Contents

- How this guide fits into your implementation planning 6
- Where to find interoperability and limits information for configurations with storage arrays .. 8
 - Interoperability information about support for storage arrays 8
 - Limits information for configurations with storage arrays 9
- Use of storage array advanced features ... 10
- Data ONTAP systems that can use array LUNs on storage arrays 11
- General configuration guidelines for all storage arrays 12
 - Requirement for 8-Gb array port initialization 12
- EMC CLARiiON and VNX storage arrays ... 13
 - Required parameters for EMC CLARiiON and VNX storage arrays with Data ONTAP systems ... 13
 - General configuration guidelines .. 13
 - How EMC CLARiiON and VNX storage arrays control access to data 13
 - Limitation on array LUN numbering with EMC CLARiiON and VNX arrays ... 14
 - Guidelines for enabling ALUA on EMC CLARiiON and VNX storage arrays ... 14
 - EMC CLARiiON storage array families .. 14
 - EMC VNX storage array families .. 15
- EMC Symmetrix storage arrays .. 17
 - Required parameters for EMC Symmetrix storage arrays with Data ONTAP systems ... 17
 - General configuration guidelines .. 18
 - Requirements for implementing LUN security on EMC Symmetrix storage arrays ... 18
 - Caution about using the VCMDB LUN .. 19
 - Caution about using the ACLX LUN ... 19
 - Restriction on using gatekeeper LUNs ... 19
 - EMC Symmetrix storage array families ... 19
- Fujitsu ETERNUS storage arrays .. 21
Requirements for configuring Fujitsu ETERNUS storage arrays with Data ONTAP systems ... 21
 Host Response pattern requirement for Fujitsu storage arrays 21
 Required host configuration parameters for Fujitsu DX8xxx storage arrays .. 21
 Required host configuration parameters for Fujitsu DX4xx storage arrays .. 22
 General configuration guidelines ... 23
 Fujitsu ETERNUS storage array families .. 23

Hitachi storage arrays .. 25
 Required parameters for Hitachi storage arrays with Data ONTAP systems 25
 General configuration guidelines .. 26
 Requirements for creating LUNs in dynamic pools 26
 Requirements for formatting array LUNs ... 26
 Requirements for using disks external to the storage array 27
 Guidelines for configuring ports on Hitachi storage arrays 27
 Hitachi storage array families .. 28

HP EVA storage arrays .. 30
 Required parameters for HP EVA arrays with Data ONTAP systems 30
 General configuration guidelines .. 30
 Requirements for configuring the HP EVA Storage Management Server 30
 Preparing HP EVA storage arrays for NDU .. 30
 ALUA support for HP EVA storage arrays .. 32
 HP EVA storage array families .. 32

HP XP storage arrays .. 34
 Required parameters for HP XP storage arrays with Data ONTAP systems 34
 General configuration guidelines .. 35
 Requirements for creating LUNs in dynamic pools 35
 Requirements for formatting array LUNs ... 35
 Requirements for using disks external to the storage array 35
 Guidelines for configuring ports on HP XP storage arrays 36
 HP XP storage array families .. 36

IBM DS storage arrays .. 38
 Required settings for IBM DS storage arrays with Data ONTAP systems 38
 General configuration guidelines .. 39
 Requirements for volume groups on DS8xxx storage arrays 39
Requirements for direct-attached configurations with all IBM DS arrays ... 39
IBM DS storage array families ... 39

IBM XIV storage arrays ... 41
Requirements for configuring IBM XIV arrays with Data ONTAP systems 41
IBM XIV storage array families ... 41

3PAR storage arrays ... 43
Required parameters for 3PAR arrays with Data ONTAP systems 43
Workaround for the unknown device (L254/SES) problem with 3PAR
storage arrays ... 44
General configuration guidelines ... 44
3PAR storage array families ... 44

