is 512 bits.

4. When prompted, enter a size for the SSH 2.0 host keys.
   The default size for the host key is 768 bits.

5. When prompted, confirm the parameters that you specified.
   SecureAdmin generates the host key in the background, and, after a minute or two, the setup program sends a syslog message announcing that SSH is set up.

6. After the syslog message is generated, activate the host and server keys by entering the following command:
   ```bash
   secureadmin enable {ssh1|ssh2}
   ```
Use `ssh1` to enable SSH service for SSH 1.x clients or `ssh2` to enable SSH service for SSH 2.0 clients.

Reinitializing SSH

Reinitializing SSH enables you to change the sizes of existing host and server keys.

Steps

1. Cancel the existing host and server keys by stopping the SSH daemon with the following command:

   ```
   secureadmin disable {ssh1|ssh2}
   ```
   Use `ssh1` to disable SSH service for SSH 1.x clients or use `ssh2` to disable SSH service for SSH 2.0 clients.

2. Enter the following command:

   ```
   secureadmin setup -f [-q] ssh
   ```
   The `-f` option forces setup to run even if the SSH server has already been configured.
   The `-q` option is the non-interactive mode for setting up SSH. See the `na_secureadmin(1)` man page for more information.

3. When prompted, enter a size for the host key if you are using the SSH 1.x protocol.

4. When prompted, enter a size for the server key if you are using the SSH 1.x protocol.

5. When prompted, enter a size for the host key if you are using the SSH 2.0 protocol.

6. Activate the new host and server key sizes by entering the following command:

   ```
   secureadmin enable {ssh1|ssh2}
   ```
   Use `ssh1` to enable SSH service for SSH 1.x clients or use `ssh2` to enable SSH service for SSH 2.0 clients.

Result

Clients that have a copy of the old host key give the following warning after they receive a new key from the storage system:

```
@ WARNING: HOST IDENTIFICATION HAS CHANGED! @
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the host key has just been changed.
Please contact your system administrator.
Add correct host key in /u/sisa/.ssh/known_hosts to get rid of this message.
Agent forwarding is disabled to avoid attacks by corrupted servers.
Are you sure you want to continue connecting (yes/no)?
```
Enabling or disabling SSH

After setting up SSH, you can enable or disable it to start or stop SSH service.

**Step**

1. To enable or disable SSH, enter the following command:

\[ \text{secureadmin } \{\text{enable|disable}\} \{\text{ssh1|ssh2}\} \]

Use `enable` to start SSH service or `disable` to stop SSH service.

Use `ssh1` to administer SSH 1.x clients or `ssh2` to administer SSH 2.0 clients.

**Example of enabling SSH service for SSH 2.0 clients**

The following command enables SSH service for SSH 2.0 clients:

```
secureadmin enable ssh2
```

Related tasks

*Setting up and starting SSH* on page 40

Public-key-based authentication

Setting up key-based authentication requires an RSA key pair (a private and public key) in addition to the host and server keys. Public-key-based authentication differs between the two versions of SSH; SSH 1.x uses an RSA key pair and SSH 2.0 uses a DSA key pair in addition to an RSA key pair.

For both versions of SSH, you must generate the key pairs and copy the public key to the storage system.

**Generating an RSA key pair for SSH 1.x**

Public-key-based authentication using SSH 1.x requires an RSA key pair.

**Steps**

1. Using your SSH 1.x client, generate an RSA key pair.

   Your client generates the RSA key pair, a public key and a private key, and stores them on the client.

2. Copy the generated public key to the storage system root volume and append it to the `/etc/ssh/sshd/user_name/.ssh/authorized_keys` file.
Examples of generating an RSA key pair

The following is an example of generating an RSA key pair with an OpenSSH UNIX client. In the example, the identity.pub file is the public-key file that you copy to the storage system root volume.

% ssh-keygen -t rsa1 -b 1024
Generating public/private rsa1 key pair.
Enter file in which to save the key (/u/john/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /u/john/.ssh/identity
Your public key has been saved in /u/john/.ssh/identity.pub
The key fingerprint is:

The following commands append the public key to the /etc/sshd/user_name/.ssh/authorized_keys file on storage system sys1:

% mount sys1:/ /mnt_sys1
% cat identity.pub >> /mnt_sys1/etc/sshd/john/.ssh/authorized_keys

Generating key pairs for SSH 2.0

Generating key pairs for SSH 2.0 requires generating an RSA key pair and a DSA key pair.

About this task

If you use SSH 2.0 clients other than OpenSSH, you might have to edit the public key before you can use it.

Steps

1. Using your SSH 2.0 client, generate an RSA key pair.
   
   Your client generates the RSA key pair, a public key and a private key, and stores them on the client.

2. Using your SSH 2.0 client, generate a DSA key pair.
   
   Your client generates the DSA key pair, a public key and a private key, and stores them on the client.

3. Copy the generated public key to the storage system default directory and append it to the /etc/sshd/user_name/.ssh/authorized_keys2 file.
Examples of generating RSA and DSA key pairs

The following is an example of generating RSA and DSA key pairs with an OpenSSH UNIX client.

```
% ssh-keygen -t rsa -b 1024
Generating public/private rsa key pair.
Enter file in which to save the key (/u/john/.ssh/id_rsa): 
Enter passphrase (empty for no passphrase):
Enter same passphrase again: 
Your identification has been saved in /u/john/.ssh/id_rsa
Your public key has been saved in /u/john/.ssh/id_rsa.pub
%
% ssh-keygen -t dsa -b 1024
Generating public/private dsa key pair.
Enter file in which to save the key (/u/john/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again: 
Your identification has been saved in /u/john/.ssh/id_dsa
Your public key has been saved in /u/john/.ssh/id_dsa.pub
```

In this example, the `id_rsa.pub` and `id_dsa.pub` files are the public-key files that you copy to the storage system root volume.

The following commands append the public keys to the `/etc/sshd/user_name/.ssh/authorized_keys2` file on storage system `sys1`:

```
% mount sys1:/ /mnt_sys1
% cat id_rsa.pub >> /mnt_sys1/etc/sshd/john/.ssh/authorized_keys2
% cat id_dsa.pub >> /mnt_sys1/etc/sshd/john/.ssh/authorized_keys2
```

Related tasks

*Editing public keys generated by SecureCRT and ssh.com clients* on page 45

**Editing public keys generated by SecureCRT and ssh.com clients**

SSH 2.0 public keys generated by SecureCRT and ssh.com clients contain comments and line breaks that make the public keys useless. You must edit the generated public keys before SecureAdmin can use them.

**Steps**

1. Remove any text that is not part of the public key.
2. Remove line breaks and spaces to make the public key one continuous string of characters.
3. Before the first character of the public key, add `ssh-rsa` followed by a space.
**Examples of editing keys generated by SecureCRT**

The following is an example of an SSH 2.0 public key generated by a SecureCRT client. The generated public key contains extra text and line breaks at the end of each line.

```
---- BEGIN SSH2 PUBLIC KEY ----
Subject: john
Comment: "john@johnnt"
AAAAB3NzaC1yc2EAAAADAQABAAAAAgQJDjhJ6nk+2hm5iZnx737ZqxGfksPl3+OY1cF80s
1amXuUrwp3/MUODEP5E51zqj0w5kyJlvPjCiiLg9UqS7JeY5yd/6xyGarsde26De1E
rbVj1uqnxAOlV9A1hjBE8TbI+lyYBH+WezT0nyS1x6VBQTAWhv43r91SudswYV80Q==
---- END SSH2 PUBLIC KEY ----
```

The following is the public key after removing text that is not part of the public key, removing line breaks at the end of each line, and adding `ssh-rsa` at the beginning of the public key.

```
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAAAgQJDjhJ6nk+2hm5iZnx737ZqxGfksPl3+OY1cF80s1amXuUrwp3/MUODEP5E51zqj0w5kyJlvPjCiiLg9UqS7JeY5yd/6xyGarsde26De1ErbVj1uqnxAOlV9A1hjBE8TbI+lyYBH+WezT0nyS1x6VBQTAWhv43r91SudswYV80Q==
```

**Issuing SSH requests**

You can issue SSH requests to the storage system to perform administrative tasks.

**Before you begin**

For storage systems shipped with Data ONTAP 8.0 or later, SecureAdmin is set up automatically and SSH is enabled by default. For systems running earlier releases of Data ONTAP, SecureAdmin must have been set up and enabled.

**About this task**

Data ONTAP provides 24 concurrent SSH administrative sessions. However, you can open only one SSH-interactive session at a time.

**Step**

1. From a UNIX client, enter the `ssh` command in one of the following formats:
   ```
   ssh [-1|-2] [-6] username@{IP_addr|hostname} [command]
   ```
   or
   ```
   ssh [-1|-2] [-6] -l username {IP_addr|hostname} [command]
   ```
   - The option `-1` forces SSH to use protocol version 1 only.
   - The option `-2` forces SSH to use protocol version 2 only.
   - By default, SSH uses protocol version 2.
• The option -6 is supported only for SSH protocol version 2 and forces SSH to use IPv6 addresses only.

  Data ONTAP supports IPv4 addresses. If you use SSH protocol version 2 to access the storage system, and if options ip.v6.enable is set to on, IPv6 addresses are also supported.

  For information about how to configure your system to use IPv6 addresses, see the Data ONTAP Software Setup Guide for 7-Mode.

• command is not required for SSH-interactive sessions.

Examples of SSH requests

The following examples show how the user account named “joe” can issue an SSH request to access the storage system:

```
ssh joe@mysystem version

ssh joe@10.72.137.28 version

ssh -l joe 10.72.137.28 version

ssh -l joe@mysystem version

ssh -2 joe@mysystem version

ssh -2 -6 joe@mysystem

options ssh.access host=mysystem,10.72.137.28,3FFE:81D0:107:2082::33

options ssh.access "host = 3FFE:81D0:107:2082::33"
```

In addition, if you use SSH protocol version 2 and if options ip.v6.enable is set to on, you can also specify IPv6 address information in the options ssh.access command, as shown in the following examples:

```
options ssh.access host=mysystem,10.72.137.28,3FFE:81D0:107:2082::33

options ssh.access "host = 3FFE:81D0:107:2082::33"
```
Displaying the current SSH settings

If SSH has been enabled, you can use the `ssh` option to display the current SSH settings on your storage system.

**Step**

1. To display the current SSH settings, enter the following command at the storage system prompt:

   ```
   options ssh
   ```

   For more information about the SSH options and their default values, see the `na_options(1)` man page.

   The current SSH settings on your storage system are displayed.

   **Example of `options ssh` output**

   ```
   mysystem> options ssh
   ssh.access                   legacy
   ssh.enable                   on
   ssh.idle.timeout             0
   sshpasswd_auth.enable       on
   ssh.port                     22
   ssh.pubkey_auth.enable       on
   ssh1.enable                  on
   ssh2.enable                  on
   mysystem>
   ```

The SSL protocol

The Secure Sockets Layer (SSL) protocol improves security by providing a digital certificate that authenticates storage systems and allows encrypted data to pass between the system and a browser. SSL is built into all major browsers. Therefore, installing a digital certificate on the storage system enables the SSL capabilities between system and browser.

Using SSL improves security by encrypting the administrator’s password and all administrative communication when you manage your system from a browser.

Data ONTAP supports SSLv2, SSLv3, and Transport Layer Security version 1.0 (TLSv1.0). You should use TLSv1.0 or SSLv3 because it offers better security protections than previous SSL versions.

As a precautionary measure due to security vulnerability CVE-2009-3555, the SSL renegotiation feature is disabled in Data ONTAP.
How to manage SSL

SSL uses a certificate to provide a secure connection between the storage system and a Web browser. If your storage system does not have SSL enabled, you can set up SecureAdmin to enable SSL and allow administrative requests over HTTPS to succeed.

SecureAdmin is set up automatically on storage systems shipped with Data ONTAP 8.0 or later. For these systems, Secure protocols (including SSH, SSL, and HTTPS) are enabled by default, and nonsecure protocols (including RSH, Telnet, FTP, and HTTP) are disabled by default.

Two types of certificates are used—self-signed certificate and certificate-authority-signed certificate.

- Self-signed certificate
  A certificate generated by Data ONTAP. Self-signed certificates can be used as is, but they are less secure than certificate-authority signed certificates, because the browser has no way of verifying the signer of the certificate. This means the system could be spoofed by an unauthorized server.

- Certificate authority (CA) signed certificate
  A CA-signed certificate is a self-signed certificate that is sent to a certificate authority to be signed. The advantage of a certificate-authority-signed certificate is that it verifies to the browser that the system is the system to which the client intended to connect.

To enhance security, starting with Data ONTAP 8.0.2, Data ONTAP uses the SHA256 message-digest algorithm to generate digital certificates (including CSRs and root certificates) on the storage system.

Related concepts

The default security settings on page 37

Setting up and starting SSL

Setting up SSL enables Data ONTAP to generate a self-signed certificate.

Steps

1. Enter the following command at the storage system prompt:
   
   ```bash
   secureadmin setup ssl
   ```

2. If SSL has been previously set up for the storage system, Data ONTAP asks you whether you want to continue.
   - Enter `Y` if you want to change the SSL setup.
   - Enter `N` to exit the SSL setup.

3. Enter information when Data ONTAP prompts you.
   The information you are prompted to enter includes the following:
To use the default settings, press Enter at each of the prompts.

When the SSL setup is complete, Data ONTAP generates secureadmin.pem files and saves them in the appropriate subdirectories (cert, key, and csr) in the /etc/keymgr directory.

Related tasks

* Installing a CA signed certificate on page 50

**Installing a CA signed certificate**

The advantage of a Certificate Authority (CA) signed certificate is that it verifies to the browser that the system is the system to which the client intended to connect.

**Steps**

1. Send the certificate signing request, secureadmin.pem, to the Certificate Authority.
   
   The secureadmin.pem file is in the /etc/keymgr/csr directory on the storage system.

2. Back up the secureadmin.pem file by making a copy.

3. When the Certificate Authority returns the signed certificate, copy the signed certificate into a temporary location on the storage system.

4. Install the certificate by entering the following command:

   ```
   secureadmin addcert ssl directory_path
   
   directory_path is the full path to the certificate.
   ```

**Example**

The following command installs a certificate called secureadmin.pem, currently located in the tempdir directory, into the /etc/keymgr directory:

```verbatim
secureadmin addcert ssl /etc/tempdir/secureadmin.pem
```

5. Disable SSL by entering the following command:
secureadmin disable ssl

6. Reenable SSL by entering the following command:
   secureadmin enable ssl

Reinitializing SSL

You should reinitialize SSL if you change the domain name of the storage system. When you change the domain name of your system, the domain name recorded in the certificate becomes obsolete. As a result, the storage system is not authenticated after the domain name change, although the connection is still encrypted. The next time you connect to the system, the browser issues a warning that the domain name of the system does not match the record on the certificate.

About this task

Changing the domain name for a storage system that is using SSL can cost time and money because you must have the new certificate signed by a certificate authority.

Steps

1. Disable SecureAdmin by entering the following command:
   secureadmin disable ssl

2. Use the secureadmin setup ssl command to reinitialize SSL.

Related tasks

   Setting up and starting SSL on page 49

Enabling or disabling SSL

Enabling SSL allows administrative requests over HTTPS to succeed. Disabling SSL disallows all administrative requests over HTTPS.

Before you begin

Before enabling SSL for the first time, you must set up SSL and install a certificate signed by a certificate authority.

Step

1. To enable or disable SSH, enter the following command:
   secureadmin {enable|disable} ssl

   Use enable to start SSL. Use disable to deactivate SSL.
Enabling or disabling SSLv2 or SSLv3

If your storage system has the SSL protocol enabled, you can specify the SSL version(s) to use.

About this task

Enabling the SSL versions alone does not enable the SSL protocol for the storage system. To use SSL, ensure that the protocol is enabled on your storage system.

TLS offers better security than SSLv3, and SSLv3 offers better security than SSLv2. In addition to enabling the SSL protocol, you must also have at least one of SSLv2, SSLv3, or TLS enabled for the storage system to use SSL for communication.

Step

1. Enter the following command to enable or disable SSLv2 or SSLv3:

<table>
<thead>
<tr>
<th>To enable or disable this SSL version...</th>
<th>Enter the following command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSLv2</td>
<td>options ssl.v2.enable {on</td>
</tr>
<tr>
<td>SSLv3</td>
<td>options ssl.v3.enable {on</td>
</tr>
</tbody>
</table>

   Setting the option to on (the default) enables the SSL version on HTTPS, FTPS, and LDAP connections, if the following options are also set to on:

   • httpd.admin.ssl.enable (for HTTPS)
   • ftpd.implicit.enable or ftpd.explicit.enable (for FTPS)
   • ldap.ssl.enable (for LDAP)

   Setting the option to off disables the SSL version on HTTPS, FTPS, and LDAP connections.

   For more information about these options, see the na_options(1) man page.

   For more information about FTPS and LDAP, see the Data ONTAP File Access and Protocols Management Guide for 7-Mode.

Related tasks

Setting up and starting SSL on page 49
Enabling or disabling TLS on page 53
Enabling or disabling TLS

Enabling Transport Layer Security (TLS) enables the storage system to use TLS on HTTPS, FTPS, and LDAP traffic.

Before you begin

TLS is disabled by default, and setting up SSL does not automatically enable TLS. Before enabling TLS, ensure that SSL has been set up and enabled.

About this task

Data ONTAP supports TLSv1, SSLv3, and SSLv2. TLSv1 is a protocol version higher than SSLv3, and SSLv3 is a protocol version higher than SSLv2. A negotiation process is built into the TLS and the SSL protocols to use the highest protocol version that is supported by both the client and the server for communication. For TLS to be used for communication, both the client requesting connection and the storage system must support TLS.

Step

1. To enable or disable TLS, enter the following command:

   \textbf{options tls.enable \{on|off\}}

   \begin{itemize}
   \item Use \textbf{on} to enable TLS.
     \begin{itemize}
     \item For TLS to take effect on HTTPS, ensure that the \textit{httpd.admin.ssl.enable} option is also set to \textbf{on}.
     \item For TLS to take effect on FTPS, ensure that the \textit{ftpd.implicit.enable} option or the \textit{ftpd.explicit.enable} option is also set to \textbf{on}.
     \item For TLS to take effect on LDAP, ensure that the \textit{ldap.ssl.enable} option is also set to \textbf{on}.
     \end{itemize}
   \item For more information about these options, see the \texttt{na_options(1)} man page.
   \item Use \textbf{off} (the default) to disable TLS. When TLS is disabled, SSL is used for communication if SSL has previously been set up and enabled.
   \end{itemize}

Related tasks

- \textit{Determining whether secure protocols are enabled} on page 54
- \textit{Setting up and starting SSL} on page 49
- \textit{Installing a CA signed certificate} on page 50
Determining whether secure protocols are enabled

Data ONTAP displays information that shows whether secure protocols are enabled. The information helps you determine whether administrative transactions between the storage system and a client are being encrypted.

Step

1. Enter the following command:

   ```
   secureadmin status
   ```

   Information similar to the following is displayed:

   ```
   ssh2    - active
   ssh1    - inactive
   ssl     - active
   ```

Related concepts

The default security settings on page 37

Enabling or disabling secure protocols

The `secureadmin` command allows you to enable or disable both SSH and SSL.

Step

1. Enter the following command:

   ```
   secureadmin {enable|disable} all
   ```

   Use **enable all** to start SSH and SSL or use **disable all** to stop SSH and SSL.

How to access a storage system by using Telnet

You can access a storage system from a client through a Telnet session if you enabled Telnet.

A Telnet session must be reestablished before any of the following options command values take effect:

- `autologout.console.enable`
- `autologout.console.timeout`
- `autologout.telnet.enable`
- `autologout.telnet.timeout`
• telnet.distinct.enable

For more information about these options, see the na_options(1) man page.

Related concepts

  *The default security settings* on page 37
  *Rules that apply to console, Telnet, and SSH-interactive sessions* on page 31

**Starting a Telnet session**

You start a Telnet session to connect to the storage system.

**Before you begin**

The following requirements must be met before you can connect to a storage system using a Telnet session:

- The `telnet.enable` option must be set to `on`.
  
  You verify the option is `on` by entering the `options telnet` command. You set the option to `on` by entering the `options telnet.enable on` command. For more information, see the `na_options(1)` man page.

- The `telnet.access` option must be set so that the protocol access control defined for the storage system allows Telnet access.
  
  For more information, see the `na_options(1)` and `na_protocolaccess(8)` man pages.

**About this task**

Only one Telnet session can be active at a time. You can, however, open a console session at the same time a Telnet session is open.

**Steps**

1. Open a Telnet session on a client.
2. Connect to the storage system using its name.
3. If the storage system displays the login prompt, do one of the following:
   
   - To access the storage system with the system account, enter the following account name:
     
     `root`
   
   - To access the storage system with an alternative administrative user account, enter the following:
     
     `username`
     
     `username` is the administrative user account.
The storage system responds with the password prompt.

4. Enter the password for the root or administrative user account.
   
   **Note:** If no password is defined for the account, press Enter.

5. When you see the storage system prompt followed by a system message, press Enter to get to the storage system prompt.

   **Example**

   
   Press Enter.
   
   toaster>
   
   **Note:** You can abort commands entered through a Telnet session by pressing Ctrl-c.

Related concepts

*Rules that apply to console, Telnet, and SSH-interactive sessions* on page 31

Related tasks

*Restricting protocol access* on page 68

**Terminating a Telnet session**

You terminate a Telnet session to disconnect from the storage system.

**Step**

1. To log out of the storage system at the system prompt or at the console, do one of the following:
   
   - Press Ctrl-].
   
   - Enter the following command:
     
     `logout telnet`
   
   - Press Ctrl-d to close the Telnet session
   
   **Note:** If you are at a Remote Shell connection, enter the following command:
     
     `rsh -l username:password hostname logout telnet`
Configuration for Telnet sessions

You can configure the Telnet sessions to display a banner message or specify the timeout period.

Banner message configuration

You can configure a banner message to appear at the beginning of a Telnet session to a storage system.

You configure a banner message to appear at the beginning of a Telnet session to a storage system by creating a file called `issue` in the `/etc` directory of the administration host’s root volume. The message only appears at the beginning of the session. It is not repeated if there are multiple failures when attempting to log in.

The following example shows how the message in `/etc/issue` appears, assuming that the contents of the issue file is “This system is for demonstrations only”.

```
admin_host% telnet mysystem
Trying 192.0.2.132...
Connected to mysystem.xyz.com
Escape character is ‘^]’.

This system is for demonstrations only.
```

Enabling or disabling the timeout period for Telnet or SSH-interactive sessions

You can enable or disable the timeout period for Telnet or SSH-interactive sessions. If the timeout period is enabled, Telnet or SSH-interactive connections are automatically disconnected after the number of minutes specified by the `autologout.telnet.timeout` option has elapsed.

Step

1. To enable or disable the timeout period for Telnet or SSH-interactive sessions, enter the following command:

   `options autologout.telnet.enable [on|off]`

   The default is on, which causes Telnet or SSH-interactive connections to be disconnected automatically after the number of minutes specified by the `autologout.telnet.timeout` option has elapsed.

   Any change to the `autologout.telnet.enable` option requires a logout before it takes effect.
Changing the timeout period for Telnet or SSH-interactive sessions

You can change the timeout period for Telnet or SSH-interactive sessions. By default, Telnet and SSH-interactive sessions have a timeout period of 60 minutes.

Before you begin

Ensure that the autologout.telnet.enable option is set to on for the autologout.telnet.timeout option to take effect.

Step

1. To change the timeout period for Telnet or SSH-interactive sessions, enter the following command:

   options autologout.telnet.timeout minutes

   minutes is the length of the timeout period.

   The range of minutes is 1 to 35,791. The maximum number is equal to approximately 596 hours, or slightly less than 25 days. The default is 60 minutes.

How to access a storage system by using a Remote Shell connection

If the rsh.enable option is set to on, you can access a storage system to perform administrative tasks by using a Remote Shell (RSH) connection.

You can access a storage system by using an RSH connection with a trusted remote host that is listed in the /etc/hosts.equiv file on the root volume.

You can also use a user name and a password to establish an RSH connection from an administration host that is not listed in the /etc/hosts.equiv file. However, passing a password in this manner is a security risk, especially for UNIX clients. On many UNIX clients, this command can be visible to other users on the storage system who run the ps program at the same time the command is executed.

On any client, the password is visible in plain text over the network. Any program that captures network traffic when the password is sent will record the password. To avoid exposing the password when you issue RSH commands, it is best to log in as root on a client listed in the storage system’s /etc/hosts.equiv file.

You can have up to 24 concurrent RSH sessions running on a storage system, and you can have up to 4 concurrent RSH sessions running on each vFiler unit.

Related concepts

The default security settings on page 37
When to use RSH commands with user names and passwords

Depending on the UNIX host you use and how you log in to the UNIX host, you might need to supply a user name and a password when using the RSH protocol to run a command on the storage system.

If the UNIX host you use is not listed in the storage system’s /etc/hosts.equiv file, you must supply both a user name and a password when using the RSH protocol to run a command on the storage system.

If the UNIX host you use is listed in the storage system’s /etc/hosts.equiv file and you are logged in as root on the UNIX host, you do not need to supply a user name or a password when using the RSH protocol to run a command on the storage system.

If the UNIX host you use is listed in the storage system’s /etc/hosts.equiv file and you are logged in as a user other than root on the UNIX host, the following rules apply when using the RSH protocol to run a command on the storage system:

- If the user name is listed with the host name in the /etc/hosts.equiv file, supplying a user name is optional. You do not need to supply a password.
- If the user name is not listed with the host name in the /etc/hosts.equiv file, you must supply both a user name and a password.

The user name can be root or the name of an administrative user that is defined on the storage system.

**Note:** To issue commands from a Remote Shell on a PC, you must always supply a user name for the PC in the storage system’s /etc/hosts.equiv file. For more information, see the na_hosts.equiv(5) man page.
Accessing a storage system from a UNIX client by using RSH

You can use an RSH connection to access a storage system from a UNIX client to perform administrative tasks.

Before you begin

The `rsh.enable` option must be set to `on`.

If you access the storage system by using its IPv6 address, the `ip.v6.enable` option must be set to `on` for the system and the UNIX client you use must support IPv6.

Step

1. Do one of the following:
   - If the UNIX host name or the user name you use is not specified in the `/etc/hosts.equiv` file on the root volume of the storage system, enter the `rsh` command in the following format:
     
     ```
     rsh hostname_or_ip -l username:password command
     ```
   - If the UNIX host name and the user name you use are specified in the `/etc/hosts.equiv` file on the root volume of the storage system, enter the `rsh` command in the following format:
     
     ```
     rsh hostname_or_ip [-l username] command
     ```

     `hostname_or_ip` is the host name, IPv4 address, or IPv6 address of the storage system.

     **Note:** You can also specify the IP address by using the `rsh.access` option.

     `command` is the Data ONTAP command you want to run over the RSH connection.

Examples of RSH requests

The following `rsh` command uses a user name, carl, and a password, mypass, to access the storage system, myfiler, to run the Data ONTAP `version` command:

```
rsh myfiler -l carl:mypass version
```

The following `rsh` command uses a user name, carl, and a password, mypass, to access the storage system whose IP address is 192.0.2.66 to run the Data ONTAP `version` command:

```
rsh 192.0.2.66 -l carl:mypass version
```

The following `rsh` command uses a user name, carl, and a password, mypass, to access the storage system whose IPv6 address is 2001:0DB8:85A3:0:0:8A2E:0370:99 to run the Data ONTAP `version` command:

```
rsh 2001:0DB8:85A3:0:0:8A2E:0370:99 -l carl:mypass version
```
The following `rsh` command runs the Data ONTAP `version` command from a UNIX host that is specified in the `/etc/hosts.equiv` file of the storage system, `myfiler`:

```bash
rsh myfiler version
```

### Related tasks

- [*Restricting protocol access*](#) on page 68

## Accessing a storage system from a Windows client by using RSH

You can use a Remote Shell (RSH) application to access a storage system from a Windows client to perform administrative tasks.

### Before you begin

The `rsh.enable` option must be set to **on**.

The Windows client you use must be a trusted host specified in the `/etc/hosts.equiv` file on the root volume of the storage system.

If you access the storage system by using its IPv6 address, the `ip.v6.enable` option must be set to **on** for the system and the Windows client you use must support IPv6.

### Step

1. From the RSH application on the Windows client, enter the `rsh` command in the following format:

   ```bash
   rsh hostname_or_ip [-l username:password] command
   
   hostname_or_ip is the host name, IPv4 address, or IPv6 address of the storage system.

   **Note:** You can also specify the IP address by using the `rsh.access` option.

   `command` is the Data ONTAP command you want to run over the RSH connection.

### Examples of RSH requests

The following `rsh` command uses a user name, “carl”, and a password, “mypass”, to access the storage system, “myfiler”, to run the Data ONTAP `version` command:

```bash
rsh myfiler -l carl:mypass version
```
The following `rsh` command uses a user name, “carl”, and a password, “mypass”, to access the storage system whose IP address is 192.0.2.66, to run the Data ONTAP `version` command:

```
rsh 192.0.2.66 -l carl:mypass version
```

The following `rsh` command uses a user name, “carl”, and a password, “mypass”, to access the storage system whose IPv6 address is 2001:0DB8:85A3:0:0:8A2E:0370:99, to run the Data ONTAP `version` command:

```
rsh 2001:0DB8:85A3:0:0:8A2E:0370:99 -l carl:mypass version
```

### Related tasks

*Restricting protocol access* on page 68

### Commands not accepted when using RSH

You cannot execute several commands when you use RSH.

The commands that you cannot execute when you use RSH include the following:

- `arp`
- `orouted`
- `ping`
- `routed`
- `savecore`
- `setup`
- `traceroute`

### How to reset options to default values from RSH

If you want to reset options to their default values from RSH, you must precede the quotation characters (""") with the escape character, which is the backslash (\).

For example, to reset the CIFS home directory path from a Windows host using a console session, you would enter the following command:

```
c:\> toaster options cifs.home_dir ""
```

However, from an RSH session, you must enter the following command:

```
c:\> rsh toaster options cifs.home_dir \"\"
```
Displaying RSH session information

The `rshstat` command displays information about RSH sessions, such as the number of RSH sessions invoked, the number of currently active RSH sessions, and the highest number of concurrently active RSH sessions.

**Step**

1. Enter the following command:
   ```bash
   rshstat [ -a | -t ]
   ```

   Without any options, `rshstat` displays the following information:
   - The number of RSH sessions invoked since booting the storage system
   - The number of currently active RSH sessions
   - The highest number of concurrently active RSH sessions since booting the storage system
   - The maximum concurrent RSH sessions allowed

   The `-a` option displays the following additional information:
   - The RSH session number
   - The command the RSH session is executing
     
     **Note:** `rsh shell` in the command field means that the RSH session is being initiated.
   
   - The remote client's IPv4 or IPv6 address for the RSH session
     
     **Note:** If the `ip.v6.enable` option is set to `off`, `rshstat -a` displays only IPv4 connections.
   
   - The last string written into the audit log for the RSH session

   The `-t` option displays the amount of time the command is running in milliseconds, in addition to the information displayed by the `-a` option. The time information includes:
   - The total time used for running the command
   - The protocol connection time
   - The host lookup (gethost) information time

**Example**
Understanding OnCommand System Manager

System Manager is a graphical management interface that enables you to manage storage systems and storage objects (such as disks, volumes, and aggregates) and perform common management tasks related to storage systems from a web browser.

System Manager enables you to perform many common tasks such as the following:

- Configure and manage storage objects, such as disks, aggregates, volumes, qtrees, and quotas.
- Configure protocols, such as CIFS and NFS, and provision file sharing.
- Configure protocols such as FC, FCoE, and iSCSI for block access.
- Verify and configure network configuration settings in the storage systems.

For more information about System Manager, see the NetApp Support Site.
How to manage access from administration hosts

An administration host can be any workstation that is either an NFS or a CIFS client on the network.

Reasons to designate a workstation as an administration host

You designate a workstation as an administration host to limit access to the storage system's root file system, to provide a text editor to edit configuration files, and to provide the ability to administer a storage system remotely.

During the setup process, you are prompted to designate a workstation on the network as an administration host. For more information about the setup process, see the Data ONTAP Software Setup Guide for 7-Mode.

When you designate a workstation as an administration host, the storage system’s root file system (/vol/vol0 by default) is accessible only to the specified workstation in the following ways:

- As a share named C$, if the storage system is licensed for the CIFS protocol
- By NFS mounting, if the storage system is licensed for the NFS protocol

If you do not designate a workstation as an administration host, the storage system’s root file systems are available to all workstations on the network. As a result, any user can gain access to the storage system’s root file system and change or remove storage system configuration files in the /etc directory.

You can designate additional administration hosts after setup by modifying the storage system’s NFS exports and CIFS shares.

Administration host privileges

After the setup procedure is completed, the storage system grants root permissions to the administration host. The type of administration host you use determines the tasks you can perform.

If the administration host you use is an NFS client, you have enough privileges to perform the following tasks:

- Mount the storage system root directory and edit configuration files from the administration host.
- Enter Data ONTAP commands by using an RSH connection (if RSH is enabled on the storage system) or an SSH connection (if SSH is enabled on the storage system).

If the administration host you use is a CIFS client, you have enough privileges to edit configuration files from any CIFS client as long as you connect to the storage system as “root” or “Administrator”.
Requirements for using a client

An NFS or CIFS client must meet the requirements to manage the storage system.

If you plan to use an NFS client to manage the storage system, the NFS client must meet the following requirements:

- Supports a text editor that can display and edit text files containing lines ending with the newline character
- Supports the `telnet` and `rsh` commands
- Is able to mount directories by using the NFS protocol

If you plan to use a CIFS client to manage the storage system, the CIFS client must support the `telnet` and `rsh` commands.

How to specify administration hosts

Administration hosts are specified in the `/etc/hosts.equiv` file.

You use one of the following formats to specify an administration host:

- `hostname_or_ip [username]` or `hostname_or_ip ["user name"]` for a user on a host
- `+@netgroup [username]` for a group of hosts

**Note:** If you access the storage system using RSH from an administration host listed in the `/etc/hosts.equiv` file, you have root privileges because this access method bypasses user authentication mechanisms. In addition, the `/etc/auditlog` program displays the user running the commands as root.

The following rules apply to entries in the `/etc/hosts.equiv` file:

- If multiple users on the same host require access to the storage system through a Remote Shell, you specify each user’s entry for a single host using `hostname_or_ip [username]`. You can also specify a group of hosts using `+@netgroup [username]` to allow a particular user to access the storage system from a group of hosts.
- If `hostname_or_ip` specifies an NFS client, or if `+@netgroup` specifies a group of NFS hosts, the user name is optional. If you do not specify a user name, you must be the root user on that NFS client or the root user on the host in the host group to execute a Data ONTAP command through a Remote Shell connection.
- If `hostname_or_ip` specifies a CIFS client, you must enter the user name for that CIFS client.

The following example shows the contents of an `/etc/hosts.equiv` file:
nfsclient1
client1 carl
client1 peter
client2 lena
client2 root
client3 fred
client3 root
2001:0DB8:85A3:0:0:8A2E:0370:99 root
+@sysadmins joe smith

For more information, see the na_hosts.equiv(5) man page.

Adding administration hosts

You can designate additional NFS clients or CIFS clients as administration hosts by editing the /etc/hosts.equiv file.

Steps
1. Open the /etc/hosts.equiv configuration file with an editor.
2. Add the group of hosts or the host names and user names of the clients that you want designated as administration hosts.
3. Save the /etc/hosts.equiv file.

Removing administration hosts

You can remove an NFS client or CIFS client from the administration hosts list by editing the /etc/hosts.equiv file.

Steps
1. Open the /etc/hosts.equiv configuration file with an editor.
2. Locate and delete the entries for the group of hosts or the host names and user names you want to remove.
3. Save the /etc/hosts.equiv file.
Methods for controlling storage system access

Data ONTAP enables you to control how administrators can access the storage system. By limiting how, and from where, administrators can log on, you can increase the security of your storage system.

Related concepts

The default security settings on page 37

Controlling Telnet access using host names

You can disable Telnet access for all hosts, restrict Telnet access to up to five hosts, or allow Telnet access for all hosts.

Steps

1. Access the storage system command line through the console or through a Telnet session.

2. Do one of the following:

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to disable Telnet access</td>
<td>Enter the following command:</td>
</tr>
<tr>
<td>for all hosts</td>
<td><strong>options trusted.hosts -</strong></td>
</tr>
<tr>
<td>You want to restrict Telnet access</td>
<td>Enter the following command:</td>
</tr>
<tr>
<td>to up to five hosts</td>
<td><strong>options trusted.hosts host1[, ..., host5]</strong></td>
</tr>
<tr>
<td>You want to allow Telnet access</td>
<td>Enter the following command:</td>
</tr>
<tr>
<td>for all hosts</td>
<td>**options trusted.hosts ***</td>
</tr>
</tbody>
</table>

Restricting protocol access

If a protocol is enabled for Data ONTAP, you can restrict the protocol's access to the storage system by specifying the host name, IP address, or network interface name.

Step

1. At the storage system prompt, enter one of the following commands:
If you want to restrict a protocol's access to the storage system by using...
Enter...

| host name or IP address | options protocol.access host=[hostname|IP_address] |
|-------------------------|--------------------------------------------------|
| network interface name  | options protocol.access if=interface_name        |

- `protocol` is the name of the protocol you want to allow access to the storage system. It can be `rsh`, `telnet`, `ssh`, `httpd`, `httpd.admin`, `snmp`, `ndmpd`, `snapmirror`, or `snapvault`.
- `hostname` is the name of the host to which you want to allow access by using `protocol`.
- `IP_address` is the IP address of the host to which you want to allow access by using `protocol`. The `ssh.access` and `rsh.access` options support both IPv4 and IPv6 addressing.
- `interface_name` is the network interface name of the host to which you want to allow access by using `protocol`.

**Note:** If the `telnet.access` option is not set to `legacy`, the `trusted.hosts` option is ignored for Telnet. If the `httpd.admin.access` option is not set to `legacy`, the `trusted.hosts` option is ignored for `httpd.admin`. If the `snapmirror.access` option is not set to `legacy`, the `/etc/snapmirror.allow` file is ignored for SnapMirror destination checking.

For more information about controlling protocol access to a storage system by using multiple host names, IP addresses, and network interfaces, see the `na_protocolaccess(8)` man page.

For information about SNMP, see the *Data ONTAP Network Management Guide for 7-Mode*.

For information about NDMP, see the *Data ONTAP Data Protection Tape Backup and Recovery Guide for 7-Mode*.

For information about SnapMirror or SnapVault functionality, see the *Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode*.

**Related tasks**

*Allowing only secure access to the storage system* on page 73
Controlling the NFS mount privilege

You can control the NFS mount privilege for the storage system's volumes by restricting the mount privilege to only the root user using privileged ports.

**About this task**

Some PC clients and some older implementations of NFS on UNIX workstations use nonprivileged ports to send requests. If you have these clients at your site, disable the `mount_rootonly` option or upgrade the client software.

**Steps**

1. Access the storage system command line through the console or through a Telnet session.

2. Do one of the following:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Enter the following command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrict the mount privilege to only the root user using privileged ports (ports 1 through 1,024)</td>
<td>options nfs.mount_rootonly on</td>
</tr>
<tr>
<td>Allow the mount privilege for all users on all ports</td>
<td>options nfs.mount_rootonly off</td>
</tr>
</tbody>
</table>

Controlling file ownership change privileges

You can control who has privileges to change directory and file ownership.

**About this task**

The following behaviors apply to ownership changes:

- When a user without root privileges changes the owner of a file, the set-user-id and set-group-id bits are cleared.

- If a user without root privileges tries to change the owner of a file but the change causes the file’s recipient to exceed the quota, the attempt fails.

**Steps**

1. Access the storage system command line through the console or through a Telnet session.

2. Do one of the following:
If... | Then...
---|---
You want to restrict the privilege of changing directory and file ownership to the root user | Enter the following command: `options wafl.root_only_chown on`
You want to allow the privilege of changing directory and file ownership to all users | Enter the following command: `options wafl.root_only_chown off`

**Controlling anonymous CIFS share lookups**

You can control whether anonymous CIFS users can look up CIFS shares, users, or groups on a storage system.

**Steps**

1. Access the storage system command line through the console or through a Telnet session.

2. Do one of the following:

<table>
<thead>
<tr>
<th>If you...</th>
<th>Enter the following command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not want to set access restrictions for anonymous share lookups</td>
<td><code>options cifs.restrict_anonymous 0</code></td>
</tr>
<tr>
<td>Do not want to allow enumeration of users and shares</td>
<td><code>options cifs.restrict_anonymous 1</code></td>
</tr>
<tr>
<td>Want to fully restrict anonymous share lookups</td>
<td><code>options cifs.restrict_anonymous 2</code></td>
</tr>
</tbody>
</table>

The default value for the `cifs.restrict_anonymous` option is 0. The restrictions do not apply to mapped null users. For more information, see the na_options(1) man page.

**Options that help maintain security**

Several options are available to help you maintain storage system security.

The following table shows the options that help maintain security:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trusted.hosts</td>
<td>Specifies up to five hosts that are allowed Telnet, RSH and administrative HTTP access to the storage system for administrative purposes. The default is set to an asterisk (*), which allows access to all storage systems. This value is ignored for Telnet access if the telnet.access option is set. It is also ignored for administrative HTTP access if the httpd.admin.access option is set.</td>
</tr>
<tr>
<td>telnet.access</td>
<td>Controls which hosts can access the storage system through a Telnet session for administrative purposes. You can restrict Telnet access to the storage system by specifying host names, IP addresses, or network interface names. If this value is set, the trusted.hosts option is ignored for Telnet.</td>
</tr>
<tr>
<td>telnet.distinct.enable</td>
<td>Controls whether the Telnet and the SSH environments are shared with or separate from the console environment. When the option is set to off, a Telnet or an SSH session is shared with a console session. A Telnet or an SSH user and a console user can view each other's inputs or outputs, and they acquire the privileges of the last Telnet, SSH, or console user who logged in. You can keep the Telnet and the SSH environments separate from the console environment by ensuring that the option is set to on. If the setting for this option is changed during a Telnet or an SSH session, the change does not go into effect until the next Telnet or SSH login.</td>
</tr>
<tr>
<td>rsh.access</td>
<td>Controls which hosts can access the storage system through a Remote Shell session for administrative purposes. You can restrict Remote Shell access to the storage system by specifying host names, IP addresses, or network interface names.</td>
</tr>
<tr>
<td>ssh.access</td>
<td>Controls which hosts can access the storage system through a Secure Shell session for administrative purposes. You can restrict Secure Shell access to the storage system by specifying host names, IP addresses, or network interface names.</td>
</tr>
</tbody>
</table>
### Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nfs.mount_rootonly</td>
<td>Controls whether the storage system’s volumes can be mounted from NFS clients only by the root user on privileged ports (ports 1 through 1,023) or by all users on all ports. This option is applicable only if the NFS protocol is licensed.</td>
</tr>
<tr>
<td>waf1.root_only_chown</td>
<td>Controls whether all users or only the root user can change directory and file ownership. This option is applicable only if the NFS protocol is licensed.</td>
</tr>
<tr>
<td>cifs.restrict_anonymous</td>
<td>Controls whether anonymous CIFS users can look up CIFS shares, users, or groups on a storage system. This option is applicable only if the CIFS protocol is licensed.</td>
</tr>
</tbody>
</table>

For more information about the options in this table, see the na_options(1) and the na_protocolaccess(8) man pages.

**Related tasks**

*Restricting protocol access* on page 68

### Allowing only secure access to the storage system

If you want to allow only secure access to your storage system, enable secure protocols and disable nonsecure protocols. You should also set password rule options to enhance password security.

**About this task**

On storage systems shipped with Data ONTAP 8.0 or later, secure protocols (including SSH, SSL, and HTTPS) are enabled and nonsecure protocols (including RSH, Telnet, FTP, and HTTP) are disabled by default.

**Steps**

1. Use the secureadmin commands to set up and enable the secure protocols, SSH and SSL.

   If you want to enable FTPS and SFTP, see the *Data ONTAP File Access and Protocols Management Guide for 7-Mode*.

   After you have set up SecureAdmin to enable SSH and SSL, the following options are set to **on**:

   - options ssh.enable
   - options ssh2.enable (if you enabled SSHv2 during SecureAdmin setup)
   - options ssh.passwd_auth.enable
• options ssh.pubkey_auth.enable
• options httpd.admin.ssl.enable

2. Disable nonsecure protocols.

<table>
<thead>
<tr>
<th>To disable the following access to the storage system...</th>
<th>Enter the following at the storage system prompt...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSH</td>
<td>options rsh.enable off</td>
</tr>
<tr>
<td>Telnet</td>
<td>options telnet.enable off</td>
</tr>
<tr>
<td>FTP</td>
<td>options ftpd.enable off</td>
</tr>
<tr>
<td>HTTP</td>
<td>options httpd.enable off</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong>: This option controls HTTP access to the storage system.</td>
</tr>
<tr>
<td>SSHv1</td>
<td>options ssh1.enable off</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong>: Ensure that the ssh.enable option and the ssh2.enable option are set to on.</td>
</tr>
</tbody>
</table>

3. Ensure that the following password options are set:

• options security.passwd.rules.everyone on
  This option ensures that password composition is checked for all users, including root and Administrator.

• options security.passwd.rules.history 6
  This option prevents users from reusing any of the six previously used passwords.

**Related concepts**

- Secure protocols and storage system access on page 36
- The default security settings on page 37
- Data ONTAP options for managing password rules on page 130
Managing the root aggregate and the root volume

The root aggregate contains the root volume. The root volume contains special directories and configuration files for the storage system. You can access the directories within the root volume from an NFS or a CIFS client or by using FTP or SFTP. You can also designate a different volume to be the new root volume.

Understanding the root aggregate

The root aggregate contains the root volume, which contains special directories and configuration files that help you administer the storage system.

The following facts apply to the root aggregate:

- Starting with Data ONTAP 8.1, new systems are shipped with the root volume in a 64-bit root aggregate.

- By default, the storage system is set up to use a hard disk drive (HDD) aggregate for the root aggregate. When no HDDs are available, the system is set up to use a solid-state drive (SSD) aggregate for the root aggregate. If you want to change the root aggregate, you can choose either an HDD aggregate or an SSD aggregate to be the root aggregate (aggr options aggr_name root), provided that the corresponding type of disk drives is available on the system.

- A Flash Pool aggregate (an aggregate that contains both HDDs and SSDs) can be used as the root aggregate.

  **Attention:** If you revert or downgrade to Data ONTAP 8.1 or earlier with a Flash Pool aggregate configured as your root aggregate, your system will not boot.

Understanding the root volume

The storage system's root volume contains special directories and configuration files that help you administer the storage system. Understanding the facts about the root volume helps you manage it.

The following facts apply to the root volume:

- How the root volume is installed and whether you need to create it yourself depend on the storage system:
  - For a storage system ordered with disk shelves, the root volume is a FlexVol volume that is installed at the factory.
For a storage system that uses array LUNs and does not have a disk shelf, you install the root volume on an array LUN.

For more information about setting up a system to use only array LUNs, see the *Data ONTAP Software Setup Guide for 7-Mode*.

For systems running virtual storage, the Data ONTAP-v installation process creates a single aggregate by using all currently defined virtual disks and creates the root FlexVol volume in that aggregate.

For more information about system setup, see the Installation and Administration Guide that came with your Data ONTAP-v system.

- The default name for the root volume is `/vol/vol0`.
  You can designate a different volume to be the new root volume. Starting in Data ONTAP 8.0.1, you can designate a 64-bit volume to be the new root volume.

- The root volume's fractional reserve must be 100%.

**Recommendations for the root volume**

There are recommendations to keep in mind when choosing what kind of volume to use for the root volume.

The following are general recommendations for root volumes:

- Root volumes can use either FlexVol or traditional volumes.
  If a root volume exists as a traditional volume, it can be a stand-alone RAID4 or RAID-DP volume. RAID4 requires a minimum of two disks and can protect against single-disk failures. RAID-DP, the default RAID type, requires a minimum of three disks and can protect against double-disk failures. Using RAID-DP for the root aggregate is recommended.
  Data ONTAP 8.0 or later allows you to create only a new FlexVol root volume, not a new traditional root volume, from the boot menu. However, preexisting traditional root volumes are still supported.
  For information about RAID types, traditional volumes, and FlexVol volumes, see the *Data ONTAP Storage Management Guide for 7-Mode*.

- It is recommended that the root volume be in a separate aggregate that does not include data volumes or other user data.
  However, for small storage systems where cost concerns outweigh resiliency, a FlexVol based root volume on a regular aggregate might be more appropriate.

- You should avoid storing user data in the root volume, regardless of the type of volume used for the root volume.

- For a storage system that has disk shelves and also uses array LUNs, the root volume can reside on the disk shelf (recommended) or on the storage array.
For a storage system that uses only array LUNs (no disk shelves), the root volume resides on a storage array. You can install only one root volume per storage system, regardless of the number of storage arrays or disk shelves that the system uses for storage.

The following are additional facts and considerations if the root volume is on a disk shelf:

- Smaller stand-alone root volumes offer fault isolation from general application storage; on the other hand, FlexVol volumes have less impact on overall storage utilization, because they do not require two or three disks to be dedicated to the root volume and its small storage requirements.

- If a FlexVol volume is used for the root volume, file system consistency checks and recovery operations could take longer to finish than with the two- or three-disk traditional root volume. FlexVol recovery commands work at the aggregate level, so all of the aggregate's disks are targeted by the operation. One way to mitigate this effect is to use a smaller aggregate with only a few disks to house the FlexVol volume containing the root volume.

- In practice, having the root volume on a FlexVol volume makes a bigger difference with smaller capacity storage systems than with very large ones, in which dedicating two disks for the root volume has little impact.

- For higher resiliency, use a separate two-disk root volume.
  For Data ONTAP 7.3 and later, the default RAID type for traditional root volume is RAID-DP. If you want to use RAID4 as the raid type for your traditional root volume to minimize the number of disks required, you can change the RAID type from RAID-DP to RAID4 by using `vol options vol0 raidtype raid4`.

The following requirement applies if the root volume is on a storage array:

- For storage systems whose root volume is on a storage array, only one array LUN is required for the root volume regardless of whether the root volume is a traditional volume or a FlexVol volume.

**Related concepts**

*Sizing considerations for root FlexVol volumes* on page 77

**Related tasks**

*Changing the root volume* on page 88

**Sizing considerations for root FlexVol volumes**

The root volume must have enough space to contain system files, log files, and core files. It is important to meet the size requirements because if a system problem occurs, these files are needed to provide technical support.

The following considerations apply to size requirements for root FlexVol volumes:
• Data ONTAP prevents you from setting the root option on a FlexVol volume that is smaller than the minimum root volume size for your storage system model. For information about the minimum size for the root FlexVol volume for your storage system model, see the Hardware Universe at hwu.netapp.com.

• Data ONTAP prevents you from resizing the root volume below the minimum allowed size or changing the guarantee for the root volume. If you designate a different volume to be the new root volume, the volume to be used as the new root volume must meet the minimum size requirement.

• If your storage system is using array LUNs, the array LUN that is used for the root volume must be large enough to meet the minimum size requirement for the root volume. See the Hardware Universe at hwu.netapp.com for the minimum array LUN size for the root volume, which is larger than the minimum array LUN size for data LUNs.

• The root FlexVol volume must not be increased to more than 95 percent of the available aggregate size. The output of the df -A command displays the space used by the aggregates in the system.

Default directories in the root volume

The root volume contains the /etc directory and the /home directory. The directories were created when the storage system was set up. The /etc directory contains configuration files that the storage system needs for operation. The /home directory is a default location you can use to store data.

For a storage system that has disk shelves and also uses array LUNs, the root volume can reside on the disk shelf (recommended) or on the storage array. For a storage system that uses only array LUNs (no disk shelves), the root volume resides on a storage array. Each storage system can have only one root volume, regardless of the number of storage arrays or disk shelves that the system uses for storage.

Permissions for the default directories

Permissions are assigned to the default directories when setup finishes.

The following table shows the permissions.
### The `/etc` directory

The `/etc` directory is contained in the root directory. It stores storage system configuration files, executables required to boot the system, and some log files.

**Attention:** Do not delete any directories from the `/etc` directory unless instructed to do so by technical support personnel.

### What the configuration files are

Configuration files affect the behavior of the storage system. You can use an editor on your administration host to edit some configuration files in the `/etc` directory.

If a configuration file can be edited by the system administrator, it is listed in Section 5 of the man pages.

For more information about the quotas file, see the *Data ONTAP Storage Management Guide for 7-Mode*. For more information about other editable configuration files, see the man pages.
Related concepts

Startup configuration for the storage system on page 154

How you edit configuration files

Data ONTAP does not include an editor. You cannot edit files by using the system console or by establishing a Telnet session to the storage system. You must use an editor from an NFS client or a CIFS client to edit storage system configuration files.

Data ONTAP requires that the following configuration files be terminated with a carriage return. When you edit these files, be sure to insert a carriage return after the last entry:

- /etc/passwd
- /etc/group
- /etc/netgroup
- /etc/shadow

Attention: When you configure Data ONTAP, it creates some files that you should not edit. The following configuration files should not be edited:

- cifsconfig.cfg
- cifsssec.cfg
- cluster_config/*
- lclgroups.cfg
- filesid.cfg
- sysconfigtab
- registry.*

The following table provides the hard limits for some of the configuration files in the /etc directory.

<table>
<thead>
<tr>
<th>File name</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/exports</td>
<td>Maximum entry size of 4,096 characters.</td>
</tr>
<tr>
<td></td>
<td>Maximum number of entries are 10,240.</td>
</tr>
<tr>
<td>/etc/group</td>
<td>Maximum line size of 256 characters.</td>
</tr>
<tr>
<td></td>
<td>No file size limit.</td>
</tr>
</tbody>
</table>
### File name

<table>
<thead>
<tr>
<th>File name</th>
<th>Limits</th>
</tr>
</thead>
</table>
| /etc/hosts          | Maximum line size is 1,022 characters.  
Maximum number of aliases is 34.  
No file size limit. |
| /etc/netgroup       | Maximum entry size of 4,096 characters.  
Maximum netgroup nesting limit is 1,000.  
No file size limit.  
Netgroup lookup is case-sensitive and must match the case used by DNS or NIS servers for host lookup. |
| /etc/passwd         | Maximum line size of 256 characters.  
No file size limit. |
| /etc/resolv.conf    | Maximum line size is 256.  
Maximum number of name servers is 3.  
Maximum domain name length is 256.  
Maximum search domains limit is 6.  
Total number of characters for all search domains is limited to 256.  
No file size limit. |

### Enabling an NFS client to edit configuration files

For an NFS client to edit configuration files, the client must be authorized to access the root file system.

**About this task**

If the NFS client was specified as the administration host during setup or added as an administration host after setup was completed, it is already authorized to access the root file system.

The following steps to authorize access to the root file system are intended for an NFS client that is not specified as an administration host.

**Steps**

1.  Mount the storage system root volume on the administration host.

2.  From the administration host, edit the `/etc/exports` file on the root volume to grant root permission to the client.

3.  Use the storage system console, a Telnet client, or the `rsh` command to issue the following command to the storage system:
exportfs

4. Mount the storage system root volume on the client.

5. From the client, use a text editor to edit the files in the /etc directory.

Editing configuration files from a CIFS client

You can use a CIFS client to access the storage system’s C$ share and select a file to edit.

About this task

After setup finishes, the default /etc/passwd and /etc/group files on the root volume are set up to enable you to share files on the storage system as Administrator. The storage system root directory is shared automatically as C$. The Administrator account has read, write, and execute rights to the share.

Steps

1. Connect from a CIFS client to the storage system as Administrator.

2. Display the contents of the storage system’s C$ share, and select a file to edit.

   Note: The C$ share is a “hidden” share; you can get to it only by specifying the path manually (for example, as \filer\C$), rather than accessing it through the Network Neighborhood icon.

The /etc/messages file

By default, all system messages of level INFO and higher are sent to the console and to the /etc/messages file, which enables you to see a record of events on your storage system and use scripts to parse for particular events.

The /etc/messages file is rotated once a week, and six weeks of messages are retained.

You can use the logger command to create and send a system message explicitly. For more information about the logger command, see the na_logger(1) man page.

If you would like to change the level of messages that are sent to /etc/messages, you can edit /etc/syslog.conf. For more information about message levels and the /etc/syslog.conf file, see the na_syslog.conf(5) man page.

Related concepts

Understanding message logging on page 149
Ways of accessing the default directories on the storage system on page 83

Related tasks

Accessing log files using HTTP or HTTPS on page 87
The /etc/usermap.cfg file and the /etc/quotas file

The /etc/usermap.cfg file is used by Data ONTAP to map user names. The /etc/quotas file consists of entries to specify a default or explicit space or file quota limit for a qtree, group, or user.

The /etc/usermap.cfg and /etc/quotas files support two types of encoding: Unicode and root volume UNIX encoding. As a result, you can edit the files from either a PC or a UNIX workstation. Data ONTAP can detect whether a file was edited and saved by a Unicode-capable editor, such as Notepad. If so, Data ONTAP considers all entries in the file to be in Unicode. Otherwise, Data ONTAP considers the entries to be in the root volume UNIX encoding. Standard Generalized Markup Language (SGML) entities are allowed only in the root volume UNIX encoding.

Ways of accessing the default directories on the storage system

You can access the default directories from an NFS client, a CIFS client, or with FTP. You can also access your log files by using HTTP or HTTPS.

Accessing the /etc directory from an NFS client

You can access the /etc directory from an NFS client to manage your storage system.

Steps

1. Mount the following path:

   filer:/vol/vol0

   filer is the name of your storage system.

   You now have access to the storage system's root directory.

2. Change directories to the storage system's /etc directory by using the following command:

   cd mountpoint/etc

   mountpoint is the name of the storage system’s mountpoint on the NFS client.

Accessing the /etc directory from a CIFS client

You can access the /etc directory from a CIFS client to manage your storage system.

Steps

1. Map a drive to the following path:

   \filer\C$
filer is the name of your storage system.

You have access to the storage system root directory.

2. Double-click the /etc folder to access the content.

Accessing the /etc directory with FTP

You can use the File Transfer Protocol (FTP) to access the /etc directory of your storage system.

Steps

1. Enable FTP access on the storage system by entering the following command:
   
   options ftpd.enable on

2. Set the default home directory to /etc by entering the following command:
   
   options ftpd.dir.override /vol/vol0/etc

   For more information about FTP, see the Data ONTAP File Access and Protocols Management Guide for 7-Mode and the na_options(1) man page.

3. Connect to the storage system from a client by using FTP.

4. Use the FTP get command to copy files from the storage system to your client so you can edit them.

5. Use the FTP put command to copy the edited files from your client to the storage system.

Related concepts

The default security settings on page 37

Accessing the /etc directory with SFTP

You can use the SSH File Transfer Protocol (SFTP) to access the /etc directory of your storage system.

Before you begin

SFTP requires SSHv2. Before enabling SFTP, ensure that SSHv2 has been set up and enabled for your storage system.

Steps

1. Enable SFTP access on the storage system by entering the following command:
   
   options sftp.enable on

2. Set the default home directory to /etc by entering the following command:
options sftp.dir_override /vol/vol0/etc

For more information about SFTP, see the Data ONTAP File Access and Protocols Management Guide for 7-Mode and the na_options(1) man page.

3. Connect to the storage system from a client by using SFTP.

4. Use the SFTP `get` command to copy files from the storage system to your client so you can edit them.

5. Use the SFTP `put` command to copy the edited files from your client to the storage system.

Related tasks

- Determining whether secure protocols are enabled on page 54
- Displaying the current SSH settings on page 48
- Setting up and starting SSH on page 40

Accessing the /home directory from an NFS client

You can access the /home directory of your storage system from an NFS client to manage the storage system.

Step

1. Mount the following path:

   `filer:/vol/vol0/home`

   *filer* is the name of your storage system.

Accessing the /home directory from a CIFS client

You can access the /home directory of your storage system from a CIFS client to manage the storage system.

Step

1. Map a drive to the following path:

   `\\filer\HOME`

   *filer* is the name of your storage system.

   **Note:** You can also browse the Network Neighborhood to locate the storage system and the /home directory.
Accessing the /home directory with FTP

You can use FTP to access the /home directory of your storage system.

Steps

1. Enable FTP access on the storage system by entering the following command:
   \[options ftpd.enable on\]

2. Set the default home directory by entering the following command:
   \[options ftpd.dir.override /vol/vol0/home\]
   For more information about FTP, see the Data ONTAP File Access and Protocols Management Guide for 7-Mode and the na_options(1) man page.

3. Connect to the storage system from a client by using FTP.

4. Use the FTP `get` command to copy files from the storage system to your client so you can edit them.

5. Use the FTP `put` command to copy the edited files from your client to the storage system.

Related concepts

The default security settings on page 37

Accessing the /home directory with SFTP

You can use the SSH File Transfer Protocol (SFTP) to access the /home directory of your storage system.

Before you begin

SFTP requires SSHv2. Before enabling SFTP, ensure that SSHv2 has been set up and enabled for your storage system.

Steps

1. Enable SFTP access on the storage system by entering the following command:
   \[options sftp.enable on\]

2. Set the default home directory by entering the following command:
   \[options sftp.dir_override /vol/vol0/home\]
   For more information about SFTP, see the Data ONTAP File Access and Protocols Management Guide for 7-Mode and the na_options(1) man page.
3. Connect to the storage system from a client by using SFTP.

4. Use the SFTP `get` command to copy files from the storage system to your client so you can edit them.

5. Use the SFTP `put` command to copy the edited files from your client to the storage system.

**Related tasks**

- Determining whether secure protocols are enabled on page 54
- Displaying the current SSH settings on page 48
- Setting up and starting SSH on page 40

**Accessing log files using HTTP or HTTPS**

You can access your log files by using HTTP or HTTPS, whichever is enabled for your storage system.

**Before you begin**

Ensure that the `httpd.autoindex.enable` option is set to **on** and that the `httpd.admin.access` option is set to allow administrative access. For more information about how to use these options, see the `na_options(1)` man pages.

**Step**

1. Point your browser to the following location:

   `http(s)://<system_name>/na_admin/logs/`

   `system_name` is the name of your storage system.

**Related concepts**

- The default security settings on page 37

**Related tasks**

- Allowing only secure access to the storage system on page 73
Changing the root volume

Every storage system must have a root volume. Therefore, you must always have one volume designated as the root volume. However, you can change which volume is used as the system's root volume.

Before you begin

The volume that you are designating to be the new root volume must meet the minimum size requirement. The required minimum size for the root volume varies, depending on the storage system model. If the volume is too small to become the new root volume, Data ONTAP prevents you from setting the root option.

In addition, the volume that you are designating to be the new root volume must have at least 2 GB of free space. It must also have a fractional reserve of 100%. The `vol status -v` command displays information about a volume’s fractional reserve.

If you use a FlexVol volume for the root volume, ensure that it has a guarantee of volume. For information about volume guarantees, see the *Data ONTAP Storage Management Guide for 7-Mode*.

Starting in Data ONTAP 8.0.1, you can designate a volume in a 64-bit aggregate to be the new root volume.

If you move the root volume outside the current root aggregate, you must also change the value of the aggregate `root` option so that the aggregate containing the root volume becomes the root aggregate.

For storage systems with the root volume on the storage array, the array LUN used for the root volume must meet the minimum array LUN size for the root volume. For more information about the minimum array LUN size for the root volume, see the *Hardware Universe* at hwu.netapp.com.

About this task

You might want to change the storage system's root volume, for example, when you migrate your root volume from a traditional volume to a FlexVol volume. For information about changing your root volume from a traditional volume to a FlexVol volume, see the *Data ONTAP Storage Management Guide for 7-Mode*.

Steps

1. Identify an existing volume to use as the new root volume, or create the new root volume by using the `vol create` command.

   For more information about creating volumes, see the *Data ONTAP Storage Management Guide for 7-Mode*.

2. Use the `ndmpcopy` command to copy the `/etc` directory and all of its subdirectories from the current root volume to the new root volume.
For more information about `ndmpcopy`, see the *Data ONTAP Data Protection Tape Backup and Recovery Guide for 7-Mode*.

3. Enter the following command to specify the new root volume:

   ```
   vol options vol_name root
   ```

   `vol_name` is the name of the new root volume.

   If the volume does not have at least 2 GB of free space, the command fails and an error message appears.

   After a volume is designated to become the root volume, it cannot be brought offline or restricted.

4. If you moved the root volume outside the current root aggregate, enter the following command to change the value of the aggregate `root` option so that the aggregate containing the root volume becomes the root aggregate:

   ```
   aggr options aggr_name root
   ```

   `aggr_name` is the name of the new root aggregate.

   For more information about the aggregate `root` option, see the `na_aggr(1)` man page.

5. Enter the following command to reboot the storage system:

   ```
   reboot
   ```

   When the storage system finishes rebooting, the root volume is changed to the specified volume.

   If you changed the root aggregate, a new root volume is created during the reboot when the aggregate does not already contain a FlexVol volume designated as the root volume and when the aggregate has at least 2 GB of free space.

6. Update the `httpd.rootdir` option to point to the new root volume.

**Related concepts**

- *Recommendations for the root volume* on page 76
- *Sizing considerations for root FlexVol volumes* on page 77
Starting or stopping the storage system

You can start your storage system in several ways. You can boot the storage system from the storage system prompt or boot environment prompt. You can also start the storage system remotely. You can restart your system by halting and booting it.

How to boot the storage system

The storage system automatically boots Data ONTAP from a boot device, such as a PC CompactFlash Card. The system's boot device, shipped with the current Data ONTAP release and a diagnostic kernel, contains sufficient space for an upgrade kernel.

The storage system can be upgraded to the most recent Data ONTAP release. When you install new software, the download command copies a boot kernel to the boot device. For more information, see the Data ONTAP Upgrade and Revert/Downgrade Guide for 7-Mode.

Ways to boot the storage system

You can boot the storage system from the storage system prompt, the CLI prompt for the remote management device, or the boot environment prompt.

You can boot the storage system from the storage system prompt, for example, toaster>.

You can also boot Data ONTAP remotely from the CLI prompt of the remote management device, for example, SP> or RLM>.

You can also boot the storage system with the following boot options from the boot environment prompt:

- **boot_ontap**
  Boots the current Data ONTAP software release stored on the boot device (such as a PC CompactFlash card). By default, the storage system automatically boots this release if you do not select another option from the basic menu.

- **boot_primary**
  Boots the Data ONTAP release stored on the boot device as the primary kernel. This option overrides the firmware AUTOBOOT_FROM environment variable if it is set to a value other than PRIMARY. By default, the boot_ontap and boot_primary commands load the same kernel.

- **boot_backup**
  Boots the backup Data ONTAP release from the boot device. The backup release is created during the first software upgrade to preserve the kernel that shipped with the storage system. It
provides a “known good” release from which you can boot the storage system if it fails to automatically boot the primary image.

- `boot_diags`
  Boots a Data ONTAP diagnostic kernel.

Other boot options should be used only under the direction of technical staff.

**Note:** Starting in Data ONTAP 8.0, netboot is not a supported function unless you are restoring the Data ONTAP image on the boot device, such as a PC CompactFlash card. If you need to boot the storage system from a Data ONTAP image stored on a remote server, contact technical support. For information about how to replace a boot device or restore the Data ONTAP image on the boot device, see the *Replacing a boot device* flyer that is applicable to the version of Data ONTAP used by your platform.

### Rebooting the storage system at the system prompt

You can reboot the storage system in normal mode from the system prompt. The storage system is configured to boot from the boot device, such as a PC CompactFlash card.

**Step**

1. At the system prompt, enter the following command:

   ```
   reboot
   ```

   The storage system begins the reboot process. The Data ONTAP login prompt appears, indicating that the reboot process is complete.

### Booting Data ONTAP at the boot environment prompt

You can boot the current release or the backup release of Data ONTAP when you are at the boot environment prompt.

**Steps**

1. If you are at the storage system prompt, enter the following command to access the boot environment prompt:

   ```
   halt
   ```

   The storage system console displays the boot environment prompt.

2. At the boot environment prompt, enter one of the following commands:

<table>
<thead>
<tr>
<th>To boot...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The current release of Data ONTAP</td>
<td><code>boot_ontap</code></td>
</tr>
</tbody>
</table>
Rebooting the storage system remotely

You can reboot the storage system remotely by using the remote management device.

**Steps**

1. From the administration host, log in to the remote management device by entering the following command:

   ```
   ssh username@IP_for_remote_management_device
   ```

   One of the following remote management device CLI prompts appears, depending on the platform model:

   ```
   SP>
   RLM>
   ```

2. To power on the storage system, enter the following command at the CLI prompt for the remote management device:

   ```
   system power on
   ```

3. To access the system console, enter the following command at the CLI prompt for the remote management device:

   ```
   system console
   ```

4. If the storage system does not reboot automatically, enter one of the following commands at the boot environment prompt:

<table>
<thead>
<tr>
<th>To use the...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current release of Data ONTAP</td>
<td>boot_ontap</td>
</tr>
<tr>
<td>Data ONTAP primary image from the boot device</td>
<td>boot_primary</td>
</tr>
<tr>
<td>Data ONTAP backup image from the boot device</td>
<td>boot_backup</td>
</tr>
</tbody>
</table>

**Related concepts**

*Ways to boot the storage system* on page 90

*Managing a storage system remotely* on page 196
Recovering from a corrupted image of the system's boot device

You can recover from a corrupted image of the boot device (such as the CompactFlash card) for a storage system by using the remote management device.

Steps

1. Log in to the remote management device by entering the following command at the administration host:

   `ssh username@IP_for_remote_management_device`

   The CLI prompt for the remote management device appears. It can be one of the following, depending on the platform model:

   `SP>`
   `RLM>`

2. At the CLI prompt for the remote management device, perform one of the following steps:

   - To reboot the storage system by using the primary BIOS firmware image, enter the following command:

     `system reset primary`

   - To reboot the storage system by using the backup BIOS firmware image, enter the following command:

     `system reset backup`

   The console informs you that the command will cause a “dirty system shutdown” and asks you whether to continue.

3. Enter `y` to continue.

   The storage system shuts down immediately.

Related concepts

- *Ways to boot the storage system* on page 90
- *Managing a storage system remotely* on page 196
Checking available Data ONTAP versions

You might need to check the current booted kernel and other kernels available on the boot device (such as the CompactFlash card) if an upgrade was unsuccessful or if you need to run kernel diagnostics.

About this task

By default, the storage system boots the current Data ONTAP release from the primary kernel.

Step

<table>
<thead>
<tr>
<th>To determine...</th>
<th>At the storage system console, enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The current booted Data ONTAP version</td>
<td>version</td>
</tr>
<tr>
<td>Data ONTAP versions available on the boot device</td>
<td>version -b</td>
</tr>
</tbody>
</table>

If you enter `version`, the console displays the version number of Data ONTAP that is currently running.

If you enter `version -b`, the console displays information from the boot device, including name and version information for the primary, secondary (if present), and diagnostic kernels, and the firmware.

For more information, see the na_version(1) manual page.

About rebooting the storage system

Rebooting the storage system is equivalent to halting and booting the storage system. During a reboot, the contents of the storage system's NVRAM are flushed to disk, and the storage system sends a warning message to CIFS clients.

Rebooting the storage system from the system console

You can reboot the storage system if the system console is displaying the command prompt.

Steps

1. Send an advance warning to CIFS users to alert them to save their files and close any applications.
Attention: Never interrupt CIFS service by halting the storage system without giving advance warning to CIFS users. Halting the CIFS service without giving CIFS users enough time to save their changes can cause data loss.

2. At the storage system prompt, enter the following command:

   ```
   reboot [-t minutes]
   ```

   `-t minutes` is the amount of time that elapses before the reboot occurs.

### Rebooting the storage system remotely

You can reboot your storage system remotely by using the remote management device.

**Steps**

1. From the administration host, log in to the remote management device by entering the following command:

   ```
   ssh username@IP_for_remote_management_device
   ```

   One of the following remote management device CLI prompts appears, depending on the storage system model:

   - **SP>**
   - **RLM>**

2. At the CLI prompt for the remote management device, enter the following command to access the system console:

   ```
   system console
   ```

   The storage system prompt appears:

   ```
   toaster>
   ```

3. At the storage system prompt, enter the following command to reboot the storage system:

   ```
   reboot
   ```

**Related concepts**

- *Ways to boot the storage system* on page 90
- *Managing a storage system remotely* on page 196
Halting the storage system

The `halt` command performs an orderly shutdown that flushes file system updates to the disk and clears the NVRAM.

About this task

The storage system stores requests it receives in nonvolatile random-access memory (NVRAM). For the following reasons, you should always execute the `halt` command before turning the storage system off:

- The `halt` command flushes all data from memory to the disk, eliminating potential failure.
- The `halt` command avoids potential data loss on CIFS clients. If a CIFS client is disconnected from the storage system, the users’ applications are terminated and changes made to open files since the last save are lost.

  **Attention:** Never interrupt CIFS service by halting the storage system without giving advance warning to CIFS users. Halting the CIFS service (using `cifs terminate`) without giving CIFS users enough time to save their changes can cause data loss.

Step

1. Enter the following command:

   ```
   halt [-d dump_string] [-t interval] [-f] [-s]
   ```

   - `d dump_string` causes the storage system to perform a core dump before halting. You use `dump_string` to describe the reason for the core dump. The message for the core dump will include the reason specified by `dump_string`.

     **Attention:** Using `halt -d` causes an improper shutdown of the storage system (also called a dirty shutdown). Avoid using `halt -d` for normal maintenance shutdowns. For more details, see the `na_halt(1)` man page.

   - `t interval` causes the storage system to halt after the number of minutes you specify for the interval.

   - `f` prevents one partner in a high-availability configuration from taking over the other after the storage system halts.

   - `s` halts the system at the boot environment prompt and clears the FRU attention LED (if applicable) at the subsequent reboot.

   The storage system displays the boot prompt. When you see the boot prompt, you can turn the power off.
Managing the storage system by using the boot menu

You can use the boot menu to correct configuration problems, reset the root password, initialize disks, reset system configuration, and restore system configuration information back to the boot device.

Steps

1. Reboot the system to access the boot menu by entering the following command at the system prompt:

   `reboot`

   The storage system begins the reboot process.

2. During the reboot process, press Ctrl-C to display the boot menu when prompted to do so.

   The storage system displays the following options for the boot menu:

   (1) Normal Boot.
   (2) Boot without /etc/rc.
   (3) Change password.
   (4) Clean configuration and initialize all disks.
   (5) Maintenance mode boot.
   (6) Update flash from backup config.
   (7) Install new software first.
   (8) Reboot node.

   Selection (1-8)?

3. Select one of the following options by entering the corresponding number:

<table>
<thead>
<tr>
<th>To...</th>
<th>Select...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue to boot the storage system in normal mode</td>
<td>1) Normal Boot</td>
</tr>
<tr>
<td>Troubleshoot and repair configuration problems</td>
<td>2) Boot without /etc/rc</td>
</tr>
<tr>
<td>This menu option causes the storage system to do the following:</td>
<td></td>
</tr>
<tr>
<td>• Use only default options settings</td>
<td></td>
</tr>
<tr>
<td>• Disregard all options settings you specified in the /etc/rc file</td>
<td></td>
</tr>
<tr>
<td>• Disable some services, such as syslog</td>
<td></td>
</tr>
<tr>
<td>Change the password of the storage system</td>
<td>3) Change Password</td>
</tr>
<tr>
<td>To...</td>
<td>Select...</td>
</tr>
<tr>
<td>---------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Initialize all the disks and create a root FlexVol volume</td>
<td><strong>4) Clean configuration and initialize all disks</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Attention:</strong> This menu option erases all data on the disks and resets your system configuration to the factory default settings. If you need to preserve existing configuration values that are used for system setup (such as your system IP address, gateway addresses, and DNS server addresses), you should make a note of the values before selecting this menu option. You can find your current setup settings by using the <code>setup</code> command at the system prompt. This menu option reboots the storage system before initializing the disks. After the initialization procedure finishes, the setup script starts and prompts you for configuration information. For information about setting up the storage system, see the <em>Data ONTAP Software Setup Guide for 7-Mode</em>. Data ONTAP 8.0 and later releases do not allow you to create a new traditional root volume from the boot menu. However, preexisting traditional root volumes are still supported. For a system with a disk shelf that also uses array LUNs, this menu option initializes only the disks on the disk shelf, not the array LUNs. For a system that does not have a disk shelf, this menu option initializes the root volume on the storage array.</td>
</tr>
<tr>
<td></td>
<td><strong>5) Maintenance mode boot</strong></td>
</tr>
<tr>
<td></td>
<td>You exit Maintenance mode by using the <code>halt</code> command.</td>
</tr>
<tr>
<td></td>
<td><strong>6) Update flash from backup config</strong></td>
</tr>
<tr>
<td></td>
<td>Data ONTAP stores some system configuration information on the boot device. When the storage system reboots, the information on the boot device is automatically backed up onto the root FlexVol volume. If the boot device becomes corrupted or needs to be replaced, you use this menu option to restore the configuration information from the root FlexVol volume back to the boot device.</td>
</tr>
<tr>
<td></td>
<td><strong>7) Install new software first</strong></td>
</tr>
<tr>
<td></td>
<td>If the Data ONTAP software on the boot device does not include support for the storage array that you want to use for the root volume, you can use this menu option to obtain a version of the software that supports your storage array and install it on your system. This menu option is only for installing a newer version of Data ONTAP software on a system that has no root volume installed. Do <em>not</em> use this menu option to upgrade Data ONTAP.</td>
</tr>
<tr>
<td></td>
<td><strong>8) Reboot node</strong></td>
</tr>
<tr>
<td>For additional information about the boot menu, see the <code>na_floppyboot(1)</code> man page.</td>
<td></td>
</tr>
</tbody>
</table>
How to manage administrator and diagnostic access

Data ONTAP enables you to control access to your storage system to provide increased security and auditing capability. It also enables you to manage passwords on the storage system to ensure security.

Reasons for creating administrator accounts

In addition to using the default system administration account ("root") for managing a storage system, you can create additional administrator user accounts to manage administrative access to the storage system.

The following are the reasons for creating administrator accounts:

- You can specify administrators and groups of administrators to have differing degrees of administrative access to your storage systems.
- You can limit an administrator’s access to specific storage systems by giving him or her an administrative account on only those systems.
- Having different administrative users enables you to display information about who is performing which commands on the storage system. The audit-log file keeps a record of all administrator operations performed on the storage system and the administrator who performed it, as well as any operations that failed due to insufficient capabilities.
- You assign each administrator to one or more groups whose assigned roles (sets of capabilities) determine what operations that administrator is authorized to carry out on the storage system.
- If a storage system running CIFS is a member of a domain or a Windows workgroup, domain user accounts authenticated on the Windows domain can access the storage system using Telnet, RSH, SSH, Data ONTAP APIs, and Windows Remote Procedure Calls (RPCs).

For more information about authenticating users using Windows domains, see the section on user accounts in the CIFS chapter of the Data ONTAP File Access and Protocols Management Guide for 7-Mode.

What users, groups, roles, and capabilities are

You need to understand what users, groups, roles, and capabilities are, so that you can grant different levels of administrative access to users of a storage system.

user:

An account that is authenticated on the storage system. Users can be placed into storage system groups to grant them capabilities on the storage system.
domain user:
A nonlocal user who belongs to a Windows domain and is authenticated by the domain. This type of user can be put into storage system groups, thereby being granted capabilities on the storage system. This only works if CIFS has been set up on the storage system.

group:
A collection of users and domain users that can be granted one or more roles. Groups can be predefined, created, or modified. When CIFS is enabled, groups act as Windows groups.

role:
A set of capabilities that can be assigned to a group. Roles can be predefined, created, or modified.

capability:
The privilege granted to a role to execute commands or take other specified actions. Examples of types of capabilities include the following:

- Login rights
- Data ONTAP CLI (command-line interface) rights
- Data ONTAP API (application programming interface) rights
- Security rights

How users are assigned capabilities
You cannot assign administrative roles or capabilities directly to administrative users or domain users. Instead, you assign users to groups whose assigned roles match the capabilities that you want those users to be able to exercise.

- You can assign a set of capabilities to a role, then assign that role to a group. You then add an administrative user to the group that has the administrative role and capabilities that you want that user to have.

- You can also assign users and domain users to some predefined groups whose default roles match the roles that you want the users in question to exercise.

Requirements for naming users, groups, and roles
When you name your users, groups and roles, you must meet the naming requirements.

The naming requirements are as follows:

- Names are case insensitive.
- Names can contain any alphanumeric character, a space, or a symbol that is not one of the following characters:
  " * + , / : ; < = > ? | [ ]
Note: If the name contains spaces or special characters, enclose the name in double quotes (" ") when you use it in a command.

- You cannot give a user and a group the same name.

Windows special groups

Windows has some special groups it uses for security and administration purposes. Do not create administrative groups on your storage system with the same name as a Windows special group.

The special Windows group names include the following names:

- System
- Everyone
- Interactive
- Network
- Creator/Owner
- Creator Group
- Anonymous Logon
- Authenticated Users
- Batch
- Dialup
- Service
- Terminal User

About changing capabilities of other groups and roles

If you are an administrator assigned to a group with capabilities that are equal to or greater than another group, you can make changes to that other group.

The changes you can make include the following:

- Change the capabilities of the other group
- Change the capabilities of the roles within the other group
- Change the membership of the other group
Root access to the storage system

By default, root access to the storage system is enabled. You have the option to disable the root account's access to the storage system, preventing the root account from logging in the system or executing any commands.

To prevent the root account from logging in to the system or executing any commands, a user other than root with the `security-complete-user-control` security capability can disable root access by setting the option `security.passwd.rootaccess.enable` to `off`.

An EMS message is sent every time the option changes.

To reset the `security.passwd.rootaccess.enable` option to `on` (the default) to enable root access, a user must change the root account's password.

The option to enable or disable root access is supported if you access the storage system through Telnet, RSH, SSH, HTTP Admin, NDMP, or the serial console.

**Related concepts**

*Supported capability types* on page 113

Disabling root account access to the storage system

Disabling the “root” account's access to the storage system prevents the root account from logging in to the system or executing any commands.

**Before you begin**

You can disable the root account's access to the storage system if all the following conditions are met:

- You user account is not “root”.
- You have the `security-complete-user-control` security capability.
- You use Telnet, RSH, SSH, HTTP Admin, NDMP, or the serial console to access the storage system.

**About this task**

The storage system’s root account is mapped to the “naroot” account name of the remote management device. If you disable the root account's access to the storage system, the naroot access to the storage system is automatically disabled.

**Step**

1. Enter the following command:
options security.passwd.rootaccess.enable off

The default is on.

Note: To reset the security.passwd.rootaccess.enable option to on to enable root access, a user other than root must first change the root account’s password.

Displaying the status of root access

The status of the root account shows whether its access to the storage system is currently enabled.

Step

1. Enter one of the following commands:
   - options security.passwd.rootaccess.enable
   - useradmin user list root

Examples of root access status display

The following examples show that root access is currently disabled:

```
    toaster> options security.passwd.rootaccess.enable
    security.passwd.rootaccess.enable off

    toaster> useradmin user list root
    Name: root
    Info: Default system administrator.
    Rid: 0
    Groups: 
    Full Name:
    Allowed Capabilities: *
    Password min/max age in days: 0/never
    Status: disabled
```
Ways of managing users

You can create users, grant them access to the storage system, and modify their capabilities.

Creating users and assigning them to groups

You can create or modify a user and assign that user to one or more predefined or customized groups, giving that user the roles and capabilities associated with those groups.

About this task

When you use the `useradmin user modify` command to modify the groups an existing user is assigned to, whatever groups the user was previously assigned to are replaced with the group or groups you supply in the command.

User names are case insensitive. This means that you cannot create a user named “fred” if you already have a user named “Fred”.

You can have a maximum of 96 administrative users on a storage system.

Steps

1. Enter the following command:

   ```
   useradmin user {add|modify} user_name [-c comments] [-n full_name] [-p password] -g group1[,group2,group3,..] [-m password_min_age] [-M password_max_age]
   ```

   • You use `useradmin user add` to create a new user, and `useradmin user modify` to modify the attributes of an existing user.

   • `user_name` is the user whose name you want to assign to a customized or predefined group.
      The user name is case insensitive and can be up to 32 characters long.
      If `user_name` contains a space, enclose `user_name` in quotation marks (" ").

   • `comments` specifies a maximum 128-character comment that can be viewed through the `useradmin user list` command.
      Comments cannot contain a colon character (:).

   • `full_name` specifies the full name for the user.

   • `password` is the password required of the specified administrative user (used only for RSH access).
      If the `security.passwd.rules.enable` option is set to on, the password must conform to the rules specified by the `security.passwd.rules.*` options.
• **group** is a predefined or customized group with roles assigned through the useradmin group command.
  To assign a user to the Compliance Administrators group, ensure that the telnet.distinct.enable option is set to **on**.

• **password_min_age** specifies the minimum number of days that users must have a password before they can change it.
  The default value is **0**. If you specify a value larger than **4,294,967,295**, the value is set to **4,294,967,295**.

• **password_max_age** specifies the maximum number of days users can have a password before they are required to change it.
  The default value is **4,294,967,295**. If you specify a value larger than **4,294,967,295**, the value is set to **4,294,967,295**. The password expires at midnight in the GMT time zone, on the expiration date.

2. To verify the success of your operation, enter the following command:

   ```bash
   useradmin user list user_name
   ```

   The specified user is listed along with the groups, roles, and capabilities that the user has inherited.

---

**Example of creating a user**

The following command uses the predefined Administrators group and role definitions to create the user mollymulberry and grant her rights to invoke every type of administrative capability (login, CLI, API, and security).

```bash
useradmin user add molly -n "Molly Mulberry" -c "Filer administrator in Corp IT" -g Administrators
```

---

**Related concepts**

- *Predefined groups* on page 108
- *Requirements for naming users, groups, and roles* on page 100

**Related tasks**

- *Assigning roles to groups by creating or modifying a group* on page 109
Granting access to Windows domain users

You can specify nonlocal administrative users to have administrative access to the storage system after authentication by a Windows Domain Controller, rather than by the storage system itself.

About this task

By default, the domain administrator account has full access to the system. You can log in this account by using the `domain\administrator` format with the appropriate password.

Data ONTAP also supports ssh-key based authentication for domain users.

Steps

1. To assign a Windows domain user to a custom or predefined group, enter the following command:

   ```bash
   useradmin domainuser add win_user_name -g {custom_group|Administrators|"Backup Operators"|Guests|"Power Users"|Users}[,...]
   ```

   `win_user_name` is the Windows domain user whose name or Security ID (SID) you want to assign to a customized or predefined group. This value can be in one of the following formats:

   - `name`
   - `domain\name`
   - `textual_sid_S-x-y-z`

   For more information about these formats, see the `na_cifs_lookup(1)` man page.

   `custom_group` is a customized group with roles assigned through the `useradmin group` command.

   `Administrators | "Backup Operators" | Guests | "Power Users" | Users` are groups predefined by Data ONTAP with default roles and capabilities.

2. To verify the success of your operation, enter the following command:
useradmin domainuser list -g {custom_group|Administrators|"Backup Operators"|Guests|"Power Users"|Users}

The SID of the user in question is among those listed in the output of this command.

Related concepts

- Ways of managing users on page 104
- Predefined groups on page 108

How to grant permissions for MMC

In order to use Microsoft Management Console (MMC) to access the storage system, a user must be in the local Administrators group. Because the Domain Admins group is placed within the Administrators group, users in the Domain Admins group have MMC access also.

The following are the methods for adding users to the Administrators group for MMC access:

- Add local users (users that were created on the storage system) by using the `useradmin user modify username -g Administrators` command.
- Add nonlocal users (users that exist on the domain) by using the `useradmin domainuser add domain\username -g Administrators` command.
- Use the MMC on the domain to add `domain\username` to the Domain Admins group.

Related tasks

- Creating users and assigning them to groups on page 104
- Granting access to Windows domain users on page 106

About changing another user’s capabilities

You must be an administrator and your user account must be assigned to a group that has greater capabilities than the group the user is assigned to if you want to change another user’s capabilities or account information.

The changes you can make include:

- Change the capabilities of a user
- Change the comment about a user
- Change the full name of a user
- Change the aging characteristics of a user’s password
- Change the name of a group
Note: You cannot create or change a group, a user, or a role, to have more capabilities than you have.

If you want to change the password of another user, your account must also be assigned to a group that has the security-password-change-others capability.

How to manage groups

You can use groups predefined by Data ONTAP or create or modify a group.

Predefined groups

You can assign a user or domain user to a predefined set of groups and roles provided by Data ONTAP. The predefined groups include Administrators, Power Users, Compliance Administrators, Backup Operators, Users, Guests, and Everyone.

The following table describes the predefined groups.

<table>
<thead>
<tr>
<th>Predefined group</th>
<th>Default roles</th>
<th>Default privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators</td>
<td>admin</td>
<td>Grants all CLI, API, login, and security capabilities.</td>
</tr>
<tr>
<td>Power Users</td>
<td>power</td>
<td>Grants the ability to perform the following tasks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Invoke all cifs, exportfs, nfs, and useradmin CLI commands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make all cifs and nfs API calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Log in to Telnet, HTTP, RSH, and SSH sessions</td>
</tr>
<tr>
<td>Compliance Administrators</td>
<td>compliance</td>
<td>Grants the ability to execute compliance-related operations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You cannot assign a user to this group if the telnet.distinct.enable option is set to off.</td>
</tr>
<tr>
<td>Backup Operators</td>
<td>backup</td>
<td>Grants the ability to make NDMP requests.</td>
</tr>
<tr>
<td>Predefined group</td>
<td>Default roles</td>
<td>Default privileges</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Users</td>
<td>audit</td>
<td>Grants the ability to make <code>snmp-get</code> and <code>snmp-get-next</code> API calls.</td>
</tr>
<tr>
<td>Guests</td>
<td>none</td>
<td>None</td>
</tr>
<tr>
<td>Everyone</td>
<td>none</td>
<td>None</td>
</tr>
</tbody>
</table>

**Related concepts**

- *Predefined roles* on page 112
- *Supported capability types* on page 113

**Assigning roles to groups by creating or modifying a group**

You can create or modify a group, giving that group the capabilities associated with one or more predefined or customized roles.

**About this task**

When you use the `useradmin group modify` command to modify an existing group, whatever roles were previously assigned to that group are replaced with the roles you supply in the command.

**Steps**

1. Use the `useradmin group add` command to create a new group or the `useradmin group modify` command modify a group, by entering the following command:

   ```
   useradmin group {add|modify} group_name [-c comments] [-r {custom_role|root|admin|power|backup|compliance|audit}[,....]]
   ```

   `group_name` is the group that you want to create or to which you want to assign one or more roles. Group names are case insensitive and can be up to 256 characters.

   **Note:** Do not create groups with the same name as any of the Windows special groups or any existing users.

   `custom_role` is a customized role with capabilities assigned through the `useradmin role add` command.

   `root, admin, power, backup, compliance, and audit` are roles predefined with default capabilities by Data ONTAP.

**Example**

The following command gives the group “admin users” capabilities associated with the admin role, and removes any roles previously assigned to the admin_users group.
useradmin group modify "admin users" -r admin

2. Enter the following command to verify the success of your operation:
   useradmin group list group_name
   The roles and capabilities assigned to the group in question are listed in the output of this command.

Related concepts

Requirements for naming users, groups, and roles on page 100
Windows special groups on page 101
Predefined roles on page 112

Renaming a group

You can change the name of an existing group.

Step

1. Enter the following command:
   useradmin group modify group_name -g new_group_name
   group_name is the name of the group you want to change.
   new_group_name is the name you want the group to have after the change.
   Note: Do not attempt to rename a group with the same name as any of the Windows special groups.

Related concepts

Windows special groups on page 101

Loading groups from the lclgroups.cfg file

When groups are created, they are placed in the lclgroups.cfg file. Normally, this file is for administrative reference only. It is not used to reload groups into the system memory. However, sometimes you need Data ONTAP to reload this file, for example, when you are migrating a storage system or a vFiler unit.

About this task

Using this procedure unloads the current groups from memory before loading the new file; currently configured groups will no longer be available unless they are also configured in the new file.

To perform this operation, the user must belong to a group that has the security-load-lclgroups capability.
Do not edit the `lclgroups.cfg` file directly to add or remove groups. Use the `useradmin` group command to administer groups.

**Steps**

1. Using a client, copy the new `lclgroups.cfg` file to the `/etc` directory, giving it a different name.

2. Enter the following command:
   ```
   useradmin domainuser load new_lclgroups.cfg_filename
   ```

   `new_lclgroups.cfg_filename` is the name of the new `lclgroups.cfg` file you created in Step 1.

   The groups in the current `lclgroups.cfg` file are unloaded from memory and the groups in the new `lclgroups.cfg` file are loaded into memory. In addition, the current `lclgroups.cfg` file is moved to `lclgroups.cfg.bak`, and a new `lclgroups.cfg` file is created from the file you specified.

**Setting the maximum number of auxiliary UNIX groups allowed for a user**

If you use Kerberos V5 authentication, the maximum number of auxiliary UNIX groups that a user can be a member of is 32 by default. You can increase the maximum to 256 groups by setting the `nfs.max_num_aux_groups` option to 256.

**About this task**

If you do not use Kerberos V5 authentication, the maximum number of auxiliary UNIX groups that a user can be a member of is 16.

**Step**

1. To change the maximum number of auxiliary UNIX groups that a user can be a member of, enter the following command:
   ```
   options nfs.max_num_aux_groups [32 | 256]
   ```

   The default value is 32.

   For more information about the `nfs.max_num_aux_groups` option, see the `na_options(1)` man page.
How to manage roles

You can use roles predefined by Data ONTAP or create new roles. You can also modify an existing role.

Predefined roles

Data ONTAP provides predefined roles that you can assign to groups and enable users in the groups to perform different levels of administrative tasks.

The following table describes the roles that are predefined by Data ONTAP.

<table>
<thead>
<tr>
<th>This role...</th>
<th>Includes the following default capabilities...</th>
<th>That grant users of a group...</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>*</td>
<td>All possible capabilities.</td>
</tr>
<tr>
<td>admin</td>
<td>cli-<em>, api-</em>, login-<em>, security-</em></td>
<td>All CLI, API, login, and security capabilities.</td>
</tr>
</tbody>
</table>
| power        | cli-cifs*, cli-exportfs*, cli-nfs*, cli-useradmin*, api-cifs-*, api-nfs-*, login-telnet, login-http-admin, login-rsh, login-ssh, login-http-admin, login-rsh, login-ssh, api-system-api-* | The capabilities to performing the following tasks:  
  • Invoke all cifs, exportfs, nfs, and useradmin CLI commands  
  • Make all cifs and nfs API calls  
  • Log in using Telnet, HTTP, RSH, and SSH sessions |
<p>| backup       | login-ndmp                                    | The capabilities to make NDMP requests. |</p>
<table>
<thead>
<tr>
<th>This role...</th>
<th>Includes the following default capabilities...</th>
<th>That grant users of a group...</th>
</tr>
</thead>
<tbody>
<tr>
<td>compliance</td>
<td>cli-cifs*, cli-exportfs*, cli-nfs*, cli-useradmin*, api-cifs-<em>, api-nfs-</em>, login-telnet, login-http-admin, login-rsh, login-ssh, api-system-api-<em>, cli-snaplock</em>, api-snaplock-<em>, api-file-</em>, compliance-*</td>
<td>Compliance-related capabilities in addition to all the capabilities granted by the power role. <strong>Note:</strong> The <strong>compliance</strong> role is the default role for the Compliance Administrators group. The <strong>compliance</strong> role cannot be removed from the Compliance Administrators group or added to other groups.</td>
</tr>
</tbody>
</table>

| audit       | api-snmp-get, api-snmp-get-next              | The capabilities to make *snmp-get* and *snmp-get-next* API calls. |

| none        | None                                          | No administrative capabilities. |

**Related concepts**

*Predefined groups* on page 108

*Supported capability types* on page 113

**Related tasks**

*Assigning roles to groups by creating or modifying a group* on page 109

**Supported capability types**

The capability types Data ONTAP supports include **login, cli, security, api, and compliance**.

The following table describes the supported capability types.
<table>
<thead>
<tr>
<th>This capability type...</th>
<th>Has the following capabilities...</th>
</tr>
</thead>
</table>
| **login**              | Grants the specified role login capabilities.  
  **login-*** grants the specified role the capability to log in through all supported protocols.  
  **login-protocol** grants the specified role the capability to log in through a specified protocol. Supported protocols include the following:  
  - **login-console** grants the specified role the capability to log in to the storage system using the console.  
  - **login-http-admin** grants the specified role the capability to log in to the storage system using HTTP.  
  - **login-ndmp** grants the specified role the capability to make NDMP requests.  
  - **login-rsh** grants the specified role the capability to log in to the storage system using RSH.  
  - **login-snmp** grants the specified role the capability to log in to the storage system using SNMPv3.  
  - **login-sp** grants the specified role the capability to log in to the SP or the RLM by using SSH.  
  - **login-ssh** grants the specified role the capability to log in to the storage system using SSH.  
  - **login-telnet** grants the specified role the capability to log in to the storage system using Telnet. |
| **cli**                | Grants the specified role the capability to execute one or more Data ONTAP command line interface (CLI) commands.  
  **cli-*** grants the specified role the capability to execute all supported CLI commands.  
  **cli-cmd*** grants the specified role the capability to execute all commands associated with the CLI command `cmd`.  
  For example, the following command grants the specified role the capability to execute all `vol` commands:  
  `useradmin role modify status_gatherer -a cli-vol*`  
  **Note:** Users with **cli** capability also require at least one **login** capability to execute CLI commands. |
<table>
<thead>
<tr>
<th>This capability type...</th>
<th>Has the following capabilities...</th>
</tr>
</thead>
</table>
| **security**           | Grants the specified role security-related capabilities, such as the capability to change other users’ passwords or to invoke the CLI `priv set advanced` command.  
  
  * **security-*** grants the specified role all security capabilities.  
  
  * **security-capability** grants the specified role one of the following specific security capabilities:  
    
    * **security-api-vfiler** grants the specified role the capability to forward or tunnel ONTAP APIs from the physical storage system into a vFiler unit for execution.  
    
    * **security-passwd-change-others** grants the specified role the capability to change the passwords of all users with equal or fewer capabilities.  
    
    * **security-priv-advanced** grants the specified role the capability to access the advanced CLI commands.  
    
    * **security-load-lclgroups** grants the specified role the capability to reload the `lclgroups.cfg` file.  
    
    * **security-complete-user-control** grants the specified role the capability to create, modify, and delete users, groups, and roles with greater capabilities. |
| **api**                | Grants the specified role the capability to execute Data ONTAP API calls.  
  
  * **api-** grants the specified role all API capabilities.  
  
  * **api-api_call_family-** grants the specified role the capability to call all API routines in the family `api_call_family`.  
  
  * **api-api_call** grants the specified role the capability to call the API routine `api_call`.  
  
  **Note:**  
  You have more fine-grained control of the command set with the **api** capabilities because you can give subcommand capabilities as well. Users with **api** capability also require the **login-http-admin** capability to execute API calls. |
This capability type... | Has the following capabilities...
---|---
compliance | Grants the specified role the capability to execute compliance-related operations.
  compliance-* grants the specified role the capability to execute all compliance-related operations.
  compliance-privileged-delete grants the specified role the capability to execute privileged deletion of compliance data.

Note: The compliance capabilities (compliance-*) are included in the default capabilities of the compliance role. The compliance capabilities cannot be removed from the compliance role or added to other roles.

Related concepts

- About changing another user's capabilities on page 107
- Predefined roles on page 112
- Predefined groups on page 108

Related tasks

- Loading groups from the lclgroups.cfg file on page 110
- Creating a new role and assigning capabilities to roles on page 116
- Assigning roles to groups by creating or modifying a group on page 109

Creating a new role and assigning capabilities to roles

You can create a new role and grant desired capabilities to the role.

Steps

1. Enter the following command:

   `useradmin role add role_name [-c comments] -a capability1[,capability2...]

   role_name is the name of the role you want to create. Role names are case insensitive and can be 1-32 characters.

   comments is a short string you can use to document this role.

   The capability parameters are the types of access you want to grant to this new role.

Example

You can also grant API capabilities for API command families. For example, to grant the myrole role only the capability to run CIFS commands, you use the following command:
useradmin role add myrole -a api-cifs-*

2. To verify the success of the operation, enter the following command:

   useradmin role list role_name

   The capabilities allowed for the specified role are listed.

Related concepts

   About changing another user’s capabilities on page 107
   Requirements for naming users, groups, and roles on page 100

Modifying an existing role or its capabilities

You can modify an existing role's capabilities or its comments.

About this task

When you use the useradmin role modify command to modify an existing role, whatever capabilities were previously assigned to that role are replaced with the capabilities you supply in the command.

Steps

1. Enter the following command:

   useradmin role modify role_name [-c comments] -a capability1[,capability2...] [-f]

   role_name is the name of the role that you want to modify.

   comments is a short string you can use to document this role.

   The capability parameters are the types of access you want to grant to this role.

   The -f option forces the change without a warning.

Example

   The following command line assigns the role “class2loginrights” telnet capabilities, console login capabilities, and all CLI capabilities, while removing any other capabilities that the role was granted previously.

   useradmin role modify class2loginrights -c “This role is for telnet and console logins” -a login-telnet,login-console,cli-*

2. To verify the success of the operation, enter the following command:

   useradmin role list role_name

   The capabilities allowed for the specified role are listed.
Users, groups, and roles

You can display information for existing users, groups, or roles. You can also delete them.

Commands that list users, domain users, groups, or roles

You use the `useradmin` commands to display information for users, domain users, groups, or roles.

The following table describes the commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>useradmin whoami</code></td>
<td>Displays the user name of the account you are currently using.</td>
</tr>
<tr>
<td><code>useradmin user list</code></td>
<td>Lists all administrative users configured for this storage system. Each user entry includes the user name, comment information, a user ID number generated by Data ONTAP, and groups that each user belongs to.</td>
</tr>
<tr>
<td><code>useradmin user list user_name</code></td>
<td>Lists the extended information for a specific administrator. The extended information includes the user name, comment information, the groups that the user belongs to, a Windows-based name if the user has one, a user ID number generated by Data ONTAP, effective allowed capabilities, and user account status.</td>
</tr>
<tr>
<td><code>useradmin user list -x</code></td>
<td>Lists the extended information for all administrators. The extended information includes the user name, comment information, the groups that the user belongs to, a Windows-based name if the user has one, a user ID number generated by Data ONTAP, effective allowed capabilities, and user account status.</td>
</tr>
<tr>
<td><code>useradmin user list -g grp_name</code></td>
<td>Lists information for all users assigned to a specified group.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| useradmin domainuser list -g group_name | Lists the Security IDs (SIDs) of all Windows domain administrative users assigned to a specified group. To list the user name, comment information, and the groups that each user belongs to, follow up with cifs lookup and useradmin user list commands.  
*Note:* The useradmin user list command output includes the Relative ID (RID), which is a unique integer associated with each user. The RID value of 500 for the Administrator user corresponds to the last number in the Administrator user’s SID. |
| useradmin group list | Lists all the administrative user groups configured for this storage system. Each group entry includes the group name, comment information, user ID number generated by Data ONTAP, and every role associated with that group. |
| useradmin group list group_name | Lists the extended details for a specified single group. An extended entry for a single group includes the group name, comment information, roles assigned to that group, and allowed capabilities. |
| useradmin role list | Lists all the roles configured for this storage system. Each role entry lists the role name, comment information, and allowed capabilities. |
| useradmin role list role_name | Lists the information for a single specified role name. |

**Example of useradmin whoami output**

toaster> useradmin whoami
Administrator
Example of `useradmin user list` output

toaster> useradmin user list
Name: root
Info: Default system administrator.
Rid: 0
Groups: 

Name: administrator
Info: Built-in account for administering the filer
Rid: 500
Groups: Administrators

Name: fred
Info: This is a comment for fred.
Rid: 131343
Groups: Users
...

Example of `useradmin user list user_name` output

toaster> useradmin user list fred
Name: fred
Info: This is a comment for fred
Rid: 131343
Groups: Users
Full Name:
Allowed Capabilities: login-http-admin,api-snmp-get,api-snmp-get-next
Password min/max age in days: 0/4294967295
Status: enabled

Example of `useradmin user list -x` output

toaster> useradmin user list -x
Name: administrator
Info: Built-in account for administering the filer
Rid: 500
Groups: Administrators
Full Name:
Allowed Capabilities: login-*,cli-*,api-*,security-
Password min/max age in days: 0/4294967295
Status: enabled

Name: fred
Info: This is a comment for fred
Rid: 131343
Groups: Users
Full Name:
<table>
<thead>
<tr>
<th>Allowed Capabilities: login-http-admin, api-snmp-get, api-snmp-get-next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status: enabled</td>
</tr>
</tbody>
</table>

---

**Example of `useradmin user list -g grp_name output`**

toaster> useradmin user list -g Administrators
Name: administrator
Info: Built-in account for administering the filer
Rid: 500
Groups: Administrators

Name: marshall
Info:
Rid: 131454
Groups: Administrators

---

**Example of `useradmin domainuser list -g group_name output`**

toaster> useradmin domainuser list -g administrators
List of SIDS in administrators
S-1-7-24-1214340929-620487827-8395249115-512
S-1-7-24-1838915891-154599588-1081798244-500
For more information about a user, use the 'cifs lookup' and 'useradmin user list' commands.

toaster> cifs lookup S-1-7-24-1214340929-620487827-8395249115-512
name = MBS-LAB\Domain Admins

toaster> cifs lookup S-1-7-24-1838915891-154599588-1081798244-500
name = ZND\Administrator

toaster> useradmin user list Administrator
Name: Administrator
Info: Built-in account for administering the filer
Rid: 500
Groups: Administrators
Full Name: Allowed Capabilities: login-*,cli-*,api-*,security-*
### Example of `useradmin group list` output