Supported fabric-attached configurations ... 46
Stand-alone basic configuration .. 46
Stand-alone with two 2-port array LUN groups ... 47
Single 4-port array LUN group .. 47
Two 4-port array LUN groups .. 48
Eight-port array LUN group configuration .. 49
Data ONTAP FC initiator port attaching to multiple targets ports 51

Supported direct-attached configurations .. 53
Two-port direct-attached stand-alone configurations 53
Four-port direct-attached HA pair configuration 54

Terminology comparison between storage array vendors 55

Copyright information .. 59

Trademark information ... 60

How to send your comments .. 61

Index .. 62
How this guide fits into your implementation planning

When planning a deployment with Data ONTAP systems and storage arrays, it is important to review the general requirements for setting up all storage arrays to work with Data ONTAP and also the specific requirements for your vendor and storage array vendor, which are discussed in this guide.

Data ONTAP systems can be deployed with a variety of storage arrays. Data ONTAP requirements for working with individual storage arrays can vary by vendor and storage array. This guide provides information about the storage arrays that Data ONTAP supports at the time of publication. Not all models described in this guide are supported in all Data ONTAP releases. To determine which storage array models are supported in a particular Data ONTAP release, see the Interoperability Matrix at support.netapp.com.

Note: The Interoperability Matrix is the final authority on information such as storage arrays, firmware, switches, and features that Data ONTAP supports.

What to read before this guide

When planning for setting up your configuration to work with storage arrays, you should start by reading the FlexArray Virtualization Installation Requirements and Reference Guide, which provides the general requirements for setting up Data ONTAP to work with storage arrays. For example, it contains general guidelines about how to configure array LUNs to work with Data ONTAP and how to set up paths to array LUNs. After you understand the requirements that apply to all vendors, you should read this guide, which provides the additional information that is specific to your vendor.

How this guide is organized

The information in this guide is organized in separate chapters for each storage array vendor. Each chapter includes information about the following:

- The requirements for parameters that must be set for each supported storage array from your vendor to be able to work with Data ONTAP
- Additional configuration guidelines, such as restrictions specific to an aspect of your vendor's storage array configuration
- The configurations that are supported for the storage arrays from your vendor

The supported configurations shown for a vendor might not apply to all storage array models from the vendor. Any exceptions for individual models from a vendor are shown in the Interoperability Matrix at support.netapp.com.
Where to find out about planning for and setting up Data ONTAP features

The FlexArray Virtualization guides provide information about how to set up Data ONTAP to work with storage arrays and how to set up the storage arrays to work with Data ONTAP. You should also refer to the Data ONTAP document library, which provides information about Data ONTAP features. The Data ONTAP guides also contain some procedures for installing and configuring your system to work with array LUNs.
Where to find interoperability and limits information for configurations with storage arrays

When planning your configuration to use Data ONTAP systems with storage arrays, you need to check sources in addition to product documentation for interoperability details information.

Tools available on the NetApp Support Site provide, in a central location, specific information about which features, configurations, and storage array models are supported in particular releases.

Interoperability information about support for storage arrays

Not all Data ONTAP releases support the same features, configurations, system models, and storage array models. During your deployment planning, you need to check Data ONTAP support information to ensure that your deployment conforms to Data ONTAP hardware and software requirements for all systems in the deployment.

Previously all support information used to set up deployments with storage arrays was included in the V-Series Support Matrix. The information is divided into different tools, as shown in the following table:

<table>
<thead>
<tr>
<th>For information about...</th>
<th>You should look here...</th>
</tr>
</thead>
</table>
| Data ONTAP working with devices, including the following: | Interoperability Matrix at support.netapp.com
Note: The Interoperability Matrix shows the Brocade and Cisco switches that are supported. You can find guides for configuring specific vendor switches on the NetApp Support Site at support.netapp.com. |
| • Supported storage arrays and storage array firmware | |
| • Supported switches and switch firmware | |
| • Whether your storage array supports nondisruptive (live) upgrade of the storage array firmware | |
| • Whether a MetroCluster configuration is supported with your storage array | |
Limits information for configurations with storage arrays

The Hardware Universe at hwu.netapp.com contains information about limits that you need to consider when planning for a configuration with storage arrays.

The Hardware Universe includes the following limits that do not apply to native disks:

- Minimum and maximum array LUN size that Data ONTAP supports
- Minimum size for the array LUN for the root volume
- Spare core array LUN minimum size
- Limits for RAID groups with array LUNs
- Minimum aggregate size for an aggregate of array LUNs
- Maximum number of array LUNs and disks combined, per platform

The Hardware Universe also contains storage limits that are the same for native disks and array LUNs.

Note: Limits for V-Series systems were previously provided in the V-Series Limits Reference for Third-Party Storage and the V-Series Support Matrix.
Use of storage array advanced features

Data ONTAP does not support storage array advanced features unless otherwise specified in the Interoperability Matrix at support.netapp.com.
Data ONTAP systems that can use array LUNs on storage arrays

V-Series (“V”) systems and new FAS platforms released in Data ONTAP 8.2.1 and later can use array LUNs if the proper license is installed. In discussions in the Data ONTAP and FlexArray Virtualization documentation, these systems are collectively referred to as Data ONTAP systems when it is necessary to make it clear which information applies to them and what information applies to storage arrays.

Note: Starting with Data ONTAP 8.2.1, the capability of using LUNs on a storage array, formerly identified as V-Series functionality, has a new name—Data ONTAP FlexArray Virtualization Software. The capability of using array LUNs continues to be available as a licensed feature in Data ONTAP.

Systems prior to Data ONTAP 8.2.1 that can use array LUNs

The only systems released prior to Data ONTAP 8.2.1 that can use array LUNs are V-Series systems—systems with a “V” or “GF” prefix. A V-Series system is an open storage controller that virtualizes storage from storage array vendors, native disks, or both into a single heterogeneous storage pool.

Note: Almost all Data ONTAP platforms released prior to Data ONTAP 8.2.1 were released with FAS and V-Series equivalent models (for example, a FAS6280 and a V6280). (For a few systems, there were no “V” equivalent models.) Although both types of models could access native disks, only the V-Series systems (a “V” or “GF” prefix) could attach to storage arrays.

Systems in Data ONTAP 8.2.1 and later that can use array LUNs

Starting with Data ONTAP 8.2.1, the model for how platforms are released and the storage they can use changes. Attaching to storage arrays is no longer limited to V-Series systems.

Starting with Data ONTAP 8.2.1, all new platforms are released as a single hardware model. This single hardware model has a FAS prefix; there are no longer separate “V” and FAS models for new platforms. If the V_StorageAttach license package is installed on a new FAS model, it can attach to storage arrays. (This is the same license required on a V-Series system.)

Important: FAS systems released prior to Data ONTAP 8.2.1 cannot use LUNs on storage arrays, even if they are upgraded to Data ONTAP 8.2.1 or later; only the “V” equivalent of a platform can use array LUNs.
General configuration guidelines for all storage arrays

This section includes general configuration guidelines for any of the storage arrays supported by Data ONTAP.

Requirement for 8-Gb array port initialization

In a typical Fibre Channel (FC) fabric, storage array ports initialize as N-Ports (node ports) and their corresponding switch ports initialize as F-Ports (fabric ports). In some cases, these F-ports might go offline and resume operation as L-Ports (loop ports), resulting in fabric errors.

This behavior is caused by topology auto-negotiation issues in the Brocade switch.

To ensure that switch ports always initialize as F-ports, you must run the `portcfggport <portnumber> 1` command on Brocade switch ports that are connected to storage arrays. You must run this command when you start configuring the system to avoid this problem, and you must fix the problem if it occurs.