```bash
toaster> useradmin group list
Name: Administrators
Info: Members can fully administer the filer.
Rid: 544
Roles: admin

Name: Backup Operators
Info: Members can bypass file security to backup files
Rid: 551
Roles: none
...
```

### Example of `useradmin group list group_name` output

```bash
toaster> useradmin group list Administrators
Name: Administrators
Info: Members can fully administer the filer.
Rid: 544
Roles: admin
Allowed Capabilities: login-*,cli-*,api-*,security-*
```

### Example of `useradmin role list` output

```bash
toaster> useradmin role list
Name: admin
Info:
Allowed Capabilities: login-*,cli-*,api-*,security-*

Name: audit
Info:
Allowed Capabilities: login-http-admin,api-snmp-get,api-snmp-get-next

Name: none
Info:
Allowed Capabilities:
...
```
Example of `useradmin role list role_name output`

```
toaster> useradmin role list admin
Name:    admin
Info:    Default role for administrator privileges.
Allowed Capabilities: login-*,cli-*,api-*,security-*
```

Commands that delete users, domain users, groups, or roles

You use the `useradmin` commands to delete users, domain users, groups, or roles.

The following table describes the commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| `useradmin user delete user_name`            | Deletes the specified user from the storage system.  
The `useradmin user delete` command deletes any local user except for root. User names are case insensitive.  
**Note:** You cannot delete or modify a user with greater capabilities than you have. |
| `useradmin domainuser delete win_user_name -g group1,[group2,...]` | Removes the specified user from the specified group or groups. User names are case insensitive.  
This command does not delete the user from the domain.  
**Note:** If you want to completely delete a user from the storage system, use the `useradmin user delete` command instead. |
| `useradmin group delete group_name`          | Deletes the specified group from the storage system. Group names are case insensitive.  
**Note:** All users must be removed from a group before the group itself can be deleted. |
| `useradmin role delete role_name`            | Deletes the specified role from the storage system. Role names are case insensitive.  
**Note:** A role that is still assigned to a group cannot be deleted. |
Administrative user creation examples

You can create a user with custom capabilities or no administrative capabilities, thereby controlling the user's administrative access.

Example of creating a user with custom capabilities

You can create a user with a limited and specialized set of administrator capabilities. The commands carry out the following operations:

- Create the following roles:
  - “only_ssh”, which is allowed to log in only via SSH
  - “qtree_commands”, which can run any qtree command in the CLI

- Create the “ssh_qtree_admins” group, which is allowed to log in only via SSH and run the qtree commands in the CLI, by using the only_ssh and qtree_commands roles.

- Create a user “wilma” and assign the user to the ssh_qtree_admins group.
  As a member of the ssh_qtree_admins group, user wilma now inherits the capabilities from the roles assigned to that group.

- Display the details and capabilities inherited by the new user wilma.

```bash
> toaster> useradmin role add only_ssh -a login-ssh
Role <only_ssh> added.
Thu Apr 22 10:50:05 PDT [toaster: useradmin.added.deleted:info]: The role 'only_ssh' has been added.

> toaster> useradmin role add qtree_commands -a cli-qtree*,api-qtree-*
Role <qtree_commands> added.
Thu Apr 22 10:51:51 PDT [toaster: useradmin.added.deleted:info]: The role 'qtree_commands' has been added.

> toaster> useradmin group add ssh_qtree_admins -r only_ssh,qtree_commands
Group <ssh_qtree_admins> added.
Thu Apr 22 10:53:07 PDT [toaster: useradmin.added.deleted:info]: The group 'ssh_qtree_admins' has been added.

> toaster> useradmin user add wilma -g ssh_qtree_admins
New password:
Retype new password:
User <wilma> added.
Thu Apr 22 10:54:43 PDT [toaster: useradmin.added.deleted:info]: The user 'wilma' has been added.

> toaster> useradmin user list wilma
Name: wilma
Info:
```
Creating a user with no administrative capabilities

In a CIFS environment, you can create users on the storage system that are in local groups but do not have console access or any administrative capabilities on the storage system. These users still have the file access permissions granted by the local groups.

Steps

1. Enter the following command:

   ```
   useradmin user add user_name -g "Guests"
   ```

   `user_name` is the user name for the new user.

2. Enter the user’s password when prompted.

3. To verify that you have created the user with no capabilities, enter the following command:

   ```
   useradmin user list user_name
   ```

   The Allowed Capabilities field should be blank.

Granting users in LDAP groups access to the system and mapping them to specified roles

If you store your user database on an LDAP server, you can grant users in LDAP groups access to the storage system and map them to specified roles on the system to manage their access.

Steps

1. If the value of the `security.admin.authentication` option does not include `nsswitch`, add `nsswitch` to the option by using one of the following formats:

   ```
   options security.admin.authentication internal,nsswitch
   ```

   ```
   options security.admin.authentication nsswitch,internal
   ```

   The `security.admin.authentication` option specifies where the system finds authentication information for administrative user accounts. By default, it includes `internal`, which means the system’s local administrative repository. Adding `nsswitch` to the option enables the system to also use the repositories found in the `nsswitch.conf` file.

   For more information about the `security.admin.authentication` option, see the `na_options(1)` man page. For information about configuring LDAP services and the
2. To grant users in LDAP groups access to the storage system and map them to specified roles on the system, enter the following command:

```bash
options security.admin.nsswitchgroup
ldapgroup1:role1, ldapgroup2:role2, ldapgroup3:role3...
```

- The `security.admin.nsswitchgroup` option maps an LDAP group to the role that follows the colon (:) after the group name.
  For instance, `ldapgroup1` is mapped to `role1`, `ldapgroup2` to `role2`, and `ldapgroup3` to `role3`.
- Group names and role names must not contain commas (,) or colons (:).
- Mapping an LDAP group to a role enables users in that group to have only the capabilities granted by the mapped role.
  The role can be a predefined role or one that you create by using the `useradmin role add` command.
- If you use the option without specifying a role after an LDAP group, users in that group are granted capabilities of the `admin` role and have full administrative access to the storage system.
- The `security.admin.nsswitchgroup` option supports up to 256 characters and ignores characters that exceed the length limit.
  For more information about the option, see the `na_options(1)` man page.

**Example**

The following example grants LDAP users in the `ldapgrp1` group capabilities defined in the `power` role, LDAP users in the `ldapgrp2` group full administrative capabilities, and LDAP users in the `ldapgrp3` group capabilities defined in the `audit` role:

```bash
system> options security.admin.nsswitchgroup ldapgrp1:power, ldapgrp2, ldapgrp3:audit
```

**Related concepts**

*How to manage roles* on page 112
How to manage passwords for security

Data ONTAP provides several methods that you can use to ensure that the password policies for your storage system meet your company's security requirements.

When the `security.passwd.rules.enable` option is set to `on` (the default), you can manage passwords in the following ways:

- **Password composition rules**
  The following are the default password composition rules for all accounts, including the “root” and “Administrator” accounts:
  
  ◦ The password must be at least eight characters long.
    The `security.passwd.rules.minimum` option defaults to `8`.
  ◦ The password must contain at least one number.
    The `security.passwd.rules.minimum.digit` option defaults to `1`.
  ◦ The password must contain at least two alphabetic characters.
    The `security.passwd.rules.minimum.alphabetic` option defaults to `2`.
  ◦ The password must not contain the Ctrl-c or Ctrl-d key combination or the two-character string `^D`.

  **Note:** During the initial setup of a storage system shipped with Data ONTAP 8.0 or later, you are prompted to set up a password for the “root” account by following these password rules. Subsequent invocations of the `setup` command do not prompt you to set up a password for the “root” account. For more information about setting up the storage system, see the Data ONTAP Software Setup Guide for 7-Mode. Also, even if you modified the settings for the password composition rules, the default settings still apply when you use the boot menu option 3) **Change Password** to change the system password (the “root” account password.)

  By default, a password is not required to include symbol characters, but you can change the requirement by using the `security.passwd.rules.minimum.symbol` option.

  In addition, you can use the following options to specify the minimum number of uppercase or lowercase alphabetic characters that a password must contain:

  ◦ The `security.passwd.rules.minimum.uppercase` option specifies the minimum number of uppercase alphabetic characters that a password must contain.
    The default is `0`, which does not require that a password contain uppercase characters.
  ◦ The `security.passwd.rules.minimum.lowercase` option specifies the minimum number of lowercase alphabetic characters that a password must contain.
    The default is `0`, which does not require that a password contain lowercase characters.

- **Password history**
The password history functionality enables you to require users to create new passwords that are different from a specified number of previously used passwords, rather than simply using the same password every time. You use the `security.passwd.rules.history` option to specify how many unique passwords users must create before they can reuse a password.

For storage systems shipped with Data ONTAP 8.0 or later, the default value is 6. In this case, the password a user creates cannot be the same as any of that user's most recent six passwords.

For storage systems upgraded to Data ONTAP 8.0 or later from an earlier release, the setting for the `security.passwd.rules.history` option stays the same as before the upgrade.

- **Password expiration (maximum age)**
  The password expiration functionality enables you to require that users change their passwords before they have had the password for the specified number of days. You use the `-M` option of the `useradmin user add` or the `useradmin user modify` command to specify the maximum password duration for individual users. The default value is \(4,294,967,295\).

  **Note:** Before you set password expiration, your storage system time must already be set accurately. Otherwise, accounts could expire before or after the set expiration date. The settings of the `useradmin` commands do not depend on the `security.passwd.rules.enable` option. They do not require that `security.passwd.rules.enable` be set to `on`.

- **Password minimum age**
  The password minimum age functionality (a specified minimum length of time each password stays in effect) prevents users from changing their passwords too soon, thus cycling through their previous passwords too quickly. You use the `-m` option of the `useradmin user add` or the `useradmin user modify` command to specify the minimum password duration for individual users. The default value is 0, which does not enforce a minimum password age.

  **Note:** Before you set the password minimum age, your storage system time must already be set accurately. Changing the system time after the password minimum age is set can lead to unexpected results.

- **Password lockout**
  The password lockout functionality enables you to lock out users (except the root account) after a specified number of unsuccessful login attempts. This is to prevent an unauthorized user from attempting to guess a password. You use the `security.passwd.lockout.numtries` option to specify the number of tries a user can make before being locked out of the system. The default value is \(4,294,967,295\).

  **Note:** The setting of the `security.passwd.lockout.numtries` option does not depend on the `security.passwd.rules.enable` option. It does not require that `security.passwd.rules.enable` be set to `on`.

- **Password reset requirement**
  The password reset requirement enables you to require that all new users (except for root) reset their passwords when they log in for the first time. Users must also reset their passwords the first time they log in after an administrator has changed their password.
You set the `security.passwd.firstlogin.enable` option to **on** to enable this requirement. The default value is **off**.

**Note:** The setting of the `security.passwd.firstlogin.enable` option does not depend on the `security.passwd.rules.enable` option. It does not require that `security.passwd.rules.enable` be set to **on**.

For more information about options that manage passwords, see the `na_options(1)` and `na_useradmin(1)` man pages.

### Changing the storage system password

You can change the storage system password, which is also the password for the root user account.

**About this task**

The "naroot" account name, which can be used to log in to the remote management device, uses the storage system root password. Changing the storage system password also changes the password for naroot.

**Step**

1. Do one of the following:

<table>
<thead>
<tr>
<th>If you are using this connection method to administer the storage system...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Telnet session or the console | Enter the following command at the storage system prompt:  
  ```bash
  passwd
  ```  
  a. Enter the storage system account name:  
  ```bash
  root
  ```  
  b. Enter the existing storage system password (not required if you are root or have the `security-passwd-change-others` capability).  
  c. Enter a new password, and then enter it a second time to confirm it.
| Remote Shell connection | Enter the following command from a UNIX host:  
  ```bash
  rsh system_name -l root:root_password passwd old_password new_password root
  ```  
| Secure Shell connection | Enter the following command from a UNIX host:  
  ```bash
  ssh -l root system_name passwd old_password new_password root
  ```
Changing a local user account password

You can change a local user account password by using a Telnet session, the console, the Secure Shell connection, or the Remote Shell connection.

Step

1. Do one of the following:

<table>
<thead>
<tr>
<th>If you are using this connection method to administer the storage system...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Telnet session or the console | a. Enter the following command: `passwd`
| | b. When Data ONTAP prompts you, enter the name of the local user whose password you want to change.
| | c. When Data ONTAP prompts you, enter the new password.
| | d. Enter the new password again for confirmation. |
| Remote Shell connection | Enter the following command:
| rsh `system_name` -l `username`:password `passwd old_password new_password username` |
| Secure Shell connection | Enter the following command:
| ssh `-l username system_name passwd old_password new_password username` |

Related concepts

The default security settings on page 37

Data ONTAP options for managing password rules

Data ONTAP provides several options that you can use to manage password rules. You can specify password requirements such as how a check for password composition is performed and what the maximum or minimum number of characters a password requires.

The following Data ONTAP options enable you to manage password rules:
<table>
<thead>
<tr>
<th>This option (used with the <code>options</code> command)</th>
<th>Enables you to...</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>security.passwd.firstlogin.enable</code></td>
<td>Specify whether the password must be changed when new users log in for the first time or when users try to log in after their password has been changed by an administrator. The default value is <code>off</code>. <strong>Note:</strong> If you enable this option, you must ensure that all groups have the <code>login-telnet</code> and <code>cli-passwd*</code> capabilities. Users in groups that do not have these capabilities cannot log in to the storage system.</td>
</tr>
<tr>
<td><code>security.passwd.lockout.numtries</code></td>
<td>Specify the number of allowed login attempts before a nonroot user’s account is disabled. The default value is <code>4,294,967,295</code>.</td>
</tr>
<tr>
<td><code>security.passwd.rules.enable</code></td>
<td>Specify whether a check for password composition is performed when new passwords are specified. If this option is set to <code>on</code>, passwords are checked against the rules specified with options that begin with <code>security.passwd.rules</code>, and a password is rejected if it does not pass the check. If this option is set to <code>off</code>, the check is not performed. The default value is <code>on</code>. This option does not apply to the users “root” or “Administrator” (the NT Administrator account) if <code>security.passwd.rules.everyone</code> is set to <code>off</code>.</td>
</tr>
<tr>
<td><code>security.passwd.rules.everyone</code></td>
<td>Specify whether a check for password composition is performed for all users, including the users “root” and “Administrator”. If this option is set to <code>off</code>, the checks do not apply to “root” or “Administrator”. The checks still apply to all other users unless the <code>security.passwd.rules.enable</code> option is also set to <code>off</code>. For storage systems shipped with Data ONTAP 8.0 or later, The default value is <code>on</code>. For storage systems upgraded from a release earlier than Data ONTAP 8.0, the setting for this option stays the same as before the upgrade.</td>
</tr>
<tr>
<td>This option (used with the <code>options</code> command)</td>
<td>Enables you to...</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td><code>security.passwd.rules.history</code></td>
<td>Specify the number of previous passwords that are checked against a new password to prevent repeats. For storage systems shipped with Data ONTAP 8.0 or later, the default value is 6. In this case, the password cannot be the same as any of the last six passwords. For storage systems upgraded from a release earlier than Data ONTAP 8.0, the setting for this option stays the same as before the upgrade. If the <code>security.passwd.rules.enable</code> option is set to <code>off</code>, this option is ignored.</td>
</tr>
<tr>
<td><code>security.passwd.rules.maximum</code></td>
<td>Specify the maximum number of characters a password can contain. The value of this option must not be smaller than that of <code>security.passwd.rules.minimum</code>. The default value is 256. <strong>Note:</strong> This option can be set to a value greater than 16, but a maximum of 16 characters are used to match the password. The system ignores characters that are beyond the first 16 when checking the password against the composition rules. Users with passwords longer than 14 characters cannot log in through the Windows interfaces. Therefore, if you are using Windows, do not set this option higher than 14. If the <code>security.passwd.rules.enable</code> option is set to <code>off</code>, this option is ignored.</td>
</tr>
<tr>
<td><code>security.passwd.rules.minimum</code></td>
<td>Specify the minimum number of characters a password must contain. The value of this option must not be greater than that of <code>security.passwd.rules.maximum</code>. The default value is 8. If the <code>security.passwd.rules.enable</code> option is set to <code>off</code>, this option is ignored.</td>
</tr>
</tbody>
</table>
This option (used with the `options` command)... | Enables you to...
---|---
`security.passwd.rules.minimum.alphabetic` | Specify the minimum number of alphabetic characters a password must contain. This number includes the required numbers of uppercase and lowercase characters, which you can set by using `security.passwd.rules.minimum.uppercase` and `security.passwd.rules.minimum.lowercase` respectively. The default value is 2.
If the `security.passwd.rules.enable` option is set to `off`, this option is ignored.
If this option has a value smaller than the combined value of `security.passwd.rules.minimum.uppercase` and `security.passwd.rules.minimum.lowercase`, the uppercase and lowercase rules determine the required number of alphabetic characters in a password. In the following examples, the system ensures that a password contains at least two uppercase and four lowercase alphabetic characters:
```
options security.passwd.rules.minimum.alphabetic 0
options security.passwd.rules.minimum.uppercase 2
options security.passwd.rules.minimum.lowercase 4
```
```
options security.passwd.rules.minimum.alphabetic 3
options security.passwd.rules.minimum.uppercase 2
options security.passwd.rules.minimum.lowercase 4
```

`security.passwd.rules.minimum.digit` | Specify the minimum number of digit characters a password must contain. These are numbers from 0 to 9. The default value is 1.
If the `security.passwd.rules.enable` option is set to `off`, this option is ignored.

`security.passwd.rules.minimum.lowercase` | Specify the minimum number of lowercase alphabetic characters (“a” to “z”) that a password must contain. The default value is 0.
If the `security.passwd.rules.enable` option is set to `off`, this option is ignored.
This option (used with the options command)...

| security.passwd.rules minimum.symbol | Enables you to...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the minimum number of symbol characters (including white space and punctuation characters) a password must contain. The default value is 0. If the security.passwd.rules.enable option is set to off, this option is ignored.</td>
<td></td>
</tr>
</tbody>
</table>

| security.passwd.rules minimum.uppercase | Specify the minimum number of uppercase alphabetic characters (“A” to “Z”) that a password must contain. The default value is 0. If the security.passwd.rules.enable option is set to off, this option is ignored. |

For more information about these options, see the na_options(1) man page.

Uses of the systemshell and the diagnostic account

A diagnostic account, named “diag”, is provided with your storage system. You can use the diag account to perform troubleshooting tasks in the systemshell. The diag account and the systemshell are intended only for low-level diagnostic purposes and should be used only with guidance from technical support.

The diag account is the only account that can be used to access the systemshell, through the advanced command systemshell. The diag account is disabled by default. You must enable the account and set up its password before using it for the first time. Neither the diag account nor the systemshell is intended for general administrative purposes.

Enabling or disabling the diagnostic account

With guidance from technical support, you can enable the diagnostic account to gain access to the systemshell to perform low-level diagnostic and troubleshooting tasks. You can also disable the diagnostic account at any time to disallow access to the systemshell.

Steps
1. Set the privilege level to advanced by entering the following command at the storage system prompt:

   priv set advanced

2. Do one of the following:
If you want to... Enter the following command at the storage system prompt...

<table>
<thead>
<tr>
<th>Display the diagnostic account information and status</th>
<th>useradmin diaguser show</th>
</tr>
</thead>
<tbody>
<tr>
<td>By default, the diagnostic account is disabled.</td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong> The diagnostic account user name, “diag,” is not displayed as a part of the useradmin user list command. To display the account information, you must use useradmin diaguser show.</td>
<td></td>
</tr>
</tbody>
</table>

| Enable the diagnostic account. | useradmin diaguser unlock |

| Disable the diagnostic account | useradmin diaguser lock |

### Example of the useradmin diaguser command output

The following example shows how you can use the `useradmin diaguser` commands to display and enable the diagnostic account.

```
systemname*> useradmin diaguser show
Name: diag
Info: Account for access to systemshell
Locked: yes

systemname*> useradmin diaguser unlock

systemname*> useradmin diaguser show
Name: diag
Info: Account for access to systemshell
Locked: no
```

### Setting the password for the diagnostic account

After enabling the diagnostic account, you must set the password for the account before you can use it to access the systemshell.

#### Steps

1. Set the privilege level to `advanced` by entering the following command at the storage system prompt:
   
   `priv set advanced`

2. Enter the following command at the storage system prompt to set the password for the diagnostic account:
   
   `useradmin diaguser password`
The following password rules apply to the diagnostic account:

- The password cannot contain the user name.
- The password must be at least eight characters long.
- The password must contain at least one letter and one number.
- The password cannot be the same as the last six passwords.
- The password must not contain the Ctrl-c or Ctrl-d key combination or the two-character string ^D.

**Example of the useradmin diaguser password command output**

The following example shows how you can use the useradmin diaguser password command to set the password for the diagnostic account.

```
systemname*> useradmin diaguser password
Please enter a new password:
Please enter it again:
```

**Accessing the systemshell**

The systemshell is intended only for low-level diagnostic purposes. Only the diagnostic user account, named “diag”, can access the systemshell.

**Before you begin**

The “diag” user account must have been enabled (useradmin diaguser unlock at the advanced privilege level) and the password must have been set (useradmin diaguser password at the advanced privilege level).

**About this task**

The systemshell is not intended for general administrative purposes and should only be used with guidance from technical support. Misuse of the systemshell can result in system failure and data loss or corruption.

**Steps**

1. Change the privilege level to advanced by entering the following command at the storage system prompt:
   
   `priv set advanced`
2. Enter the following command to enter the systemshell:

\texttt{systemshell}

This command takes no arguments and invokes the diagnostic account login.

\textbf{Note:} If the diagnostic account is disabled or the password is not set, attempts to log in to the systemshell will fail.

3. To exit the systemshell and return to the storage system prompt, enter the following command:

\texttt{exit}

\textbf{Example of the systemshell command output}

The following example shows the screen output of the \texttt{systemshell} command when the diagnostic account has been enabled and the password has been set.

```
systemname*> systemshell
login: diag
Password:
WARNING: The systemshell provides access to low-level diagnostic tools that can cause irreparable damage to the system if not used properly. Use this environment only when directed to do so by support personnel.

%whoami
diag
%exit
logout

systemname*>)
```

The following example shows the screen output of the \texttt{systemshell} command when the diagnostic account is disabled.

```
systemname*> useradmin diaguser lock
systemname*> useradmin diaguser show
Name: diag
Info: Account for access to systemshell
Locked: yes

systemname*> systemshell
login: diag
Password:
Login incorrect
login: diag
Password:
```
Login incorrect
(CTRL-C)

systemname*>

Related tasks

*Enabling or disabling the diagnostic account* on page 134
*Setting the password for the diagnostic account* on page 135
General system maintenance

Certain tasks are required for your system to run properly. The tasks include managing aggregate Snapshot copies; managing licenses; managing the system date and time; managing core dump files; configuring message logging, audit logging, and system startup; and backing up and cloning system configuration.

Special system files

For storage systems upgraded from a release earlier than Data ONTAP 8.0, some system files exist in every volume of the system. You must not remove or modify these files unless technical support directs you to do so. These files enable you to restore LUNs in Snapshot copies if you revert to a release earlier than Data ONTAP 8.0.

The following system files are in the root level of every volume, including the root volume:

- .vtoc_internal
- .bplusvtoc_internal

Managing aggregate Snapshot copies

An aggregate Snapshot copy is a point-in-time, read-only image of an aggregate. You use aggregate Snapshot copies when the contents of an entire aggregate need to be recorded.

An aggregate Snapshot copy is similar to a volume Snapshot copy, except that it captures the contents of the entire aggregate, rather than any particular volume. Also, you do not restore data directly from an aggregate Snapshot copy. To restore data, you use a volume Snapshot copy.

How you use aggregate Snapshot copies depends on whether you use the SyncMirror or MetroCluster functionality.

- If you use SyncMirror or MetroCluster functionality, you must enable automatic aggregate Snapshot copy creation and keep your aggregate Snapshot reserve at 5 percent or higher.
  If you use SyncMirror or MetroCluster functionality and you need to break the mirror, an aggregate Snapshot copy is created automatically before breaking the mirror to decrease the time it takes to resynchronize the mirror later. You should not schedule or manually create aggregate Snapshot copies for a mirrored aggregate. These Snapshot copies compete with the SyncMirror baseline Snapshot copies for the aggregate's Snapshot reserve; insufficient Snapshot reserve could prevent a level-1 resynchronization operation from being completed successfully.

- If you do not use either SyncMirror or MetroCluster functionality, you do not need to enable automatic aggregate Snapshot copy creation or reserve space for aggregate Snapshot copies.
If the aggregate file system becomes inconsistent, aggregate Snapshot copies can be used by technical support to restore the file system to a consistent state. If that is important to you, you can ensure that automatic aggregate Snapshot copy creation is enabled. However, disabling automatic aggregate Snapshot copy creation and keeping your aggregate Snapshot reserve at 0 percent increases your storage utilization, because no disk space is reserved for aggregate Snapshot copies. Disabling automatic aggregate Snapshot copy creation and setting the aggregate Snapshot reserve to 0 percent does not affect normal operation, except for making more free space available for data.

For more information about Snapshot copies, see the *Data ONTAP Data Protection Online Backup and Recovery Guide for 7-Mode*.

**Considerations for increasing the aggregate Snapshot reserve**

You should consider increasing the aggregate Snapshot reserve under some circumstances.

Just as there is space reserved for volume Snapshot copies in their volume (the *volume Snapshot reserve*), there is space reserved for aggregate Snapshot copies in the aggregate. This space is called the *aggregate Snapshot reserve*.

As more and more data blocks in the aggregate are changed, the aggregate Snapshot reserve gradually becomes full. Data ONTAP automatically deletes the oldest aggregate Snapshot copies to recover space in the aggregate Snapshot reserve.

Newly created nonmirrored aggregates, including the root aggregate, have the aggregate Snapshot reserve set to 0 percent by default. A newly created mirrored aggregate's Snapshot reserve is set to 5 percent by default.

If you convert an existing, nonmirrored aggregate to a mirrored aggregate, the system attempts to increase the aggregate Snapshot reserve to 5 percent. If there is not enough space in the aggregate for the reserve increase, the operation to convert a nonmirrored aggregate to a mirrored aggregate fails.

You should consider increasing the aggregate Snapshot reserve in the following situations:

- You find that aggregate Snapshot copies are being created and deleted often enough to affect system performance.
- You need to complete a mirror resync operation when data is being written to an aggregate frequently.
  
  In this case, the standard aggregate Snapshot reserve size of 5 percent might not be large enough to hold all the resynchronized Snapshot copies until the resync operation is complete.

- You do not want aggregate Snapshot copies deleted immediately.
  
  To preserve aggregate Snapshot copies, you would increase the reserve sufficiently to keep the aggregate Snapshot copies available for overwrites until they are no longer needed and delete all other Snapshot copies.

If an aggregate has an aggregate Snapshot reserve of 0 percent, the operation to create aggregate Snapshot copies still succeeds if the aggregate has enough free space available.
Managing licenses

A license is a record of one or more software entitlements. Installing license keys, also known as license codes, enables you to use certain features or services on your storage system.

Data ONTAP feature licenses are issued as packages, each of which contains multiple features or a single feature. A package requires a license key, and installing the key enables you to access all features in the package. For information about the license packages, see the knowledgebase article Data ONTAP 8.2 Licensing Overview and References on the NetApp Support Site.

Starting with Data ONTAP 8.2, all license keys are 28 characters in length. Licenses installed prior to Data ONTAP 8.2 continue to work in Data ONTAP 8.2 and later releases. However, if you need to reinstall a license (for example, you deleted a previously installed license and want to reinstall it in Data ONTAP 8.2 or later, or you perform a controller replacement procedure for a system running Data ONTAP 8.2 or later), Data ONTAP requires that you enter the license key in the 28-character format.

You can find license keys for your initial or add-on software orders at the NetApp Support Site under My Support > Software Licenses. For instance, you can search with the serial number of a system to find all license keys associated with the system. If you cannot locate your license keys from the Software Licenses page, you should contact your sales or support representative.

Data ONTAP enables you to manage licenses in the following ways:

- Add one or more license keys (license add)
- Display information about installed licenses (license show)
- Delete a license from the storage system (license delete)

In an HA configuration, you must keep the licensing entitlement between the two nodes consistent. If a takeover occurs, the takeover node can provide only the functionality for the licenses installed on it. If the takeover node does not have a license that was being used by the partner node to serve data, your HA pair loses functionality after a takeover.

Some features require that you enable certain options instead of or in addition to installing a license key. For information, see the knowledgebase article Data ONTAP 8.2 Licensing Overview and References on the NetApp Support Site.

Related information

NetApp Support Site: mysupport.netapp.com
License types

Understanding license types helps you manage the licenses in a storage system.

A package can have one or more of the following types of license installed in the storage system. The license show command displays the installed license type or types for a package.

- **Standard license (license)**
  A standard license is issued for a storage system with a specific system serial number (also known as a *controller serial number*). It is valid only for the system that has the matching serial number.

  **Note:** The `sysconfig` command displays the serial number of the system.

  Data ONTAP 8.2 and later releases treat a license installed prior to Data ONTAP 8.2 as a standard license. Therefore, in Data ONTAP 8.2 and later releases, the system automatically has the standard license for the package that the previously licensed functionality is part of. The `license show` command with the `-legacy yes` parameter indicates such licenses.

- **Site license (site)**
  A site license is not tied to a specific system serial number and can be installed on any storage system that is covered by the site license agreement. After you install a site license on a storage system, the `license show` command displays the site license under the system serial number of the storage system.

- **Evaluation license (demo)**
  An evaluation license is a temporary license that expires after a certain period of time (indicated by the `license show` command). It enables you to try certain software functionality without purchasing an entitlement. It is not tied to a specific serial number of a system.

Commands for managing licenses

You use the `license` commands to manage licenses for the storage system.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add one or more licenses</td>
<td><code>license add</code></td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
Display information about installed licenses, for example:  
- License package name and description  
- License type (*site*, *license*, or *demo*)  
- Expiration date, if applicable  
- The system that a package is licensed for  
- Whether the license was installed prior to Data ONTAP 8.2 (*legacy*)  
- Customer ID  
| *license show*  
*Note:* Some information is displayed only when you use the *–instance* parameter.

Delete the license of a package from the storage system  
| *license delete*

For more information, see the man pages for the *license* commands.

**Setting the system date and time**

Keeping the system date and time correct is important to ensure that the storage system can service requests correctly.

**About this task**

When the SnapMirror functionality is running, if you use the *date* or *rdate* command to set the system to an earlier date, Snapshot copies can appear out of sequence. When this occurs, the SnapMirror functionality assumes that the Snapshot copy with the earlier date was created before the one with the later date. As a result, the SnapMirror functionality asks for a new, complete transfer before proceeding with any incremental transfers. You can avoid this problem in the following ways:

- Turn the SnapMirror functionality off until the storage system completes the changes.
- Change the date prior to the next scheduled SnapMirror transfer.

**Steps**

1. Access the storage system command line through the console or through a Telnet session.
2. Enter the following command, substituting the current date and time for the number string:  
  ```
  date [-u] [[[[CC]yy]mmdhhmm[.ss]]
  ```  
  - `-u` sets the date and time to Greenwich Mean Time instead of the local time.
• CC is the first two digits of the current year.
• yy is the second two digits of the current year.
• mm is the current month. If the month is omitted, the default is the current month.
• dd is the current day. If the day is omitted, the default is the current day.
• hh is the current hour, using a 24-hour clock.
• mm is the current minute.
• ss is the current second. If the seconds are omitted, the default is 0.

Example
The following command sets the date and time to 22 May 2002 at 9:25 a.m.

date 200205220925

Note: If the first two digits of the year are omitted, they default to 20; if all four digits are omitted, they default to the current year. Time changes for daylight saving and standard time, and for leap seconds and years, are handled automatically.

Synchronizing the system time

The timed daemon enables you to keep the system time for your storage system automatically synchronized with a time server. Using this feature is advised, because problems can occur when the storage system clock is inaccurate.

About this task
To keep your storage system time synchronized automatically, you need the name of at least one time server. For best results, supply the name of more than one time server in case one becomes unavailable.

You use the Network Time Protocol (NTP) protocol for time synchronization. You can get a list of public NTP time servers from the NTP Public Services web at support.ntp.org.

The timed daemon operates independently on each node in an HA pair.

Steps
1. If the current time for the storage system is not fairly close to the actual time, use the date command to set the system time to the correct time.

2. Set the appropriate timed options by using the options command at the storage system prompt.
   You must ensure that the timed.proto option is set to ntp, and set the timed.servers option to at least one valid time server.
You must also ensure that the `timed.enable` option is set to **on**.

For more information about the `timed` options, see the `na_options(1)` man page.

### Related tasks

- *Setting the system date and time* on page 143

### Data ONTAP options for managing system time

You can use the `timed` options to enable time synchronization and specify the servers to use for time synchronization.

The following table describes the `timed` options:

<table>
<thead>
<tr>
<th>This option...</th>
<th>Enables you to...</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timed.enable</code></td>
<td>Enable time synchronization.</td>
</tr>
<tr>
<td><code>timed.proto</code></td>
<td>Specify the protocol used to synchronize the system time. This option supports only <code>ntp</code>.</td>
</tr>
<tr>
<td><code>timed.servers</code></td>
<td>Specify up to five time servers used by the <code>timed</code> functionality.</td>
</tr>
</tbody>
</table>

For more information about the `timed` options, see the `na_options(1)` man page.

#### Example of system time synchronization

The following example configures the system to use the NTP protocol.

```bash
toast> options timed.proto ntp
toast> options timed.servers pool.ntp.org,10.15.46.92
toast> options timed.enable on
```

### Displaying and setting the system time zone

Data ONTAP enables you to display the system time zone. It also enables you to set the system time zone and save the setting for use on subsequent boots.

#### Steps

1. Access the storage system command line through the console or through a Telnet session.
2. Enter the following command:
   ```bash
timezone [name]
   ```
The `name` argument specifies the time zone to use. Each time zone is described by a file in the storage system’s `/etc/zoneinfo` directory. The `name` argument is the file name under `/etc/zoneinfo` that describes the time zone to use. If no argument is specified, the current time zone name is displayed.

For more information, see the na_timezone(1) man page.

**Example**

The following commands set the time zone to the time zone file `/etc/zoneinfo/America/Los_Angeles` and display the set time zone.

```
toaster> timezone America/Los_Angeles
toaster> timezone
Current time zone is America/Los_Angeles
```

### Managing core dump files

When a hardware or software failure causes the storage system to panic, a core dump occurs and the system creates a core dump file that technical support can use to troubleshoot the problem. The storage system stores the core dump file in the `/etc/crash` directory on the root volume.

The `savecore` command, which is included in the default `/etc/rc` file on the root volume, performs the following tasks:

- Produces a `core.n.nz` file.
  
  The `n` in the file name is a number. The string `nz` indicates that the file is compressed.

- Displays a message on the system console.

- Logs a message in `/etc/messages` on the root volume.

If the `coredump.savecore.warn` option is set to `on`, Data ONTAP prompts you for a confirmation when you delete unsaved core files.

### Considerations for managing core dump files

A core dump produces a core dump file that contains the contents of system memory, including the system memory for the Performance Acceleration Module (PAM) or Flash Cache family of modules and the system memory for NVRAM. Several considerations exist for managing core dump files.

When a core dump file is created, it is stored in uncompressed format if sufficient space is available. If sufficient space is not available, it is stored in compressed format on a spare disk. If no spare disks are available, the system attempts to store the compressed core dump file across reserved sections of disks. You use the `coredump.dump.attempts` option to control how many attempts the system makes to create a core dump file. The default value is 2.
Core dump files are not compatible between Data ONTAP releases because where the core starts on disks depends on the release. Because of this incompatibility, Data ONTAP might fail to find a core dump file dumped by another release.

You must not further compress a core dump file if you send it to technical support for analysis. The manual compression makes the file unrecognizable and can delay technical support's response time to your system issues. You can, however, use the `coredump segment config` and the `coredump segment` commands to segment the core dump file for easier handling.

**Methods of segmenting core dump files**

A core dump file can be very large, making it time consuming to upload to technical support when you need to. Segmenting the core dump file enables you to upload only the needed portion instead of the entire file.

You can segment a saved core dump file into a maximum of three core segments:

<table>
<thead>
<tr>
<th>This core segment…</th>
<th>Contains system information from the memory of…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary core segment</td>
<td>Data ONTAP and the <code>systemshell</code> module</td>
</tr>
<tr>
<td>Caching module core segment</td>
<td>Flash Cache family of modules</td>
</tr>
<tr>
<td>NVRAM core segment</td>
<td>NVRAM</td>
</tr>
</tbody>
</table>

Segmenting the core dump file enables you to upload a portion of the file as you need to. For instance, instead of uploading the entire core dump file to technical support for a core dump analysis, you can upload only the primary core segment of the file, and if necessary, upload the caching module core segment or NVRAM core segment later.

By using the `coredump segment config` commands, you can configure the automatic segmenting of the core dump file in the following ways:

- Specify whether to automatically segment a core dump file after it is saved
  The default setting for automatic segmenting is system dependent.

- Specify whether to automatically delete the original core dump file after it is segmented
  By default, automatic deletion of the original core dump file is disabled.

- Display the current configuration of the automatic segmenting of core dump files

By using the `coredump segment` commands, you can manually manage the segmenting of a core dump file in the following ways:

- Manually schedule a core segmenting job to segment a specified core dump file into core segments and specify whether the original core dump file is to be deleted after the core segmenting is complete

- Display information about core segments
• Delete a specified core segment or all segments
• Display the status of a core segmenting job
• Cancel a core segmenting job as specified by its job ID

 Commands for managing core segmenting

You use the `coredump segment config` commands to manage the automatic segmenting of core dump files. You use the `coredump segment` commands to manage core segments.

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Use this command…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure the automatic segmenting of core dump files, including:</td>
<td><code>coredump segment config modify</code></td>
</tr>
<tr>
<td>• Whether to automatically segment a core dump file after it is saved</td>
<td></td>
</tr>
<tr>
<td>• Whether to automatically delete the original core dump file after it is segmented</td>
<td></td>
</tr>
<tr>
<td>Show the current configuration of automatic core segmenting</td>
<td><code>coredump segment config show</code></td>
</tr>
<tr>
<td>Manually start segmenting a specified core dump file into core segments and specify whether the original core dump file is to be deleted after the core segmenting is complete</td>
<td><code>coredump segment start</code></td>
</tr>
<tr>
<td>Display information about the core segments on the system, for example:</td>
<td><code>coredump segment show</code></td>
</tr>
<tr>
<td>• The core segment name</td>
<td></td>
</tr>
<tr>
<td>• Total number of core segments for the full core</td>
<td></td>
</tr>
<tr>
<td>• The time when the panic occurred that generated the core dump file</td>
<td></td>
</tr>
<tr>
<td>Delete a specified core segment from the system</td>
<td><code>coredump segment delete</code></td>
</tr>
<tr>
<td>Delete all core segments from the system</td>
<td><code>coredump segment delete-all</code></td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
Displays the status of a core segmenting job, including the following: | coredump segment status
  • Job ID
  • Name of the core dump file that is being segmented
  • Job status
  • Percent completed

Cancel a core segmenting job as specified by its job ID | coredump segment stop

For more information, see the man pages.

**Automatic technical support notification upon system reboots**

Your storage system sends notifications automatically to technical support upon each system reboot, if the AutoSupport feature is enabled and configured correctly. Technical support uses the AutoSupport message and the core file to troubleshoot the problem.

If you have disabled AutoSupport, you should contact technical support when your system creates a core file.

**Understanding message logging**

The storage system maintains messages in the `/etc/messages` file on its root volume. The level of information that the storage system records in the `/etc/messages` file is configurable in the `/etc/syslog.conf` file.

You can access the `/etc/messages` file using your NFS or CIFS client, or using HTTP(S).

**Note:** You should check the `/etc/messages` file once a day for important messages. You can automate the checking of this file by creating a script on the administration host that periodically searches `/etc/messages` and then alerts you about important events.

Every Sunday at midnight, the `/etc/messages` file is copied to `/etc/messages.0`, the `/etc/messages.0` file is copied to `/etc/messages.1`, and so on. The system saves messages for up to six weeks; therefore, you can have up to seven message files (`/etc/messages.0` through `/etc/messages.5` and the current `/etc/messages` file).

Message logging is done by a `syslogd` daemon. The `/etc/syslog.conf` configuration file on the storage system’s root volume determines how system messages are logged. Depending on their severity and origin, messages can be sent to the following entities:
The console

A file

A remote system

By default, all system messages (except those with debug-level severity) are sent to the console and logged in the `/etc/messages` file. The messages include the storage system name.

**Related concepts**

- *The /etc/messages file* on page 82
- *Ways of accessing the default directories on the storage system* on page 83

**Related tasks**

- *Accessing log files using HTTP or HTTPS* on page 87

**The /etc/syslog.conf file**

The `/etc/syslog.conf` file configures the level of information that the storage system records. It specifies the subsystem from which the message originated, the severity of the message, and where the message is sent.

The `/etc/syslog.conf` file consists of lines with two tab-separated (not space-separated) fields of the following form: `facility.level action`

The **facility** parameter specifies the subsystem from which the message originated. The following table describes the facility parameter keywords.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Messages from the authentication system, such as <code>login</code></td>
</tr>
<tr>
<td>cron</td>
<td>Messages from the internal <code>cron</code> facility</td>
</tr>
<tr>
<td>daemon</td>
<td>Messages from storage system daemons, such as <code>rshd</code></td>
</tr>
<tr>
<td>kern</td>
<td>Messages from the storage system kernel</td>
</tr>
<tr>
<td>*</td>
<td>Messages from all facilities</td>
</tr>
</tbody>
</table>

The **level** parameter describes the severity of the message. The following table describes the **level** parameter keywords arranged in order from most to least severe.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emerg</td>
<td>Panic condition that causes a disruption of normal service</td>
</tr>
<tr>
<td>Level</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>alert</td>
<td>Condition that you should correct immediately, such as a failed disk</td>
</tr>
<tr>
<td>crit</td>
<td>Critical conditions, such as disk errors</td>
</tr>
<tr>
<td>err</td>
<td>Errors, such as those caused by a bad configuration file</td>
</tr>
<tr>
<td>warning</td>
<td>Conditions that might become errors if not corrected</td>
</tr>
<tr>
<td>notice</td>
<td>Conditions that are not errors, but might require special handling</td>
</tr>
<tr>
<td>info</td>
<td>Information, such as the hourly uptime message</td>
</tr>
<tr>
<td>debug</td>
<td>Used for diagnostic purposes</td>
</tr>
<tr>
<td>*</td>
<td>All levels of errors</td>
</tr>
</tbody>
</table>

The **action** parameter specifies where to send messages. Messages for the specified level or higher are sent to the message destination. The following table describes the possible actions and gives examples of each action.

<table>
<thead>
<tr>
<th>Action</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send messages to a file specified by a path.</td>
<td>/etc/messages</td>
</tr>
<tr>
<td>Send messages to a host name preceded by an @ sign.</td>
<td>@adminhost</td>
</tr>
<tr>
<td>Send messages to the console.</td>
<td>/dev/console or *</td>
</tr>
</tbody>
</table>

For more information about the **syslog.conf** file, see the na_syslog.conf(5) man page.

**Sample /etc/syslog.conf file**

The sample shows a customized /etc/syslog.conf file.