To promote efficiency on the fabric as a whole, you can also use this workaround on any Brocade ports attached to Data ONTAP initiator ports.
EMC CLARiiON and VNX storage arrays

You must meet specific requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on your storage arrays and deploying only supported configurations.

Required parameters for EMC CLARiiON and VNX storage arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

Host configuration parameters that must be set on the storage array are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator type</td>
<td>Clarion Open or Clariion VNX</td>
</tr>
<tr>
<td>Array Com Path</td>
<td>Enabled</td>
</tr>
<tr>
<td>Failover mode</td>
<td>1</td>
</tr>
<tr>
<td>Unit serial number</td>
<td>LUN</td>
</tr>
<tr>
<td>Host Name</td>
<td>User-supplied host name and port number.</td>
</tr>
<tr>
<td>IP address</td>
<td>Unique fake IP address.</td>
</tr>
<tr>
<td></td>
<td>Be sure that you have not entered this IP address anywhere else in the storage array configuration, and that it is not an IP address that is present on the network.</td>
</tr>
</tbody>
</table>

General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

How EMC CLARiiON and VNX storage arrays control access to data

EMC CLARiiON and VNX arrays use Storage Groups to control access to data. A Storage Group is one or more LUNs within the storage array that can be accessed only by the host or hosts that you
associate with the array LUNs. A host cannot access or modify data in any array LUNs that are not part of its Storage Group.

Data ONTAP supports multiple Storage Groups if these rules are followed:

- Switch zoning must define which target ports the FC initiator ports on the Data ONTAP system use to access each array LUN group.
- LUN masking must be used to restrict host access to array LUNs.
- Storage Groups must define which array LUN groups are presented to each FC initiator port.
- One FC initiator port pair on each Data ONTAP system is required for each array LUN group.

If array LUN neighborhoods are used, the V-Series systems in the same neighborhood must be in the same Storage Group.

Limitation on array LUN numbering with EMC CLARiiON and VNX arrays

EMC CLARiiON (CX) and VNX storage arrays only support array LUN numbering from 0 through 255. Array LUNs that are numbered beyond that range are not visible to Data ONTAP.

Guidelines for enabling ALUA on EMC CLARiiON and VNX storage arrays

Starting with clustered Data ONTAP 8.2, support has been added for ALUA (Asymmetric Logical Unit Access) with CLARiiON and VNX arrays.

By default, support for ALUA is enabled in clustered Data ONTAP. But to use it, ALUA must be enabled on the storage array.

You should enable ALUA only on new configurations. You should not enable ALUA in an existing configuration.

If you are setting up ALUA on the storage array, you need to ensure that all hosts in a Storage Group are in the same failover mode, that is failover mode 4 (ALUA).

EMC CLARiiON storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

Note: CX storage arrays use asymmetric active-active (ALUA) or active-passive failover mode; they are not active-active storage arrays.
The following list shows CLARiiON storage arrays organized by family:

- **Family 1**
 - CX300
 - CX500
 - CX700

- **Family 2**
 - CX3-20
 - CX3-40
 - CX3-80

- **Family 3**
 - CX4-120
 - CX4-240
 - CX4-480
 - CX4-960

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.

EMC VNX storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

Note: VNX storage arrays use asymmetric active-active (ALUA) or active-passive failover mode; they are not active-active storage arrays.

The following list shows the supported storage arrays, which are all in the same family:

- **Family 1**
The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
EMC Symmetrix storage arrays

You must meet specific requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on your storage arrays and deploying only supported configurations.