```bash
# Log anything of level info or higher to /etc/messages.
*.info                        /etc/messages

# Log all kernel messages of levels emerg, alert, crit, # and err to /etc/messages.
kern.err                      /etc/messages

# Log all kernel messages, and anything of level err or # higher to the console.
*.err;kern.*                  /dev/console
```
Configuring message logging

The /etc/syslog.conf file can be edited to modify your system's message logging.

**Steps**

1. Open the /etc/syslog.conf file with an editor from a client.
2. Add one or more lines using the following format:
   
   ```
   facility.level <tab> action
   ```
3. Save and close the /etc/syslog.conf file.

   The changes you made to the syslog.conf file are read automatically and are reflected in the message logging.

**Related concepts**

*The /etc/syslog.conf file* on page 150

Understanding audit logging

An audit log is a record of commands executed at the console, through a Telnet shell or an SSH shell, or by using the rsh command. All the commands executed in a source file script are also recorded in the audit log. Administrative HTTP operations are logged. All login attempts to access the storage system, with success or failure, are also audit-logged.

In addition, changes made to configuration and registry files are audited. Read-only APIs by default are not audited but you can enable auditing with the auditlog.readonly_api.enable option.

By default, Data ONTAP is configured to save an audit log. The audit log data is stored in the /etc/log directory in a file called auditlog.

For configuration changes, the audit log shows the following information:

- What configuration files were accessed
- When the configuration files were accessed
- What has been changed in the configuration files
For commands executed through the console, a Telnet shell, an SSH shell, or by using the rsh command, the audit log shows the following information:

- What commands were executed
- Who executed the commands
- When the commands were executed

The maximum size of the audit-log file is specified by the `auditlog.max_file_size` option. The maximum size of an audit entry in the audit-log file is 511 characters. An audit entry is truncated to 511 characters if it exceeds the size limit.

Every Saturday at midnight, the `/etc/log/auditlog` file is copied to `/etc/log/auditlog.0`, `/etc/log/auditlog.0` is copied to `/etc/log/auditlog.1`, and so on. This also occurs if the audit-log file reaches the maximum size specified by `auditlog.max_file_size`.

The system saves audit-log files for six weeks, unless any audit-log file reaches the maximum size, in which case the oldest audit-log file is discarded.

You can access the audit-log files using your NFS or CIFS client, or using HTTP.

**Note:** You can also configure auditing specific to your file access protocol. For more information, see the *Data ONTAP File Access and Protocols Management Guide for 7-Mode*.

For information about forwarding audit logs to a remote syslog log host, see the `na_auditlog(5)` man page.

**Related concepts**

*Ways of accessing the default directories on the storage system* on page 83

**Configuring audit logging**

You can change the maximum size of the audit log file.

**Steps**

1. If audit logging is turned off, enter the following command to turn audit logging on:
   
   ```
   options auditlog.enable on
   ```

2. To change the maximum size of the audit log file, enter the following command:

   ```
   options auditlog.max_file_size value
   ```

   `value` is the maximum size in bytes. The default value is `10,000,000` (about 10 MB).
Enabling or disabling read-only API auditing

Data ONTAP enables you to control auditing of APIs based on their roles. If an API is used only for retrieving information and not for modifying the state of the system, the read-only API is not audited by default.

About this task

You use the `auditlog.readonly_api.enable` option to enable or disable read-only API auditing. The default value option is `off`. It is recommended that you leave this option disabled, because auditing read-only APIs might inundate the audit log.

Step

1. Enter the following command to enable or disable read-only API auditing:

   ```
   options auditlog.readonly_api.enable {on|off}
   ```

Startup configuration for the storage system

You can customize your system startup by editing the storage system's boot configuration file, the `/etc/rc` file in the root directory.

Commands in the `/etc/rc` file

The `/etc/rc` file stores startup commands that your storage system executes at boot time to configure the system.

After you run the `setup` command or the Setup Wizard, the system automatically stores startup commands in the `/etc/rc` file.

The commands in the `/etc/rc` file configure the storage system to do the following:

- Communicate on your network
- Use the NIS and DNS services
- Save the core dump that might exist if the storage system panicked before it was booted

The `/etc/rc` file must not contain the following types of commands:

- Commands that are executed by subsystems that are not yet available when the file is executed
- Commands that are interactive and would wait for input during the boot process

For example, you must not include the `iscsi` commands or the `wrfile` command in the `/etc/rc` file. Doing so prevents your storage system from booting successfully.
Running the `setup` command rewrites the `/etc/rc` file. It is recommended that you back up the `/etc/rc` file if you must rerun the `setup` command after the system’s initial setup.

**Sample `/etc/rc` file**

The sample `/etc/rc` file shows default startup commands.

The following sample shows startup commands that are used in the `/etc/rc` file on the root volume:

```plaintext
#Auto-generated /etc/rc Tue May 30 14:51:36 PST 2000
hostname toaster
ifconfig e0 'hostname'-0
ifconfig e1 'hostname'-1
ifconfig f0 'hostname'-f0
ifconfig a5 'hostname'-a5
route add default MyRouterBox
routed on
savecore
```

The following table explains the components of the sample `/etc/rc` file:

<table>
<thead>
<tr>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname toaster</td>
<td>Sets the storage system host name to “toaster”.</td>
</tr>
<tr>
<td>ifconfig e0 'hostname'-0</td>
<td>Sets the IP addresses for the storage system network interfaces with a default network mask. The arguments in single backquotes expand to “toaster” if you specify “toaster” as the host name during setup. The actual IP addresses are obtained from the <code>/etc/hosts</code> file on the storage system root volume. If you prefer to have the actual IP addresses in the <code>/etc/rc</code> file, you can enter IP addresses directly in <code>/etc/rc</code> on the root volume.</td>
</tr>
<tr>
<td>ifconfig e1 'hostname'-1</td>
<td></td>
</tr>
<tr>
<td>ifconfig f0 'hostname'-f0</td>
<td></td>
</tr>
<tr>
<td>ifconfig a5 'hostname'-a5</td>
<td></td>
</tr>
<tr>
<td>route add default MyRouterBox</td>
<td>Specifies the default router. You can set static routes for the storage system by adding route commands to the <code>/etc/rc</code> file. The network address for MyRouterBox must be in <code>/etc/hosts</code> on the root volume.</td>
</tr>
<tr>
<td>routed on</td>
<td>Starts the routing daemon.</td>
</tr>
<tr>
<td>savecore</td>
<td>Saves the core file from a system panic, if any, in the <code>/etc/crash</code> directory on the root volume. Core files are created only during the first boot after a system panic.</td>
</tr>
</tbody>
</table>
For more information about the `ifconfig` command and routing, see the *Data ONTAP Network Management Guide for 7-Mode*.

**Related concepts**

*Managing core dump files* on page 146

## Editing the `/etc/rc` file

You edit the storage system's boot configuration file, the `/etc/rc` file, to modify the commands that the system runs at boot time.

### About this task

The storage system’s boot configuration file is named `rc` and is in the `/etc` directory of its default volume (the default is `/vol/vol0/etc/rc`).

### Steps

1. Make a backup copy of the `/etc/rc` file.
2. Edit the `/etc/rc` file.
   
   **Note:** Do not add CIFS commands to `/etc/rc`. Doing so can cause problems when the storage system boots if CIFS is not fully initialized or the commands cause deadlocks between the `/etc/rc` file and CIFS.
3. Ensure that entries in the `/etc/rc` file are listed in the following order:

   ```
   hostname system_name
   ifgrp commands
   vlan commands
   ifconfig commands
   vfiler commands
   route commands
   [any other commands]
   ```

4. Save the edited file.
5. Reboot the storage system to test the new configuration.

   If the new configuration does not work as you want, repeat Step 2 through Step 4.
Recovering from /etc/rc errors

The storage system can become inaccessible to the administration host due to errors. You can recover from the /etc/rc errors to make the system accessible again.

About this task

The following /etc/rc errors might cause the system to become inaccessible:

- An incorrect network address was specified using the ifconfig command. The storage system is inaccessible because it is not on the network.
- Storage system directories were improperly exported to the NFS client that is the administration host. The storage system is inaccessible because you cannot mount the system root directory on the NFS client.

Steps

1. Enter one of the following commands on the console to configure the interface with the correct address.

<table>
<thead>
<tr>
<th>If you are in...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>An NFS environment</td>
<td>Enter the <code>exportfs</code> command to export the storage system root directory to the administration host.</td>
</tr>
<tr>
<td>A CIFS environment</td>
<td>Add a share to the storage system root directory.</td>
</tr>
</tbody>
</table>

2. Edit the storage system /etc/rc file from the administration host.

3. Reboot the storage system.

4. If the changes do not correct the problem, repeat Step 1 through Step 3.

Storage system configuration backup and cloning

The configuration backup operation of the storage system stores the system's configuration information in a file with a name you specify. The configuration backup file enables you to restore the storage system configuration in case of disasters or emergencies. Configuration cloning enables you to clone the configuration of an existing storage system to a new system.

When you back up a storage system configuration, the following files are backed up for the storage system and the default vFiler unit (vfiler0):

- System-specific configuration files, for example, /etc/rc
- System-specific registry options
• Volume configuration
• vfiler0-specific configuration, for example, /etc/quotas, /etc/hosts, /etc/usermap.cfg, /etc/nsswitch.conf, and /etc/hosts.equiv
• vfiler0-specific registry options, for example, NFS, CIFS, ndmpd, and NIS

If you have configured vFiler units, when you back up the configuration of a vFiler unit, the following files in the vFiler units are backed up:
• vFiler-specific configuration files, for example, /etc/quotas, /etc/hosts, /etc/usermap.cfg, /etc/nsswitch.conf, and /etc/hosts.equiv
• vFiler-specific registry options, for example, NFS, CIFS, ndmpd, and NIS

vFiler configuration is backed up or restored only for the vFiler unit on which the config dump or config restore command is run.

Backing up a storage system configuration

When you back up a storage system configuration, the system configuration is saved in a single file with a file name that you specify. By default, backup configuration files are created in the /etc/configs directory.

Step

1. Enter the following command:

   `config dump [-f] [-v] config_file`

   - `f` forces the new file to override an existing backup.
   - `-v` causes Data ONTAP to also back up a volume-specific configuration.

   `config_file` is the name or the path and name of the backup file you are creating.

   **Examples of config dump command**

   The following is an example of the config dump command using the default directory to back up a storage system-specific configuration to the file /etc/configs/08_02_2004.

   `config dump 08_02_2004`

   The following is an example of the config dump command with a directory that you specify.

   `config dump /home/users/08_02_2004`
Cloning a storage system configuration

You can clone the configuration of one storage system to another system.

Step

1. Enter the following command:
   \[ \text{config clone filer username:password} \]

   *filer* is the name of the remote storage system from which you want to clone the configuration.
   *username* is the login name of an administrative user on the remote storage system.
   *password* is the remote user password.

   **Example of config clone command**

   The following is an example of the `config clone` command cloning the `tpubs-dot` configuration to the storage system `toaster`.
   \[ \text{config clone tpubs-dot root:hello} \]

Restoring a storage system configuration

You can restore storage system configuration information from a backup configuration file.

About this task

Illegal entries in the configuration file might cause attempts to fail and error messages to occur when using `config restore -v` to restore volume-specific configurations. If this happens, edit the configuration file in the default `/etc/configs` directory to remove the illegal entries.

For instance, an error message indicating an invalid operation on FlexVol volume `vol_name` could result from a configuration file containing the text `options.vols.vol_name.raidsize`, where `vol_name` is not a traditional volume and thus an illegal entry that should be removed from the configuration file.

Steps

1. Enter the following command:
   \[ \text{config restore [-v] config_file} \]

   `-v` enables you to restore volume-specific configuration files, as well as storage system-specific configuration files.

2. Reboot the system to run commands in the `/etc/rc` file.
3. If you use quotas for any volumes owned by a non-default vFiler unit (a vFiler unit other than vfiler0), ensure that the quotas are in the desired state (on or off) for those volumes.

The quotas state for volumes owned by a non-default vFiler is not restored when you restore a system configuration.

Example of config restore command

The following is an example of the config restore command restoring the backup configuration file from the default /etc/configs directory.

```
config restore 08_02_2004
```

Comparing storage system configurations and backup configuration files

You can compare a storage system's current configuration with a backup configuration file to see the difference. You can also compare differences between two backup configuration files.

Step

1. Enter the following command:

```
cfg diff [-o output_file] config_file1 [config_file2]
```

*output_file* is the name of the file to contain the differences. If you omit this parameter, the output of the command is printed to the console.

*config_file1* is the name of the first configuration file you want to compare.

*config_file2* is the name of the second configuration file you want to compare.

Examples of config diff command

The following example compares the storage system's current configuration with the configuration information in the backup file.

```
cfg diff 11_15_2004
```

The following example compares the configuration information in two backup files.

```
cfg diff -o diff.txt 11_05_2004 11_15_2004
```
About writing and reading files on the storage system

Data ONTAP provides commands that enable you to write to or read from a specified file on the storage system. However, when using such commands, you must exercise caution about potential security and data corruption issues.

Writing a WAFL file

Data ONTAP enables you to read data from standard input and write it into the specified file.

About this task

A user who has the capability to execute the `wrfile` command can write over or append data to any file on the storage system. Exercise caution about security and data corruption issues when using the `wrfile` command.

Step

1. Enter the following command:

   ```
   wrfile [-a] filename [...]
   ```

   `filename` is the name of the file you want to write or append to. It must be a fully qualified path name. If `filename` does not already exist, the `wrfile` command will create it.

   The `-a` option appends the rest of the command line after `filename` to the file. If the `-a` option is not used, the `wrfile` command closes the file when it reads an EOF from the input stream or, if run on the console, when interrupted by the interrupt character.

   **Note:** There are restrictions for using the `-a` option with special characters, # (hash), ` (backtick), and " (double quotation marks). In general, if you use the `-a` option, you should enclose the line to be written within quotation marks.

   The interrupt character is Ctrl-c. If `wrfile` is run from the console, interrupting `wrfile` causes all characters typed on the same line as the interrupt character to be lost. The storage system will also issue an "interrupted system call" error message.

   **Example of `wrfile` command**

   The following example uses `wrfile` to create a file `/etc/test` that contains two lines, "line#1" and "line#2".

   ```
   toaster> wrfile /etc/test
   line#1
   ```

   Press Enter, followed by the interrupt character (Ctrl-c).
read: error reading standard input: Interrupted system call
toaster> wrfile -a /etc/test "line#2"
toaster>

See the na_wrfile(1) man page for additional examples.

Related tasks

Reading a WAFL file on page 162

Reading a WAFL file

Data ONTAP enables you to read a file from the storage system and write its contents to standard output.

About this task

A user who has the capability to execute the rdfile command can read any file on the storage system. You should exercise caution about security issues with the rdfile command.

Step

1. Enter the following command:

   rdfile filename

   filename is the name of the file whose content you want to read. It must be a fully qualified path name.

   Note: Files that contain non-ASCII characters might have indeterminate output.

Example of reading a WAFL file

The following example uses the rdfile command to read the content of the /etc/test file, which contains two lines, “line#1” and “line#2”.

   toaster> rdfile /etc/test
   line#1
   line#2
   toaster>

Related tasks

Writing a WAFL file on page 161
Monitoring the storage system

You can use functionality such as event messages, health monitors, and AutoSupport to monitor the storage system.

Managing event messages

The Event Management System (EMS) collects and displays information about events that occur on your storage system. You can display the status of events. You can also display the event log and its contents.

Event messages appear on your system console, and are written to the system's event log. An event message consists of the following elements:

- Message name
- Severity level
  Possible values include the following, listed in decreasing order of urgency:
    - EMERGENCY (the system is unusable)
    - ALERT (action must be taken immediately to prevent system failure)
    - CRITICAL
    - ERROR
    - WARNING
    - NOTICE (a normal but significant condition has occurred)
    - INFORMATIONAL
    - DEBUG
- Description

You can display the following information about events:

- Status of the events that have occurred on the system
  You can also view system events through the system's RLM or SP
- The event log and its contents over a specified period of time
Displaying event information

You can display information about the status of the events that have occurred on the system.

**Step**

1. To display information about events that have occurred, use the `ems event status` command.

**Example**

The following example displays the output of the `ems event status` command.

```plaintext
Current time: 11May2011 20:37:31
Engine status: total 4220, drops 0, suppr (dup 0, timer 0, auto 0)
Event:Priority Last Time
  Indications Drops DupSuppr TimerSuppr AutoSuppr
asup.general.reminder:INFO 5/11/2011 07:21:00
  2 0 0 0
callhome.management.log:INFO 5/11/2011 00:20:58
  1 0 0 0
callhome.nht.data:INFO 5/10/2011 08:00:00
  1 0 0 0
callhome.performance.data:INFO 5/11/2011 00:00:00
  1 0 0 0
...```

Displaying event log information

You can view information about the event log and display its contents over a specified period of time.

**Steps**

1. To view information about the event log, use the `ems log status` command.

**Example**

The following example displays the output of the `ems log status` command.

```plaintext
EMS log data:
[LOG_default: enabled on, save 5, rotate weekly, size 928893
file /etc/log/ems, formal xml
level debug
indications 4230, drops 24
last update: Wed, 11 May 2011 21:36:06 GMT
```

2. To display the contents of the event log, use the `ems log dump` command.

You specify the period of time by specifying the number of hours or days, as shown in the following examples.
Managing AutoSupport

AutoSupport is a mechanism that proactively monitors the health of your system and automatically sends messages to NetApp technical support, your internal support organization, and a support partner. Although AutoSupport messages to technical support are enabled by default, you must set the correct options and have a valid mail host to have messages sent to your internal support organization.

AutoSupport is enabled by default when you configure your storage system for the first time. AutoSupport begins sending messages to technical support 24 hours after AutoSupport is enabled. You can shorten the 24-hour period by upgrading or reverting the system, modifying the AutoSupport configuration, or changing the system time to be something other than a 24-hour period.

**Note:** You can disable AutoSupport at any time, but you should leave it enabled. Enabling AutoSupport can significantly help speed problem determination and resolution should a problem occur on your storage system. By default, the system collects AutoSupport information and stores it locally even if you disable AutoSupport.

For more information about AutoSupport, see the NetApp Support Site.

**Related information**

*The NetApp Support Site: mysupport.netapp.com*

**When and where AutoSupport messages are sent**

AutoSupport sends messages to different recipients, depending on the type of message. Learning when and where AutoSupport sends messages can help you understand messages that you receive through email or view on the My AutoSupport web site.

**Note:** Unless specified otherwise, settings in the following tables are options.

**Event-triggered messages**

When events occur on the storage system that require corrective action, AutoSupport automatically sends an event-triggered message.
When the message is sent | Where the message is sent
---|---
AutoSupport responds to a trigger event in the EMS | Addresses specified in `autosupport.to` and `autosupport.noteto`. (Only critical, service-affecting events are sent.)
 | Addresses specified in `autosupport.partner.to`
 | Technical support, if `autosupport.support.enable` is on

**Scheduled messages**

AutoSupport automatically sends several messages on a regular schedule.

<table>
<thead>
<tr>
<th>When the message is sent</th>
<th>Where the message is sent</th>
</tr>
</thead>
</table>
| Daily (by default, sent between 12:00 a.m. and 1:00 a.m. as a log message) | Addresses specified in `autosupport.partner.to`
 | Technical support, if `autosupport.support.enable` is on |
| Daily (by default, sent between 12:00 a.m. and 1:00 a.m. as a performance message), if the `autosupport.performance_data.enable` option is on | Addresses specified in `autosupport.partner.to`
 | Technical support, if `autosupport.support.enable` is on |
| Weekly (by default, sent Sunday between 12:00 a.m. and 1:00 a.m.) | Addresses specified in `autosupport.partner.to`
 | Technical support, if `autosupport.support.enable` is on |

**Manually triggered messages**

You can manually initiate or resend an AutoSupport message.

<table>
<thead>
<tr>
<th>When the message is sent</th>
<th>Where the message is sent</th>
</tr>
</thead>
</table>
| You manually initiate a message using the `option autosupport.doit` text command | Addresses specified in `autosupport.to` and `autosupport.partner.to`
| You manually resend a past message using the `autosupport history retransmit` command | Only to the URI that you specify in the `-uri` parameter of the `autosupport history retransmit` command |
Messages triggered by technical support

Technical support can request messages from AutoSupport using the AutoSupport On Demand feature.

<table>
<thead>
<tr>
<th>When the message is sent</th>
<th>Where the message is sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>When AutoSupport obtains delivery instructions to generate new AutoSupport messages</td>
<td>Addresses specified in autosupport.partner.to Technical support, if autosupport.support.enable is on and the transport protocol is HTTPS</td>
</tr>
<tr>
<td>When AutoSupport obtains delivery instructions to resend past AutoSupport messages</td>
<td>Technical support, if autosupport.support.enable is on and the transport protocol is HTTPS</td>
</tr>
</tbody>
</table>

Related concepts

*How AutoSupport On Demand obtains delivery instructions from technical support* on page 168

How AutoSupport creates and sends event-triggered messages

AutoSupport creates event-triggered AutoSupport messages when the EMS processes a trigger event. An event-triggered AutoSupport message alerts recipients to problems that require corrective action and contains only information that is relevant to the problem. You can customize what content to include and who receives the messages.

AutoSupport uses the following process to create and send event-triggered AutoSupport messages:

1. When the EMS processes a trigger event, EMS sends AutoSupport a request.
   
   A trigger event is an EMS event with an AutoSupport destination and a name that begins with a callhome. prefix.

   
   AutoSupport collects basic and troubleshooting information from subsystems that are associated with the trigger to create a message that includes only information that is relevant to the trigger event.
   
   A default set of subsystems is associated with each trigger. However, you can choose to associate additional subsystems with a trigger by using the autosupport trigger modify command.

3. AutoSupport sends the event-triggered AutoSupport message to the recipients defined by the options autosupport.to, options autosupport.noteto, options autosupport.partner.to, and options autosupport.support.enable commands.
   
   You can enable and disable delivery of AutoSupport messages for specific triggers by using the autosupport trigger modify command with the -to and -noteto parameters.
Example of data sent for a specific event

The storage shelf PSU failed EMS event triggers a message that contains basic data from the Mandatory, Log Files, Storage, RAID, HA, Platform, and Networking subsystems and troubleshooting data from the Mandatory, Log Files, and Storage subsystems.

You decide that you want to include data about NFS in any AutoSupport messages sent in response to a future storage shelf PSU failed event. You enter the following command to enable troubleshooting-level data for NFS for the callhome.shlf.ps.fault event:

```
system> autosupport trigger modify -autosupport-message shlf.ps.fault -troubleshooting-additional nfs
```

Note that the callhome. prefix is dropped from the callhome.shlf.ps.fault event when you use the autosupport trigger commands, or when referenced by AutoSupport and EMS events in the CLI.

How AutoSupport On Demand obtains delivery instructions from technical support

AutoSupport On Demand periodically communicates with technical support to obtain delivery instructions for sending, resending, and declining AutoSupport messages.

The AutoSupport On Demand client, which runs on each node, periodically polls the AutoSupport On Demand service to obtain delivery instructions. The AutoSupport On Demand service resides in technical support. AutoSupport On Demand is enabled by default, and it automatically communicates with technical support if AutoSupport is configured to send messages to technical support and the transport protocol is HTTPS. The client sends HTTPS requests to the same technical support location to which AutoSupport messages are sent.

The AutoSupport On Demand client does not accept incoming connections.

**Note:** AutoSupport On Demand uses the “autosupport” user account to communicate with technical support. You should not delete this account.

The following illustration shows how AutoSupport On Demand sends HTTPS requests to technical support to obtain delivery instructions.
The delivery instructions can include requests for AutoSupport to do the following:

- Generate new AutoSupport messages.
  Technical support might request new AutoSupport messages to help triage issues.

- Retransmit previously generated AutoSupport messages.
  This request automatically happens if a message was not received due to a delivery failure.

- Disable delivery of AutoSupport messages for specific trigger events.
  Technical support might disable delivery of data that is not used.

**Types of AutoSupport messages and their content**

AutoSupport messages contain status information about supported subsystems. Learning what AutoSupport messages contain can help you interpret or respond to messages that you receive in email or view on the My AutoSupport web site.

<table>
<thead>
<tr>
<th>Type of message</th>
<th>Type of data the message contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event-triggered</td>
<td>Files containing context-sensitive data about the specific subsystem where the event occurred</td>
</tr>
<tr>
<td>Daily</td>
<td>Log files</td>
</tr>
<tr>
<td>Performance</td>
<td>Performance data sampled during the previous 24 hours</td>
</tr>
<tr>
<td>Weekly</td>
<td>Configuration and status data</td>
</tr>
<tr>
<td>Triggered by the</td>
<td>Depends on the text that you enter in the command:</td>
</tr>
<tr>
<td>autosupport.doit</td>
<td></td>
</tr>
<tr>
<td>text command</td>
<td></td>
</tr>
<tr>
<td>Triggered by the</td>
<td></td>
</tr>
<tr>
<td>option</td>
<td></td>
</tr>
<tr>
<td>autosupport.to</td>
<td></td>
</tr>
<tr>
<td>AutoSupport On</td>
<td>AutoSupport On Demand can request new messages or past messages:</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
</tr>
<tr>
<td>Triggered by the</td>
<td></td>
</tr>
<tr>
<td>AutoSupport On</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
</tr>
<tr>
<td>AutoSupport On</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
</tr>
</tbody>
</table>

- Including the word `test` sends a user-triggered message with some basic data.
  This message also triggers an automated email response from technical support to any specified email addresses, using the `autosupport.to` option, so that you can confirm that AutoSupport messages are being received.

- Excluding the word `test` sends a user-triggered message with a complete set of data similar to the weekly message, including troubleshooting data from each subsystem.
  Technical support typically requests this message.
Structure of AutoSupport messages sent by email

When an AutoSupport message is sent by email, the message has a standard subject, a brief body, and a large attachment in 7z file format that contains the data.

Note: If AutoSupport is configured to hide private data, certain information, such as the hostname, is omitted or masked in the header, subject, body, and attachments.

Subject

The subject line of messages sent by the AutoSupport mechanism contains a text string that identifies the reason for the notification. The format of the subject line is as follows:

System Notification from System_Name (Message) Severity, where:

- “System” is replaced with “HA Group” if the storage system is configured for high availability
- System_Name is either the hostname or the system ID, depending on the AutoSupport configuration

Body

The body of the AutoSupport message contains the following information:

- Date and timestamp of the message
- Version of Data ONTAP
- System ID, serial number, and hostname
- AutoSupport sequence number
- SNMP contact name and location, if specified
- System ID and hostname of the HA partner, if the storage system is configured for high availability

Attached files

The key information in an AutoSupport message is contained in files that are compressed into a 7z file called body.7z and attached to the message.

The files contained in the attachment are specific to the type of AutoSupport message.

AutoSupport severity types

AutoSupport messages have severity types that help you understand the purpose of each message—for example, to draw immediate attention to a critical problem, or only to provide information.

Messages have one of the following severities:
• Critical: critical conditions
• Error: error conditions
• Warning: warning conditions
• Notice: normal but significant condition
• Info: informational message
• Debug: debug-level messages

If your internal support organization receives AutoSupport messages via email, the severity appears in the subject line of the email message.

Requirements for using AutoSupport

AutoSupport provides flexible delivery options. You can choose the format in which AutoSupport provides information to technical support: HTTPS, HTTP, and SMTP, as well as other proxy configurations that meet your networking and security requirements. All of these protocols run on IPv4 or IPv6, based on the address family to which the name resolves.

Supported protocols

If you enable AutoSupport to send messages to technical support, you can use any of the following transport protocols:

<table>
<thead>
<tr>
<th>Protocol and port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS on port 443</td>
<td>This is the default protocol. You should use this whenever possible. The certificate from the remote server is validated against the root certificate, unless you disable validation. The delivery uses an HTTP PUT request. With PUT, if the request fails during transmission, the request restarts where it stopped. If the server receiving the request does not support PUT, the delivery uses an HTTP POST request.</td>
</tr>
<tr>
<td>HTTP on port 80</td>
<td>This protocol is preferred over SMTP. The delivery uses an HTTP PUT request. With PUT, if the request fails during transmission, the request restarts where it left off. If the server receiving the request does not support PUT, the delivery uses an HTTP POST request.</td>
</tr>
<tr>
<td>SMTP on port 25</td>
<td>You should use this protocol only if the network connection does not allow HTTPS or HTTP, because SMTP can introduce limitations on message length and line length.</td>
</tr>
</tbody>
</table>

If you configure AutoSupport with specific email addresses for your internal support organization, or a support partner organization, those messages are always sent by SMTP.
For example, if you use the recommended protocol to send messages to technical support and you also want to send messages to your internal support organization, your messages would be transported using both HTTPS and SMTP, respectively.

AutoSupport limits the maximum file size for each protocol. The default setting for HTTP and HTTPS transfers is 10 MB. The default setting for SMTP transfers is 5 MB. If the size of the AutoSupport message exceeds the configured limit, AutoSupport delivers as much of the message as possible. You can edit the maximum size by modifying AutoSupport configuration. See the options man page for more information.

**Configuration requirements**

Use of HTTP or HTTPS protocols requires additional configuration of the proxy URL. If you use HTTP or HTTPS to send AutoSupport messages to technical support and you have a proxy, you must identify the URL for that proxy. If the proxy uses a port other than the default port, which is 3128, you can specify the port for that proxy. You can also specify a username and password for proxy authentication.

If you use SMTP to send AutoSupport messages either to your internal support organization or to technical support, you must configure an external mail server. The storage system does not function as a mail server; it requires an external mail server at your site to send mail. The mail server must be a host that listens on the SMTP port (25), and it must be configured to send and receive 8-bit Multipurpose Internet Mail Extensions (MIME) encoding. Example mail hosts include a UNIX host running an SMTP server such as the sendmail program and a Windows server running the Microsoft Exchange server. You can have one or more mail hosts.

**Setting up AutoSupport**

You can control whether and how AutoSupport information is sent to technical support and your internal support organization, and then test that the configuration is correct.

**About this task**

For more information about the following commands, see the man pages.

**Steps**

1. Ensure that AutoSupport is enabled by setting the `autosupport.enable` option to `on`.

2. If you want technical support to receive AutoSupport messages, set the following options:
   a. Set `autosupport.support.enable` to `on`.
   b. Select a transport protocol for messages to technical support by setting `autosupport.support.transport` to `smtp`, `http`, or `https`.  
   c. If you chose HTTP or HTTPS as the transport protocol and you use a proxy, set `autosupport.proxy.url` to the URL of your proxy.
3. If you want your internal support organization or a support partner to receive AutoSupport messages, perform the following actions:

   a. Identify the recipients in your organization by setting the following options:

<table>
<thead>
<tr>
<th>Set this option...</th>
<th>To this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>autosupport.to</td>
<td>Up to five comma-separated individual email addresses or distribution lists in your internal support organization that will receive key AutoSupport messages</td>
</tr>
<tr>
<td>autosupport.noteto</td>
<td>Up to five comma-separated individual email addresses or distribution lists in your internal support organization that will receive a shortened version of key AutoSupport messages designed for cell phones and other mobile devices</td>
</tr>
<tr>
<td>autosupport.partner.to</td>
<td>Up to five comma-separated individual email addresses or distribution lists in your support partner organization that will receive all AutoSupport messages</td>
</tr>
</tbody>
</table>

   b. Check that addresses are correctly configured by listing the destinations using the `autosupport destinations show` command.

4. If you are sending messages to your internal support organization or you chose SMTP transport for messages to technical support, configure SMTP by setting the following options:

   - Set `autosupport.mailhost` to one or more mail hosts, separated by commas. You can set a maximum of five.
   - Set `autosupport.from` to the email address that sends the AutoSupport message.
   - Set `autosupport.max_smtp_size` to the email size limit of your SMTP server.

5. If you want AutoSupport to specify a fully qualified domain name when it sends connection requests to your SMTP mail server, configure DNS.

   For information about configuring DNS, see the *Data ONTAP Network Management Guide for 7-Mode*.

6. Optional: Change the following settings:
If you want to do this... | Then set the following options...
---|---
Hide private data by removing, masking, or encoding sensitive data in the messages | Set `autosupport.content` to `minimal`. If you change from `complete` to `minimal`, all AutoSupport history and all associated files are deleted.
Stop sending performance data in periodic AutoSupport messages | Set `autosupport.performance_data.enable` to `disable`.

7. Check the overall configuration using the `options autosupport` command.

8. Test that AutoSupport messages are being sent and received:
   a. Use the `options autosupport.doit test` command.
   b. Confirm that NetApp is receiving your AutoSupport messages by checking the email addresses that were specified in the `autosupport.to` option.
      An automated response from the NetApp mail handler should have been sent to these email addresses.
   c. Optional: Confirm that the AutoSupport message is being sent to your internal support organization or to your support partner by checking the email of any address that you configured for the `autosupport.to`, `autosupport.noteto`, or `autosupport.partner` options.

Related tasks

*Troubleshooting AutoSupport when messages are not received* on page 184

**Getting AutoSupport message descriptions**

The descriptions of the AutoSupport messages that you receive are available through the online AutoSupport Message Matrices page.

**Steps**

1. Go to the AutoSupport Message Matrices page: `support.netapp.com/NOW/knowledge/docs/olio/autosupport/matrices/`
2. On the AutoSupport Message Matrices page under Select a Release, select your version of Data ONTAP and click *View Matrix*.
   The Syslog Translator page appears with all AutoSupport message descriptions listed alphabetically by subject line.
Commands for managing AutoSupport

You use the `autosupport` and `options autosupport` commands to change or view AutoSupport configuration, display information about past AutoSupport messages, and send or resend an AutoSupport message.

**Configure AutoSupport**

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control whether any AutoSupport messages are sent</td>
<td><code>options autosupport.enable</code></td>
</tr>
<tr>
<td>Control whether AutoSupport messages are sent to technical support</td>
<td><code>options autosupport.support.enable</code></td>
</tr>
<tr>
<td>Set up AutoSupport or modify the configuration of AutoSupport</td>
<td><code>options autosupport</code></td>
</tr>
<tr>
<td>Enable and disable AutoSupport messages to your internal support organization for individual trigger events, and specify additional subsystem reports to include in messages sent in response to individual trigger events</td>
<td><code>autosupport trigger modify</code></td>
</tr>
</tbody>
</table>

**Display information about the configuration of AutoSupport**

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the AutoSupport configuration</td>
<td><code>options autosupport</code></td>
</tr>
<tr>
<td>View a summary of all addresses and URLs that receive AutoSupport messages</td>
<td><code>autosupport destinations show</code></td>
</tr>
<tr>
<td>Display which AutoSupport messages are sent to your internal support organization for individual trigger events</td>
<td><code>autosupport trigger show</code></td>
</tr>
</tbody>
</table>

**Display information about past AutoSupport messages**

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about one or more of the 50 most recent AutoSupport messages</td>
<td><code>autosupport history show</code></td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
View the information in the AutoSupport messages including the name and size of each file collected for the message along with any errors | autosupport manifest show

**Send or resend AutoSupport messages**

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retransmit a locally stored AutoSupport message, identified by its AutoSupport sequence number</td>
<td>autosupport history retransmit</td>
</tr>
<tr>
<td><strong>Note:</strong> If you retransmit an AutoSupport message, and if support already received that message, the support system will not create a duplicate case. If, on the other hand, support did not receive that message, then the AutoSupport system will analyze the message and create a case, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Generate and send an AutoSupport message—for example, for testing purposes</td>
<td>options autosupport.doit</td>
</tr>
</tbody>
</table>

For more information, see the man pages.

**AutoSupport options**

You use the AutoSupport options to configure the AutoSupport feature.

The main AutoSupport options are described in the following table. For more information, see the na_options(1) man page.
<table>
<thead>
<tr>
<th>AutoSupport option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autosupport.content [complete</td>
<td>minimal]</td>
</tr>
<tr>
<td>autosupport.doit [message]</td>
<td>Tells the autosupport feature to send an AutoSupport notification immediately. The message can be a single word or a string enclosed in single quotation marks. The message is included in the subject line of the AutoSupport notification and should explain the reason for the notification. You can verify that AutoSupport is working by using the Call Home Check function, which sends an autosupport.doit message with a subject line containing any variation of the word TEST or TESTING. When such a message is sent to NetApp, the mail handler sends an automated response to the configured recipient addresses using the autosupport.to option, indicating that the test AutoSupport message was received successfully.</td>
</tr>
<tr>
<td>autosupport.enable [on</td>
<td>off]</td>
</tr>
<tr>
<td>AutoSupport option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>autosupport.from sender</td>
<td>Defines the user to be designated as the sender of the notification: for example, <a href="mailto:postmaster@mycompany.com">postmaster@mycompany.com</a>. The default is Postmaster@xxx, where xxx is the name of the system.</td>
</tr>
<tr>
<td>autosupport.local_collection</td>
<td>Enables and disables local storage of AutoSupport files when sending of AutoSupport messages is disabled. The default setting is true, which causes the node to store AutoSupport files locally even if AutoSupport is disabled.</td>
</tr>
<tr>
<td>autosupport.mailhost host1[,..., host5]</td>
<td>Defines up to five mail host names. The host names should be entered as a comma-separated list with no spaces between entries. The default is “mailhost.” The specified mail hosts are used to send AutoSupport messages to all email address specified by this parameter. The specified mail hosts are used to send AutoSupport messages to NetApp technical support if autosupport.support.transport is smtp. Both IPv6 and IPv4 addresses are accepted.</td>
</tr>
<tr>
<td>autosupport.max_http_size integer[KB</td>
<td>MB</td>
</tr>
<tr>
<td>autosupport.max_smtp_size integer[KB</td>
<td>MB</td>
</tr>
<tr>
<td>AutoSupport option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>autosupport.minimal.subject.id [hostname</td>
<td>systemid]</td>
</tr>
<tr>
<td>autosupport.nht_data.enable</td>
<td>This option is no longer used. AutoSupport no longer sends NHT disk drive data in AutoSupport messages.</td>
</tr>
<tr>
<td>autosupport.noteto address1[, ..., address5]</td>
<td>Defines the list of recipients for the AutoSupport short note email. The short note email consists only of the subject line of the AutoSupport message, which is easily viewed on a cell phone or other text device. Up to five email addresses are allowed. Enter the addresses as a comma-separated list with no spaces between entries. The default is an empty list, which disables short note emails. You can have AutoSupport messages sent to your internal support organization by setting this option (or the autosupport.to option) and having a valid mail host.</td>
</tr>
<tr>
<td>autosupport.ondemand.polling_interval</td>
<td>Defines the rate at which the node polls the AutoSupport On Demand service. This option is not editable at the admin privilege level. It displays for informational purposes only.</td>
</tr>
<tr>
<td>autosupport.ondemand.remotediag.state</td>
<td>Defines whether the AutoSupport On Demand Remote Diagnostics feature is enabled or disabled on the node. The default is on. This option is not editable at the admin privilege level. It displays for informational purposes only.</td>
</tr>
<tr>
<td>autosupport.ondemand.server_url</td>
<td>Defines the AutoSupport On Demand service URL that the node communicates with. This option is not editable at the admin privilege level. It displays for informational purposes only.</td>
</tr>
<tr>
<td>AutoSupport option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>autosupport.ondemand.state</td>
<td>Defines whether the AutoSupport On Demand feature is enabled or disabled on the node. The default is on. This option is not editable at the admin privilege level. It displays for informational purposes only.</td>
</tr>
<tr>
<td>autosupport.partner.to</td>
<td>Defines the list of recipients to receive all AutoSupport email notifications, regardless of the severity level. Up to five email addresses are allowed. Enter the addresses as a comma-separated list with no spaces between entries. By default, no list is defined. This option is not affected by the setting of the autosupport.support.enable option.</td>
</tr>
<tr>
<td>autosupport.payload.format</td>
<td>Specifies the file format of the compressed file that contains AutoSupport data. Use 7z to specify 7-Zip archive format. Use tgz to specify GNU zipped tar file. The default is 7z.</td>
</tr>
<tr>
<td>autosupport.performance_data.doit any_string</td>
<td>Triggers a performance snapshot AutoSupport message when any string is added.</td>
</tr>
<tr>
<td>autosupport.performance_data.enable</td>
<td>Enables sending messages about performance data to technical support and addresses specified in autosupport.partner.to. This option should always be set to on. The default is on.</td>
</tr>
<tr>
<td>autosupport.periodic.tx_window time</td>
<td>Specifies the randomized delay window for periodic AutoSupport messages. Values can range from 0 to 240 minutes (4 hours). The default is 60 (1 hour). Setting the value to 0 disables the randomized delay, which is intended to prevent bottlenecks.</td>
</tr>
<tr>
<td>autosupport.retry.count #retries</td>
<td>Defines the number of times the storage system tries to resend the AutoSupport notification before giving up, if previous attempts have failed. Retries can be between 5 and 4,294,967,294. The default is 15.</td>
</tr>
<tr>
<td><strong>AutoSupport option</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>autosupport.retry.interval interval</td>
<td>Defines the time to wait before trying to resend a failed AutoSupport notification. The values can end with s, m, or h to indicate seconds, minutes, or hours, respectively. If no units are specified, the value is assumed to be in seconds. Values can range from 30 seconds to 24 hours. The default is <strong>4m</strong> (4 minutes).</td>
</tr>
<tr>
<td>autosupport.support.enable [on</td>
<td>off]</td>
</tr>
</tbody>
</table>
| autosupport.support.proxy [user:pass@]proxyhost.com[[:port][/]] | Allows you to set an HTTP proxy if necessary. This is useful only if autosupport.support.transport is set to **http** or **https**. The default value for this option is an empty string. Both IPv6 and IPv4 addresses are accepted. You use this option to specify user name and password for proxy authentication. The URL is entered without an http:// or https:// prefix. The following are some examples:  
- options autosupport.support.proxy myusername:mypassword@myhost.com  
- options autosupport.support.proxy myusername:mypassword@myhost.com:9090  
- options autosupport.support.proxy myhost.com  
- options autosupport.support.proxy myhost.com:9090  

**Note:** The value you use for this option is site-specific; see your IT department for the correct value for your site.  

**Note:** Proxy configuration defaults to port 3128 when no port is specified. |
<table>
<thead>
<tr>
<th><strong>AutoSupport option</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>autosupport.support.put_url URL</td>
<td>Indicates where AutoSupport messages for NetApp technical support are sent if autosupport.support.transport is <strong>http</strong> or <strong>https</strong>. Each message sent via HTTP or HTTPS is sent as an HTTP PUT request to this URL. If the server receiving the message does not support PUT requests, the message is sent via HTTP POST to the URL indicated by autosupport.support.url. This option is read-only and is shown for informational purposes only.</td>
</tr>
<tr>
<td>autosupport.support.reminder [on</td>
<td>off]</td>
</tr>
<tr>
<td>autosupport.support.to</td>
<td>Indicates where AutoSupport messages for NetApp technical support are sent if autosupport.support.transport is <strong>smtp</strong>. This option is read-only and is shown for informational purposes only.</td>
</tr>
<tr>
<td>autosupport.support.transport [http</td>
<td>https</td>
</tr>
<tr>
<td>autosupport.support.url URL</td>
<td>Indicates where AutoSupport messages for NetApp technical support are sent if autosupport.support.transport is <strong>http</strong> or <strong>https</strong>. Each message sent via HTTP or HTTPS is sent as an HTTP PUT request to the URL indicated by autosupport.support.put_url. If the server receiving the message does not support PUT requests, the message is sent via HTTP POST to the URL indicated by this option. This option is read-only and is shown for informational purposes only.</td>
</tr>
<tr>
<td>autosupport.throttle [on</td>
<td>off]</td>
</tr>
<tr>
<td><strong>AutoSupport option</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>autosupport.to address1[, ..., address5]</td>
<td>Defines the list of recipients who receive key AutoSupport messages, as defined in factory-default settings. You can use the autosupport trigger show command to display AutoSupport trigger configuration and the autosupport trigger modify command to modify the trigger configuration. Up to five email addresses are allowed, or the list can be left empty. Enter the addresses as a comma-separated list with no spaces between entries. The default is no list. The addresses should include your system administrator or administrative group. You can have AutoSupport messages sent to your internal support organization by setting this option (or the autosupport.noteto option) and having a valid mail host.</td>
</tr>
<tr>
<td>autosupport.validate_digital_certificate [on</td>
<td>off]</td>
</tr>
</tbody>
</table>

**Information included in the AutoSupport manifest**

The AutoSupport manifest provides you with a detailed view of the files collected for each AutoSupport message. The AutoSupport manifest also includes information about collection errors when AutoSupport cannot collect the files it needs.

The AutoSupport manifest includes the following information:

- Sequence number of the AutoSupport message
- Which files AutoSupport included in the AutoSupport message
- Size of each file, in bytes
- Status of the AutoSupport manifest collection
- Error description, if AutoSupport failed to collect one or more files

You can view the AutoSupport manifest by using the autosupport manifest show command.

The AutoSupport manifest is included with every AutoSupport message and presented in XML format, which means that you can either use a generic XML viewer to read it or view it using the My AutoSupport portal.
What My AutoSupport is

My AutoSupport is a web-based application, working in conjunction with AutoSupport, that presents information enabling you to easily analyze data to model and optimize your storage infrastructure.

My AutoSupport is a web-based application hosted on the NetApp Support Site at mysupport.netapp.com that you can access using a browser. Your system must have AutoSupport enabled and configured so that it sends data back to. You can access My AutoSupport by going to http://support.netapp.com/NOW/asuphome/.

My AutoSupport provides a dashboard from which you can perform the following actions:

- Generate reports and export them to PDF or CSV files
- View information about configurations, performance, system health, installed software, and storage efficiency
- Access system and AutoSupport tools

Troubleshooting AutoSupport

If you do not receive AutoSupport messages, you can check a number of settings to resolve the problem.

Troubleshooting AutoSupport when messages are not received

If the system does not send the AutoSupport message, you can determine whether that is because AutoSupport cannot generate the message or cannot deliver the message.

Steps

1. Check delivery status of the messages by using the autosupport history show command.
2. Read the status.

<table>
<thead>
<tr>
<th>This status</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>initializing</td>
<td>The collection process is starting. If this state is temporary, all is well. However, if this state persists, there is an issue.</td>
</tr>
<tr>
<td>collection-failed</td>
<td>AutoSupport cannot create the AutoSupport content in the spool directory. You can view what AutoSupport is trying to collect by entering the autosupport history show -detail command.</td>
</tr>
<tr>
<td>collection-in-progress</td>
<td>AutoSupport is collecting AutoSupport content. You can view what AutoSupport is collecting. Obtain the sequence number by using the autosupport history show command, and then display the manifest details for the sequence number by entering the autosupport manifest show command with the -seq-num parameter.</td>
</tr>
</tbody>
</table>
This status | Means
---|---
queued | AutoSupport messages are queued for delivery, but not yet delivered.
transmitting | AutoSupport is currently delivering messages.
sent-successful | AutoSupport successfully delivered the message. You can find out where AutoSupport delivered the message by entering the `autosupport history show -delivery` command.
ignore | AutoSupport has no destinations for the message. You can view the delivery details by entering the `autosupport history show -delivery` command.
re-queued | AutoSupport tried to deliver messages, but the attempt failed. As a result, AutoSupport placed the messages back in the delivery queue for another attempt. You can view the error by entering the `autosupport history show` command.
transmission-failed | AutoSupport failed to deliver the message the specified number of times and stopped trying to deliver the message. You can view the error by entering the `autosupport history show` command.
don-demand-ignore | The AutoSupport message was processed successfully, but the AutoSupport On Demand service chose to ignore it.

3. Perform one of the following actions:

<table>
<thead>
<tr>
<th>For this status</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>initializing or collection-failed</td>
<td>Contact technical support because AutoSupport cannot generate the message.</td>
</tr>
<tr>
<td>ignore, re-queued, or transmission failed</td>
<td>Check that destinations are correctly configured for SMTP, HTTP, or HTTPS because AutoSupport cannot deliver the message.</td>
</tr>
</tbody>
</table>

Related tasks

* Troubleshooting AutoSupport delivery over SMTP on page 186
* Troubleshooting AutoSupport over HTTP or HTTPS on page 185

Troubleshooting AutoSupport over HTTP or HTTPS

If the system does not send the expected AutoSupport message and you are using HTTP or HTTPS, you can check a number of settings to resolve the problem.

**Before you begin**

You determined that AutoSupport can generate the message, but not deliver the message over HTTP or HTTPS.
Steps

1. At the storage system's CLI, ensure that DNS is enabled and configured correctly by entering the following command:
   
   `dns info`

2. Read the error for the AutoSupport message by using the `autosupport history show` command with the `-seq-num` and `-destination` parameters.

3. At the storage system's CLI, ensure that the system is routing out to the Internet successfully by entering the following command:
   
   `traceroute -p port support.netapp.com`

   The default `port` is 80 for HTTP and 443 for HTTPS.

   **Note:** If AutoSupport is configured to use a proxy, use the `traceroute -p` command to test the path to the proxy.

4. Use the `rdfile` command to read the `/etc/log/mlog/notifyd.log` file.

Related tasks

- *Troubleshooting AutoSupport when messages are not received* on page 184

**Troubleshooting AutoSupport delivery over SMTP**

If the system cannot deliver AutoSupport messages over SMTP, you can check a number of settings to resolve the problem.

**Before you begin**

You determined that AutoSupport can generate the message, but not deliver the message over SMTP.