Required parameters for EMC Symmetrix storage arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

Required host channel director port configuration parameters

The host channel director port configuration parameters that must be set on the storage array are shown in the following table:

<table>
<thead>
<tr>
<th>Parameter (names might differ between GUI and CLI)</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common SN (Common Serial Number or C-bit parameter)</td>
<td>Enable</td>
</tr>
<tr>
<td>PP (Point-to-Point parameter)</td>
<td>Enable</td>
</tr>
<tr>
<td>SC3 (SCSI-3)</td>
<td>Enable</td>
</tr>
<tr>
<td>SPC-2 (SCS2_Protocol_version, SCSI Primary Command 2 parameter, or “Allow inquiry data to be compiled to the standard”)</td>
<td>Enable</td>
</tr>
<tr>
<td>UWN (Unique Worldwide Name)</td>
<td>Enable</td>
</tr>
<tr>
<td>Volume Set Addressing</td>
<td>Disable</td>
</tr>
</tbody>
</table>

The Volume Set Addressing parameter must be set the same way on all channel director ports to which the LUN is mapped. If the settings are different, Data ONTAP reports this as a LUN ID mismatch in storage errors show output and in an EMS message. See the FlexArray Virtualization Installation Requirements and Reference Guide for information about troubleshooting this error.
Required host configuration parameters

The settings for host configuration parameters are shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Type Format</td>
<td>Server or Open systems</td>
</tr>
<tr>
<td>SCSI3Persist_reserv (Persistent Reservations)</td>
<td>On</td>
</tr>
</tbody>
</table>

General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

Requirements for implementing LUN security on EMC Symmetrix storage arrays

You use LUN security to eliminate the possibility of a host writing data to a LUN that is not owned by that host.

To eliminate the possibility of a non-Data ONTAP host overwriting EMC Symmetrix (DMX and VMAX) array LUNs owned by a Data ONTAP system or vice versa, you must present the Symmetrix logical devices through the host (channel) director ports in one of the following ways:

- Present only the Symmetrix logical devices for Data ONTAP on specific Symmetrix host (channel) director ports that are dedicated to Data ONTAP use.

 If ports cannot be dedicated to Data ONTAP, you should confirm that all other hosts using those ports are compatible with Data ONTAP requirements. This is because each host connected to the Symmetrix array has requirements for different port attribute settings. Sharing ports between multiple hosts that are connected to the Symmetrix storage array might result in an impossible-to-implement configuration.

- For DMX storage arrays, use LUN masking to associate all the DMX LUNs with the FC initiator ports on the Data ONTAP system and with the host (channel) director ports that are dedicated to Data ONTAP use.

- For VMAX storage arrays, create masking views for required mapping and masking by creating port groups, Storage Groups, and initiator groups.

 To achieve this, you must first enable the ACLX port attribute on the VMAX storage array ports.

Attention: Do not present the VCMDB LUN to all hosts by default. Configure the global setting to restrict visibility to the VCMDB unless it has been specifically made visible to a particular host.
Caution about using the VCMDB LUN

For the VCMDB (Volume Configuration Management Database) to be enabled, the VCMDB LUN must exist. The VCMDB LUN is a command type LUN, not a storage LUN. The VCMDB is typically mapped to LUN 0, but can be mapped to an array LUN other than LUN 0.

If the VCMDB LUN is mapped to a Data ONTAP system, Data ONTAP periodically logs a message that the VCMDB LUN is less than the minimum size required, and it marks the VCMDB LUN as failed. The Data ONTAP system continues to function normally after logging this error message, but it cannot use the LUN.

A VCMDB LUN should be unmapped from a Data ONTAP system.

Caution about using the ACLX LUN

On VMAX arrays, the ACLX (Access Control Logix) LUN is created during initialization if the customer requests that ACLX be used. The ACLX LUN is not a storage LUN, so it should not be mapped to Data ONTAP.

If the ACLX LUN is mapped to a Data ONTAP system, Data ONTAP logs a message that the ACLX LUN is less than the minimum size required, and it marks the LUN as failed. The Data ONTAP system continues to function normally after logging this error message, but it cannot use the LUN.

The ACLX LUN should be unmapped from the front-end director ports on the Data ONTAP system.

Restriction on using gatekeeper LUNs

If a gatekeeper logical device (LUN) is presented, you must not map it to the Data ONTAP system. Data ONTAP systems cannot use gatekeeper LUNs. A gatekeeper LUN is a Symmetrix logical device through which SYMAPI or the ControlCenter agent communicates with the storage array.