**Steps**

1. At the storage system CLI, ensure that DNS for the system is enabled and configured correctly by entering the following command:
   
   `dns info`

2. At the storage system CLI, ensure that the mail host specified in the configuration is a host that the storage system can communicate with by entering the following command:
   
   `ping mailhost`

   `mailhost` is the name or IP address of your mail host.

3. Log in to the host designated as the mail host, and ensure that it can serve SMTP requests by entering the following command:
   
   `netstat -aAn|grep 25`
25 is the listener SMTP port number.

A message appears, similar to the following text:

```
ff64878c tcp 0 0 *.25 *.* LISTEN.
```

4. At the storage system CLI, ensure that the system is reaching the mail host successfully by entering the following command:

```
traceroute -p 25 mailhost
```

`mailhost` is the name or IP address of your mail host.

5. From some other host, open a Telnet session with the SMTP port by entering the following command:

```
telnet mailhost 25
```

A message similar to the following text is displayed:

```
Trying 192.9.200.16 ...
Connected to filer.
Escape character is '^]'.
220 filer.yourco.com Sendmail 4.1/SMI-4.1 ready at Thu, 30 Nov 95 10:49:04 PST
```

6. Use the `rdfile` command to read the `/etc/log/mlog/notifyd.log` file.

Related tasks

- **Troubleshooting AutoSupport when messages are not received** on page 184

**Troubleshooting EMS events about rejected or failed SMTP attempts**

If the system attempted to send an AutoSupport email, but the attempt resulted in an EMS event about a rejected or failed SMTP or an unknown user, you can check the relaying configuration for the mail host to determine whether relaying is denied or incorrectly configured.

**About this task**

The EMS identifiers for this event are `asup.smtp.fail` and `asup.smtp.reject`. You can use the EMS identifiers to view a description of the messages in the Syslog Translator on the NetApp Support Site.

**Steps**

1. From a Windows, UNIX, or Linux host, telnet to port 25 of the mail host by entering the following command:

```
telnet mailhost 25
```
2. Test whether relaying is denied on the mail host.
   a. Enter the following commands:
      
      HELO DOMAIN NAME
      MAIL FROM: your_email_address
      RCPT TO: autosupport@netapp.com
      
      b. If you receive a message similar to relaying denied, contact the mail host vendor because relaying is denied. Otherwise, continue to the next step.

3. Test whether relaying is incorrectly configured on the mail host.
   a. Enter the following commands:
      
      DATA
      SUBJECT: TESTING
      THIS IS A TEST
      .
      
      Note: Ensure that you enter the last period (.) on a line by itself. The period indicates to the mail host that the message is complete.
      
      b. If you receive a message similar to unknown user or unknown mailbox, contact the mail host vendor because relaying is incorrectly configured.

Monitoring the health of your system

Health monitors proactively monitor certain critical conditions and raise alerts if they detect a fault or risk. If there are active alerts, the system health status reports a degraded status for the cluster. The alerts include the information that you need to respond to degraded system health.

If the status is degraded, you can view details about the problem, including the probable cause and recommended recovery actions. After you resolve the problem, the system health status automatically returns to OK.

The system health status reflects multiple separate health monitors. A degraded status in an individual health monitor causes a degraded status for the overall system health.

How health monitoring works

Individual health monitors have a set of policies that trigger alerts when certain conditions and occur. Understanding how health monitoring works can help you respond to problems and control future alerts.

Health monitoring consists of the following components:
Individual health monitors for specific subsystems, each of which has its own health status. For example, the Storage subsystem has a node connectivity health monitor.

An overall system health monitor that consolidates the health status of the individual health monitors. A degraded status in any single subsystem results in a degraded status for the entire system. If no subsystems have alerts, the overall system status is OK.

Each health monitor is made up of the following key elements:

- Alerts that the health monitor can potentially raise
  Each alert has a definition, which includes details such as the severity of the alert and its probable cause.

- Health policies that identify when each alert is triggered
  Each health policy has a rule expression, which is the exact condition or change that triggers the alert.

A health monitor continuously monitors and validates the resources in its subsystem for condition or state changes. When a condition or state change matches a rule expression in a health policy, the health monitor raises an alert. An alert causes the subsystem's health status and the overall system health status to become degraded.

Ways to respond to system health alerts

When a system health alert occurs, you can acknowledge it, learn more about it, repair the underlying condition, and prevent it from occurring again.

When a health monitor raises an alert, you can respond in any of the following ways:

- Get information about the alert, which includes the affected resource, alert severity, probable cause, possible effect, and corrective actions.

- Get detailed information about the alert, such as the time when the alert was raised and whether anyone else has acknowledged the alert already.

- Get health-related information about the state of the affected resource or subsystem, such as a specific shelf or disk.

- Acknowledge the alert to indicate that someone is working on the problem, and identify yourself as the “Acknowledger.”

- Resolve the problem by taking the corrective actions provided in the alert, such as fixing cabling to resolve a connectivity problem.

- Delete the alert, if the system did not automatically clear it.

- Suppress an alert to prevent it from affecting the health status of a subsystem.
Suppressing is useful when you understand a problem. After you suppress an alert, it can still occur, but the subsystem health displays as “ok-with-suppressed.” when the suppressed alert occurs.

System health alert customization

You can control which alerts a health monitor generates by enabling and disabling the system health policies that define when alerts are triggered. This enables you to customize the health monitoring system for your particular environment.

You can learn the name of a policy either by displaying detailed information about a generated alert or by displaying policy definitions for a specific health monitor or alert ID.

Disabling health policies is different from suppressing alerts. When you suppress an alert, it does not affect the subsystem's health status, but the alert can still occur.

If you disable a policy, the condition or state that is defined in its policy rule expression no longer triggers an alert.

Example of an alert that you want to disable

For example, suppose an alert occurs that is not useful to you. You use the `system health alert show -instance` command to obtain the Policy ID for the alert. You use the policy ID in the `system health policy definition show` command to view information about the policy. After reviewing the rule expression and other information about the policy, you decide to disable the policy. You use the `system health policy definition modify` command to disable the policy.

How health alerts trigger AutoSupport messages and events

System health alerts trigger AutoSupport messages and events in the Event Management System (EMS), enabling you to monitor the health of the system using AutoSupport messages and the EMS in addition to using the health monitoring system directly.

Your system sends an AutoSupport message within five minutes of an alert. The AutoSupport message includes all alerts generated since the previous AutoSupport message, except for alerts that duplicate an alert for the same resource and probable cause within the previous week.

Some alerts do not trigger AutoSupport messages. An alert does not trigger an AutoSupport message if its health policy disables the sending of AutoSupport messages. For example, a health policy might disable AutoSupport messages by default because AutoSupport already generates a message when the problem occurs. You can configure policies to not trigger AutoSupport messages by using the `system health policy definition modify` command.

You can view a list of all of the alert-triggered AutoSupport messages sent in the previous week using the `system health autosupport trigger history show` command.

Alerts also trigger the generation of events to the EMS. An event is generated each time an alert is created and each time an alert is cleared.
What health monitors are available

There are several health monitors that monitor different parts of a system.

<table>
<thead>
<tr>
<th>Health monitor name (identifier)</th>
<th>Subsystem name (identifier)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node connectivity (node-connect)</td>
<td>CIFS nondisruptive operations (CIFS-NDO)</td>
<td>Monitors SMB connections to ensure nondisruptive operations to Hyper-V applications.</td>
</tr>
<tr>
<td>Storage (SAS-connect)</td>
<td>Monitors shelves, disks, and adapters at the node level to ensure that they have appropriate paths and connections.</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>not applicable</td>
<td>Aggregates information from other health monitors.</td>
</tr>
</tbody>
</table>

Responding to degraded system health

When your system's health status is degraded, you can show alerts, read about the probable cause and corrective actions, show information about the degraded subsystem, and resolve the problem.

About this task

You can discover that an alert was generated by viewing an AutoSupport message or an EMS event, or by using the system health commands.

Steps

1. Use the `system health alert show` command to view the alerts that are compromising the system's health.

2. Read the alert's probable cause, possible effect, and corrective actions to determine if you can resolve the problem or if you need more information.

3. If you need more information, take any of the following actions:
   - Use the `system health alert show -instance` command to view additional information available for the alert.
   - Use the specific commands in the `system health` command directory for the affected subsystem to investigate the problem.
Example

For example, if a disk has a problem, use the `system health node-connectivity disk` command to get more information about the disk.

4. Optional: Use the `system health alert modify` command with the `-acknowledge` parameter to indicate that you are working on a specific alert.

5. Take corrective action to resolve the problem as described by the Corrective Actions field in the alert.

The Corrective Actions might include rebooting the system.

When the problem is resolved, the alert is automatically cleared. If the subsystem has no other alerts, the health of the subsystem changes to OK. If the health of all subsystems is OK, the overall system health status changes to OK.

6. Use the `system health status show` command to confirm that the system health status is OK.

If the system health status is not OK, repeat this procedure.

Example of responding to degraded system health

By reviewing a specific example of degraded system health caused by a shelf that lacks two paths to a node, you can see what the CLI displays when you respond to an alert.

After starting Data ONTAP, you check the system health and you discover that the status is degraded.

```
system>system health status show
Status
---------------
degraded
```

You show alerts to find out where the problem is, and see that shelf 2 does not have two paths to node1.

```
system>system health alert show
   Node: node1
   Resource: Shelf ID 2
   Severity: Major
   Probable Cause: Disk shelf 2 does not have two paths to controller node1.
   Possible Effect: Access to disk shelf 2 via controller node1 will be lost with a single hardware component failure (e.g. cable, HBA, or IOM failure).
   Corrective Actions: 1. Halt controller node1 and all controllers attached to disk shelf 2.
                       2. Connect disk shelf 2 to controller node1 via two paths following the rules in the Universal SAS and ACP Cabling Guide.
                       3. Reboot the halted controllers.
                       4. Contact support personnel if the alert persists.
```

You display details about the alert to get more information, including the alert ID.
You acknowledge the alert to indicate that you are working on it.

You fix the cabling between shelf 2 and node1, and reboot the system. Then you check system health again, and see that the status is OK.

Commands for monitoring the health of your system

You can use the system health commands to display information about the health of system resources, to respond to alerts, and to configure future alerts. Using the CLI commands enables you to drill-down for in-depth information about how health monitoring is configured. For more information, see the man pages for the commands.

Displaying the status of system health

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the health status of the system, which reflects the overall status of individual health monitors</td>
<td>system health status show</td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
Display the health status of subsystems for which health monitoring is available | system health subsystem show

#### Displaying the status of node connectivity

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the status of shelves from the node-level view, along with other information, such as the owner node, shelf name, and how many disks and paths the shelf has</td>
<td>system health node-connectivity shelf show</td>
</tr>
<tr>
<td><strong>Note:</strong> Use the <code>-instance</code> parameter to display detailed information about each shelf.</td>
<td></td>
</tr>
<tr>
<td>Display the status of disks, along with other information, such as the owner node, disk name and bay number, and the number of paths to the disk</td>
<td>system health node-connectivity disk show</td>
</tr>
<tr>
<td><strong>Note:</strong> Use the <code>-instance</code> parameter to display detailed information about each disk.</td>
<td></td>
</tr>
<tr>
<td>Display the status of adapters, along with other information, such as the owner node, whether they are used and enabled, and the number of shelves attached</td>
<td>system health node-connectivity adapter show</td>
</tr>
<tr>
<td><strong>Note:</strong> Use the <code>-instance</code> parameter to display detailed information about each adapter.</td>
<td></td>
</tr>
</tbody>
</table>

#### Responding to generated alerts

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about generated alerts, such as the resource and node where the alert was triggered, and the alert's severity and probable cause</td>
<td>system health alert show</td>
</tr>
<tr>
<td>Display information about each generated alert</td>
<td>system health alert show -instance</td>
</tr>
<tr>
<td>Indicate that someone is working on an alert</td>
<td>system health alert modify</td>
</tr>
<tr>
<td>Acknowledge an alert</td>
<td>system health alert modify - acknowledge</td>
</tr>
<tr>
<td>Suppress a subsequent alert so that it does not affect the health status of a subsystem</td>
<td>system health alert modify - suppress</td>
</tr>
<tr>
<td>Delete an alert that was not automatically cleared</td>
<td>system health alert delete</td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Display information about the AutoSupport messages that alerts triggered within the last week—for example, to determine if an alert triggered an AutoSupport message</td>
<td>system health autosupport trigger history show</td>
</tr>
</tbody>
</table>

### Configuring future alerts

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable or disable the policy that controls whether a specific resource state raises a specific alert</td>
<td>system health policy definition modify</td>
</tr>
</tbody>
</table>

### Displaying information about how health monitoring is configured

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about health monitors, such as their nodes, names, subsystems, and status</td>
<td>system health config show</td>
</tr>
</tbody>
</table>

**Note:** Use the `-instance` parameter to display detailed information about each health monitor.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about the alerts that a health monitor can potentially generate</td>
<td>system health alert definition show</td>
</tr>
</tbody>
</table>

**Note:** Use the `-instance` parameter to display detailed information about each alert definition.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about health monitor policies, which determine when alerts are raised</td>
<td>system health policy definition show</td>
</tr>
</tbody>
</table>

**Note:** Use the `-instance` parameter to display detailed information about each policy. Use other parameters to filter the list of alerts—for example, by policy status (enabled or not), health monitor, alert, and so on.
Managing a storage system remotely

You can manage a storage system remotely by using a remote management device, which can be the SP or the RLM, depending on the platform model. The device stays operational regardless of the operating state of the system. You can also configure the Remote Support Agent (RSA) on the remote management device.

The RLM is included in the 31xx, 6040, and 6080 platforms.

The SP is included in all other supported platform models.

Additionally, you can configure the RSA to enable technical personnel to use the SP or the RLM for remote support. When problem diagnostics are needed, the RSA automatically uploads core files and transfers diagnostics data such as log files to technical support, reducing your involvement in the troubleshooting process. The RSA is included in the firmware of the remote management device. For more information about the RSA, see the Remote Support Agent Configuration Guide for 7-Mode for Use with Data ONTAP and the NetApp Remote Support Diagnostics Tool page on the NetApp Support Site.

Data ONTAP-v platforms, such as Data ONTAP Edge, do not have the SP or the RLM. You use the Data ONTAP-v Administration Tool (dvadmin) for remote management of Data ONTAP-v platforms.

Related information


Managing a system remotely by using the Service Processor

The Service Processor (SP) is a remote management device that enables you to access, monitor, and troubleshoot a system remotely.

The SP provides the following capabilities:

- The SP enables you to access a system remotely to diagnose, shut down, power-cycle, or reboot the system, regardless of the state of the system controller.
  
  The SP is powered by a standby voltage, which is available as long as the system has input power to at least one of its power supplies.

  The SP is connected to the system through the serial console. You can log in to the SP by using a Secure Shell client application from an administration host. You can then use the SP CLI to monitor and troubleshoot the system remotely. In addition, you can use the SP to access the serial console and run Data ONTAP commands remotely.

  You can access the SP from the serial console or access the serial console from the SP. The SP allows you to open both an SP CLI session and a separate console session simultaneously.
For instance, when a temperature sensor becomes critically high or low, Data ONTAP triggers the SP to shut down the motherboard gracefully. The serial console becomes unresponsive, but you can still press Ctrl-G on the console to access the SP CLI. You can then use the `system power on` or `system power cycle` command from the SP to power on or power-cycle the system.

- The SP monitors environmental sensors and logs events to help you take timely and effective service actions.
  The SP monitors the system temperatures, voltages, currents, and fan speeds. When an environmental sensor has reached an abnormal condition, the SP logs the abnormal readings, notifies Data ONTAP of the issue, and sends alerts and “down system” notifications as necessary through an AutoSupport message, regardless of whether the system can send AutoSupport messages.
  Other than generating these messages on behalf of a system that is down and attaching additional diagnostic information to AutoSupport messages, the SP has no effect on the AutoSupport functionality. The AutoSupport configuration settings and message content behavior are inherited from Data ONTAP.

  **Note:** The SP does not rely on the `autosupport.support.transport` option to send notifications. The SP only uses the Simple Mail Transport Protocol (SMTP) and requires its host’s AutoSupport configuration to include mail host information.

  If SNMP is enabled for the SP, the SP generates SNMP traps to configured trap hosts for all “down system” events.
  The SP also logs events such as boot progress, Field Replaceable Unit (FRU) changes, Data ONTAP-generated events, and SP command history.

- The SP has a nonvolatile memory buffer that stores up to 4,000 events in a system event log (SEL) to help you diagnose issues.
  The SEL stores each audit log entry as an audit event. It is stored in onboard flash memory on the SP. The event list from the SEL is automatically sent by the SP to specified recipients through an AutoSupport message.
  The SEL contains the following data:

  - Hardware events detected by the SP—for example, sensor status about power supplies, voltage, or other components
  - Errors detected by the SP—for example, a communication error, a fan failure, or a memory or CPU error
  - Critical software events sent to the SP by the system—for example, a panic, a communication failure, a boot failure, or a user-triggered “down system” as a result of issuing the SP `system reset` or `system power cycle` command

- The SP monitors the serial console regardless of whether administrators are logged in or connected to the console.
  When messages are sent to the console, the SP stores them in the console log. The console log persists as long as the SP has power from either of the system power supplies. Because the SP
operates with standby power, it remains available even when the system is power-cycled or turned off.

- Hardware-assisted takeover is available if the SP is configured. For more information about hardware-assisted takeover, see the *Data ONTAP High Availability and MetroCluster Configuration Guide for 7-Mode*.

The following diagram illustrates access to Data ONTAP and the SP. The SP interface is accessed through the Ethernet port (indicated by a wrench icon on the rear of the chassis):

**Related concepts**

*What the e0M interface is* on page 32

**Configuring the SP network**

Before you can access the SP, the SP network must be configured and enabled. You can configure the SP to use IPv4, IPv6, or both. The SP IPv4 configuration supports static and DHCP addressing, and the SP IPv6 configuration supports static addressing only.

**Before you begin**

To configure IPv6 connections for the SP, IPv6 must already be configured and enabled for Data ONTAP. The `ip.v6.enable` option controls the IPv6 settings for Data ONTAP. For more information about IPv6 configuration, see the *Data ONTAP Network Management Guide for 7-Mode*.

**Steps**

1. Configure and enable the SP by using the `system node service-processor network modify` command.

   - The `-address-type` parameter specifies whether the IPv4 or IPv6 configuration of the SP is to be modified.
The `-enable` parameter enables the network interface of the specified IP address type.

The `-dhcp` parameter specifies whether to use the network configuration from the DHCP server or the network address that you provide. You can enable DHCP (by setting `-dhcp` to `v4`) only if you are using IPv4. You cannot enable DHCP for IPv6 configurations.

The `-ip-address` parameter specifies the public IP address for the SP.

The `-netmask` parameter specifies the netmask for the SP (if using IPv4.)

The `-prefix-length` parameter specifies the network prefix-length of the subnet mask for the SP (if using IPv6.)

The `-gateway` specifies the gateway IP address for the SP.

2. Display the SP network configuration to verify the settings by using the `system node service-processor network show` command.

**Example of configuring the SP network**

The following example configures the SP to use IPv4, enables the SP, and displays the SP network configuration to verify the settings.

```
system> system node service-processor network modify -node local
-address-type IPv4 -enable true -ip-address 192.168.123.98
-netmask 255.255.255.0 -gateway 192.168.123.1

system> system node service-processor network show -instance -node local

Node: system
Address Type: IPv4
Interface Enabled: true
Type of Device: SP
Status: online
Link Status: up
DHCP Status: none
IP Address: 192.168.123.98
MAC Address: ab:cd:ef:fe:ed:02
Netmask: 255.255.255.0
Prefix Length of Subnet Mask: -
Router Assigned IP Address: -
Link Local IP Address: -
Gateway IP Address: 192.168.123.1

Node: system
Address Type: IPv6
Interface Enabled: false
Type of Device: SP
Status: online
Link Status: disabled
DHCP Status: none
IP Address: -
MAC Address: ab:cd:ef:fe:ed:02
Netmask: -
Prefix Length of Subnet Mask: -
```
Router Assigned IP Address: -  
Link Local IP Address: -  
Gateway IP Address: -  
2 entries were displayed.

system>

Related concepts

*Managing AutoSupport* on page 165

**Accounts that can access the SP**

The SP comes with an account named “naroot”. Only the SP “naroot” account and Data ONTAP local user accounts with the credentials of the **admin** role or a role with the **login-sp** capability can log in to the SP. These users have access to all commands available on the SP.

For enhanced security, the SP does not allow you to log in with the Data ONTAP account name “root”. Instead, it maps the Data ONTAP “root” account to the SP “naroot” account. You use the Data ONTAP “root” password when you use the SP “naroot” account to log into the SP.

**Note:** If you disable the “root” account's access to the storage system, the SP “naroot” account's access to the storage system is automatically disabled.

You cannot create user accounts directly from the SP. However, local users created in Data ONTAP with the credentials of the **admin** role or a role with the **login-sp** capability can log in to the SP. Changes to user account credentials on the storage system are automatically updated to the SP.

You cannot use the following generic names as account names to access the SP. Therefore, it is best not to use them as Data ONTAP account names or assign them to Data ONTAP groups that have the **admin** role or a role that includes the **login-sp** capability:

- adm
- bin
- cli
- daemon
- ftp
- games
- halt
- lp
- mail
- man
• netapp
• news
• nobody
• operator
• shutdown
• sshd
• sync
• sys
• uucp
• www

Accessing the SP from an administration host

You can log in to the SP from an administration host to perform system management tasks remotely.

Before you begin

The following conditions must be met:

• The administration host you use to access the SP must support SSHv2.

• Your user account must already be set up for accessing the SP.

The accounts that can access the SP include the predefined “naroot” account and Data ONTAP local user accounts with the credentials of the “admin” role or a role with the login-sp capability.

About this task

If you configured the SP to use an IPv4 or IPv6 address, and if five SSH login attempts from a host fail consecutively within 10 minutes, the SP rejects SSH login requests and suspends the communication with the IP address of the host for 15 minutes. The communication resumes after 15 minutes, and you can try to log in to the SP again.

The SP does not support Telnet or RSH. The telnet.enable and rsh.enable options, which enable or disable Telnet and RSH respectively, have no effect on the SP.

The SP ignores the autologout.telnet.timeout and autologout.console.timeout options. The settings for these options do not have any effect on the SP.

For security reasons, the SP prevents you from logging in with the Data ONTAP “root” account. Instead, it maps the Data ONTAP root account to the SP naroot account. If you use the SP naroot
account to access the SP, you also use the Data ONTAP root password. Disabling the Data ONTAP root account also disables the SP naroot account.


Steps

1. Enter the following command from the administration host to log in to the SP:

   ```bash
   ssh username@SP_IP_address
   ```

2. When you are prompted, enter the password for `username`.

   The SP prompt appears, indicating that you have access to the SP CLI.

**Examples of SP access from an administration host**

The following example shows how to log in to the SP as naroot.

```
[admin_host]$ ssh naroot@192.168.123.98
naroot@192.168.123.98's password:
SP>
```

```
[admin_host]$ ssh naroot@192.168.123.98
naroot@192.168.123.98's password:
SP>
```

The following example shows how to log in to the SP with a user account, joe, which has been set up to access the SP.

```
[admin_host]$ ssh joe@192.168.123.98
joe@192.168.123.98's password:
SP>
```

The following examples show how to use the IPv6 global address or IPv6 router-advertised address to log in to the SP on a system that has SSH set up for IPv6 and the SP configured for IPv6.

```
[admin_host]$ ssh naroot@fd22:8b1e:b255:202::1234
naroot@fd22:8b1e:b255:202::1234's password:
SP>
```
Accessing the SP from the serial console

You can access the SP from the serial console to perform monitoring or troubleshooting tasks.

Steps

1. To access the SP CLI from the serial console, press Ctrl-G at the prompt.
2. Log in to the SP CLI when you are prompted.
   The SP prompt appears, indicating that you have access to the SP CLI.
3. To exit the SP CLI and return to the serial console, press Ctrl-D and then press Enter.

Example of accessing the SP CLI from the serial console

The following example shows the result of pressing Ctrl-G from the serial console to access the SP CLI. The `help system power` command is entered at the SP prompt, followed by pressing Ctrl-D and then Enter to return to the serial console.

```
(system>)
(Switching console to Service Processor)
(Service Processor Login: Password:)
(SP>)
(SP> help system power)
(system power cycle - power the system off, then on)
(system power off - power the system off)
(system power on - power the system on)
(system power status - print system power status)
(SP>)
```

(Press Ctrl-D and then Enter to return to the serial console.)

```
(system>)
```
Accessing the serial console from the SP

The SP's `system console` command enables you to log in to the serial console from the SP.

**Steps**

1. Enter the following command at the SP prompt:
   ```
   system console
   ```
   The message *Type Ctrl-D to exit* appears.

2. Press Enter to see the storage system prompt.

3. To exit from the serial console and return to the SP CLI, press Ctrl-D.

**Example of accessing the serial console from the SP**

The following example shows the result of entering the `system console` command at the SP prompt. The `vol status` command is entered at the console, followed by pressing Ctrl-D, which returns you to the SP prompt.

```
SP> system console
Type Ctrl-D to exit.

(Press Enter to see the storage system prompt.)

toaster>
toaster> vol status

(Command output is displayed.)

(Press Ctrl-D to exit the serial console and return to the SP CLI.)

SP>
```

**SP CLI and system console sessions**

Only one administrator can log in to an active SP CLI session at a time. However, the SP allows you to open both an SP CLI session and a separate system console session simultaneously.

The SP prompt appears with SP in front of the hostname of the storage system. For example, if your storage system is named toaster, the storage system prompt is `toaster>` and the prompt for the SP session is `SP toaster>`. 
If an SP CLI session is currently open, you or another administrator with privileges to log in to the SP can close the SP CLI session and open a new one. This feature is convenient if you logged in to the SP from one computer and forgot to close the session before moving to another computer, or if another administrator takes over the administration tasks from a different computer.

You can use the SP's system console command to connect to the storage system console from the SP. You can then start a separate SSH session for the SP CLI, leaving the system console session active. When you press Ctrl-d to exit from the storage system console, you automatically return to the SP CLI session. If an SP CLI session already exists, the following message appears:

User username has an active console session. Would you like to disconnect that session, and start yours [y/n]?

If you enter y, the session owned by username is disconnected and your session is initiated. This action is recorded in the SP’s system event log.

Using online help at the SP CLI

The SP online help displays the SP CLI commands and options when you enter the question mark (?) or help at the SP prompt.

Steps

1. To display help information for the SP commands, enter one of the following at the SP prompt:
   - "help"
   - "?"

Example

The following example shows the SP CLI online help:

```
SP toaster> help
date - print date and time
exit - exit from the SP command line interface
events - print system events and event information
help - print command help
priv - show and set user mode
sp - commands to control the SP
rsa - commands for Remote Support Agent
system - commands to control the system
version - print SP version
```

For more information about the RSA command, see the Remote Support Agent Configuration Guide for 7-Mode for Use with Data ONTAP.

2. To display help information for the option of an SP command, enter the following command at the SP prompt:

   help SP_command
Example

The following example shows the SP CLI online help for the SP `events` command:

```plaintext
SP toaster> help events
events all - print all system events
events info - print system event log information
events newest - print newest system events
events oldest - print oldest system events
events search - search for and print system events
```

Commands for managing a system at the SP admin privilege level

The SP commands at the admin privilege level enable you to display events, logs, and status information for system power, batteries, sensors, field-replaceable units (FRUs), or the SP itself. The commands also enable you to reboot the system or the SP and create a core dump.

The following SP commands are available at the admin privilege level:

**Note:** Some commands are platform-specific and might not be available on your platform.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display system date and time</td>
<td><code>date</code></td>
</tr>
<tr>
<td>Display events that are logged by the SP</td>
<td>`events {all</td>
</tr>
<tr>
<td>Exit the SP CLI</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Display a list of available commands or subcommands of a specified command</td>
<td><code>help [command]</code></td>
</tr>
<tr>
<td>Set the privilege level to access the specified mode for the SP CLI</td>
<td>`priv set {admin</td>
</tr>
<tr>
<td></td>
<td><strong>Attention:</strong> You should use advanced or diag commands only under the guidance of technical support.</td>
</tr>
<tr>
<td>Display the current privilege level for the SP CLI</td>
<td><code>priv show</code></td>
</tr>
<tr>
<td>Manage the Remote Support Agent (RSA) if it is configured for the system</td>
<td><code>rsa</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> For information about the RSA, see the Remote Support Agent Configuration Guide for 7-Mode for Use with Data ONTAP.</td>
</tr>
<tr>
<td>Display the SP log archives or the files in an archive</td>
<td>`sp log history show [-archive {latest</td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>---------------------------------------------------------</td>
</tr>
<tr>
<td>Reboot the SP</td>
<td><code>sp reboot</code></td>
</tr>
<tr>
<td>Display SP status and network configuration information</td>
<td>`sp status [-v</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The <code>-v</code> option displays SP statistics in verbose form. The <code>-d</code> option adds the SP debug log to the display. The Data ONTAP <code>sysconfig</code> command displays the status for both the storage system and the SP.</td>
</tr>
<tr>
<td>Update the SP firmware by using the image at the specified location</td>
<td><code>sp update image_URL</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> <code>image_URL</code> must not exceed 200 characters.</td>
</tr>
<tr>
<td>Display the current time, the length of time the system has been up, and the average number of jobs in the run queue over the last 1, 5, and 15 minutes</td>
<td><code>sp uptime</code></td>
</tr>
<tr>
<td>Display ACP information or the status for expander sensors</td>
<td>`system acp [show</td>
</tr>
<tr>
<td>Display battery information</td>
<td><code>system battery show</code></td>
</tr>
<tr>
<td>Log in to the system console</td>
<td><code>system console</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You use Ctrl-D to exit from the system console and return to the SP CLI.</td>
</tr>
<tr>
<td>Create a core dump and reset the system</td>
<td><code>system core [-f]</code></td>
</tr>
<tr>
<td></td>
<td>The <code>-f</code> option forces the creation of a core dump and the reset of the system.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This command has the same effect as pressing the Non-maskable Interrupt (NMI) button on a system. The SP stays operational as long as the input power to the system is not interrupted.</td>
</tr>
<tr>
<td>Display the settings for collecting system forensics on a watchdog reset event, display system forensics information collected during a watchdog reset event, or clear the collected system forensics information.</td>
<td>`system forensics [show</td>
</tr>
<tr>
<td>List all system FRUs and their IDs</td>
<td><code>system fru list</code></td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>------------------------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>Display product information for the specified FRU</td>
<td>system fru show fru_id</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You can display FRU IDs by using the</td>
</tr>
<tr>
<td></td>
<td>system fru list command.</td>
</tr>
<tr>
<td>Display console logs</td>
<td>system log</td>
</tr>
<tr>
<td>Turn the system on or off, or perform a power-cycle (turning the power off and then back on)</td>
<td>system power {on</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The standby power stays on to keep the</td>
</tr>
<tr>
<td></td>
<td>system running without interruption. During the</td>
</tr>
<tr>
<td></td>
<td>power-cycle, a brief pause occurs before power is</td>
</tr>
<tr>
<td></td>
<td>turned back on.</td>
</tr>
<tr>
<td></td>
<td><strong>Attention:</strong> Using the system power command to</td>
</tr>
<tr>
<td></td>
<td>turn off or power-cycle the system might cause an</td>
</tr>
<tr>
<td></td>
<td>improper shutdown of the system (also called a</td>
</tr>
<tr>
<td></td>
<td>dirty shutdown) and is not a substitute for a</td>
</tr>
<tr>
<td></td>
<td>graceful shutdown using the Data ONTAP halt command.</td>
</tr>
<tr>
<td>Display the status for the power supply</td>
<td>system power status</td>
</tr>
<tr>
<td>Reset the system by using the specified BIOS firmware image</td>
<td>system reset {primary</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The SP stays operational as long as the</td>
</tr>
<tr>
<td></td>
<td>input power to the system is not interrupted.</td>
</tr>
<tr>
<td>Display the status for the environmental sensors,</td>
<td>system sensors</td>
</tr>
<tr>
<td>including their states and current values</td>
<td><strong>Note:</strong> This command has an equivalent command,</td>
</tr>
<tr>
<td></td>
<td>system sensors show.</td>
</tr>
<tr>
<td>Display the status and details for the specified sensor</td>
<td>system sensors get sensor_name</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You can obtain sensor_name by using the</td>
</tr>
<tr>
<td></td>
<td>system sensors or the system sensors show command.</td>
</tr>
<tr>
<td>Display the SP hardware and firmware version information</td>
<td>version</td>
</tr>
</tbody>
</table>
Commands for managing a system at the SP advanced privilege level

You can use the SP advanced privilege level to display the SP command history, SP debug file, SP messages file, and data history for field-replaceable units (FRUs). You can also manage the battery firmware and automatic update.

The following SP commands are available only at the advanced privilege level:

**Attention:** You should use advanced commands only under the guidance of technical support.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the SP command history</td>
<td><code>sp log audit</code></td>
</tr>
<tr>
<td>Display the SP debug information</td>
<td><code>sp log debug</code></td>
</tr>
<tr>
<td>Display the SP messages file</td>
<td><code>sp log messages</code></td>
</tr>
<tr>
<td>Display the status of battery firmware automatic update, or enable or disable battery firmware automatic update upon next SP boot</td>
<td>`system battery auto_update [status</td>
</tr>
<tr>
<td>Update the battery firmware from the image at the specified location</td>
<td><code>system battery flash image_URL</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You use this command if the automatic battery firmware upgrade process has failed for some reason.</td>
</tr>
<tr>
<td>Compare the current battery firmware image against a specified firmware image</td>
<td><code>system battery verify [image_URL]</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If <code>image_URL</code> is not specified, the default battery firmware image is used for comparison.</td>
</tr>
<tr>
<td>Display the FRU data history log</td>
<td><code>system fru log show</code></td>
</tr>
<tr>
<td>Erase the NVRAM flash content</td>
<td><code>system nvram flash clear</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This command cannot be initiated when the controller power is off (<code>system power off</code>).</td>
</tr>
</tbody>
</table>

**Related tasks**

*Setting the privilege level* on page 28

**How to determine the status of a threshold-based SP sensor**

Threshold-based sensors take periodic readings of a verity of system components. The SP compares the reading of a threshold-based sensor against its preset threshold limits that define a component’s
acceptable operating conditions. Based on the sensor reading, the SP displays the sensor state to help you monitor the condition of the component.

Examples of threshold-based sensors include sensors for the system temperatures, voltages, currents, and fan speeds. The specific list of threshold-based sensors depends on the platform.

Threshold-based sensors have the following thresholds, displayed in the output of the SP command `system sensors`:

- lower critical (LCR)
- lower noncritical (LNC)
- upper noncritical (UNC)
- upper critical (UCR)

A sensor reading between LNC and LCR or between UNC and UCR means that the component is showing signs of problem and a system failure might occur as a result. Therefore, you should plan for component service soon.

A sensor reading below LCR or above UCR means that the component is malfunctioning and a system failure is about to occur. Therefore, the component requires immediate attention.

The following diagram illustrates the severity ranges that are specified by the thresholds:

You can find the reading of a threshold-based sensor under the Current column in the `system sensors` command output. As the reading of a threshold-based sensor crosses the noncritical and critical threshold ranges, the sensor reports a problem of increasing severity. When the reading exceeds a threshold limit, the sensor's status in the `system sensors` command output changes from `ok` to either `nc` (noncritical) or `cr` (critical), and an event message is logged in the SEL event log.

Some threshold-based sensors do not have all four threshold levels. For those sensors, the missing thresholds show `na` as their limits in the `system sensors` command output. `na` means that the particular sensor has no limit or severity concern for the given threshold, and the SP does not monitor the sensor for that threshold.

**Example of the `system sensors` command output**

The following example shows the information displayed by the `system sensors` command in the SP CLI:
Example of the `system sensors get sensor_name` command output for a threshold-based sensor

The following example shows the result of entering `system sensors get sensor_name` in the SP CLI for the threshold-based sensor 5V:

```
SP toaster> system sensors get 5V
Locating sensor record...
Sensor ID : 5V (0x13)
Entity ID : 7.97
Sensor Type (Analog) : Voltage
Sensor Reading : 5.002 (+/- 0) Volts
Status : ok
Lower Non-Recoverable : na
Lower Critical : 4.246
Lower Non-Critical : 4.490
Upper Non-Critical : 5.490
Upper Critical : 5.758
Upper Non-Recoverable : na
Assertion Events :
Assertions Enabled : lnc- lcr- ucr+
Deassertions Enabled : lnc- lcr- ucr+
```
Understanding the status of a discrete SP sensor

The Status column of the `system sensors` command output in the SL CLI shows the discrete sensors' conditions in hexadecimal values. To interpret the status values of most discrete sensors, you can use the `system sensors get sensor_name` command in the SL CLI.

Discrete sensors do not have thresholds. Their readings (displayed under the Current column in the `system sensors` command output) do not carry actual meanings and thus are ignored by the SP.

Examples of discrete sensors include sensors for the fan, power supply unit (PSU) fault, and system fault. The specific list of discrete sensors depends on the platform.

While the `system sensors get sensor_name` command displays the status information for most discrete sensors, it does not provide status information for the System_FW_Status, System_Watchdog, PSU1_Input_Type, and PSU2_Input_Type discrete sensors. However, you can use the following information to interpret these sensors' status values.

**System_FW_Status**

The System_FW_Status sensor's condition appears in the form of 0x\text{AABB}. You can combine the information of AA and BB to determine the condition of the sensor.

AA can have one of the following values:

01  
System firmware error

02  
System firmware hang

04  
System firmware progress

BB can have one of the following values:

00  
System software has properly shut down

01  
Memory initialization in progress

02  
NVMEM initialization in progress (when NVMEM is present)

04  
Restoring memory controller hub (MCH) values (when NVMEM is present)

05  
User has entered Setup
Booting the operating system or LOADER

BIOS is starting up

LOADER is running

LOADER is programming the primary BIOS firmware. You must not power down the system.

LOADER is programming the alternate BIOS firmware. You must not power down the system.

Data ONTAP is running

SP has powered off the system

SP has powered on the system

SP has reset the system

SP watchdog power cycle

SP watchdog cold reset

For instance, the System_FW_Status sensor status 0x042F means "system firmware progress (04), Data ONTAP is running (2F)."

System_Watchdog

The System_Watchdog sensor can have one of the following conditions:

0x0080

The state of this sensor has not changed

0x0081

Timer interrupt

0x0180

Timer expired
0x0280
   Hard reset
0x0480
   Power down
0x0880
   Power cycle

For instance, the System_Watchdog sensor status 0x0880 means a watchdog timeout occurs and causes a system power cycle.

**PSU1_Input_Type and PSU2_Input_Type**

For direct current (DC) power supplies, the PSU1_Input_Type and PSU2_Input_Type sensors do not apply. For alternating current (AC) power supplies, the sensors' status can have one of the following values:

0x01xx
   220V PSU type

0x02xx
   110V PSU type

For instance, the PSU1_Input_Type sensor status 0x0280 means that the sensor reports that the PSU type is 110V.

### Examples of the system sensors get sensor_name command output for discrete sensors

The following examples show the results of entering `system sensors get sensor_name` for the discrete sensors CPU0_Error and IO_Slot1_Present:

```
SP toaster> system sensors get CPU0_Error
   Locating sensor record...
   Sensor ID              : CPU0_Error (0x67)
   Entity ID             : 7.97
   Sensor Type (Discrete): Temperature
   States Asserted       : Digital State
                         [State Deasserted]

SP toaster> system sensors get IO_Slot1_Present
   Locating sensor record...
   Sensor ID              : IO_Slot1_Present (0x74)
   Entity ID             : 11.97
   Sensor Type (Discrete): Add-in Card
   States Asserted       : Availability State
                         [Device Present]
```
Troubleshooting a system by using the SP

When you encounter a problem with the storage system, you can use the SP to display information about the problem, create a core dump, and reboot the system, even if the system's firmware is corrupted.

The following table describes the common SP commands that you can use at the SP prompt to troubleshoot a system:

<table>
<thead>
<tr>
<th>If this condition occurs...</th>
<th>And you want to...</th>
<th>Enter this command at the SP CLI prompt...</th>
</tr>
</thead>
<tbody>
<tr>
<td>An environmental sensor has reached an abnormal condition.</td>
<td>Display the status for all environmental sensors, their states, and the current values.</td>
<td>system sensors show</td>
</tr>
<tr>
<td></td>
<td>Display the status and details for a specific sensor.</td>
<td>system sensors get sensor_name</td>
</tr>
<tr>
<td>The system is not responding properly.</td>
<td>Access the system console from the SP.</td>
<td>system console</td>
</tr>
<tr>
<td></td>
<td>Create a core dump and reboot the system.</td>
<td>system core</td>
</tr>
<tr>
<td></td>
<td>Power-cycle the system.</td>
<td>system power cycle</td>
</tr>
<tr>
<td>You receive an AutoSupport message indicating an event such as a panic or hardware component failure.</td>
<td>Display what has occurred at the system console.</td>
<td>system log</td>
</tr>
<tr>
<td></td>
<td>Display all events.</td>
<td>events all</td>
</tr>
<tr>
<td></td>
<td>Display a specific number of recent events.</td>
<td>events newest number</td>
</tr>
<tr>
<td></td>
<td>Search for specific events regarding keyword.</td>
<td>events search keyword</td>
</tr>
<tr>
<td>The system firmware is corrupted.</td>
<td>Boot the system by using the backup image of the firmware.</td>
<td>system reset backup</td>
</tr>
</tbody>
</table>
| A FRU is malfunctioning. | Display the FRU's product information. | system fru list to list all FRU IDs  
 system fru show fru_id to display product information for a specific FRU |
Related references

- Commands for managing a system at the SP admin privilege level on page 206
- Commands for managing a system at the SP advanced privilege level on page 209

Managing the SP with Data ONTAP

You can use Data ONTAP to set up and display the SP configuration, display the SP status, reboot the SP, manage the SP firmware image, and manage access to the SP.

Methods of managing SP firmware updates

Starting with Data ONTAP 8.2, a baseline SP firmware image is packaged with the Data ONTAP image. By default, the SP automatic update functionality is enabled. You have the option to manually trigger an SP update.

Data ONTAP 8.2 and later releases include an SP firmware image that is called the baseline image. You do not need to download the baseline SP firmware image separately. If a new version of the SP firmware becomes subsequently available, you have the option to download it from the System Firmware and Diagnostics Download page on the NetApp Support Site and update the SP firmware to the downloaded version without upgrading the Data ONTAP version. For information about manually downloading and updating the SP firmware, see the SP Firmware Download and Installation Instructions on the NetApp Support Site.

Data ONTAP offers the following methods for managing SP firmware updates:

- The SP automatic update functionality is enabled by default, allowing the SP firmware to be automatically updated in the following scenarios:
  - When you upgrade to a new version of Data ONTAP
    The Data ONTAP upgrade process automatically includes the SP firmware update, provided that the SP firmware version bundled with Data ONTAP is newer than the SP version running on the system.
    
    **Note:** Data ONTAP detects a failed SP automatic update and triggers a corrective action to retry the SP automatic update up to three times. If all three retries have failed, you should contact technical support.
  
  - When you download a version of the SP firmware from the NetApp Support Site and the downloaded version is newer than the one that the SP is currently running
    You have the option to disable the SP automatic update functionality by using the `system node service-processor image modify` command. However, it is best to leave the functionality enabled. Disabling the functionality can result in suboptimal or nonqualified combinations between the Data ONTAP image and the SP firmware image.

- Data ONTAP enables you to trigger an SP update manually and specify how the update should take place by using the `system node service-processor image update` command. You can specify the following options:
The SP firmware package to use (\texttt{-package})
You can update the SP firmware to a downloaded package by specifying the package file name. The \texttt{system node image package show} command displays all package files (including the files for the SP firmware package) that are available on a node.

Whether to use the baseline SP firmware package for the SP update (\texttt{-baseline})
You can update the SP firmware to the baseline version that is bundled with the currently running version of Data ONTAP.

Whether to update the entire firmware image or only the changed portions (\texttt{-update-type})

If updating the entire firmware image, whether to also reset log settings to the factory default and clear contents of all logs maintained by the SP, including the event logs, IPMI logs, and forensics logs (\texttt{-clear-logs})

For information about the \texttt{system node service-processor image update} command, see the man page.

• Data ONTAP enables you to display the status for the latest SP firmware update by using the \texttt{system node service-processor image update-progress show} command.

Any existing connection to the SP is terminated when the SP firmware is being updated. This is the case whether the SP firmware update is automatic or manually triggered.

\textbf{Related information}

\textit{NetApp Support Site: mysupport.netapp.com}

\textbf{Restricting SP access to only the specified administration hosts}

You can configure the SP to accept SSH requests from only the administration hosts that you specify.

\textbf{Step}

1. Enter the following command to specify the administration host or hosts that you want to grant SP access:

\begin{verbatim}
options sp.ssh.access host_spec
\end{verbatim}

You can specify \texttt{host_spec} in the following forms:

• \texttt{host[=|!=]host_list}
  \texttt{host_list} is a comma-separated list that includes host names, IP addresses, or IP addresses with a netmask.

• \texttt{all} or \texttt{*}
  Allows all hosts to access the SP.

• \texttt{none} or \texttt{-}
  Allows no hosts to access the SP.
The default for `host_spec` is `*`.

For more information and examples about using this option, see the `na_spaccess(8)` man page.

### Examples of restricting SP access to only the specified hosts

The following example grants SP SSH access to the administration host with the specified IP address:

```
system> options sp.ssh.access host=192.168.123.98
```

The following example grants SP SSH access to two administration hosts, identified by their host names:

```
system> options sp.ssh.access host=myhost1,myhost2
```

The following example grants SP SSH access to all hosts with their IP address prefix matching 3FFE:81D0:107:2082:

```
system> options sp.ssh.access host=3FFE:81D0:107:2082::1/64
```

### Configuring automatic logout of idle SSH connections to the SP

You can configure the automatic logout settings so that an SSH connection to the SP is automatically terminated after the connection has been idle for the number of minutes you specify.

#### About this task

Setting changes for automatic logout of idle SP SSH connections take effect only on SSH sessions that start after the changes.

Automatic logout does not take effect if you access the SP through the serial console.

#### Steps

1. Enter the following command to enable SSH automatic logout for the SP:

   ```
   options sp.autologout.enable on
   ```

   **Note:** The default is `on`. Setting the option to `off` disables SSH automatic logout for the SP, causing the `sp.autologout.timeout` option to have no effect.

2. Enter the following command to specify the number of minutes after which an idle SSH connection to the SP is automatically disconnected:

   ```
   options sp.autologout.timeout minutes
   ```

   The default is 60 minutes.
Example of configuring automatic logout of idle SSH connections to the SP

The following example configures the SP to automatically disconnect SSH sessions that are idle for 30 minutes or more:

```
system> options sp.autologout.enable on
system> options sp.autologout.timeout 30
```

Data ONTAP commands for managing the SP

Data ONTAP provides commands for managing the SP, including setting up and displaying the SP network configuration, displaying the current SP status, rebooting the SP, managing the SP firmware image, and managing SSH access to the SP.

You can use the following Data ONTAP commands and options to manage the SP:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this Data ONTAP command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up or modify the SP network configuration, including the following:</td>
<td>system node service-processor network modify</td>
</tr>
<tr>
<td>• The IP address type (IPv4 or IPv6)</td>
<td></td>
</tr>
<tr>
<td>• Whether the network interface of the specified IP address type should be enabled</td>
<td></td>
</tr>
<tr>
<td>• If you are using IPv4, whether to use the network configuration from the DHCP server or the network address that you specify</td>
<td></td>
</tr>
<tr>
<td>• The public IP address for the SP</td>
<td></td>
</tr>
<tr>
<td>• The netmask for the SP (if using IPv4)</td>
<td></td>
</tr>
<tr>
<td>• The network prefix-length of the subnet mask for the SP (if using IPv6)</td>
<td></td>
</tr>
<tr>
<td>• The gateway IP address for the SP</td>
<td></td>
</tr>
</tbody>
</table>

Managing a storage system remotely | 219
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this Data ONTAP command...</th>
</tr>
</thead>
</table>
| Display the SP network configuration, including the following: | system node service-processor network show  
**Note:** Displaying complete SP network details requires the `–instance` parameter. |
| • The configured address type (IPv4 or IPv6) and whether it is enabled  
• The remote management device type  
• The current SP status and link status  
• Network configuration, such as IP address, MAC address, netmask, prefix-length of subnet mask, router-assigned IP address, link local IP address, and gateway IP address | |
| Display general SP information, including the following: | system node service-processor show  
| • The remote management device type  
• The current SP status  
• Whether the SP network is configured  
• Network information, such as the public IP address and the MAC address  
• The SP firmware version and Intelligent Platform Management Interface (IPMI) version  
• Whether the SP firmware automatic update is enabled | |
| Reboot the SP and optionally specify the SP firmware image (primary or backup) to use | system node service-processor reboot-sp  
**Attention:** You should avoid booting the SP from the backup image. Booting from the backup image is reserved for troubleshooting and recovery purposes only. It might require that the SP automatic firmware update be disabled, which is not a recommended setting. You should contact Technical Support before attempting to boot the SP from the backup image. |
If you want to... | Use this Data ONTAP command...
---|---
Display the details of the currently installed SP firmware image, including the following:
- The remote management device type
- The partition (primary or backup) that the SP is booted from, its status, and firmware version
- Whether the firmware automatic update is enabled and the last update status | `system node service-processor image show`

**Note:** The `-is-current` parameter indicates the partition (primary or backup) that the SP is currently booted from, not whether the installed firmware version is most current.

Enable or disable the SP automatic firmware update | `system node service-processor image modify`

**Note:** By default, the SP firmware is automatically updated with the update of Data ONTAP or when a new version of the SP firmware is manually downloaded. Disabling the automatic update is not recommended because doing so can result in suboptimal or nonqualified combinations between the Data ONTAP image and the SP firmware image.

Manually download an SP firmware image | `software get`

**Note:** The SP firmware image is packaged with Data ONTAP. You do not need to download the SP firmware manually, unless you want to use an SP firmware version that is different from the one packaged with Data ONTAP.
<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this Data ONTAP command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually update the SP firmware, by specifying the following:</td>
<td>system node service-processor image update</td>
</tr>
<tr>
<td>• The SP firmware package to use</td>
<td></td>
</tr>
<tr>
<td>You can have the SP use a specific SP firmware package by specifying the package file name. The <code>software list</code> command displays all package files (including the files for the SP firmware package) that are available on a node.</td>
<td></td>
</tr>
<tr>
<td>• The installation baseline</td>
<td></td>
</tr>
<tr>
<td>You can update the SP firmware to the baseline version that is bundled with the currently running version of Data ONTAP.</td>
<td></td>
</tr>
<tr>
<td>• Whether to update the entire firmware image or only the changed portions</td>
<td></td>
</tr>
<tr>
<td>• If updating the entire firmware image, whether to also reset log settings to the factory default and clear contents of all logs maintained by the SP, including the event logs, IPMI logs, and forensics logs</td>
<td></td>
</tr>
<tr>
<td>Display the status for the latest SP firmware update, including the following information:</td>
<td>system node service-processor image update-progress show</td>
</tr>
<tr>
<td>• The start and end time for the latest SP firmware update</td>
<td></td>
</tr>
<tr>
<td>• Whether an update is in progress and the percentage that is complete</td>
<td></td>
</tr>
<tr>
<td>Enable or disable automatic logout of idle SSH connections to the SP</td>
<td>options sp.autologout.enable</td>
</tr>
<tr>
<td>Specify the number of minutes after which an idle SSH connection to the SP is automatically disconnected</td>
<td>options sp.autologout.timeout</td>
</tr>
<tr>
<td><strong>Note:</strong> For this option to take effect, the <code>sp.autologout.enable</code> option must be set to on.</td>
<td></td>
</tr>
<tr>
<td>Restrict SP access to only the specified administration hosts</td>
<td>options sp.ssh.access</td>
</tr>
</tbody>
</table>
Enabling or disabling SNMP traps for Data ONTAP and the SP

You can use the `snmp.enable` option to enable or disable SNMP traps for both Data ONTAP and the SP.

About this task

The `snmp.enable` option is the master control for SNMP traps for both Data ONTAP and the SP. Consider leaving the `snmp.enable` option to `on` to enable SNMP traps for both Data ONTAP and the SP.

Step

1. To enable or disable SNMP traps for both Data ONTAP and the SP, enter the following command at the storage system prompt:

   ```
   options snmp.enable [on|off]
   ```

   The default is `on`.

Related tasks

Disabling SNMP traps for only the SP on page 223

Disabling SNMP traps for only the SP

You can disable SNMP traps for only the SP and leave SNMP traps for Data ONTAP enabled.

Step

1. To disable SNMP traps for only the SP, enter the following command at the storage system prompt:

   ```
   options sp.snmp.traps off
   ```

   The default is `on`.

   If the `sp.snmp.traps` option is set to `off`, every time the system boots, an EMS message occurs to inform you that the SNMP trap support for the SP is currently disabled and that you can set the `sp.snmp.traps` option to `on` to enable it. This EMS message also occurs when the `sp.snmp.traps` option is set to `off` and you try to run a Data ONTAP command to use the SP to send an SNMP trap.

   You cannot enable SNMP traps for only the SP when SNMP traps for Data ONTAP is disabled. If you set `options snmp.enable` to `off`, both Data ONTAP and the SP stop sending SNMP traps, even if `options sp.snmp.traps` is set to `on`. That is, the following command combination does not result in enabled SNMP traps for only the SP:

   ```
   options snmp.enable off
   options sp.snmp.traps on
   ```
Managing a system remotely by using the Remote LAN Module

The Remote LAN Module (RLM) is a remote management device that is provided on the 31xx, 6040, and 6080 platforms. The RLM provides remote system management capabilities, including remote access, monitoring, troubleshooting, logging, and alerting features.

The RLM stays operational regardless of the operating state of the system. It is powered by a standby voltage, which is available as long as the system has input power to at least one of its power supplies.

The RLM has a single temperature sensor to detect ambient temperature around the RLM board. Data generated by this sensor is not used for any system or RLM environmental policies. It is only used as a reference point that might help you troubleshoot system issues. For example, it might help a remote administrator determine if the system was shut down due to an extreme temperature change.

For instructions about how to cable a system to the RLM, see the Installing or Replacing a Remote LAN Module flyer.

The following diagram illustrates how you can access the storage system and the RLM.

- Without the RLM, you can access the system through the serial console or from an Ethernet connection using any supported network interface. You use the Data ONTAP CLI to administer the system.
- With the RLM, you can remotely access the system through the serial console. The RLM is directly connected to the system through the serial console. You use the Data ONTAP CLI to administer the system and the RLM.
- With the RLM, you can also access the system through an Ethernet connection using a secure shell client application.
You use the RLM CLI to monitor and troubleshoot the system.

If you have a data center configuration where management traffic and data traffic are on separate networks, you can configure the RLM on the management network.

Related concepts

*What the e0M interface is* on page 32

**What the RLM does**

The commands in the RLM CLI enable you to remotely access and administer the storage system and diagnose error conditions. Also, the RLM extends AutoSupport capabilities by sending alerts and notifications through an AutoSupport message.

Using the RLM CLI commands, you can perform the following tasks:

- Remotely administer the storage system by using the Data ONTAP CLI through the RLM’s system console redirection feature
- Remotely access the storage system and diagnose error conditions, even if the storage system has failed, by performing the following tasks:
  - View the storage system console messages, captured in the RLM’s console log
  - View storage system events, captured in the RLM's system event log
  - Initiate a storage system core dump
  - Power-cycle the storage system (or turn it on or off)
  - Reset the storage system
  - Reboot the storage system

The RLM extends AutoSupport capabilities by sending alerts and “down system” or “down filer” notifications through an AutoSupport message when the storage system goes down, regardless of whether the storage system can send AutoSupport messages. Other than generating these messages on behalf of a system that is down, and attaching additional diagnostic information to AutoSupport messages, the RLM has no effect on the storage system’s AutoSupport functionality. The AutoSupport configuration settings and message content behavior of the RLM are inherited from Data ONTAP.

**Note:** The RLM does not rely on the `autosupport.support.transport` option to send notifications. The RLM only uses the Simple Mail Transport Protocol (SMTP) and requires its host’s AutoSupport configuration to include mail host information.

In addition to AutoSupport messages, the RLM generates SNMP traps to configured trap hosts for all “down system” or “down filer” events, if SNMP is enabled for the RLM.
The RLM has a nonvolatile memory buffer that stores up to 4,000 system events in a system event log (SEL) to help you diagnose system issues. The event list from the SEL is automatically sent by the RLM to specified recipients in an AutoSupport message. The records contain the following data:

- Hardware events detected by the RLM—for example, system sensor status about power supplies, voltage, or other components
- Errors (generated by the storage system or the RLM) detected by the RLM—for example, a communication error, a fan failure, a memory or CPU error, or a boot image not found message
- Critical software events sent to the RLM by the storage system—for example, a system panic, a communication failure, an unexpected boot environment prompt, a boot failure, or a user-triggered “down system” as a result of issuing the system reset or system power cycle command.

The RLM monitors the storage system console regardless of whether administrators are logged in or connected to the console. When storage system messages are sent to the console, the RLM stores them in the console log. The console log persists as long as the RLM has power from either of the storage system’s power supplies. Because the RLM operates with standby power, it remains available even when the storage system is power-cycled or turned off.

Hardware-assisted takeover is available on systems that support the RLM and have the RLM modules set up. For more information about hardware-assisted takeover, see the Data ONTAP High Availability and MetroCluster Configuration Guide for 7-Mode.

The RLM supports the SSH protocol for CLI access from UNIX clients and PuTTY for CLI access from PC clients. Telnet and RSH are not supported by the RLM, and system options to enable or disable them have no effect on the RLM.

**Related concepts**

*Troubleshooting the storage system by using the RLM* on page 242
*Managing AutoSupport* on page 165

**Configuring the RLM network**

Before you can access the RLM, the RLM network must be configured and enabled. You can configure the RLM to use IPv4, IPv6, or both. The RLM IPv4 configuration supports static and DHCP addressing, and the RLM IPv6 configuration supports static addressing only.

**Before you begin**

To configure IPv6 connections for the RLM, IPv6 must already be configured and enabled for Data ONTAP. The `ip.v6.enable` option controls the IPv6 settings for Data ONTAP. For more information about IPv6 configuration, see the *Data ONTAP Network Management Guide for 7-Mode*. 
Steps

1. Configure and enable the RLM by using the `system node service-processor network modify` command.
   - The `-address-type` parameter specifies whether the IPv4 or IPv6 configuration of the RLM is to be modified.
   - The `-enable` parameter enables the network interface of the specified IP address type.
   - The `-dhcp` parameter specifies whether to use the network configuration from the DHCP server or the network address that you provide.
     You can enable DHCP (by setting `-dhcp` to `v4`) only if you are using IPv4. You cannot enable DHCP for IPv6 configurations.
     If `-dhcp` is set to `v4`, you do not need to specify the `-ip-address`, `-netmask`, `-prefix-length`, or `-gateway` parameter.
   - The `-ip-address` parameter specifies the public IP address for the RLM.
   - The `-netmask` parameter specifies the netmask for the RLM (if using IPv4.)
   - The `-prefix-length` parameter specifies the network prefix-length of the subnet mask for the RLM (if using IPv6.)
   - The `-gateway` specifies the gateway IP address for the RLM.

2. Display the RLM network configuration to verify the settings by using the `system node service-processor network show` command.

Example of configuring the RLM network

The following example configures the RLM to use IPv4, enables the RLM, and displays the RLM network configuration to verify the settings:

```
system> system node service-processor network modify -node local
      -address-type IPv4 -enable true -ip-address 192.168.123.98
      -netmask 255.255.255.0 -gateway 192.168.123.1

system> system node service-processor network show -instance -node local

Node: system
Address Type: IPv4
Interface Enabled: true
Type of Device: RLM
  Status: online
  Link Status: up
  DHCP Status: none
  IP Address: 192.168.123.98
  MAC Address: ab:cd:ef:fe:ed:02
  Netmask: 255.255.255.0
Prefix Length of Subnet Mask: -
Router Assigned IP Address: -
Link Local IP Address: -
Gateway IP Address: 192.168.123.1
```
Accounts that can access the RLM

The RLM comes with an account named “naroot”. Only the RLM’s “naroot” account and Data ONTAP local user accounts with the credentials of the admin role or a role with the login-sp capability can log in to the RLM. These users have access to all commands available on the RLM.

For enhanced security, the RLM does not allow you to log in with the Data ONTAP account name “root”. Instead, it maps the Data ONTAP “root” account to the RLM “naroot” account. You use the Data ONTAP “root” password when you use the RLM's “naroot” account to log into the RLM.

**Note:** If you disable the “root” account's access to the storage system, the RLM's “naroot” access to the storage system is automatically disabled.

You cannot create user accounts directly from the RLM. However, local users created in Data ONTAP with the credentials of the admin role or a role with the login-sp capability can log in to the RLM. Changes to user account credentials on the storage system are automatically updated to the RLM.

You cannot use the following generic names as account names to access the RLM. Therefore, it is best not to use them as Data ONTAP account names or assign them to Data ONTAP groups that have the admin role or a role that includes the login-sp capability:

- adm
- bin
- cli
- daemon
- ftp
- games
Before you begin

The following are the prerequisites for logging in to the RLM:

- A secure shell application must be installed on the host.
The RLM accepts only SSH connections. It does not respond to other protocols. RLM firmware version 4.0 or later accepts only SSHv2 access to the RLM.

- You must have access to the RLM’s “naroot” account or a Data ONTAP local user account with the credentials of the admin role or a role with the login-sp capability.

**About this task**

If the RLM is running firmware version 4.0 or later and is configured to use an IPv4 address, the RLM rejects SSH login requests and suspends all communication with the IP address for 15 minutes if five SSH login attempts fail repeatedly within 10 minutes. The communication resumes after 15 minutes, and you can try to log in to the RLM again.

The RLM ignores the autologout.telnet.timeout and autologout.console.timeout options. The settings for these options do not have any effect on the RLM.

**Steps**

1. Enter the following command from the UNIX host:
   
   \[ ssh \text{username@RLM\_IP\_address} \]

2. When you are prompted, enter the password for \text{username}.

   The RLM prompt appears, indicating that you have access to the RLM CLI.

**Examples of RLM access from an administration host**

The following example shows how to log in to the RLM as naroot:

\[ ssh \text{naroot@192.168.123.98} \]

The following example shows how to log in to the RLM with a user account, “joe”, which has been set up on the storage system to access the RLM:

\[ ssh \text{joe@192.168.123.98} \]

The following examples show how to use the IPv6 global address or IPv6 router-advertised address to log in to the RLM on a storage system that has SSH set up for IPv6 and the RLM configured for IPv6:

\[ ssh \text{joe@fd22:8b1e:b255:202::1234} \]

\[ ssh \text{joe@fd22:8b1e:b255:202:2a0:98ff:fe01:7d5b} \]
Accessing the serial console from the RLM

The RLM's system console command enables you to log in to the serial console from the RLM.

Steps

1. Enter the following command at the RLM prompt:
   ```
   system console
   ```
   The message Type Ctrl-D to exit appears.
2. Press Enter to see the system prompt.
3. To exit the serial console and return to the RLM CLI, press Ctrl-D.

Example of accessing the serial console from the RLM

The following example shows the result of entering the system console command at the RLM prompt. The vol status command is entered at the console, followed by Ctrl-D, which returns you to the RLM prompt.

```
RLM> system console
Type Ctrl-D to exit.

(Press Enter to see the storage system prompt.)

toaster>
toaster> vol status

(Command output is displayed.)

(Press Ctrl-D to exit the storage serial console and return to the RLM CLI.)

RLM>
```

RLM CLI and system console sessions

Only one administrator can log in to an active RLM CLI session at a time. However, the RLM allows you to open both an RLM CLI session and a separate, RLM-redirected system console session simultaneously.

The RLM prompt appears with RLM in front of the host name of the storage system. For example, if your storage system is named toaster, the storage system prompt is toaster> and the prompt for the RLM session is RLM toaster>.
If an RLM CLI session is currently open, you or another administrator with privileges to log in to the RLM can close the RLM CLI session and open a new one. This feature is convenient if you logged in to the RLM from one computer and forgot to close the session before moving to another computer, or if another administrator takes over the administration tasks from a different computer.

When you use the RLM's `system console` command to connect to the storage system console from the RLM, you can start a separate SSH session for the RLM CLI, leaving the system console session active. When you press Ctrl-d to exit from the storage system console, you automatically return to the RLM CLI session. If an RLM CLI session already exists, the following message appears:

```
User username has an active CLI session.
Would you like to disconnect that session, and start yours [y/n]? 
```

If you enter `y`, the session owned by `username` is disconnected and your session is initiated. This action is recorded in the RLM’s system event log.

If you use the RLM to power-cycle the storage system, no real-time messages regarding the boot progress appear in the RLM console. To monitor the storage system during a power cycle, you can keep the RLM CLI session and the system console session active simultaneously. The system console session provides real-time output from the system, including the progress of the system boot.

### Using online help at the RLM CLI

The RLM online help displays all RLM commands and options when you enter the question mark (?) or `help` at the RLM prompt.

#### Steps

1. To display help information for RLM commands, enter one of the following at the RLM prompt:
   
   - `help`
   - `?`

#### Example

The following example shows the RLM CLI online help:

```
RLM toaster> help
  date - print date and time
  exit - exit from the RLM command line interface
  events - print system events and event information
  help - print command help
  priv - show and set user mode
  rlm - commands to control the RLM
  rsa - commands for Remote Support Agent
  system - commands to control the system
  version - print RLM version
```
For more information about the RSA command, see the Remote Support Agent Configuration Guide for 7-Mode for Use with Data ONTAP.

2. To display help information for the option of an RLM command, enter the following command at the RLM prompt:

   `help RLM_command`

**Example**

The following example shows the RLM CLI online help for the RLM `events` command:

```
RLM toaster> help events
events all - print all system events
events info - print system event log information
events newest - print newest system events
events oldest - print oldest system events
events search - search for and print system events
```

**Commands for managing a system at the RLM admin privilege level**

You can perform most RLM tasks at the admin privilege level. For example, you can display system events and status information for environmental sensors, reboot the storage system or the RLM, and create a system core dump.

The following RLM commands are available at the admin privilege level:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command at the RLM CLI...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display system date and time</td>
<td><code>date</code></td>
</tr>
<tr>
<td>Display storage system events logged by the RLM</td>
<td>`events {all</td>
</tr>
<tr>
<td>Exit the RLM CLI</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Display a list of available commands or subcommands of a specified command</td>
<td><code>help [command]</code></td>
</tr>
<tr>
<td>Set the privilege level to access the specified mode</td>
<td>`priv set {admin</td>
</tr>
<tr>
<td>Display the current privilege level</td>
<td><code>priv show</code></td>
</tr>
<tr>
<td>Reboot the RLM</td>
<td><code>rlm reboot</code></td>
</tr>
</tbody>
</table>
| Display the RLM environmental sensor status | `rlm sensors [-c]`

**Note:** The `-c` option, which takes a few seconds to display, shows current values rather than cached values.
If you want to... | Use this command at the RLM CLI...
---|---
Display RLM status | `rlm status [-v|-d]`
   - **Note:** The `–v` option displays verbose statistics. The `–d` option displays RLM debug information. The Data ONTAP `sysconfig` command displays both the storage system and RLM status.

Update the RLM firmware | `rlm update http://path [-f]`
   - **Note:** The `–f` option issues a full image update.

Manage the RSA if it is configured for the system | `rsa`
   - **Note:** For information about the RSA, see the *Remote Support Agent Configuration Guide for 7-Mode for Use with Data ONTAP.*

Log in to the Data ONTAP CLI | `system console`
   - **Note:** Pressing Ctrl-D returns you to the RLM CLI.

Dump the system core and reset the system | `system core`
   - **Note:** This command has the same effect as pressing the Non-maskable Interrupt (NMI) button on a storage system. The RLM stays operational as long as input power to the storage system is not interrupted.

Turn on or turn off the storage system, or perform a power-cycle (which turns off system power and then turns it back on) | `system power {on | off | cycle}`
   - **Note:** Standby power stays on, even when the storage system is off. During power-cycling, a brief pause occurs before power is turned back on.
   - **Attention:** Using the `system power` command to turn off or power-cycle the storage system might cause an improper shutdown of the system (also called a *dirty shutdown*) and is not a substitute for a graceful shutdown using the Data ONTAP `halt` command.
If you want to... | Use this command at the RLM CLI...
--- | ---
Display status for each power supply, such as presence, input power, and output power | `system power status`

Reset the storage system using the specified BIOS firmware image | `system reset {primary | backup | current}`

*Note:* The RLM stays operational as long as input power to the storage system is not interrupted.

Display the RLM version information, including hardware and firmware information | `version`

### Commands for managing a system at the RLM advanced privilege level

In addition to using the RLM admin commands, you can use the RLM advanced privilege level to display RLM command history, RLM debug and message files, status of environmental sensors, and RLM statistics.

The following RLM commands are available only at the advanced privilege level:

<table>
<thead>
<tr>
<th>If you want to display...</th>
<th>Use this command at the RLM CLI...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLM command history or search for audit logs from the system event log (SEL)</td>
<td><code>rlm log audit</code></td>
</tr>
<tr>
<td>RLM debug file</td>
<td><code>rlm log debug</code></td>
</tr>
<tr>
<td>RLM message file</td>
<td><code>rlm log messages</code></td>
</tr>
<tr>
<td>List of environmental sensors, their states, and their current values</td>
<td><code>system sensors</code></td>
</tr>
<tr>
<td>RLM statistics</td>
<td><code>rlm status -v</code></td>
</tr>
</tbody>
</table>

**Related tasks**

*Setting the privilege level* on page 28
Managing the RLM with Data ONTAP

You can use Data ONTAP to set up and display the RLM configuration, display the RLM status, reboot the RLM, manage the RLM firmware image, and manage access to the RLM.

Data ONTAP commands for managing the RLM

Data ONTAP provides commands for managing the RLM, including setting up and displaying the RLM network configuration, displaying the current RLM status, rebooting the RLM, managing the RLM firmware image, and managing SSH access to the RLM.

You can use the following Data ONTAP commands and options to manage the RLM:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this Data ONTAP command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up or modify the RLM network configuration, including the following:</td>
<td>system node service-processor network modify</td>
</tr>
<tr>
<td>• The IP address type (IPv4 or IPv6)</td>
<td></td>
</tr>
<tr>
<td>• Whether the network interface of the specified IP address type should be enabled</td>
<td></td>
</tr>
<tr>
<td>• If you are using IPv4, whether to use the network configuration from the DHCP server or the network address that you specify</td>
<td></td>
</tr>
<tr>
<td>• The public IP address for the RLM</td>
<td></td>
</tr>
<tr>
<td>• The netmask for the RLM (if using IPv4)</td>
<td></td>
</tr>
<tr>
<td>• The network prefix-length of the subnet mask for the RLM (if using IPv6)</td>
<td></td>
</tr>
<tr>
<td>• The gateway IP address for the RLM</td>
<td></td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this Data ONTAP command...</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Display the RLM network configuration, including the following:</td>
<td>system node service-processor network show</td>
</tr>
<tr>
<td>• The configured address type (IPv4 or IPv6) and whether it is enabled</td>
<td><strong>Note:</strong> Displaying complete RLM network details requires the <code>-instance</code> parameter.</td>
</tr>
<tr>
<td>• The remote management device type</td>
<td></td>
</tr>
<tr>
<td>• The current RLM status and link status</td>
<td></td>
</tr>
<tr>
<td>• Network configuration, such as IP address, MAC address, netmask, prefix-length of subnet mask, router-assigned IP address, link local IP address, and gateway IP address</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display general RLM information, including the following:</th>
<th>system node service-processor show</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The remote management device type</td>
<td></td>
</tr>
<tr>
<td>• The current RLM status</td>
<td></td>
</tr>
<tr>
<td>• Whether the RLM network is configured</td>
<td></td>
</tr>
<tr>
<td>• Network information, such as the public IP address and the MAC address</td>
<td></td>
</tr>
<tr>
<td>• The RLM firmware version</td>
<td></td>
</tr>
</tbody>
</table>

| Reboot the RLM and optionally specify the RLM firmware image (primary or backup) to use | system node service-processor reboot-sp                                                    |

<table>
<thead>
<tr>
<th>Display the details of the currently installed RLM firmware image, including the following:</th>
<th>system node service-processor image show</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The remote management device type</td>
<td><strong>Note:</strong> The <code>-is-current</code> parameter indicates the partition (primary or backup) that the RLM is currently booted from, not whether the installed firmware version is most current.</td>
</tr>
<tr>
<td>• The partition (primary or backup) that the RLM is booted from, its status, and firmware version</td>
<td></td>
</tr>
<tr>
<td><strong>If you want to...</strong></td>
<td><strong>Use this Data ONTAP command...</strong></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Download an RLM firmware image</td>
<td><code>software get</code>&lt;br&gt;<strong>Note:</strong> For instructions about downloading and updating an RLM firmware image, see the <em>RLM Firmware</em> page on the NetApp Support Site.</td>
</tr>
<tr>
<td>Update the RLM firmware, by specifying the following:&lt;br&gt;&lt;li&gt;The RLM firmware package to use&lt;br&gt;You can have the RLM use a specific RLM firmware package by specifying the package file name. The <code>software list</code> command displays all package files (including the files for the RLM firmware package) that are available on a node.&lt;br&gt;&lt;li&gt;Whether to update the entire firmware image or only the changed portions&lt;br&gt;&lt;li&gt;If updating the entire firmware image, whether to also reset log settings to the factory default and clear contents of all logs maintained by the RLM</td>
<td><code>system node service-processor image update</code>&lt;br&gt;<strong>Note:</strong> The RLM firmware does not support automatic firmware update. Setting the <code>-baseline</code> parameter to <code>true</code> is not supported on a system that has the RLM.</td>
</tr>
<tr>
<td>Display the status for the latest RLM firmware update, including the following information:&lt;br&gt;&lt;li&gt;The start and end time for the latest RLM firmware update&lt;br&gt;&lt;li&gt;Whether an update is in progress and the percentage that is complete</td>
<td><code>system node service-processor image update-progress show</code></td>
</tr>
<tr>
<td>Enable or disable automatic logout of idle SSH connections to the RLM</td>
<td><code>options rlm.autologout.enable</code></td>
</tr>
<tr>
<td>Specify the number of minutes after which an idle SSH connection to the RLM is automatically disconnected</td>
<td><code>options rlm.autologout.timeout</code>&lt;br&gt;<strong>Note:</strong> For this option to take effect, the <code>rlm.autologout.enable</code> option must be set to <code>on</code>.</td>
</tr>
<tr>
<td>Restrict RLM access to only the specified administration hosts</td>
<td><code>options rlm.ssh.access</code></td>
</tr>
</tbody>
</table>
Restricting RLM access to only the specified administration hosts

You can configure the RLM to accept SSH requests from only the administration hosts that you specify.

Before you begin

Your system must be running RLM firmware 4.1 or later for the RLM access control to be supported. For information about downloading and updating the RLM firmware, see the Data ONTAP Upgrade and Revert/Downgrade Guide for 7-Mode.

Step

1. Enter the following command to specify the administration host or hosts that you want to grant RLM access:

   `options rlm.ssh.access host_spec`

   You can specify `host_spec` in the following forms:

   - `host[=|!=]host_list`
     `host_list` is a comma-separated list that includes host names, IP addresses, or IP addresses with a netmask.

   - `all` or `*`
     Allows all hosts to access the RLM.

   - `none` or `-`
     Allows no hosts to access the RLM.

   The default for `host_spec` is `*`.

   For more information and examples about using this option, see the na_rlmaccess(8) man page.

<table>
<thead>
<tr>
<th>Examples of restricting RLM access to only the specified hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following example grants RLM SSH access to the administration host with the specified IP address:</td>
</tr>
<tr>
<td>system&gt; options rlm.ssh.access host=192.168.123.98</td>
</tr>
<tr>
<td>The following example grants RLM SSH access to two administration hosts, identified by their host names:</td>
</tr>
<tr>
<td>system&gt; options rlm.ssh.access host=myhost1,myhost2</td>
</tr>
<tr>
<td>The following example grants RLM SSH access to all hosts with their IP address prefix matching 3FFE:81D0:107:2082:</td>
</tr>
</tbody>
</table>
Configuring automatic logout of idle SSH connections to the RLM

You can configure the automatic logout settings so that an SSH connection to the RLM is automatically terminated after the connection has been idle for the number of minutes you specify.

Before you begin

Your system must be running RLM firmware version 4.1 or later for the automatic logout configuration to be supported. For information about downloading and updating the RLM firmware, see the Data ONTAP Upgrade and Revert/Downgrade Guide for 7-Mode.

About this task

Setting changes for automatic logout of idle RLM SSH connections take effect only on SSH sessions that start after the changes.

Automatic logout does not take effect if you access the RLM through the serial console.

Steps

1. Enter the following command to enable SSH automatic logout for the RLM:
   
   ```
   options rlm.autologout.enable on
   ```
   
   **Note:** The default is `on`. Setting the option to `off` disables SSH automatic logout for the RLM, causing the `rlm.autologout.timeout` option to have no effect.

2. Enter the following command to specify the number of minutes after which an idle SSH connection to the RLM is automatically disconnected:

   ```
   options rlm.autologout.timeout minutes
   ```

   The default is 60 minutes.

Example of configuring automatic logout of idle SSH connections to the RLM

The following example configures the RLM to automatically disconnect SSH sessions that are idle for 30 minutes or more:

```plaintext
system> options rlm.autologout.enable on
system> options rlm.autologout.timeout 30
```
RLM and SNMP traps

If SNMP is enabled for the RLM, the RLM generates SNMP traps to configured trap hosts for all "down system" events.

You can enable SNMP traps for both Data ONTAP and the RLM. You can also disable the SNMP traps for only the RLM and leave the SNMP traps for Data ONTAP enabled.

For information about SNMP traps, see the *Data ONTAP Network Management Guide for 7-Mode*.

Enabling or disabling SNMP traps for Data ONTAP and the RLM

You can enable or disable SNMP traps for both Data ONTAP and the RLM by using the `snmp.enable` option.

About this task

The `snmp.enable` option is the master control for enabling or disabling SNMP traps for both Data ONTAP and the RLM. Consider leaving the `snmp.enable` option set to `on` to enable SNMP traps for both Data ONTAP and the RLM.

Step

1. Enter the following command to enable or disable SNMP traps for both Data ONTAP and the RLM:

   ```
   options snmp.enable [on|off]
   ```

   The default option is `on`.

   **Note:** If you enable SNMP traps on the storage system and the currently installed RLM firmware version does not support SNMP, an EMS message is logged requesting an upgrade of the RLM firmware. Until the firmware upgrade is performed, SNMP traps are not supported on the RLM. For instructions about how to download and update the RLM firmware, see the *Data ONTAP Upgrade and Revert/Downgrade Guide for 7-Mode*.

Related tasks

*Disabling SNMP traps for only the RLM* on page 241

Disabling SNMP traps for only the RLM

You can disable SNMP traps for only the RLM and leave SNMP traps for Data ONTAP enabled.

Step

1. To disable SNMP traps for only the RLM, enter the following command at the storage system prompt:

   ```
   options rlm.snmp.traps off
   ```
The default is on.

If the `rlm.snmp.traps` option is set to off, every time the system boots, an EMS message occurs to inform you that the SNMP trap support for the RLM is currently disabled and that you can set the `rlm.snmp.traps` option to on to enable it. This EMS message also occurs when the `rlm.snmp.traps` option is set to off and you try to run a Data ONTAP command to use the RLM to send an SNMP trap.

You cannot enable SNMP traps for only the RLM when SNMP traps for Data ONTAP is disabled. If you set `options snmp.enable` to off, both Data ONTAP and the RLM stop sending SNMP traps, even if `options rlm.snmp.traps` is set to on. That is, the following command combination does not result in enabled SNMP traps for only the RLM:

```
options snmp.enable off
options rlm.snmp.traps on
```

**Related tasks**

*Enabling or disabling SNMP traps for Data ONTAP and the RLM* on page 241

**Troubleshooting the storage system by using the RLM**

When you encounter a problem with the storage system, you can use the RLM to display information about the problem, create a core dump, and reboot the system, even if the system’s firmware is corrupted.

The following table describes the RLM commands that you can use to troubleshoot a system:

<table>
<thead>
<tr>
<th>If this condition occurs...</th>
<th>And you want to...</th>
<th>Enter this command at the RLM CLI prompt...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You receive an AutoSupport message indicating an event such as a panic or hardware component failure.</td>
<td>Display what has occurred at the storage system console.</td>
<td><code>system log</code></td>
</tr>
<tr>
<td></td>
<td>Display all events.</td>
<td><code>events all</code></td>
</tr>
<tr>
<td></td>
<td>Display a specific number of recent events.</td>
<td><code>events newest number</code></td>
</tr>
<tr>
<td></td>
<td>Search for specific events in the SEL.</td>
<td><code>events search string</code></td>
</tr>
<tr>
<td>The system is not responding properly.</td>
<td>Access the system console from the RLM.</td>
<td><code>system console</code></td>
</tr>
<tr>
<td></td>
<td>Create a core dump and reboot the system.</td>
<td><code>system core</code></td>
</tr>
<tr>
<td></td>
<td>Power-cycle the system.</td>
<td><code>system power cycle</code></td>
</tr>
</tbody>
</table>
If this condition occurs... | And you want to... | Enter this command at the RLM CLI prompt...
---|---|---
The system firmware is corrupted. | Boot the system by using a backup copy of the system firmware. | system reset backup

Troubleshooting RLM connection problems

If you are having difficulty connecting to the RLM, you should verify that you are using a secure shell client and that the IP configuration is correct.

Steps

1. Verify that you are using a secure shell client to connect to the RLM.

2. From the Data ONTAP CLI, verify that the RLM is online and the IP configuration is correct by using the `system node service-processor network show` command.

3. From the administration host, test the network connection for the RLM by using the `ping rlm_IP_address` command.

4. If the ping fails, do one of the following:
   - Verify that the RLM network port on the back of the system is cabled and active. For more information, see the Installation and Setup Instructions for your storage system.
   - Modify the RLM configuration to use a valid IP address by using the `system node service-processor network modify` command.
   - Verify that the administration host has a route to the RLM.

5. Reboot the RLM by using the `system node service-processor reboot-sp` command.
   **Note:** It takes approximately one minute for the RLM to reboot.

6. If the RLM does not reboot, repeat Steps 2 through 5. If the RLM still does not reboot, contact technical support for assistance.
System information

Data ONTAP enables you to display information about your storage system, including the system's configuration, storage components, aggregate and volume information, file statistics, environmental status, Fibre Channel information, and SAS adapter and expander information.

Note: Some options for different commands can gather the same system information. For example, the `aggr status -r` command and `sysconfig -r` command gather the same RAID information and present it in the same format.

Displaying storage system configuration information

You can display configuration information about the storage system, including version information, hardware configuration, disk information, RAID and checksum information, tape drive information, volume information, and tape library information.

Step

1. Enter one of the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>Displays the version of Data ONTAP currently running on a storage system.</td>
</tr>
<tr>
<td>sysconfig</td>
<td>Displays information about the storage system’s hardware configuration.</td>
</tr>
<tr>
<td>sysconfig -a</td>
<td>Displays the same information as the <code>-v</code> option, but the information is</td>
</tr>
<tr>
<td></td>
<td>more detailed.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| **sysconfig -A** | Displays storage system information gathered by the following commands, one after the other:  
• `sysconfig`
• `sysconfig -c`
• `sysconfig -d`
• `sysconfig -V`
• `sysconfig -r`
• `sysconfig -m`  
Therefore, when you use the `sysconfig -A` command, Data ONTAP lists information about configuration errors, disk drives, medium changers, RAID details, tape devices, and aggregates. |
| **sysconfig -c** | Checks that expansion cards are in the appropriate slots and reports any configuration errors.  
If there are no configuration errors, the `sysconfig -c` command reports the following:  
`sysconfig: There are no configuration errors.` |
<p>| <strong>sysconfig -d</strong> | Displays product information about each disk in the storage system. |
| <strong>sysconfig -P</strong> | Enumerates the PCI hierarchy of the system, enabling the support and debug of errors from the PCI subsystem. The <code>-P</code> option is not supported on all platforms. |
| <strong>sysconfig -p</strong> | Displays information about the physical host machine and its mapping to the virtual machine. |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| **sysconfig -r** | Displays the status of plexes and aggregates, the RAID configuration, and checksum information about the parity disks, data disks, and hot spare disks, if any. This information is useful for the following purposes:  
  - Locating a disk referenced in a console message  
  - Determining how much space on each disk is available to the storage system  
  - Determining the status of disk operations, such as RAID scrubbing, reconstruction, parity verification, adding a hot spare, and disk failure  
  - Determining the number of spare disks  
  - Determining a checksum type for an aggregate  
  
  **Note:** You can also obtain the information displayed by `sysconfig -r` from SNMP, using the custom Management Information Base (MIB). For information about SNMP, see the *Data ONTAP Network Management Guide for 7-Mode*. |
| **sysconfig -t** | Displays device and configuration information for each tape drive on the system. You can use this command to determine the capacity of the tape drive and the device name before you use the `dump` and `restore` commands. |
| **sysconfig -V** | Displays RAID group and disk information about each traditional volume and aggregate. |
| **sysconfig -m** | Displays tape library information. Before you use this option, ensure that the storage system was booted with the autoload setting of the tape library off. |
| **sysconfig -v** | Displays the system’s RAM size, NVRAM size, and information about devices in all expansion slots. This information varies according to the devices on the storage system. You can specify a slot number to display information about a particular slot. Slot numbers start at 0, where slot 0 is the system board.  
  
  **Note:** If you enter `sysconfig` without any options, information similar to what you get with `sysconfig -v` is displayed, but the information is abbreviated. When you report a problem to technical support, provide the information displayed by `sysconfig -v`. This information is useful for diagnosing system problems. |

**Note:** You can also get system information, either interactively or with a script, using the `stats` command.

For more information about the `sysconfig` command, see the *na_sysconfig(1)* man page.
Related concepts

*Storage system information and the stats command* on page 251

Displaying aggregate information

You can display information about the configuration and the state of an aggregate.

About this task

You use the `aggr status` command to display information about aggregate configurations. The `aggr status` command works for aggregates that were created explicitly, as well as for the aggregates created automatically when traditional volumes were created. Because traditional volumes are tightly coupled with their containing aggregates, the `aggr status` command returns information for both aggregates and traditional volumes. In both cases, it is the aggregate information that is returned.

Step

1. Enter the following command:

   ```
   aggr status [-d] [-r] [-v]
   ```

   - With no options, the `aggr status` command displays a concise synopsis of aggregate states:
     - Aggregate name
     - Whether it is an aggregate (32-bit or a 64-bit) or traditional volume
     - Whether it is online, offline, or restricted
     - RAID type
     - Other states, such as partial or degraded
     - Options that are enabled, either by default or through the `aggr options` or `vol options` command

     **Note:** If you specify an aggregate, such as `aggr status aggr0`, the information for that aggregate is displayed. If you do not specify an aggregate, the status of all aggregates and traditional volumes in the storage system is displayed.

   - The `–d` option displays information about disks.
     The disk information is the same as the information from the `sysconfig -d` command.

   - The `–r` option displays RAID, plex, and checksum information for an aggregate.
     The display is the same as the `sysconfig -r` display.
The -v option displays information about each RAID group within an aggregate or traditional volume, and the settings of the aggregate options.

**Note:** You can also get aggregate information, either interactively or with a script, using the `stats` command.

For more information about aggregates, see the *Data ONTAP Storage Management Guide for 7-Mode*. For more information about the `aggr` command, see the `na_aggr(1)` man page.

**Related concepts**

*Storage system information and the stats command* on page 251

### Displaying volume information

You can display information about the configuration and the state of a volume.

**Step**

1. Enter the following command:

   ```bash
   vol status [-d] [-r] [-v] [-l]
   ```

   - With no options, the `vol status` command displays a concise synopsis of volume states:
     - Volume name
     - Whether it is a FlexVol or traditional volume
     - Whether it is online, offline, or restricted
     - Other status, such as partial and degraded
     - Options that are enabled for the volume or its containing aggregate (through the `aggr options` or `vol options` command).

   The `vol` command also displays RAID information for the volume’s containing aggregate.

   **Note:** If you specify a volume, such as `vol status vol0`, the information for that volume is displayed. If you do not specify a volume, the status of all volumes in the storage system is displayed.

   - The `-d` option displays information about the volume’s containing aggregate’s disks. The information displayed is the same as for the `sysconfig -d` command.

   - The `-r` option displays RAID, plex, and checksum information for the volume’s containing aggregate. The information displayed is the same as for the `sysconfig -r` command.
• The \(-v\) option displays the state of all per-volume options and information about each plex and RAID group within the volume’s containing aggregate.

• The \(-l\) option displays the language used by each volume.

  **Note:** You can also get volume information, either interactively or with a script, using the `stats` command.

For more information about volumes, see the *Data ONTAP Storage Management Guide for 7-Mode*. For more information about the `vol` command, see the `na_vol(1)` man page.

**Related concepts**

*Storage system information and the stats command* on page 251

### Commands for displaying environmental status

The `environment` commands enable you to display all environment information, shelf environment status, and chassis environment status.

Data ONTAP runs the `environment` commands under the following conditions:

- Once every hour
  In this case, no output is displayed or logged unless abnormal conditions exist.

- Whenever an environment threshold in the storage system is crossed

- When you enter the command from the command line

You can run the `environment` commands manually to monitor the storage system subsystems, especially when you suspect a problem and when reporting abnormal conditions to technical support.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display all storage system environment information</td>
<td><code>environment status</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> For systems that contain internal drives, the <code>environment status</code> command displays information for both the internal and the external storage environment.</td>
</tr>
<tr>
<td>Display the shelf environmental status</td>
<td><code>environment status shelf[adapter]</code></td>
</tr>
<tr>
<td>Display the environmental status of chassis components</td>
<td><code>environment chassis</code></td>
</tr>
<tr>
<td>Display detailed information from all chassis sensors</td>
<td><code>environment chassis list-sensors</code></td>
</tr>
</tbody>
</table>
For more information, see the na_environment(1) man page.

Getting Fibre Channel information

You can display Fibre Channel (FC) information such as the link statistics for all disks on a loop, internal FC driver statistics, and the relative physical positions of drives on a loop.

Step

1. To display FC information, enter one of the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcstat link_stats</td>
<td>Displays link statistics for disks on a loop. This display includes the link failure count, the loss of sync count, the loss of signal count, the invalid cyclic redundancy check (CRC) count, the frame in count, and the frame out count.</td>
</tr>
<tr>
<td>fcstat fcal_stats</td>
<td>Displays internal statistics kept by the FC driver. The FC driver maintains statistics about various error conditions, exception conditions, and handler code paths executed.</td>
</tr>
<tr>
<td>fcstat device_map</td>
<td>Displays the relative physical positions of drives on a loop and the mapping of devices to disk shelves.</td>
</tr>
</tbody>
</table>

Note: You can also get FC information, either interactively or with a script, by using the fcp object for the stats command.

For more information about the fcstat command, see the na_fcstat(1) man page.

Related concepts

Storage system information and the stats command on page 251

Getting SAS adapter and expander information

You can display information about the SAS adapters and expanders used by the storage subsystem.

About this task

You use the sasstat or the sasadmin command to display information about the SAS adapters and expanders. The sasstat command is an alias for the sasadmin command.

Step

1. To display information about SAS adapters and expanders, enter one of the following commands:
### Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sasstat expander</td>
<td>Displays configuration information for a SAS expander.</td>
</tr>
<tr>
<td>sasstat expander_map</td>
<td>Displays product information for the SAS expanders attached to the SAS</td>
</tr>
<tr>
<td></td>
<td>channels in the storage system.</td>
</tr>
<tr>
<td>sasstat expander_phy_state</td>
<td>Displays the physical state of the SAS expander.</td>
</tr>
<tr>
<td>sasstat adapter_state</td>
<td>Displays the state of a logical adapter.</td>
</tr>
<tr>
<td>sasstat dev_stats</td>
<td>Displays statistics for the disk drives connected to the SAS channels in</td>
</tr>
<tr>
<td></td>
<td>the controller.</td>
</tr>
<tr>
<td>sasstat shelf</td>
<td>Displays a pictorial representation of the drive population of a shelf.</td>
</tr>
<tr>
<td>sasstat shelf_short</td>
<td>Displays the short form of the sasstat shelf command output.</td>
</tr>
</tbody>
</table>

For more information, see the na_sasadmin(1) man page.

### Storage system information and the stats command

The `stats` command provides access, through the command line or scripts, to a set of predefined data collection tools in Data ONTAP called counters. These counters provide you with information about your storage system, either instantaneously or over a period of time.

Stats counters are grouped by what object they provide data for. Stats objects can be physical entities such as system, processor or disk; logical entities such as volume or aggregate; protocols such as iSCSI or FCP, or other modules on your storage system. To see a complete list of the stat objects, you can use the `stats list objects` command.

Each object can have zero or more instances on your storage system, depending on your system configuration. Each instance of an object has its own name. For example, for a system with two processors, the instance names are processor0 and processor1.

Counters have an associated privilege mode; if you are not currently running with sufficient privilege for a particular counter, it is not recognized as a valid counter.

When you use the `stats` command to get information about your storage system, you need to make the following decisions:

- What counters do you want to collect information from, on what object instances?
- Do you want to specify the counters on the command line or do you want to use a predetermined set of counters called a preset file?
  Some preset files are provided with Data ONTAP. You can also create your own.
How do you want the information to be returned and formatted?
You can control where the information is returned (to the console or to a file) and how it is formatted.

How do you want to invoke the stats command?
You can invoke the stats command using the following methods:

- A single invocation
  This method retrieves information from the specified counters once and stops.

- A periodic invocation
  For this method, information is retrieved from the specified counters repeatedly, at a time interval of your choice. You can specify a number of iterations to be performed, or the stats command can run until you stop it explicitly.

- As a background process
  This method enables you to initiate a stats command process that runs in the background until you terminate it explicitly, when the average values for the specified counters are returned.

**Viewing available counters**

You can display the list of available counters for a particular object by using the stats command.

**Step**

1. Enter the following command:

   ```
   stats list counters object_name
   ```

   *object_name* is the name of the object you want to list the available counters for.

   The list of counters is displayed.

   ```
   toaster> stats list counters system
   Counters for object name: system
     nfs_ops
     cifs_ops
     http_ops
     dafs_ops
     fcp_ops
     iscsi_ops
     net_data_recv
     net_data_sent
     disk_data_read
     disk_data_written
     cpu_busy
     avg_processor_busy
     total_processor_busy
     num_processors
   ```
Getting detailed information about a counter

Getting detailed information about a counter helps you understand and process the information you get from a stats command.

Step

1. Enter the following command:

   \[ \text{stats explain counters object\_name [counter\_name]} \]

   - \textit{object\_name} is the name of the object the counter is associated with.
   - \textit{counter\_name} is the name of the counter you want more details about.
     If \textit{counter\_name} is omitted, information about all counters on the specified object is returned.

The following fields are returned for every specified counter:

- Name
- Description
- Properties
  The Properties field describes the type of information that is returned by this counter. Properties include the following types:
  - \texttt{percent} for values that are a percentage value, such as \textit{cpu\_busy}
  - \texttt{rate} for values that describe a value per time, such as \textit{disk\_data\_read}
  - \texttt{average} for values that return an average, such as \textit{write\_latency}
  - \texttt{raw} for simple values that have no type, such as \textit{num\_processors}
- Unit
  The Unit field describes how a value returned by this counter can be interpreted. The Unit field can include the following information:
  - The percentage for counters with the \texttt{percent} properties
  - The unit per time period for counters with the \texttt{rate} properties, such as \textit{kb\_per\_sec} or \textit{per\_sec}
  - The time unit for counters that return timing values, such as \textit{write\_latency}
Example of displaying counter information

```
toaster> stats explain counters system cpu_busy
Counters for object name: system
Name: cpu_busy
Description: Percentage of time one or more processors is busy in the system
Properties: percent
Unit: percent
```

Using the stats command interactively in singleton mode

Using the `stats` command in singleton mode enables you to see a set of information about the system's current state at the command line.

**Step**

1. Enter the following command:

   ```
   stats show [-e] object_def [object_def...]
   ```

   `object_def` is one of the following values:

   - An object name (`object_name`); for example, `stats show system`. This returns statistics from all counters provided for all instances of the specified object.
   
   - The name of a specific instance (`object_name:instance_name`); for example, `stats show processor:processor0`. This returns statistics from all counters provided for the specified instance of the specified object.
   
   - The name of a specific counter (`object_name:instance_name:counter_name`); for example, `stats show system:*:net_data_recv`. Note: To see the statistic for all instances of the object, use an asterisk (*) for the instance name.

   To specify an instance name that includes spaces, enclose the name in double quotes (`"name with spaces"`).

   To specify an instance name that contains a colon (:), repeat the colon (`disk:20:00:00:20:37:de:4a:8e`).

   - An asterisk (*)
     This returns statistics for all instances of all objects.

   The `-e` option allows extended regular expressions (regex) for instance and counter names. With the `-e` option, the instance and counter names are independently interpreted as regular
expressions. The asterisk (*) character is still a wildcard representing all instances or counter names. The regular expression is not anchored. You can use ^ to indicate the start of an instance or counter name, and $ to indicate the end of an instance or counter name.

<table>
<thead>
<tr>
<th>Examples of stats show command in singleton mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following command shows all current statistics for a volume named myvol.</td>
</tr>
</tbody>
</table>

```
toaster> stats show volume:myvol
volume:myvol:total_ops:132/s
volume:myvol:avg_latency:13ms
volume:myvol:read_ops:5/s
volume:myvol:read_data:1923b/s
volume:myvol:read_latency:23ms
volume:myvol:write_ops:186/s
volume:myvol:write_data:1876b/s
volume:myvol:write_latency:6ms
volume:myvol:other_ops:0/s
volume:myvol:other_latency:0ms
```

The following command returns any counters in the system object ending in "latency".

```
toaster> stats show -e system::latency$
```

<table>
<thead>
<tr>
<th>Using the stats command interactively in repeat mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the stats command in repeat mode enables you to see a statistic every few seconds.</td>
</tr>
</tbody>
</table>

**Step**

1. Enter the following command:

   ```
   stats show [-n num] [-i interval] object_def [object_def...]
   ```

   *num* specifies the number of times you want the command to be run. If this parameter is omitted, the command is repeated until you issue a break.

   *interval* specifies the interval between the iterations of the stats command. The default value is one second.

   *object_def* is one of the following values:

   - An object name (*object_name*); for example, `stats show system`. This returns statistics from all counters provided for all instances of the specified object.

   - The name of a specific instance (*object_name:instance_name*); for example, `stats show processor:processor0`. |
This returns statistics from all counters provided for the specified instance of the specified object.

- The name of a specific counter (object_name:instance_name:counter_name); for example, stats show system:*:net_data_recv.
  
  **Note:** To see the statistic for all instances of the object, use an asterisk (*) for the instance name.

  To specify an instance name that includes spaces, enclose the name in double quotes ("name with spaces").

  To specify an instance name that contains a colon (:), repeat the colon (disk: 20:00:00:20:37:de:4a:8e).

- An asterisk (*)
  
  This returns statistics for all instances of all objects.

**Example of stats show command in repeat mode**

The following command shows how your processor usage is changing over time:

```
stats show -i 1 processor:*:processor_busy
Instance processor_busy  %
processor0   32
processor1   1
processor0   68
processor1   10
processor0   54
processor1   29
processor0   51
...
```

**Related tasks**

*Using the stats command interactively in singleton mode* on page 254

**Collecting system information with the stats command in background mode**

You can collect system information from a specified set of counters over time in the background.

**About this task**

The `stats start` and `stats stop` commands enable you to collect information from a specified set of counters over time in the background. The information collected is averaged over the period and displayed when the `stats stop` command is issued. You can initiate multiple `stats` commands in background mode, giving each of them a name so you can control them individually.
Note: Each instance of a stats command consumes a small amount of system resources. If you start a large number of stats commands in background mode, you could affect overall storage system performance. To avoid this issue, Data ONTAP does not allow you to start more than 50 background stats commands, to keep stats commands from consuming too many system resources. If you already have 50 background stats commands running, you must stop at least one before you can start more. To stop all currently running stats commands, you can use the stats stop -a command.

See the na_stats_preset(5) man page for a list of options.

Steps

1. Enter the following command to start collecting system information:
   ```shell
   stats start [-I identifier] object_def [object_def...]
   ```
   If you are running only one background stats command, you can omit the -I parameter.
   
   `identifier` names this instance of the stats command so you can refer to it later to show results. If you are running only one background stats command, you can omit this parameter.
   
   `object_def` is the name of the object.

2. If you want to display interim results without stopping the background stats command, enter the following command:
   ```shell
   stats show [-I identifier]
   ```
   `identifier` names the instance of the stats command you want to display interim results for.
   If you are running only one background stats command, you can omit this parameter.

3. Enter the following command to stop data collection and display the final results:
   ```shell
   stats stop [-I identifier]
   ```
   `identifier` names the instance of the stats command you want to stop and display results for.
   If you are running only one background stats command, you can omit this parameter.

   To filter the output of a background stats command initiated with a stats start command, add `-O name=value` to the stats stop command, where `name` is the name of the option you want to omit from the output and the value is on or off.

Example

The following command filters out all the statistics with zero counter values:
```shell
stats stop [-I identifier] -O print_zero_values=off
```
Changing the output of a stats command

Data ONTAP enables you to control the format and destination of the output of the stats command. This could be useful if you are processing the information with another tool or script, or if you want to store the output in a file so you can process it at a later time.

Step

1. Do one of the following:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| Send stats output to a file | Add `\-o filename` to your `stats show` or `stats stop` command line.  
`filename` is the pathname to the file you want to receive the stats output. The file does not need to exist, although any directory in the path must already exist. |
| Determine whether the output is formatted in rows or columns | Add the `\-r` or `\-c` option to your `stats show` or `stats stop` command line.  
The `\-r` option formats the output in rows and is the default if the `\-I` option is not specified. |
| Specify a delimiter so that your output can be imported into a database or spreadsheet | Add the `\-d delimiter` option to your `stats show` or `stats stop` command line.  
The `\-d` option only has effect if your output is in column format. |
| Filter the output of the stats show command | Add `\-O name=value` to the stats show command.  
`name` is the name of the option you want to filter and `value` is on or off. |

See the `na_stats_preset(5)` man page for a list of options.

Examples of changing the output of a stats command

The following example displays output in rows:

```
toaster> stats show qtree:*:nfs_ops  
qtree:vol1/proj1:nfs_ops:186/s  
qtree:vol3/proj2:nfs_ops:208/s
```

The `\-c` option formats the output in columns and is the default only if the `\-I` option is specified.

The following example displays output in columns:
toaster> stats show -c qtree:*:nfs_ops
Instance nfs_ops
/s
vol1/proj1  143
vol3/proj2  408

**Note:** The /s line shows the unit for the applicable column. In this example, there is one column, and it is number of operations per second.

If you are displaying multiple objects that have different counters, the column format may be difficult to read. In this case, use the row format.

In the following example, the same counter is listed as for the column output example, except that it is comma-delimited.

cli> stats show -d , -c qtree:*:nfs_ops
Instance nfs_ops
/s
vol1/proj1,265
vol3/proj2,12

The command in the following example filters output of the `stats show` command with zero counter values:

```
stats show -O print_zero_values=off
```

### About the stats preset files

Data ONTAP provides some XML files that output a predetermined set of statistics that you can use without having to construct a script or type in a complicated command on the command line.

The preset files are located in the `/etc/stats/preset` directory. To use a preset file, you add `-p filename` to your `stats show` or `stats stop` command line. You can also add counters on the command line. If any options you specify on the command line conflict with the preset file, your command line options take precedence.

You can also create your own preset files.

For more information about preset files, see the `na_stats_preset(5)` man page.

### Viewing available presets

You can use the `stats` command to view preset configurations that contain commonly used combinations of statistics and formats.

**Step**

1. Enter the following command:
stats list presets

For a description of the preset file format, see the na_stats_preset(5) man page.

The list of available presets is displayed.

toaster> stats list presets
Stats Presets:
preset1
preset2
other-preset
...

How to get system information using perfmon

The perfmon performance monitoring tool is integrated with the Microsoft Windows operating system. If you use storage systems in a Windows environment, you can use perfmon to access many of the counters and objects available through the Data ONTAP stats command.

To use perfmon to access storage system performance statistics, you specify the name or IP address of the storage system as the counter source. The lists of performance objects and counters then reflect the objects and counters available from Data ONTAP.

You can use the cifs.perfmon.allowed_users option to grant perfmon access to specified users or groups. By default, no argument is set for the option, and only members of the Administrators group have access to perfmon. For more information about the cifs.perfmon.allowed_users option, see the options(1) man page.

Note: The default sample rate for perfmon is once every second. Depending on which counters you choose to monitor, that sample rate could cause a small performance degradation on the storage system. If you want to use perfmon to monitor storage system performance, you are advised to change the sample rate to once every ten seconds. You can do this using the System Monitor Properties.

How to get system information using perfstat

Perfstat is a tool that reports performance information for both the host and the storage system. You can run it on either a UNIX or a Windows host. It collects the performance information and writes it to a text file.

To get more information about perfstat, or to download the tool, go to the NetApp Support Site and navigate to Software Downloads > ToolChest.

Related information

NetApp Support Site: mysupport.netapp.com
Managing system performance

You can use several features to improve system performance.

Managing storage system resources by using FlexShare

FlexShare enables you to use priorities and hints to increase your control over how your storage system resources are used. This control enables you to consolidate workloads without negatively impacting critical applications.

FlexShare uses the following methods to help you manage your storage system resources:

- Priorities are assigned to volumes to assign relative priorities between:
  - Different volumes
    - For example, you could specify that operations on /vol/db are more important than operations on /vol/test.
  - Client data accesses and system operations
    - For example, you could specify that client accesses are more important than SnapMirror operations.

- Hints are used to affect the way cache buffers are handled for a given volume.

For more information about FlexShare, see the na_priority(1) man page.

What FlexShare is

FlexShare provides workload prioritization for a storage system. It prioritizes processing resources for key services when the system is under heavy load. FlexShare does not provide guarantees on the availability of resources or how long particular operations will take to complete. FlexShare provides a priority mechanism to give preferential treatment to higher priority tasks.

FlexShare provides the following key features:

- Relative priority of different volumes
- Per-volume user versus system priority
- Per-volume cache policies

FlexShare provides the following key benefits:

- Simplification of storage management
  - Reduces the number of storage systems that need to be managed by enabling consolidation
Provides a simple mechanism for managing performance of consolidated environments

- Cost reduction
  - Allows increased capacity and processing utilization per storage system without impact to critical applications
  - No special hardware or software required
  - No additional license required

- Flexibility
  - Can be customized easily to meet performance requirements of different environment workloads

**When to use FlexShare**

If your storage system consistently provides the performance required for your environment, then you do not need FlexShare. If, however, your storage system sometimes does not deliver sufficient performance to some of its users, you can use FlexShare to increase your control over storage system resources to ensure that those resources are being used most effectively for your environment.

FlexShare is designed to change performance characteristics when the storage system is under load. If the storage system is not under load, the FlexShare impact is typically minimal and can even be unnoticeable. The following sample scenarios describe when you might use FlexShare to set priorities for the use of your system resources:

- You have different applications on the same storage system.
  For example, you have a mission-critical database on the same storage system as user home directories. You can use FlexShare to ensure that database access is assigned a higher priority than access to home directories.

- You want to reduce the impact of system operations (for example, SnapMirror operations) on client data access.
  You can use FlexShare to ensure that client access are assigned a higher priority than system operations.

- You have volumes with different caching requirements.
  For example, if you have a database log volume that does not need to be cached after writing, or a heavily accessed volume that should remain cached as much as possible, you can use the cache buffer policy hint to help Data ONTAP determine how to manage the cache buffers for those volumes.

FlexShare enables you to construct a priority policy that helps Data ONTAP manage system resources optimally for your application environment. FlexShare does not provide any performance guarantees.
You should use FlexShare with storage systems that have hard disk drives (HDDs) only. FlexShare is not designed for use with storage systems that have solid-state drives (SSDs). Enabling FlexShare on a storage system that has SSDs can result in decreased throughput to SSD-based volumes.

**Related concepts**

*FlexShare and the buffer cache policy values* on page 265

**Related tasks**

*Assigning FlexShare priority to a volume relative to other volumes* on page 265

*Assigning FlexShare priority to system operations relative to user operations* on page 266

### FlexShare and priority levels

FlexShare priority levels are relative. When you set the priority level of a volume or operation, you are not giving that volume or operation an absolute priority level. Instead, you are providing a hint to Data ONTAP that helps it set priorities for accesses to that volume or operations of that type *relative to other accesses or operations*.

For example, setting the priority level of each of your volumes to the highest level will not improve the performance of your system. In fact, doing so would not result in any performance change.

The following table outlines how the listed volume operations affect FlexShare settings:

<table>
<thead>
<tr>
<th>Volume operation</th>
<th>Effect on FlexShare settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deletion</td>
<td>FlexShare settings removed</td>
</tr>
<tr>
<td>Rename</td>
<td>FlexShare settings unchanged</td>
</tr>
<tr>
<td>FlexClone volume creation</td>
<td>Parent volume settings unchanged</td>
</tr>
<tr>
<td></td>
<td>FlexShare settings for new FlexClone volume unset (as for a newly created volume)</td>
</tr>
<tr>
<td>Copy</td>
<td>Source volume settings unchanged</td>
</tr>
<tr>
<td></td>
<td>FlexShare settings for destination volume unset (as for a newly created volume)</td>
</tr>
<tr>
<td>Offline/online</td>
<td>FlexShare settings preserved</td>
</tr>
</tbody>
</table>

### Considerations for using FlexShare in storage systems with a high-availability configuration

If you use FlexShare on storage systems with a high-availability configuration, you must ensure that FlexShare is enabled or disabled on *both* nodes. Otherwise, a takeover can cause unexpected results.

After a takeover occurs, the FlexShare priorities you have set for volumes on the node that was taken over are still operational. The takeover node creates a new priority policy by merging the policies
configured on each individual node. For this reason, you should ensure that the priorities you
configure on each node will work well together.

Note: You can use the partner command to make changes to FlexShare priorities on a node that
has been taken over.

How the default FlexShare queue works

The default FlexShare queue consists of volumes that have no priority assigned to them.
Understanding how the default priority is used helps you create the optimal FlexShare priority policy
for your storage system.

Any volume that does not have a priority assigned is in the default queue. If you have not assigned a
priority to any volume on your system, then all of your volumes are in the default queue, and
requests to all volumes are given equal priority.

When you assign a priority to any volume, it is removed from the default queue. Now, requests to
that volume are assigned priorities relative to requests for the default queue. But all of the volumes in
the default queue share the resources allocated to the default queue. So if you assign priorities to a
few volumes and leave the rest in the default queue, the results may not be as you expect.

For this reason, once you assign a priority to any volume, you should assign a priority to all volumes
whose relative performance you want to control.

For example, you have 30 volumes on your system. You have one volume, highvol, that you would
like to have faster access to, and one volume, lowvol, for which fast access time is not important.
You assign a priority of VeryHigh to highvol and VeryLow to lowvol. The result of these changes
for the highvol volume is as expected: when the system is under load, accesses to the highvol volume
are given a higher priority than for any other volume. However, accesses to the lowvol volume may
still get a higher priority than accesses to the volumes that remain in the default queue (which has a
Medium priority). This is because all of the 28 volumes remaining in the default queue are sharing
the resources allocated to the default queue.

FlexShare and the global io_concurrency option

Disks have a maximum number of concurrent I/O operations they can support; the limit varies
according to the disk type. FlexShare limits the number of concurrent I/O operations per volume
based on various values including the volume priority and the disk type.

For most customers, the default io_concurrency value is correct and should not be changed. If you
have nonstandard disks or load, your system performance might be improved by changing the value
of the io_concurrency option.

For more information about this option, see the na_priority(1) man page or contact technical support.

Attention: This option takes effect across the entire system. Use caution when changing its value
and monitor system performance to ensure that performance is improved.
FlexShare and the buffer cache policy values

You can use FlexShare to give Data ONTAP a hint about how to manage the buffer cache for that volume.

**Note:** This capability only provides a hint to Data ONTAP. Ultimately, Data ONTAP makes the final determination about buffer reuse based on multiple factors, including your input.

The buffer cache policy can be one of the following values:

- **keep**
  This value tells Data ONTAP to wait as long as possible before reusing the cache buffers. This value can improve performance for a volume that is accessed frequently with a high incidence of multiple accesses to the same cache buffers.

- **reuse**
  This value tells Data ONTAP to make buffers from this volume available for reuse quickly. You can use this value for volumes that are written but rarely read. Examples of such volumes include database log volumes or volumes for which the data set is so large that keeping the cache buffers will probably not increase the hit rate.

- **default**
  This value tells Data ONTAP to use the default system cache buffer policy for this volume.

Using FlexShare

You use FlexShare to assign priorities to volume data access, set the volume buffer cache policy, and modify the default priority.

Assigning FlexShare priority to a volume relative to other volumes

You can use FlexShare to assign a relative priority to a volume to cause accesses to that volume to receive a priority that is higher or lower than that of other volumes on your storage system.

**About this task**

For best results, when you set the priority of any volume, set the priority of all volumes on the system.

**Steps**

1. If you have not already done so, ensure that FlexShare is enabled for your storage system by entering the following command:

   ```sh
call priority on
```

2. Specify the priority for the volume by entering the following command:

   ```sh
call priority set volume vol_name level=priority_level
```
vol_name is the name of the volume for which you want to set the priority.

priority_level is one of the following values:

- VeryHigh
- High
- Medium (default)
- Low
- VeryLow
- A number from 8 (VeryLow) to 92 (VeryHigh)

For more information about the priority command, see the na_priority(1) man page.

Example

The following command sets the priority level for the dbvol volume as high as possible. This causes accesses to the dbvol volume to receive a higher priority than accesses to volumes with a lower priority.

```
priority set volume dbvol level=VeryHigh system=30
```

Note: Setting the priority of system operations to 30 does not mean that 30 percent of storage system resources are devoted to system operations. Rather, when both user and system operations are requested, the system operations are selected over the user operations 30 percent of the time, and the other 70 percent of the time the user operation is selected.

3. You can optionally verify the priority level of the volume by entering the following command:

```
priority show volume [-v] vol_name
```

Related concepts

- How the default FlexShare queue works on page 264

Assigning FlexShare priority to system operations relative to user operations

If system operations (for example, SnapMirror transfers or ndmpcopy operations) are negatively affecting the performance of user accesses to the storage system, you can use FlexShare to assign the priority of system operations to be lower than that of user operations for any volume.

About this task

Synchronous SnapMirror updates are not considered system operations because they are performed from NVRAM when the primary operation is initiated. Therefore, synchronous SnapMirror updates are affected by the volume priority of the target volume, but not by the relative priority of system operations for that volume.
Steps

1. If you have not already done so, ensure that FlexShare is enabled for your storage system by entering the following command:

   `priority on`

2. Specify the priority for system operations for the volume by entering the following command:

   ```
   priority set volume vol_name system=priority_level
   ```

   `vol_name` is the name of the volume for which you want to set the priority of system operations.

   `priority_level` is one of the following values:

   - `VeryHigh`
   - `High`
   - `Medium` (default)
   - `Low`
   - `VeryLow`
   - A number from 4 (`VeryLow`) to 96 (`VeryHigh`)

   For more information about the `priority` command, see the `na_priority(1)` man page.

   **Example**

   The following command sets the priority level for the `dbvol` volume as high as possible while setting system operations for that volume to 30.

   ```
   priority set volume dbvol level=VeryHigh system=30
   ```

   **Note:** Setting the priority of system operations to 30 does not mean that 30 percent of storage system resources are devoted to system operations. Rather, when both user and system operations are requested, the system operations will be selected over the user operations 30 percent of the time, and the other 70 percent of the time the user operation is selected.

3. You can optionally verify the priority levels of the volume by entering the following command:

   ```
   priority show volume -v vol_name
   ```

Using FlexShare to set volume buffer cache policy

You can use FlexShare to influence how Data ONTAP determines when to reuse buffers.

Steps

1. If you have not already done so, ensure that FlexShare is enabled for your storage system by entering the following command:
priority on

2. Specify the cache buffer policy for the volume by entering the following command:

```
priority set volume vol_name cache=policy
```

`policy` is one of the following policy values:

- keep
- reuse
- default

**Example**

The following command sets the cache buffer policy for the testvol1 volume to `keep`. This instructs Data ONTAP not to reuse the buffers for this volume when possible.

```
priority set volume testvol1 cache=keep
```

3. You can optionally verify the priority levels of the volume by entering the following command:

```
priority show volume -v vol_name
```

**Related concepts**

*FlexShare and the buffer cache policy values* on page 265

**Removing FlexShare priority from a volume**

You can temporarily disable the FlexShare priority for a specific volume, or you can remove the priority completely.

**Step**

1. Do one of the following:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporarily disable FlexShare priority for a specific volume</td>
<td>Set the service option for that volume to <code>off</code>. Doing so causes that volume to return to the default queue.</td>
</tr>
<tr>
<td>Completely remove the FlexShare priority settings from a specific volume</td>
<td>Use the <code>priority delete</code> command. Doing so causes that volume to return to the default queue.</td>
</tr>
</tbody>
</table>

**Example**

The following command temporarily disables FlexShare priority for the testvol1 volume:

```
priority set volume testvol1 service=off
```
Example

The following command completely removes the FlexShare priority settings for the testvol1 volume:

```
priority delete volume testvol1
```

Modifying the FlexShare default priority

If you have not assigned a FlexShare priority to a volume, then that volume is given the default priority for your storage system. The default value for the default priority is Medium. You can change the value of the default priority.

About this task

The default priority is also used for all aggregate operations. Changing the default priority to be very high or very low may have unintended consequences.

Step

1. Specify the default volume priority by entering the following command:

```
priority set default option=value [option=value]
```

`option` is either `level` or `system`, and the possible values for these options are the same as for assigning priorities for a specific volume.

Example

The following command sets the default priority level for volumes to Medium, while setting the default system operations priority to Low.

```
priority set default level=Medium system=Low
```

Increasing WAFL cache memory

You can increase Write Anywhere File Layout (WAFL) cache memory in a system that has a caching module installed (Performance Acceleration Module (PAM), Flash Cache module, or Flash Cache 2 module). To increase the WAFL cache memory, you use the WAFL external cache, a software component of Data ONTAP.

WAFL external cache provides extra WAFL cache memory to improve the performance of the storage system by reducing the number of disk reads. You can control how user data blocks are cached by changing the mode of operation for a caching module. You can keep the default mode (normal user data blocks) or you can choose metadata mode or low-priority blocks mode.

You should verify that the WAFL external cache functionality is enabled after you install a caching module.
Note: WAFL external cache does not require a separate license if your system is running Data ONTAP 8.1 or later.

Note: Not all systems have a caching module installed. Therefore, not all systems can utilize the WAFL external cache functionality.

WAFL external cache does not cache data that is stored in a RAID group composed of SSDs.

If you use WAFL external cache on storage systems with a high-availability configuration, you must ensure that the WAFL external cache options are the same on both nodes. Otherwise, a takeover can result in lower performance due to the lack of WAFL external cache on the remaining node.

Besides the Data ONTAP options that you can use to manage WAFL external cache, a diagnostic command is available for sanitizing a caching module. For more information, see the Diagnostics Guide.

How Flash Pool aggregates and Flash Cache compare

Both the Flash Pool technology and the family of Flash Cache modules (Flash Cache and Flash Cache 2) provide a high-performance cache to increase storage performance. However, there are differences between the two technologies that you should understand before choosing between them.

You can employ both technologies on the same system. However, data stored in volumes associated with a Flash Pool aggregate (or an SSD aggregate) is not cached by Flash Cache.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Flash Pool aggregate</th>
<th>Flash Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>A specific aggregate</td>
<td>All aggregates assigned to a controller</td>
</tr>
<tr>
<td>Caching types supported</td>
<td>Read and write</td>
<td>Read</td>
</tr>
<tr>
<td>Cached data availability during and after takeover events</td>
<td>Cached data is available and unaffected by either planned or unplanned takeover events.</td>
<td>Cached data is not available during takeover events. After giveback for a planned takeover, previously cached data that is still valid is re-cached automatically.</td>
</tr>
<tr>
<td>PCIe slot on storage controller required?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Supported with array LUNs?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Supported with Storage Encryption?</td>
<td>No</td>
<td>Yes. Data in the cache is not encrypted.</td>
</tr>
<tr>
<td>Supported with SnapLock?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For more information about Flash Pool aggregates, see the Data ONTAP Storage Management Guide for 7-Mode.
Enabling and disabling WAFL external cache

You can enable or disable the WAFL external cache functionality for a storage system that has a caching module installed (Performance Acceleration Module, Flash Cache module, or Flash Cache 2 module). You should verify that the WAFL external cache functionality is enabled after you install a caching module.

About this task

The `flexscale.enable` option enables or disables the WAFL external cache functionality. If your storage system does not have a caching module installed, the `flexscale.enable` option enables or disables the Predictive Cache Statistics (PCS). PCS is supported on platforms that support caching modules.

WAFL external cache does not require a separate license if your system is running Data ONTAP 8.1 or later. PCS does not require a license.

Steps

1. To verify whether the WAFL external cache is enabled or disabled, enter the following command:
   
   ```
   options flexscale.enable
   ```

2. To enable or disable the WAFL external cache, enter the following command:

   ```
   options flexscale.enable {on|off}
   ```

Caching normal user data blocks

If you cache normal user data blocks, the WAFL external cache interprets this setting as the buffer cache policy of `keep` and saves normal user data blocks in the external cache.

Step

1. To enable or disable caching for normal user data blocks, enter the following command:

   ```
   options flexscale.normal_data_blocks {on|off}
   ```

   The default value is `on`.

   When the `flexscale.normal_data_blocks` option is set to `on`, the WAFL external cache interprets this setting as the buffer cache policy of `keep` and saves normal user data blocks in the external cache.

   If this option is set to `off`, only metadata blocks are cached, except for volumes that have a FlexShare buffer cache policy of `keep`. 
Related concepts

- FlexShare and the buffer cache policy values on page 265

Caching low-priority user data blocks

You can cache low-priority user data blocks that are not normally stored by WAFL external cache. Low-priority blocks include blocks read in large sequential scans that are not normally reused, and blocks that have been written to the storage system through the iSCSI, NFS, or CIFS protocols.

About this task

Caching low-priority user data blocks is useful if you have workloads that fit within WAFL external cache memory and if the workloads consist of either write followed by read or large sequential reads.

You can cache low-priority user data blocks (setting `flexscale.lopri_blocks` to `on`) only if you also cache normal user data blocks (by setting `flexscale.normal_data_blocks` to `on`).

Step

1. To control whether low-priority user data blocks are cached, enter the following command:

   ```
   options flexscale.lopri_blocks {on|off}
   ```

   The default value is `off`.

   Setting the option to `on` caches low-priority user data blocks.

Related tasks

- Caching normal user data blocks on page 271

Caching only system metadata

If the working set of the storage system is very large, such as a large e-mail server, you can cache only system metadata in WAFL external cache memory by turning off both normal user data block caching and low-priority user data block caching.

About this task

When you cache only system metadata, with both `flexscale.normal_data_blocks` and `flexscale.lopri_blocks` set to `off`, WAFL external cache interprets this setting as the buffer cache policy of `reuse` and does not save normal data blocks or low-priority blocks in the external cache.

Steps

1. Enter the following command to turn off normal user data block caching:

   ```
   options flexscale.normal_data_blocks off
   ```
2. Enter the following command to turn off low-priority user data block caching:

   options flexscale.lopri_blocks off

Related concepts

   FlexShare and the buffer cache policy values on page 265

Related tasks

   Using FlexShare to set volume buffer cache policy on page 267

Displaying the WAFL external cache configuration

Data ONTAP enables you to display configuration information for WAFL external cache.

Step

1. Enter the following command:

   stats show -p flexscale

Displaying usage and access information for WAFL external cache

You can display usage and access information for WAFL external cache, have output produced periodically, and terminate the output after a specified number of iterations.

Step

1. Enter the following command:

   stats show -p flexscale-access [-i interval] [-n num]

   • If no options are used, a single one-second snapshot of statistics is used.

   • -i interval specifies that output is to be produced periodically, with an interval of interval seconds between each set of output.

   • -n num terminates the output after num number of iterations, when the -i option is also used.

   If no num value is specified, the output runs forever until a user issues a break.

   • Press Ctrl-c to interrupt output.

Example

The following example shows sample output from the stats show -p flexscale-access command:
Example
The following command displays access and usage information for WAFL external cache once every 10 seconds for 5 times:

```
stats show -p flexscale-access -i 10 -n 5
```

Preserving the cache in the Flash Cache family of modules

The system does not serve data from a Flash Cache or Flash Cache 2 module when a node is shutdown. However, the WAFL external cache preserves the cache during a graceful shutdown and can serve "warm" data after giveback.

The WAFL external cache can preserve the cache in Flash Cache modules during a graceful shutdown. It preserves the cache through a process called "cache rewarming," which helps to maintain system performance after a graceful shutdown. For example, you might shut down a system to add hardware or upgrade software.

Cache rewarming is enabled by default if you have a Flash Cache or Flash Cache 2 module installed. Cache rewarming is available when both nodes in an HA pair are running Data ONTAP 8.1 or later.

Related concepts

*Increasing WAFL cache memory* on page 269

How cache rewarming works

WAFL external cache initiates the cache rewarming process during a reboot or a takeover and giveback. The process keeps the cache in Flash Cache and Flash Cache 2 modules "warm."

When a storage system powers down, the WAFL external cache takes a snapshot of the data in Flash Cache and Flash Cache 2 modules. When the system powers up, it uses the snapshot to rebuild the cache. After the process completes, the system can read data from the cache.

In an HA configuration, cache rewarming is more successful when minimal changes are made to data during takeover and giveback. When you initiate takeover and giveback, the takeover partner maintains a log of data written to the down partner's storage. If there are changes to a large amount of the data that is stored in the cache, then the cache rewarming process has more data to rewarm when the node comes back online. As a result, the cache may require additional warming time.

**Note:** Cache rewarming does not work if the WAFL external cache functionality is disabled.
**Events that initiate cache rewarming**

You can initiate cache rewarming when you shut down a node or when you initiate takeover and giveback.

The following commands initiate cache rewarming:

- `halt [-t]`
- `halt [-t] -f`
- `reboot [-t]`
- `reboot [-t] -s`
- `reboot [-t] -f`
- `cf takeover [-f] [-n]`

**Events that do not initiate cache rewarming**

WAFL external cache does not initiate cache rewarming if the storage system crashes, if there is a sudden loss of power, or if you run certain commands.

The following commands do not initiate cache rewarming:

- `halt -d`
- `reboot -d`
- `cf forcetakeover [-f]`

**Events that abort cache rewarming**

After the cache rewarming process starts, some events can abort the entire process and some events can abort the process on specific aggregates.

The following events abort the entire cache rewarming process:

- You add, remove, or move a Flash Cache or Flash Cache 2 module after the WAFL external cache takes the snapshot, but before it rebuilds the cache.
- The takeover node crashes.
- The local node crashes as the WAFL external cache rebuilds the cache.
- After a node reboots, it shuts down before the WAFL external cache can rebuild the cache.
- You initiate a SnapRestore operation on the node's root aggregate before the WAFL external cache rebuilds the cache.
- The `wafliron` process mounts the root aggregate.
The following events abort cache rewarming on the affected aggregate:

- You initiate a SnapRestore operation on an aggregate before the WAFL external cache rebuilds the cache.
- An aggregate does not come online within 20 minutes after the WAFL external cache starts to rebuild the cache.
- The `wafliron` process mounts an aggregate.

**Enabling and disabling cache rewarming**

Cache "rewarming" is enabled by default if a Flash Cache or Flash Cache 2 module is installed. You can disable and then re-enable cache rewarming, if necessary. You should do this only under the guidance of technical support.

**Before you begin**

You can enable cache rewarming if the following is true:

- A Flash Cache or Flash Cache 2 module is installed.
- The WAFL external cache functionality is enabled.

**About this task**

Cache rewarming works at the node level. To ensure that cache rewarming works during a takeover and giveback, enable it on all nodes.

**Step**

1. Enter one of the following commands:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable cache rewarming</td>
<td><code>options flexscale.rewarm off</code></td>
</tr>
<tr>
<td>Enable cache rewarming</td>
<td><code>options flexscale.rewarm on</code></td>
</tr>
</tbody>
</table>

**Related tasks**

*Enabling and disabling WAFL external cache* on page 271

---

**Optimizing LUN, file, volume, and aggregate layout**

You can optimize the existing layout of a LUN, a file, a volume, or an aggregate.

Optimizing the existing layout of a LUN, file, or volume improves the sequential read performance of host applications that access data on the storage system. Write performance might also be
improved as a result of file reallocation. Optimizing the layout of a volume is equivalent to optimizing all files and LUNs in the volume.

**Note:** “LUNs” in this context refers to the LUNs that Data ONTAP serves to clients, not to the array LUNs used for storage on a storage array.

Optimizing the existing layout of an aggregate improves contiguous free space in the aggregate, hence improving the layout, and usually the performance, of future writes to volumes in the aggregate. Optimizing the aggregate layout is not equivalent to optimizing all the volumes in the aggregate.

**What a reallocation scan is**

A reallocation scan evaluates how the blocks are laid out on disk in a LUN, file, volume, or aggregate, and rearranges them if necessary.

Data ONTAP performs the scan as a background task, so applications can rewrite blocks in the LUN, file, volume, or aggregate during the scan. Repeated layout checks during a file, LUN, or volume reallocation scan ensure that the sequential block layout is maintained during the current scan.

A reallocation scan does not necessarily rewrite every block in the LUN, file, or volume. Rather, it rewrites whatever is required to optimize the block layout.

**Note:** Output of a reallocation scan goes to the system log. You can view the current status by using the `reallocate status` command.

The following general recommendations apply to a file, volume, or aggregate reallocation scan:

- The best time to run a reallocation scan is when the storage system is relatively idle or when minimal write requests are going to the target volume.

- Reallocation scans will not run if there is less than five percent free space (excluding the Snapshot reserve) in the active file system on the target volume or aggregate. The more free space the target has, the more effective the reallocation scan is.

- Check to make sure that the target volume's guarantee is enabled so that the reallocation scan does not cause an over-commitment of the volume's storage space. For information about volume guarantees, see the *Data ONTAP Storage Management Guide for 7-Mode*.

- Before a reallocation scan, minimize the number of Snapshot copies in the target volume or aggregate by deleting unwanted Snapshot copies. When you use `reallocate start` without the `-p` option, a reallocation scan duplicates blocks that are held in a Snapshot copy, so a file might use more space after the scan. When you use `reallocate start` with the `-p` option, blocks are moved, and the file takes up less additional space after the scan.

- If a volume you want to reallocate involves SnapMirror, reallocate the source volume instead of the destination volume.
Reasons to use LUN, file, or volume reallocation scans

You run LUN, file, or volume reallocation scans to ensure that blocks in a LUN, file, or volume are laid out sequentially.

If a LUN, file, or volume is not laid out in sequential blocks, sequential read commands take longer to complete because each command might require an additional disk seek operation. Sequential block layout may improve the sequential read performance, and usually the write performance, of host applications that access data on the storage system.

You run a LUN, file, or volume reallocation using the `reallocate start` command. If you add disks to an aggregate, you can redistribute the data equally across all of the disks in the aggregate using the `reallocate start -f` command.

**Note:** A volume reallocation scan computes the average level of layout optimization over all the files in the volume. Therefore, a volume reallocation works best if a volume has many files or LUNs with similar layout characteristics.

Reasons to use aggregate reallocation scans

You run aggregate reallocation scans to optimize the location of physical blocks in the aggregate. Doing so increases contiguous free space in the aggregate.

You run an aggregate reallocation scan using the `reallocate start -A` command.

Aggregate reallocation does not optimize the existing layout of individual files or LUNs. Instead, it optimizes the free space where future blocks can be written in the aggregate. Therefore, if the existing layout for a file, LUN, or volume is not optimal, run a file, LUN, or volume reallocation scan. For example, after adding new disks to an aggregate, if you want to ensure that blocks are laid out sequentially throughout the aggregate, you should use `reallocate start -f` on each volume instead of `reallocate start -A` on the aggregate.

**Note:** Do not run an aggregate reallocation scan if free space reallocation is enabled on the aggregate.

**Note:** Aggregate reallocation is not supported on aggregates created by versions of Data ONTAP earlier than 7.2. If you try to perform an aggregate reallocation on such an aggregate, you receive a message saying that the reallocation is not supported. For more information, see the `na_reallocate(1)` man page.

Related concepts

- *Reasons to use physical reallocation scans* on page 279
- *Managing reallocation scans* on page 280
- *How free space reallocation optimizes free space* on page 293
Related references

Commands for managing free space reallocation on page 296

Reasons to use physical reallocation scans

A physical reallocation (using the -p option of the reallocate start command) reallocates user data on the physical blocks in the aggregate while preserving the logical block locations within a FlexVol volume. You can perform physical reallocation with FlexVol volumes or files and LUNs within FlexVol volumes.

Physical reallocation might reduce the extra storage requirements in a FlexVol volume when reallocation is run on a volume with Snapshot copies. It might also reduce the amount of data that needs to be transmitted by SnapMirror on its next update after reallocation is performed on a SnapMirror source volume.

Physical reallocation is not supported on FlexVol volumes or on files and LUNs within FlexVol volumes that are in an aggregate created by a version of Data ONTAP earlier than version 7.2.

Physical reallocation is also not supported on RAID0.

Note: Using the -p option might cause a performance degradation when reading older Snapshot copies, if the volume has significantly changed after reallocation. Performance might be impacted when reading files in the .snapshot directory, accessing a LUN backed up by a Snapshot copy, or reading a qtree SnapMirror (QSM) destination. This performance degradation does not occur with whole-volume reallocation.

How a reallocation scan works

Data ONTAP performs file reallocation scans and aggregate reallocation scans in different ways.

- Data ONTAP performs a file reallocation scan as follows:

  1. Scans the current block layout of the LUN.
  2. Determines the level of optimization of the current layout on a scale of 3 (moderately optimal) to 10 (not optimal).
  3. Performs one of the following tasks, depending on the optimization level of the current block layout:
     ◦ If the layout is optimal, the scan stops.
     ◦ If the layout is not optimal, blocks are reallocated sequentially.

Note: In addition to the specified threshold level, Data ONTAP also includes “hot spots” in its calculation of whether to start a file reallocation. As a result, Data ONTAP might start a reallocation when the average optimization is better than the threshold but a small percentage of the total data is very poorly optimized.
4. Scans the new block layout.

5. Repeats steps 2 and 3 until the layout is optimal.

- Data ONTAP performs an aggregate reallocation scan by scanning through an aggregate and reallocating blocks as necessary to improve free-space characteristics.

The rate at which the reallocation scan runs (the blocks reallocated per second) depends on CPU and disk loads. For example, if you have a high CPU load, the reallocation scan will run at a slower rate, so as not to impact system performance.

**Managing reallocation scans**

To manage reallocation scans, you must enable reallocation scans on your storage system. Then you define a reallocation scan to run at specified intervals or on a specified schedule.

You manage reallocation scans by performing the following tasks:

1. Enable reallocation scans.

2. Do one of the following:
   
   a. Define a reallocation scan to run at specified intervals (such as every 24 hours).
   
   b. Define a reallocation scan to run on a specified schedule that you create (such as every Thursday at 3:00 p.m.).

You can define only one reallocation scan per file, LUN, volume, or aggregate. You can, however, define reallocation scans for both the aggregate (to optimize free space layout) and the volumes in the same aggregate (to optimize data layout).

You can also initiate scans at any time, force Data ONTAP to reallocate blocks sequentially regardless of the optimization level of the LUN layout, and monitor and control the progress of scans.

A file or LUN reallocation scan is not automatically deleted when you delete its corresponding file or LUN. This allows you to reconstruct the file or LUN without having to re-create its reallocation scan. If the file or LUN has not been re-created in time for the next scheduled run of the reallocation scan, the storage system console displays an error message. A volume or aggregate reallocation scan is automatically deleted when you delete its corresponding volume or aggregate.

You can perform reallocation scans on LUNs or aggregates when they are online. You do not have to take them offline. You also do not have to perform any host-side procedures when you perform reallocation scans.
Enabling reallocation scans

Reallocation scans are disabled by default. You must enable reallocation scans globally on the storage system before you run a scan or schedule regular scans.

Step

1. On the storage system’s command line, enter the following command:

   `reallocate on`

Defining a LUN, file, or volume reallocation scan

After reallocation is enabled on your storage system, you define a reallocation scan for the LUN, file, or volume on which you want to perform a reallocation scan.

Step

1. On the storage system’s command line, enter the following command:


   • `-t threshold` is a number between 3 (layout is moderately optimal) and 10 (layout is not optimal). The default is 4.
     A scan checks the block layout of a LUN, file, or volume before reallocating blocks. If the current layout is below the threshold, the scan does not reallocate blocks in the LUN, file, or volume. If the current layout is equal to or above the threshold, the scan reallocates blocks in the LUN, file, or volume.
     
     **Note:** Because Data ONTAP also includes “hot spots” in its calculation of whether to start a LUN, file, or volume reallocation, the system might start a reallocation when the average optimization is better than the threshold but a small percentage of the total data is very poorly optimized.

   • `-n` reallocates blocks in the LUN, file, or volume without checking its layout.
   
   • `-o` runs the job once and then automatically removes it from the system.

   • `-p` reallocates user data on the physical blocks in the aggregate while preserving the logical block locations within a FlexVol volume. You cannot use the `-p` option with the `-u` option. This option also reallocates the shared blocks in a deduplicated volume. Reallocation scans skip deduplicated data if you do not specify the `-p` option. You can use this option only with FlexVol volumes, with files and LUNs within FlexVol volumes, or with deduplicated volumes.
     Do not use `-p` when you start a reallocation scan on a compressed volume. Starting a reallocation scan on a compressed volume using `-p` does not optimize the layout of a volume.
- Deduplication: `-u` duplicates blocks that are shared between files by deduplication. Duplicating the blocks removes the sharing. This option can help remove fragmentation; however, because blocks are duplicated, it can result in increased disk usage, especially for full reallocation. You cannot use the `-u` option with the `-p` option.

- Interval: `-i interval` is the interval, in hours, minutes, or days, at which the scan is performed. The default interval is 24 hours. You specify the interval as follows:
  
  `[m | h | d]`

  For example, `30m` is a 30-minute interval.

  The countdown to the next scan begins only after the first scan is complete. For example, if the interval is 24 hours and a scan starts at midnight and lasts for an hour, the next scan begins at 1:00 a.m. the next day—24 hours after the first scan is completed.

- Pathname: `pathname` is the path to the LUN, file, or volume on which you want to perform a reallocation scan.

Example

The following commands create a new LUN and a normal reallocation scan that runs every 24 hours:

```
lun create -s 100g /vol/vol2/lun0
reallocate start /vol/vol2/lun0
```

Related concepts

- Managing reallocation scans on page 280

Related tasks

- Creating a reallocation scan schedule on page 284
- Enabling reallocation scans on page 281

Defining an aggregate reallocation scan

If reallocation has been enabled on your storage system, you can initiate an aggregate reallocation scan to optimize the location of physical blocks in the aggregate, thus increasing contiguous free space in the aggregate.

About this task

An aggregate reallocation scan reallocates free space and is not the same as file reallocation. In particular, after adding new disks to an aggregate, if you want to ensure that blocks are laid out sequentially throughout the aggregate, you should use `reallocate start -f` on each volume instead of `reallocate start -A` on the aggregate.
Note: Do not run an aggregate reallocation scan if free space reallocation is enabled on the aggregate.

Because blocks in an aggregate Snapshot copy will not be reallocated, consider deleting aggregate Snapshot copies before performing aggregate reallocation to allow the reallocation to perform better.

Step

1. On the command line for the storage system, enter the following command:

   `reallocate start -A [-i interval] aggr_name`

   - `-i interval` is the interval, in hours, minutes, or days, at which the scan is performed. The default interval is 24 hours. You specify the interval as follows:
     
     `[m | h | d]`
     
     For example, `30m` is a 30-minute interval.
     
     The countdown to the next scan begins only after the first scan is complete. For example, if the interval is 24 hours and a scan starts at midnight and lasts for an hour, the next scan begins at 1:00 a.m. the next day—24 hours after the first scan is completed.

   - `aggr_name` is the name of the aggregate on which you want to perform a reallocation scan.

Example

The following example initiates an aggregate reallocation scan that runs every 24 hours:

   `reallocate start -A my_aggr`

Related concepts

- *Reasons to use aggregate reallocation scans* on page 278
- *How free space reallocation optimizes free space* on page 293

Related tasks

- *Performing a full reallocation scan of a LUN, file, or volume* on page 286
- *Creating a reallocation scan schedule* on page 284

Related references

- *Commands for managing free space reallocation* on page 296
Creating a reallocation scan schedule

You can run reallocation scans according to a schedule. The schedule you create replaces any interval you specified when you entered the `reallocate start` command or the `reallocate start -A` command.

About this task

If the reallocation scan job does not already exist, use `reallocate start` first to define the reallocation scan.

Step

1. Enter the following command:

```
reallocate schedule [-s schedule] pathname | aggr_name
```

- `-s schedule` is a string with the following fields:

```
minute hour day_of_month day_of_week
```

- `minute` is a value from 0 to 59.
- `hour` is a value from 0 (midnight) to 23 (11:00 p.m.).
- `day_of_month` is a value from 1 to 31.
- `day_of_week` is a value from 0 (Sunday) to 6 (Saturday).

A wildcard character (*) indicates every value for that field. For example, a * in the `day_of_month` field means every day of the month. You cannot use the wildcard character in the `minute` field.

You can enter a number, a range, or a comma-separated list of values for a field. For example, entering “0,1” in the `day_of_week` field means Sundays and Mondays. You can also define a range of values. For example, “0-3” in the `day_of_week` field means Sunday through Wednesday.

`pathname` is the path to the LUN, file, or volume for which you want to create a reallocation scan schedule.

`aggr_name` is the name of the aggregate for which you want to create a reallocation scan schedule.

Example

The following example schedules a LUN reallocation scan for every Saturday at 11:00 p.m.

```
reallocate schedule -s "0 23 * 6" /vol/myvol/lun1
```
Deleting a reallocation scan schedule

You can delete an existing reallocation scan schedule that is defined for a LUN, a file, a volume, or an aggregate. If you delete a schedule, the scan runs according to the interval that you specified when you initially defined the scan using the `reallocate start` command or the `reallocate start -A` command.

About this task

A file or LUN reallocation scan is not automatically deleted when you delete its corresponding file or a LUN. A volume or aggregate reallocation scan is automatically deleted when you delete its corresponding volume or aggregate.

Step

1. Enter the following command:

   `reallocate schedule -d pathname | aggr_name`

   `pathname` is the path to the LUN, file, or volume on which you want to delete a reallocation scan schedule.

   `aggr_name` is the name of the aggregate on which you want to delete a reallocation scan schedule.

Example

   `reallocate schedule -d /vol/myvol/lun1`
   `reallocate schedule -d my_aggr`

Starting a one-time reallocation scan

You can perform a one-time reallocation scan on a LUN, a file, a volume, or an aggregate. This type of scan is useful if you do not want to schedule regular scans for a particular LUN, file, volume, or aggregate.

Step

1. Enter one of the following commands:

<table>
<thead>
<tr>
<th>To perform a one-time reallocation scan on...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A LUN, file, or volume</td>
<td><code>reallocate start -o -n pathname</code></td>
</tr>
<tr>
<td>An aggregate</td>
<td><code>reallocate start -A -o aggr_name</code></td>
</tr>
</tbody>
</table>

• `−o` performs the scan only once.
-n performs the scan without checking the layout of the LUN, file, or volume.

**Example**

The following command syntax initiates a one-time reallocation scan on the my\_aggr aggregate:

```
reallocate start -A -o my\_aggr
```

**Performing a full reallocation scan of a LUN, file, or volume**

You can perform a scan that reallocates every block in a LUN, file, or volume regardless of the current layout by using the -f option of the `reallocate start` command. A full reallocation optimizes layout more aggressively than a normal reallocation scan. A normal reallocation scan moves blocks only if the move improves the layout of a LUN, file, or volume. A full reallocation scan always moves blocks, unless the move makes the layout even worse.

**About this task**

Using the -f option of the `reallocate start` command implies the -o and -n options. This means that the full reallocation scan is performed only once, without checking the layout first.

You might want to perform this type of scan if you add a new RAID group to a volume and you want to ensure that blocks are laid out sequentially throughout the volume or LUN.

**Attention:** You cannot perform a full reallocation (using the -f option) on an entire volume that has existing Snapshot copies, unless you also perform a physical reallocation (using the -p option). Otherwise, an error message is displayed. If you do a full reallocation on a file or LUN without the -p option, you might end up using significantly more space in the volume, because the old, unoptimized blocks are still present in the Snapshot copy after the scan. For individual LUNs or files, avoid transferring large amounts of data from the Snapshot copy to the active file system unless absolutely necessary. The greater the differences between the LUN or file and the Snapshot copy, the more likely the full reallocation will be successful.

If a full reallocation scan fails because of space issues, consider performing reallocation scans on a per-file basis, by using `reallocate start file\_pathname` without any options. However, if the space issue is caused by a full reallocation on a file or LUN that was performed without the -p option, a long-term solution is to wait until the Snapshot rotation has freed space on the volume and then to rerun the full reallocation scan with the -p option.

**Step**

1. Enter the following command:

```
reallocate start -f [-p] [-u] pathname | vol/volname
```

- -p reallocates user data on the physical blocks in the aggregate while preserving the logical block locations within a FlexVol volume. You cannot use the -p option with the -u option. This option also reallocates the shared blocks in a deduplicated volume. Reallocation scans skip deduplicated data if you do not specify the -p option. You can use this option only with
FlexVol volumes, with files and LUNs within FlexVol volumes, or with deduplicated volumes.

Do not use `-p` when you start a reallocation scan on a compressed volume. Starting a reallocation scan on a compressed volume using `-p` does not optimize the layout of a volume.

- `-u` duplicates blocks that are shared between files by deduplication. Duplicating the blocks removes the sharing. This option can help remove fragmentation; however, because blocks are duplicated, it can result in increased disk usage, especially for full reallocation. You cannot use the `-u` option with the `-p` option.

**Performing a measure-only reallocation scan of a LUN or volume**

A measure-only reallocation scan is similar to a normal reallocation scan except that only the check phase is performed. It allows the optimization of the LUN, file, or volume to be tracked over time or measured ad-hoc.

**About this task**

A measure-only reallocation scan checks the layout of a LUN, file, or volume. If the layout measurement becomes less optimal than the threshold (specified by the `-t` `threshold` option), or if a portion of the data is very poorly optimized, the log message advises you to consider performing a LUN, file, or volume reallocation (using the `reallocate start` command) to optimize the layout.

For scheduled measure-only reallocation scans, the optimization of the last completed check is saved and may be viewed at any time by using `reallocate status`.

Additional information about the layout of the LUN, file, or volume is logged if you use the `-l logfile` option.

**Step**

1. Enter the following command:

   ```bash
   reallocate measure [-l logfile] [-t threshold] [-i interval] [-o]
   pathname | /vol/volname
   ```

   - `-l logfile` is the file where information about the layout is recorded. If `logfile` is specified, information about the layout is recorded in the file.

   - `-t threshold` is a number between 3 (layout is moderately optimal) and 10 (layout is not optimal). The default is 4.

     When the layout becomes less optimal than the threshold level, the layout of the LUN, file, or volume is considered unoptimized, and the log message advises you to consider performing a LUN, file, or volume reallocation.

     **Note:** Because Data ONTAP also includes “hot spots” in its calculation of whether to start a reallocation, the log message might advise you to consider performing a reallocation when the average optimization is better than the threshold but a small percentage of the total data is very poorly optimized.
- \( -i \) \textit{interval} is the interval, in minutes, hours, or days, at which the scan is performed. A measure-only reallocation scan runs periodically at a system-defined interval, but depending on the system configuration and write/read workload, you can change the job interval with the \( -i \) option. You specify the interval as follows:

\[ [m \mid h \mid d] \]

For example, \( 30m \) is a 30-minute interval.

The countdown to the next scan begins only after the first scan is complete. For example, if the interval is 24 hours and a scan starts at midnight and lasts for an hour, the next scan begins at 1:00 a.m. the next day—24 hours after the first scan is completed.

- \( -o \) performs the scan only once, after which the scan is automatically removed from the system.

\textbf{Example}

The following command syntax measures the optimization of the \texttt{dblun} LUN once and records detailed information about the measurement in the \texttt{measure\_log\_dblun} log:

\[
\text{reallocate measure} -o -l /vol/logs/measure\_log\_dblun/vol/dbvol/dblun
\]

\textbf{Result}

After a measure-only reallocation scan, the optimization information is logged via EMS in the system log files.

\textbf{Quiescing a reallocation scan}

You can quiesce (temporarily stop) a reallocation scan that is in progress and restart it later. For example, if you want to back up a LUN or an aggregate but a scan is already in progress, you can quiesce the scan.

\textbf{About this task}

When you restart a file, LUN, or volume reallocation scan, the scan restarts from the beginning of the reallocation process. An aggregate reallocation scan restarts from where it stopped.

\textbf{Step}

1. Enter the following command:

\[
\text{reallocate quiesce } \texttt{pathname} \mid \texttt{aggr\_name}
\]

\textit{pathname} is the path to the LUN, file, or volume, and \textit{aggr\_name} is the name of the aggregate for which you want to quiesce the reallocation scan.
Restarting a reallocation scan

You might need to restart a scan that was previously quiesced or a scheduled scan that is currently idle.

About this task

You might restart a scan for the following reasons:

- You quiesced the scan by using the `reallocate quiesce` command, and you want to restart it.
- You have a scheduled scan that is idle (it is not yet time for it to run again), and you want to run it immediately.

Step

1. Enter the following command:

   `reallocate restart [-i] pathname | aggr_name`

   - The `-i` option ignores the checkpoint and starts the job at the beginning.
   - `pathname` is the path to the LUN, file, or volume on which you want to restart the reallocation scan.
   - `aggr_name` is the name of the aggregate on which you want to restart the reallocation scan.

   The command restarts a quiesced scan. If there is a scheduled scan that is idle, the `reallocate restart` command runs the scan.

Displaying the status of a scan

You can display the status of a scan, including the state, schedule, interval, optimization, and log file.

Step

1. Enter the following command:

   `reallocate status [-v] [pathname | aggr_name]`

   - `pathname` is the path to the LUN, file, or volume for which you want to see reallocation scan status.
   - `aggr_name` is the name of the aggregate for which you want to see reallocation scan status.
   - If you do not specify a value for `pathname` or `aggr_name`, then the status for all scans is displayed.

   The `reallocate status` command displays the following information:
   - State—whether the scan is in progress or idle.
Schedule—schedule information about the scan. If there is no schedule, then the `reallocate status` command displays n/a.

- Interval—intervals at which the scan runs, if there is no schedule defined.
- Optimization—information about the LUN layout.
- Logfile—the name of the logfile for a measure-only scan, if a detail logfile was specified.
- Hot spot optimization—displayed only for scheduled reallocation jobs.

Deleting a reallocation scan

You can permanently delete a scan you defined for a LUN, a file, a volume, or an aggregate. You can also stop any scan that is in progress on the LUN, file, volume, or aggregate.

**Step**

1. Enter the following command:

   ```
   reallocate stop pathname | aggr_name
   ```

   - `pathname` is the path to the LUN, file, or volume and `aggr_name` is the name of the aggregate on which you want to delete a scan.

   The `reallocate stop` command stops and deletes any scan on the LUN, file, volume, or the aggregate, including a scan in progress, a scheduled scan that is not running, or a scan that is quiesced.

Disabling reallocation scans

You can disable reallocation on the storage system. When you disable reallocation scans, you cannot start or restart any new scans. Any scans that are in progress are stopped.

**Step**

1. Enter the following command:

   ```
   reallocate off
   ```

   **Note:** If you want to reenable reallocation scans at a later date, use the `reallocate on` command.

How to use reallocation scans most efficiently

To maximize efficiency, you should follow certain guidelines when using reallocation scans.

The following are good practices to follow when you choose to use the `reallocate` command:

- You should define a reallocation scan when you first create the LUN, file, or volume. This ensures that the layout remains optimized as a result of regular reallocation scans.
• You should define regular reallocation scans by using either intervals or schedules. This ensures that the layout of the LUN, file, or volume remains optimized. If you wait until most of the blocks in the layout of the LUN, file, or volume are not sequential, a reallocation scan will take more time.

• You should define intervals according to the type of read/write activity associated with the LUN, file, or volume:

  **Long intervals**
  You should define long reallocation scan intervals for LUNs, files, or volumes in which the data changes slowly, for example, when data changes as a result of infrequent large write operations.

  **Short intervals**
  You should define short reallocation scan intervals for LUNs, files, or volumes that are characterized by workloads with many small random write and many sequential read operations. These types of LUNs, files, or volumes might become heavily fragmented over a shorter period of time.

• If you do not know the type of read/write activity associated with the LUNs, files, or volumes, you can choose to rely on the default layout of the system.

### Improving read performance

You can improve the read performance of your storage system by enabling read reallocation on volumes. Read reallocation is disabled by default.

**What read reallocation is**

For workloads that perform a mixture of random writes and large and multiple sequential reads, read reallocation improves file layout and sequential read performance.

Read reallocation analyzes the parts of the file that are read sequentially. If the associated blocks are not already largely contiguous, Data ONTAP updates the layout by rewriting those blocks to another location on disk. The rewrite improves the layout, thus improving the sequential read performance the next time that section of the file is read. However, read reallocation might result in a higher load on the storage system.

Read reallocation is not supported on compressed volumes and FlexCache volumes.
Enabling or disabling read reallocation

You can enable read reallocation on traditional volumes and FlexVol volumes to improve subsequent read performance of a file. You can also disable read reallocation.

About this task

If file fragmentation is a concern for FlexCache volumes, enable read reallocation on the FlexCache origin volume.

Step

1. Enter the following command:

```
vol options vol-name read_realloc [on | space_optimized | off]
```

- `on` enables read reallocation on the volume.
- `space_optimized` also enables read reallocation but can be used only on FlexVol volumes or deduplicated volumes.

Using `space_optimized` might be useful if the FlexVol volume has Snapshot copies or is a SnapMirror source. When you use `space_optimized`, the reallocation update does not result in duplicated Snapshot blocks in the active file system, thus conserving space in the volume. Also, `space_optimized` might reduce the amount of data that SnapMirror needs to move on the next update. However, `space_optimized` might also result in degraded Snapshot read performance.

Use `space_optimized` with deduplicated volumes to rearrange the volume's shared blocks. Read reallocation skips deduplicated data if you set the `read_realloc` option to `on`.

`space_optimized` is not supported if `vol-name` is in an aggregate that was either created prior to Data ONTAP 7.2 or once reverted to a version earlier than Data ONTAP 7.2.

- `off` disables read reallocation for the volume and is the default setting.

For more information about the `vol options read_realloc` command, see the `na_vol(1)` man page.

Example

The following command enables read reallocation on the vol1 volume:

```
vvol options vol1 read_realloc space_optimized
```
Improving write performance

You can enable free space reallocation on aggregates to improve write performance. Free space reallocation improves write performance by optimizing the free space within an aggregate. Free space reallocation is disabled by default.

How free space reallocation optimizes free space

Free space reallocation optimizes the free space in an aggregate immediately before Data ONTAP writes data to the blocks in that aggregate.

Before Data ONTAP writes data to a segment of blocks in an aggregate, free space reallocation evaluates the layout of those blocks. If the layout is not optimal, the free space reallocation function rearranges the blocks. Rearranging the blocks increases the amount of contiguous free space available in the aggregate, which improves the performance of Data ONTAP writes to those blocks.

The following graphic illustrates how free space reallocation optimizes the free space in a segment of blocks:
When to enable free space reallocation

Free space reallocation works best on workloads that perform a mixture of small random overwrites and sequential or random reads. You can expect additional CPU utilization when you enable free space reallocation. You should not enable free space reallocation if your storage system has sustained, high CPU utilization.

**Note:** You can use the `sysstat` command to monitor CPU utilization.

For best results, you should enable free space reallocation when you create a new aggregate. If you enable free space reallocation on an existing aggregate, there might be a period where Data ONTAP performs additional work to optimize free space. This additional work can temporarily impact system performance.
When to use free space reallocation with other reallocation features

You can use free space reallocation with the other reallocation features that you use to manage system performance: reallocation scans and read reallocation. However, you should not run an aggregate reallocation scan (`reallocate -A`) if free space reallocation is enabled on the aggregate.

When you enable free space reallocation, you should also consider enabling read reallocation. Free space reallocation and read reallocation are complementary technologies that optimize data layout. Read reallocation optimizes the system for sequential reads, while free space reallocation optimizes for writes.

Related concepts

- Optimizing LUN, file, volume, and aggregate layout on page 276
- What read reallocation is on page 291

How free space reallocation differs from an aggregate reallocation scan

Like an aggregate reallocation scan (`reallocate -A`), free space reallocation optimizes the location of blocks in an aggregate. However, an aggregate reallocation scan is a one-time scan of every segment within an aggregate, while free space reallocation runs continuously and scans only the segments to be used.

Types of aggregates that free space reallocation can and cannot optimize

Free space reallocation optimizes the free space in specific types of aggregates.

Free space reallocation optimizes free space in the following:

- Aggregates that provide storage to FlexVol volumes
- The HDD RAID groups in an aggregate

Free space reallocation does not optimize free space in the following:

- Aggregates that provide storage to traditional volumes
- The SSD RAID groups in an aggregate
- Aggregate Snapshot copies
- Read-only volumes
Commands for managing free space reallocation

Use the `aggr options` command to manage free space reallocation.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable free space reallocation on an aggregate</td>
<td><code>aggr options aggr_name free_space_realloc on</code></td>
</tr>
<tr>
<td>Disable free space reallocation on an aggregate</td>
<td><code>aggr options aggr_name free_space_realloc off</code></td>
</tr>
<tr>
<td>Identify whether free space reallocation is enabled or disabled on an aggregate</td>
<td><code>aggr options aggr_name</code></td>
</tr>
</tbody>
</table>

For more information, see the man pages.
Troubleshooting tools

If you experience problems with your storage system, some tools are available to help you understand and avoid problems.

Storage system panics

If your storage system has a serious problem, such as a problem with the hardware or a severe bug in the system software, it might panic.

When a system panics, it performs the following actions:

- The system core is dumped into a core file, which is placed in /etc/crash.
- A panic message is output to the console and to /etc/messages.
- The storage system reboots.

The panic message contains important information that can help you and technical support determine what happened and how you can prevent the panic from happening in the future.

Reacting to storage system panics

If your storage system panics, there are some steps you can follow to help technical support troubleshoot the problem more quickly.

About this task

If you have AutoSupport enabled, AutoSupport automatically alerts technical support when your system panics.

Steps

1. Access the panic message on the console messages or in the /etc/messages file.
2. From the NetApp Support Site, navigate to the Panic Message Analyzer tool.
3. Copy the panic message and Data ONTAP version number into the Panic Message Analyzer tool to determine whether your panic was caused by a known software issue.
4. If the panic is due to a known issue that was fixed in a later release, and upgrading to that release is feasible, you can download the new release from the web site and upgrade to resolve the issue. Otherwise, call technical support.
Error messages

If a hardware, software, or configuration problem exists on your system that is not severe enough to cause a panic, the storage system logs a message to alert you to the problem.

The error message can be logged to the console, a file, or to a remote system, depending on how you have configured message logging.

Note: You should check the /etc/messages file once a day for important messages. You can automate the checking of this file by creating a script on the administration host that periodically searches /etc/messages and then alerts you of important events.

Using the Syslog Translator to get information about error messages

Error messages are relatively brief to avoid clogging the error logging system. Some messages have more information available through the Syslog Translator.

Steps

1. Go to the NetApp Support Site and select Technical Assistance & Documentation and then Syslog Translator.
2. In the Software field, select Data ONTAP.
3. Cut and paste the error message into the Search String field and click Translate.

If more information is available about the message you have received, it is displayed, including the following information:

- Severity
- Description
- Corrective action
- Related information
- Data ONTAP versions this message applies to
- Details about the syslog message
- Details about the SNMP trap initiated by this message
How to use the NetApp Support Site for help with errors

The NetApp Support Site is a powerful resource to help you diagnose and solve problems with your storage system.

The NetApp Support Site includes the following tools:

- **Knowledgebase Solutions**
  A database of technical tips and articles to help with specific errors and problems. To access this tool, select Service & Support to access the natural language search tool. Make sure that the Knowledgebase Solutions check box is selected.
  You can also browse the Knowledgebase by selecting **Browse the Knowledgebase**.

- **Bugs Online**
  NetApp provides information about known issues and any workarounds using this tool. To access Bugs Online, select **Service & Support > Bugs Online & Release Tools**.
  If you know the bug ID, you can view the information for that particular bug. Otherwise, you can use either the Bugs Online search capabilities or the natural language search as described for the Knowledgebase Solutions tool to search for a bug that matches your issue.

How to use the remote management device to troubleshoot the system

You can use the remote management device to troubleshoot the system even if you are not physically co-located with the system.

You can use the remote management device to view system console messages, view system events, dump the system core, and issue commands to power-cycle, reset, or reboot the system.
Glossary

A

ACL
Access control list.

active/active configuration

- In the Data ONTAP 7.2 and 7.3 release families, a pair of storage systems or V-Series systems (sometimes called nodes) configured to serve data for each other if one of the two systems stops functioning. Also sometimes referred to as active/active pairs.

- In the Data ONTAP 8.x release family, this functionality is referred to as a high-availability (HA) configuration or an HA pair.

- In the Data ONTAP 7.1 release family and earlier releases, this functionality is referred to as a cluster.

address resolution
The procedure for determining an address corresponding to the address of a LAN or WAN destination.

administration host
A client computer that is used to manage a storage system through a Telnet or Remote Shell connection.

Application Program Interface (API)
A language and message format used by an application program to communicate with the operating system or some other system, control program, or communications protocol.

authentication
The process of verifying the identity of a user who is logging in to a computer system.

AutoSupport
An integrated technology that triggers email messages from the customer site to technical support or another specified email recipient when there are any failures in Unified Manager services. These messages contain information such as feature usage metrics, configuration and user settings, system health, and so on.

B

big-endian
A binary data format for storage and transmission in which the most significant byte comes first.

C
caching module
A Flash Cache 2, Flash Cache, or Performance Acceleration Module (PAM) PCIe-based, memory module that optimizes the performance of random read-intensive workloads by functioning as an intelligent external read cache. This hardware works in tandem with the WAFL External Cache software component of Data ONTAP.

CIFS share
- In Data ONTAP, a directory or directory structure that has been made available to network users and can be mapped to a drive letter on a CIFS client. Also known simply as a share.
- In OnCommand Insight (formerly SANscreen suite), a service exposed from a NAS device to provide file-based storage through the CIFS protocol. CIFS is mostly used for Microsoft Windows clients, but many other operating systems can access CIFS shares as well.

CLI
command-line interface. The storage system prompt is an example of a command-line interface.

client
A workstation or PC in a client-server architecture; that is, a computer system or process that requests services from and accepts the responses of another computer system or process.

cluster
- In clustered Data ONTAP 8.x, a group of connected nodes (storage systems) that share a namespace and that you can manage as a single virtual server or multiple virtual servers, providing performance, reliability, and scalability benefits.
- In the Data ONTAP 7.1 release family and earlier releases, a pair of storage systems (sometimes called nodes) configured to serve data for each other if one of the two systems stops functioning.
- In the Data ONTAP 7.3 and 7.2 release families, this functionality is referred to as an active/active configuration.
- For some storage array vendors, cluster refers to the hardware component on which host adapters and ports are located. Some storage array vendors refer to this component as a controller.

Common Internet File System (CIFS)
Microsoft's file-sharing networking protocol that evolved from SMB.

community
A logical relationship between an SNMP agent and one or more SNMP managers. A community is identified by name, and all members of the community have the same access privileges.

**console**

The physical or virtual terminal that is used to monitor and control a storage system.

**Copy-On-Write (COW)**

The technique for creating Snapshot copies without consuming excess disk space.

**D**

**degraded mode**

The operating mode of a storage system when a disk in the RAID group fails or the batteries on the NVRAM card are low.

**disk ID number**

The number assigned by the storage system to each disk when it probes the disks at startup.

**disk sanitization**

A multiple write process for physically obliterating existing data on specified disks in such a manner that the obliterated data is no longer recoverable by known means of data recovery.

**disk shelf**

A shelf that contains disk drives and is attached to a storage system.

**E**

**emulated storage system**

A software copy of a failed storage system that is hosted by its takeover storage system. The emulated storage system appears to users and administrators to be a functional version of the failed storage system. For example, it has the same name as the failed storage system.

**Ethernet adapter**

An Ethernet interface card.

**expansion card**

A SCSI card, NVRAM card, network card, hot-swap card, or console card that plugs into a storage system expansion slot. Sometimes called an *adapter*.

**expansion slot**

The slots on the storage system board into which you insert expansion cards.

**F**

**failed storage system**
A physical storage system that has ceased operating. In a high-availability configuration, it remains the failed storage system until a giveback succeeds.

**Flash Cache module**
A PCIe-based, solid state memory module that optimizes the performance of random read-intensive workloads by functioning as an intelligent external read cache. The Flash Cache 2 module is the successor of the Flash Cache module, which is the successor of the Performance Acceleration Module (PAM). This hardware works in tandem with the WAFL External Cache software component of Data ONTAP.

**G**

giveback
The technology that enables two storage systems to return control of each other's data after the issues that caused a controller failover are resolved.

global namespace
See namespace.

group
In Data ONTAP operating in 7-Mode, a group of users defined in the storage system's /etc/group file.

**Group ID (GID)**
The number used by UNIX systems to identify groups.

**H**

**HA (high availability)**

- In Data ONTAP 8.x, the recovery capability provided by a pair of nodes (storage systems), called an *HA pair*, that are configured to serve data for each other if one of the two nodes stops functioning.

- In the Data ONTAP 7.3 and 7.2 release families, this functionality is referred to as an *active/active configuration*.

**HA pair**

- In Data ONTAP 8.x, a pair of nodes whose controllers are configured to serve data for each other if one of the two nodes stops functioning.

  Depending on the system model, both controllers can be in a single chassis, or one controller can be in one chassis and the other controller can be in a separate chassis.

- In the Data ONTAP 7.3 and 7.2 release families, this functionality is referred to as an *active/active configuration*.

**heartbeat**
A repeating signal transmitted from one storage system to the other that indicates that the storage system is in operation. Heartbeat information is also stored on disk.
hot swap
The process of adding, removing, or replacing a disk while the storage system is running.

hot swap adapter
An expansion card that makes it possible to add or remove a hard disk with minimal interruption to file system activity.

inode
A data structure containing information about files on a storage system and in a UNIX file system.

interrupt switch
A switch on some storage system front panels used for debugging purposes.

Maintenance mode
An option when booting a storage system from a system boot disk. Maintenance mode provides special commands for troubleshooting hardware and configuration.

MultiStore
In Data ONTAP operating in 7-Mode, an optional software product that enables you to partition the storage and network resources of a single storage system so that it appears as multiple storage systems on the network.

namespace
In network-attached storage (NAS) environments, a collection of files and path names to the files.

NDMP
Network Data Management Protocol. A protocol that allows storage systems to communicate with backup applications and provides capabilities for controlling the robotics of multiple tape backup devices.

network adapter
An Ethernet, FDDI, or ATM card.

normal mode
The state of a storage system when there is no takeover in the HA configuration.

NVMMEM
nonvolatile memory.

NVRAM cache
Nonvolatile RAM in a storage system, used for logging incoming write data and NFS requests. Improves system performance and prevents loss of data in case of a storage system or power failure.

**NVRAM card**
An adapter that contains the storage system’s NVnRAM cache.

**NVRAM mirror**
A synchronously updated copy of the contents of the storage system NVRAM (nonvolatile random access memory) contents kept on the partner storage system.

**P**

**PAM (Performance Acceleration Module)**
A PCIe-based, DRAM memory module that optimizes the performance of random read-intensive workloads by functioning as an intelligent external read cache. This hardware is the predecessor of the Flash Cache module and works in tandem with the WAFL External Cache software component of Data ONTAP.

**panic**
A serious error condition causing the system that is running Data ONTAP to halt. Similar to a software crash in the Windows system environment.

**parity disk**
The disk on which parity information is stored for a RAID4 disk drive array. In RAID groups using RAID-DP protection, two parity disks store the parity and double-parity information. Used to reconstruct data in failed disk blocks or on a failed disk.

**partner mode**
The method you use to communicate through the command-line interface with a virtual storage system during a takeover.

**partner node**
From the point of view of the local node (storage system), the other node in a HA configuration.

**Performance Acceleration Module (PAM)**
See *PAM (Performance Acceleration Module)*.

**POST**
Power-on self-tests. The tests run by a storage system after the power is turned on.

**Q**

**qtree**
A special subdirectory of the root of a volume that acts as a virtual subvolume with special attributes.
RAID

Redundant Array of Independent Disks. A technique that protects against disk failure by computing parity information based on the contents of all the disks in a storage array. Storage systems use either RAID4, which stores all parity information on a single disk, or RAID-DP, which stores all parity information on two disks.

RAID disk scrubbing

The process in which a system reads each disk in the RAID group and tries to fix media errors by rewriting the data to another disk area.

S

serial adapter

An expansion card for attaching a terminal as the console on some storage system models.

serial console

An ASCII or ANSI terminal attached to a storage system’s serial port. Used to monitor and manage storage system operations.

SFO

See storage failover (SFO).

SID

Security identifier used by the Windows operating system.

Snapshot copy

An online, read-only copy of an entire file system that protects against accidental deletions or modifications of files without duplicating file contents. Snapshot copies enable users to restore files and to back up the storage system to tape while the storage system is in use.

storage failover (SFO)

In clustered Data ONTAP, the method of ensuring data availability by transferring the data service of a failed node to another node in an HA pair. Transfer of data service is often transparent to users and applications. In Data ONTAP 7.2 and later, and in Data ONTAP operating in 7-Mode, the failover method is called controller failover.

T

takeover

The emulation of the failed node identity by the takeover node in an HA pair; the opposite of giveback.

takeover mode

The method you use to interact with a node (storage system) when it has taken over its partner. The console prompt indicates when the node is in takeover mode.

takeover node
A node (storage system) that remains in operation after the other node stops working and that hosts a virtual node that manages access to the failed node disk shelves and network connections. The takeover node maintains its own identity and the virtual node maintains the failed node identity.

**trap**

An asynchronous, unsolicited message sent by an SNMP agent to an SNMP manager indicating that an event has occurred on the storage system.

**UID**

user identification number.

**Unicode**

A 16-bit character set standard. It was designed and is maintained by the nonprofit consortium Unicode Inc.

**vFiler unit**

In Data ONTAP operating in 7-Mode, a virtual storage system that you create using MultiStore, which enables you to partition the storage and network resources of a single storage system so that it appears as multiple storage systems on the network.

**volume**

A file system.

**WAFL**

Write Anywhere File Layout. A file system designed for the storage system to optimize write performance.

**WAFL External Cache**

On a storage system that has a Performance Acceleration Module (PAM), Flash Cache, or Flash Cache 2 module installed, this cache improves storage system performance by reducing the number of disk reads. Sometimes referred to as *WAFL extended cache.*

**WINS**

Windows Internet Name Service.

**workgroup**

A collection of computers running Windows NT or Windows for Workgroups that is grouped for browsing and sharing.
Copyright information

Copyright © 1994–2014 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).
Trademark information


Cisco and the Cisco logo are trademarks of Cisco in the U.S. and other countries. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.
How to send comments about documentation and receive update notification

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email to doccomments@netapp.com. To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

- NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.
- Telephone: +1 (408) 822-6000
- Fax: +1 (408) 822-4501
- Support telephone: +1 (888) 463-8277
Index

/etc directory
- access with FTP 84
- access with SFTP 84
/etc/log/auditlog file 153
/etc/messages file 82
/etc/rc
  - recovering from errors 157
/etc/rc file
  - commands in 154
  - sample 155
/etc/syslog.conf file
  - configuring message logging in 152
  - file format and parameters of 150
/etc/usermap.cfg file, character coding of 83
/home directory
- access with FTP 86
- access with SFTP 86

A

access
- allowing only secure to storage systems 73
- disabling root account for the storage system 102
- displaying the status of root 103
- introduction to methods for controlling storage system 68
- restricting protocol 68
- restricting RLM to only the specified administration hosts 239
- restricting SP to only the specified administration hosts 217
- secure protocols and storage system 36

accessing
- /etc directory with FTP 84
- /etc directory with SFTP 84
- /home directory with FTP 86
- /home directory with SFTP 86
- accounts that can access the RLM 228
- accounts that can access the SP 200
- data management, introduction 17
- starting a Telnet session 55
- storage system from Windows client with RSH 61
- storage system with serial port 34
- the SP from an administration host 201
- the system with the remote management device 35
- enabling or disabling diagnostic 134
- reasons for creating administrator 99
- administering
  - systems, methods for 29
- administration
  - methods for storage systems 23
- administration hosts
  - accessing the SP from 201
  - adding 67
  - defined 65
  - how to specify 66
  - logging in to the RLM from 229
  - privileges 65
  - reasons for designating workstations as 65
  - removing 67
  - restricting RLM access to only the specified 239
  - restricting SP access to only the specified 217
  - use of 65
- administrative capabilities
  - creating a user with no 125
- administrative level commands 27
- administrator accounts
  - changing the password of (passwd) 130
  - reasons for creating 99
- aggr copy command
  - data protection capability defined 18
- aggregate information
  - displaying 247
- aggregate Snapshot copies
  - considerations for managing 139
- aggregate Snapshot reserve
  - considerations for increasing 140
- aggregates
  - improving write performance 293
  - introduction to managing the root volume and the root 75
  - introduction to optimizing layout of 276
  - introduction to root 75
- alerts
  - customization of system health 190
  - how they trigger AutoSupport messages and events 190
  - responding to 189
  - triggers used in health monitoring 188
  - See also health monitoring
- APIs
enabling or disabling auditing of read-only array LUNs
systems running Data ONTAP that can use audit logging
introduction logs
audit, introduction auditing enabling or disabling read-only API authentication public-key-based overview with SSL AutoSupport about commands configuring content of messages sent by email daily message content daily messages defined displaying information enabled by default having messages sent to your organization enabling and disabling event-triggered message content event-triggered messages getting message descriptions history mail host support for manifest manifest, content of Message Matrices messages, files collected for modifying triggers performance message content performance messages requirements for using resending messages sending messages setup severity types structure of messages sent by email supported transport protocols table describing the main command options troubleshooting HTTP HTTPS troubleshooting failure to deliver messages over SMTP troubleshooting mail host relaying troubleshooting messages weekly message content weekly messages when messages are generated when messages are sent where messages are sent Autosupport messages and events how alerts trigger them Autosupport messages and events triggered by system health alerts AutoSupport On Demand communication with technical support available counters viewing available health monitors

B

banner messages configuration block sharing multiprotocol boot devices recovering from a corrupted image of the system's storage system boot environment prompt booting Data ONTAP from boot menus managing the storage system with the boot options storage system booting Data ONTAP at the boot environment prompt storage systems browsers, improving security through buffer cache policy setting

C

CA installing certificates signed by CA signed certificates installing cache rewarming abort events about disabling enabling
how it works 274
trigger events 275
caches
  comparison of Flash Pool and Flash Cache 270
capabilities
  creating a user with no administrative capabilities 125
definition of 99
element of creating a user with custom 124
how users are assigned 100
list of supported types 113
modifying others’ 107
of predefined roles 112
types of 113
Certificate Authority
  See CA
certificates
  domain names and 51
generating 49
installing signed CA 50
change privileges, file ownership 70
character coding for configuration files 83
CIFS
  accessing /etc directory 83
  accessing /home directory 85
client, requirements to manage storage system 66
creating a user with no administrative capabilities 125
editing configuration files using 82
CIFS share lookups
  controlling anonymous 71
CLI
  rules for using Data ONTAP 25
clients
  accessing storage system from Windows, with RSH 61
  CIFS, requirements 66
  editing configuration file from 82
  NFS, requirements 66
command-line editor
  using the 25
command-line interface
  See CLI
commands
  administrative level 27
  advanced level 27
  displaying history 25
  for managing a system at the SP admin privilege level 206
  for managing a system at the SP advanced privilege level 209
  for managing licenses 142
  for managing the RLM with Data ONTAP 236
  for managing the SP with Data ONTAP 219
  options wafl.root_only_chown (sets file ownership changes) 70
  passwd (changes administrative user password) 130
  passwd (changes storage system system password) 129
  privilege level 27
  privilege levels 27
  reboot (reboots the storage system) 94
  RSH command list 62
  stats 251
  timezone (displays and sets system time zone) 145
comments
  how to send feedback about documentation 310
CompactFlash cards
  checking the Data ONTAP version of 94
configuration files
  backing up 158
  backing up and cloning 157
  cloning 159
  comparing backups 160
  editing from CIFS client 82
  editing from NFS client-set-up 81
  hard limits 80
  introduction 79
  restoring 159
  within /etc directory 79
configuration information
  displaying storage system 244
configurations
  of banner messages 57
connection problems
  troubleshooting RLM 243
considerations
  for increasing the aggregate Snapshot reserve 140
  for managing core dump files 146
  root FlexVol volume sizing 77
console sessions
  RLM CLI and system 231
  SP CLI and system 204
consoles
  accessing the serial console from the RLM 231
  accessing the serial console from the SP 204
  accessing the SP from serial 203
  session rules for Telnet, SSH-interactive, and 31
core dump files
  considerations for managing 146
  managing 146
methods of segmenting 147
core segments
  commands for managing 148
counters
  getting detailed information about 253
  viewing available 252
custom capabilities
  example of creating a user with 124

data
daily AutoSupport messages
  type of data contained within 169
dashboards
  performing My AutoSupport tasks 184
data
  Data ONTAP functionality for managing migration 18
data access
  management, introduction 17
Data ONTAP
  booting at the boot environment prompt 91
  checking version of 94
  introduction to managing the RLM with 236
  introduction to managing the SP with 216
  management tasks by using e0M 33
  restoring LUNs 139
  rules for using CLI 25
Data ONTAP commands
  for managing the RLM 236
  for managing the SP 219
Data ONTAP-v
  components 15
Data ONTAP-v systems
  root volume, introduction to 75
data organization
  management 17
data protection
  capabilities, defined 18
data storage
  management, introduction to 17
date
  setting the system time and 143
default directories
  introduction to ways of accessing on the storage system 83
diag account
  accessing the systems shell 136
diagnostic accounts
  enabling or disabling 134
setting the password for 135
  uses of 134
directories
  introduction to ways of accessing default, on the storage system 83
  root volume default 78
directories, default permissions 78
discrete SP sensors
  understanding the status of 212
disk shelves
  introduction to 14
DNS 185
documentation
  how to receive automatic notification of changes to 310
  how to send feedback about 310
domain names, changing storage system 51
domain users
  definition of 99
  deleting 123
  granting access to 106
  listing 118
e0M interface
  Data ONTAP management tasks by using 33
  introduction to 32
e0M interfaces
  differences between the remote management device and 34
editor
  using the command-line 25
email messages
  structure of for AutoSupport 170
EMS
  callhome events
    EMS 167
  managing event messages 163
  relationship with event-triggered AutoSupport messages 167
  unknown user event 187
encryption
  with SSL 48
environmental status
  commands for displaying 249
error message logging, about 298
error messages
  getting information by using Syslog Translator 298
errors
how to use NetApp Support Site for help with 299
recovering from /etc/rc 157
event management
displaying EMS information 164
displaying event log information 164
Event Management Systems
See EMS
event messages
managing 163
event-triggered AutoSupport messages
how AutoSupport creates and sends them 167

F

FAS systems
root volume, introduction to 75
feedback
how to send comments about documentation 310
Fibre Channel
going get information 250
file ownership change privileges 70
file services
through network 16
file sharing
multiprotocol 16
File Transfer Protocol
See FTP
files
for configuration, introduction 79
introduction to optimizing layout of 276
methods of segmenting core dump 147
reading WAFL 162
firmware updates
methods of managing SP 216
Flash Cache
compared with Flash Pool aggregates 270
Flash Cache family of modules 269
Flash Pool aggregates
compared with Flash Cache 270
flexscale.rewarm option 276
FlexShare
about 261
assigning system operation priorities 266
assigning volume priorities 265
buffer cache policy 265, 267
default queue 264
high-availability configuration 263
io_concurrency options 264
modifying default priority 269
priority levels 263
removing priorities 268
using 265
volume operations and 263
volume prioritization 264
when to use 262
FlexVol volumes
sizing considerations for root 77
free space reallocation
disabling 296
enabling 296
how it works 293
overview 293
relation to aggregation reallocation scans 295
supported aggregates 295
using with other reallocation features 295
viewing status 296
when to enable 294
FTP
for accessing the /etc directory 84
for accessing the /home directory 86

G
generating certificates 49
groups
assigning roles to 109
creating users and assigning to 104
definition of 99
deleting 123
granting access and mapping roles for LDAP 125
listing 118
naming requirements 100
predefined 108
reloading from lclgroups.cfg file 110
renaming 110
setting maximum auxiliary 111
Windows special 101

H
halt command
halting the storage system with 96
halting
storage systems 96
hard limits, configuration files 80
health monitoring
commands 193
example of responding to degraded health 192
how alerts trigger AutoSupport messages and events 190
responding to degraded health 191
ways to control when alerts occur 190
ways to respond to alerts 189
what it is 188
health monitors
about alerts 188
availability of 191
how they work and about health policies 188
health policies
about alerts and matching conditions 188
history
displaying command 25
hosts
accessing the SP from administration 201
definition of 65
how to specify administration 66
logging in to the RLM from administration 229
privileges of administration 65
restricting RLM access to only the specified administration 239
restricting SP access to only the specified administration 217
how alerts trigger AutoSupport messages and events
health monitoring 190
HTTP access to log files 87
I
images
recovering from the corruption of the system's boot device 93
increasing cache memory 269
information
how to send feedback about improving documentation 310
interface
e0M, introduction 32
K
key pairs
generating for SSH 2.0 44
generating RSA for SSH 1.x 43
keys
public-based, authentication overview 43
L
layouts
introduction to optimizing LUN, file, volume, and aggregate 276
lelgroups.cfg file, reloading 110
LDAP groups
granting access and mapping roles for 125
license
types 142
licenses
commands for managing 142
managing 141
log files, accessing using HTTP or HTTPS 87
logs
introduction to message 149
lookups
controlling anonymous CIFS share 71
LUN (Logical Unit Number)
restore 139
LUNs
introduction to optimizing layout of 276
reallocating to improve performance 278
LUNs (array)
systems running Data ONTAP that can use 14
LUNs, array
See LUNs (array)
M
mail hosts
supported by AutoSupport 171
management
introduction to data storage 17
managing
licenses 141
manifest
AutoSupport messages within 183
message files, accessing using HTTP or HTTPS 87
message logging
introduction 149
messages
files collected for AutoSupport 183
managing event 163
methods
for administering systems 29
MetroCluster
data protection capability defined 18
migration
Data ONTAP functionality for managing data 18
monitoring
node connectivity 188
using system health alerts 190
mounts
controlling privilege of NFS 70

multiprotocols
for file and block sharing 16

My AutoSupport
dashboard tasks 184
described 184

N
naming requirements for useradmin command 100

NDMP
data protection capability defined 18

NetApp Support Site
how to use for help with errors 299

network
configuring the SP 198
file service 16

networks
configuring the RLM 226

NFS
access to /etc directory 83
access to /home directory 85

NFS client
requirements to manage storage system 66

NFS mounts
controlling privilege of 70

node connectivity health monitor
about 191
commands for 193

nonlocal users, granting access to 106

notifications
automatic, technical support upon system reboots 149

NVFAIL
data protection capability defined 18

O
obsolete domain names, and SSL 51

online command-line help 26

online help
for using RLM CLI 232
for using SP CLI 205

options
Data ONTAP password management 130
of Data ONTAP for managing system time 145

overview 291

ownership change privileges, file 70

P
PAM (Performance Acceleration Module) 269

panics
considerations for managing core dump files 146
reacting to storage system 297

passwords
changing (passwd) 129
Data ONTAP options for managing rules 130
how to manage for security 127
setting for the diagnostic account 135

performance
improving write performance 293
monitoring with perfmon 260
read 291
read reallocation 291

Performance Acceleration Module 269

performance AutoSupport messages
type of data contained within 169

performance improvements, in storage systems
WAFL external cache 269

perfstat
for getting system information 260

permissions of default directories (/etc, /home) 78

physical reallocation scans
reasons to use 279

presets
viewing available 259

privilege levels for Data ONTAP commands 27

privileges
administration host 65
controlling NFS mount 70
privileges, file ownership change 70

prompts
booting Data ONTAP at the boot environment 91
rebooting the storage system at the system 91

protocols
for file and block sharing 16
introduction to SSH 38
restricting access 68
secure, and storage system access 36

public-key-based
authentication overview 43

Q
quota file, character coding for 83
read reallocation
  disabling 292
  enabling 292
read-only APIs
  enabling or disabling auditing of 154
reading files 161
reallocate commands
  reallocate off 290
  reallocate on 281
  reallocate quiesce 288
  reallocate restart 289
  reallocate schedule 284
  reallocate start 281, 285
  reallocate start -A 282, 285
  reallocate status 289
  reallocate stop 290
reallocate commands: reallocate schedule -d 285
reallocation
  best practices 290
  defining scans
    aggregates 282
    LUNs, files, or volumes 281
  deleting a scan 290
  deleting scan schedule 285
  disabling scans 290
  enabling scans 281
  free space 293
  full 286
  managing scans 280
  measure-only 287
  quiescing scans 288
  read 291
  restarting scans 289
  scans 277
  scheduling scans 284
  starting one-time scan 285
  viewing scan status 289
  when to use with free space reallocation 295
  with LUNs, files, or volumes 278
reallocation scans
  reasons to use physical 279
reallocations
  how a scan works 279
rebooting
  the storage system at the system prompt 91
  the storage system remotely 95
rebooting the system
  from the console 94
  from a corrupted image of the system's boot device 93
reinitialization
  of SSL 51
remote
  system management by using the RLM 224
  system management by using the SP 196
Remote LAN Modules
  See RLM
remote management
  of a storage system 196
remote management devices
  accessing the system with 35
differences between the e0M interface and 34
Remote Shell (RSH) 58
remote shell application
  See RSH
remotely
  rebooting the storage system 95
repeat mode
  using stats command interactively in 255
requests
  issuing SSH 46
requirements
  for using AutoSupport 171
to manage storage system on NFS clients 66
reserves
  considerations for increasing aggregate Snapshot 140
respond to
  alerts 189
  system health alerts 189
RLM
  down filer events 241
down system events 241
  SNMP traps 241
RLMs
  accessing the serial console from 231
  accounts that can access 228
  CLI and system console sessions 231
commands for managing a system at the admin
  privilege level 233
commands for managing a system at the advanced
  privilege level 235
commands for troubleshooting the storage system 242
configuring automatic logout of idle SSH
  connections to 240
configuring the network 226
Data ONTAP
   enabling or disabling SNMP traps for RLM and
   241
Data ONTAP commands for managing 236
   enabling or disabling SNMP traps for Data ONTAP
   and 241
   introduction to 225
   introduction to managing, with Data ONTAP 236
   logging in to, from an administration host 229
   managing a system remotely by using 224
   remote management
      RLMs 225
   restricting access to only the specified administration
   hosts 239
   troubleshooting connection problems 243
   using online help at CLI 232
roles
   assigning to groups 109
   creating 116
   definition of 99
   deleting 123
   listing 118
   mapping to LDAP groups 125
   modifying 117
   naming requirements 100
   predefined by Data ONTAP 112
root
   disabling account access to the storage system 102
root access
   displaying the status of 103
root aggregates
   introduction to 75
   introduction to managing the root volume and the 75
root FlexVol volumes
   sizing considerations for 77
root password, changing 129
root volumes
   changing 88
   default directories in 78
   introduction to 75
   introduction to managing the root aggregate and the 75
   recommendations for 76
RSA
   generating key pairs for SSH 1.x 43
RSH
   accessing storage system from a UNIX client 60
   displaying session information 63
   list of 62
   privilege levels 27
   use with user names and passwords 59
rules
   Data ONTAP options for managing password 130
S
   scans
      of reallocation, how it works 279
      reasons to use physical reallocation 279
   scans, reallocation 280
   secure access
      allowing only to storage systems 73
   secure protocols
      and storage system access 36
   Secure Shell
      See SSH
   Secure Sockets Layer
      See SSL
   SecureAdmin
      displaying status of 54
      improving security with SSL 48
      managing SSH portion 40
security
   controlling file ownership changes (options
      wafl.root_only_chown) 70
   how to manage passwords for 127
   limiting Telnet access 68
   settings 37
sensors
   understanding the status of discrete SP 212
serial consoles
   accessing from the RLM 231
   accessing from the SP 204
   accessing the SP from 203
serial ports
   and slots of a storage system 13
   using to access storage system 34
Service Processors
   See SP
sessions
   terminating Telnet 56
setup
   AutoSupport 172
   severity
   AutoSupport 170
SFTP
for accessing the /etc directory 84
for accessing the /home directory 86
shares
controlling anonymous CIFS lookup 71
shelves
introduction to disk 14
singleton mode
using stats command interactively in 254
sizing considerations
root FlexVol volume 77
slots
and serial ports of a storage system 13
SMTP
troubleshooting AutoSupport failure to deliver
messages over 186
SnapLock
data protection capability defined 18
SnapMirror
data protection capability defined 18
SnapRestore
data protection capability defined 18
Snapshot copies
considerations for managing aggregate 139
data protection capability defined 18
Snapshot reserve
considerations for increasing aggregate 140
SnapVault
data protection capability defined 18
SNMP traps
enabling or disabling for Data ONTAP and RLM 241
SP
sensors, threshold-based 209
SNMP traps 223
SP sensors
understanding the status of discrete 212
special system files
.bplusvtoc_internal 139
.vtoc_internal 139
SPs
accessing from an administration host 201
accessing from the serial console 203
accessing the serial console from 204
accounts that can access 200
CLI and system console sessions 204
commands for managing a system at the admin
privilege level 206
commands for managing a system at the advanced
privilege level 209
commands for troubleshooting the storage system
215
configuring automatic logout of idle SSH
connections to 218
configuring the network 198
Data ONTAP commands for managing 219
introduction to managing with Data ONTAP 216
managing a system remotely by using 196
methods of managing firmware updates 216
restricting access to only the specified administration
hosts 217
using online help at CLI 205
SSH
configuring automatic logout of idle connections to
the RLM 240
configuring automatic logout of idle connections to
the SP 218
enabling or disabling 43
generating key pairs for version 2.0 44
generating RSA key pairs for 1.x 43
reinitializing 42
setting up and starting 40
SSH (Secure Shell) commands
secureadmin status 54
SSH (Secure Shell) protocol
managing 40
SSH File Transfer Protocol
See SFTP
SSH interactive
configuring a timeout period 58
controlling the timeout period 57
SSH protocol
introduction to 38
SSH requests
issuing 46
SSH-interactive
session rules for console, Telnet, and 31
SSL
enabling or disabling 52
how to manage 49
SSL (Secure Sockets Layer) commands
secureadmin disable all 54
secureadmin disable ssl 51
secureadmin enable all 54
secureadmin enable ssl 51
secureadmin setup ssl 49
secureadmin status 54
SSL (Secure Sockets Layer) protocol
authentication with 48
enabling or disabling 51
improving security with 48
reinitializing 51
setting up and starting 49
statistics commands
displaying Fibre Channel driver statistics 250
displaying link statistics 250
displaying relative physical drive position 250
SAS statistics, description of 250
stats command
about 251
background mode 256
controlling output 258
counters 251
instances 251
objects 251
preset files 259
using interactively in repeat mode 255
using interactively in singleton mode 254
status
commands for displaying environmental 249
displaying root access 103
status commands
sasadmin (displays SAS adapter and expander information) 250
sasstat adapter_state (displays state of a logical adapter) 250
sasstat dev_stats (displays statistics for disk drives connected to SAS channels) 250
sasstat expander (displays SAS expander configuration) 250
sasstat expander_map (displays SAS expander product information) 250
sasstat expander_phy_state (displays SAS expander physical state) 250
sasstat shelf (displays pictorial representation of the drive population of a shelf) 250
sasstat shelf_short (displays the short form of the sasstat shelf command output) 250
status, displaying SecureAdmin 54
storage management
introduction to data 17
storage system
access and secure protocols 36
storage system access
/etc directory, accessing by using CIFS 83
/etc directory, accessing by using NFS 83
/home directory, accessing by using CIFS 85
/home directory, accessing by using NFS 85
using RSH from a UNIX client 60
storage systems
accessing from Windows client with RSH 61
allowing only secure access to 73
changing domain name of 51
components of 12
controlling file ownership changes (options wafl.root_only_chown) 70
defined 12
disabling root account access to 102
displaying configuration information 244
editing boot configuration file in 156
halting 96
how to boot 90
internal components of, defined 12
introduction to methods for controlling access of 68
introduction to starting or stopping 90
introduction to ways of accessing default directories on 83
limiting Telnet access 68
managing with the boot menu 97
methods for administering 23
reacting to panics 297
rebooting at the system prompt 91
rebooting remotely 92
rebooting the system (reboot) 94
remotely managing 196
remotely rebooting 95
RSH (Remote Shell) access to 58
security 71
setting date and time (date) 145
slots and serial ports of 13
systems
remotely managing storage 196
using serial port to access 34
ways to boot 90
suggestions
how to send feedback about documentation 310
SyncMirror
data protection capability defined 18
Syslog Translator
getting error message information by using 298
system
panics 297
password, changing 129
rebooting, from the console 94
Remote Shell access (RSH) 58
time zone, setting 145
system access
starting a Telnet session 55
system console sessions
RLM CLI and 231
SP CLI and 204
system date and time
   setting the 143
system files, Data ONTAP
   .bplusvtoc_internal 139
   .vtoc_internal 139
system health
   alert customization 190
   responding to degradation 191
   See also health monitoring
system health alerts
   how they trigger AutoSupport messages and events 190
   responding to 189
system information
   using perfstat to get 260
System Manager
   about 64
   supported Data ONTAP versions 64
   tasks you can perform from 64
system operation priorities
   assigning using FlexShare 266
system panics
   considerations for managing core dump files 146
system prompts
   rebooting the storage system at the 91
system reboots
   automatic technical support notification 149
system time
   Data ONTAP options for managing 145
   synchronizing 144
systems
   accessing from Windows client with RSH 61
   accessing with the remote management device 35
   allowing only secure access to storage 73
   components of storage 12
   disabling root account access to storage 102
   displaying configuration information for storage 244
   halting storage 96
   internal components of storage, defined 12
   introduction to methods for controlling access of storage 68
   introduction to starting or stopping storage 90
   introduction to ways of accessing default directories on storage 83
   management, introduction 21
   methods for administering 29
   methods for administering storage 23
   recovering from a corrupted image of the boot device 93
   remotely rebooting the storage 92, 95
   slots and serial ports of storage 13
   SP admin privilege level commands for managing the 206
   SP advanced privilege level commands for managing the 209
   synchronizing time for 144
   using the RLM to remotely manage 224
   using the SP to remotely manage 196
   ways to boot storage 90
systemshell
   accessing 136
   uses of 134
T
tape backup and restore
   data protection capability defined 18
technical support
   automatic notification upon system reboots 149
   how AutoSupport On Demand communicates with 168
Telnet
   configuring a timeout period 58
   controlling the timeout period 57
   limiting access to 68
   session rules for console, SSH-interactive, and 31
   starting a session 55
   terminating a session 56
time
   Data ONTAP options for managing system 145
   setting the system date and 143
TLS
   disabling or enabling 53
Transport Layer Security
   See TLS
Transport Layer Security (TLS) protocol 48
   transport protocols supported by AutoSupport 171
trigger events
   how AutoSupport responds to 167
troubleshooting
   considerations for managing core dump files 146
   delivery status of AutoSupport messages 184
   mail host 187
   RLM connection problems 243
   storage systems with RLM commands 242
   storage systems with SP commands 215
   using systemshell and diagnostic account for 134
twitter
how to receive automatic notification of documentation changes 310

U
updates
methods of managing SP firmware 216
user account, changing password for 130
user capabilities
how assigned 100
useradmin
examples 124
naming requirements 100
users
changing passwords 130
creating and assigning to groups 104
creating with no administrative capabilities 125
creation examples 124
definition of 99
deleting 123
example, creating with custom capabilities 124
examples of creating 124
introduction to ways of managing 104
listing 118
managing root access 102
modifying capabilities of 107
naming requirement 100

V
V-Series functionality
name change to FlexArray Virtualization 14
V-Series systems
See LUNs (array)
version
checking Data ONTAP 94
virus scan support
data protection capability defined 18
vol copy command
data protection capability defined 18
volume information
displaying 248
volume priorities
assigning using FlexShare 265
removing using FlexShare 268
volumes
changing root 88
default directories in root 78
introduction to managing the root aggregate and the root 75
introduction to optimizing layout of 276
introduction to root 75
recommendations for root 76
sizing considerations for root FlexVol 77

W
WAFL (Write Anywhere File Layout) 269
WAFL external cache
about 269
compared with Flash Pool aggregates 270
disabling 271
displaying configuration 273
displaying usage and access information 273
enabling 271
low-priority user data blocks 272
normal user data blocks 271
rewarming 274
system metadata cache 272
WAFL files
reading 162
writing 161
warnings
obsolete domain names 51
ways to respond to alerts
health monitoring 189
weekly AutoSupport messages
type of data contained within 169
Windows
domain users, granting access to 106
special groups 101
windows clients
accessing storage system from, with RSH 61
workstations
reasons to designate as administration hosts 65
Write Anywhere File Layout (WAFL) 269
writing files 161