EMC Symmetrix storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the supported arrays organized by families:

- Family1
 - VMAX SE
The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
Fujitsu ETERNUS storage arrays

You must meet specific requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on your storage arrays and deploying only supported configurations.

Requirements for configuring Fujitsu ETERNUS storage arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

Host Response pattern requirement for Fujitsu storage arrays

For your Data ONTAP system to work with Fujitsu storage arrays, you need to create a new Host Response pattern and set the parameters required by the Data ONTAP system.

Fujitsu provides Host Response pattern #00, which is a read-only version of the specification that you edit to match the requirements of your storage array model.

Required host configuration parameters for Fujitsu DX8xxx storage arrays

You must set certain configuration parameters for the storage array to be able to communicate with the Data ONTAP system.

Host configuration parameters that must be set on the storage array are listed in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Response Name</td>
<td>Name (name of the Data ONTAP system)</td>
</tr>
<tr>
<td>Command Time-out Interval</td>
<td>Standard (25 seconds)</td>
</tr>
<tr>
<td>Data Transfer Timer</td>
<td>10 Seconds (Default)</td>
</tr>
<tr>
<td>Load Balance Response</td>
<td>Unit Attention</td>
</tr>
<tr>
<td>Byte-0 Inquiry Response</td>
<td>No Conversions (Default)</td>
</tr>
<tr>
<td>Inquiry VPD ID Type</td>
<td>Type1 + Type3 (Default)</td>
</tr>
<tr>
<td>Inquiry Standard Data Version</td>
<td>Version 05 (Default)</td>
</tr>
<tr>
<td>Reservation Conflict Response for Test Unit Ready</td>
<td>Normal Response (Default)</td>
</tr>
</tbody>
</table>
Parameter Setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric / Symmetric Logical Unit Access</td>
<td>Active/Active (Default)</td>
</tr>
<tr>
<td>Host Specific Mode</td>
<td>Normal Mode (Default)</td>
</tr>
<tr>
<td>LUN Mapping Changes</td>
<td>No Report (Default)</td>
</tr>
<tr>
<td>LUN Capacity Expansion</td>
<td>No Report (Default)</td>
</tr>
<tr>
<td>Vendor Unique Sense Code</td>
<td>No report (Default)</td>
</tr>
<tr>
<td>Sense Code Conversion Pattern</td>
<td>No Conversion (Default)</td>
</tr>
</tbody>
</table>

The following additional parameters must be set if you are using firmware version V10L50 or later:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI Discovery Reply</td>
<td>All - Reply All Ports (Default)</td>
</tr>
<tr>
<td>TPGS Mode</td>
<td>Enable (Default)</td>
</tr>
<tr>
<td>TPG Referrals</td>
<td>Disable (Default)</td>
</tr>
<tr>
<td>iSCSI Reservation Range</td>
<td>CA Port (Default)</td>
</tr>
</tbody>
</table>

Required host configuration parameters for Fujitsu DX4xx storage arrays

You must set certain configuration parameters for the storage array to be able to communicate with the Data ONTAP system.

Host configuration parameters that must be set on the storage array are listed in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Response Name</td>
<td>Name (name of the Data ONTAP system)</td>
</tr>
<tr>
<td>Byte-0 of Inquiry response</td>
<td>No conversion (Default)</td>
</tr>
<tr>
<td>Inquiry VPD ID Type</td>
<td>Type 1 + Type 3</td>
</tr>
<tr>
<td>Inquiry Standard Data Version</td>
<td>Default (Version 05)</td>
</tr>
<tr>
<td>Command Timeout Interval</td>
<td>Default (25 sec)</td>
</tr>
<tr>
<td>Load Balance Response</td>
<td>Default (Unit Attention)</td>
</tr>
<tr>
<td>Reservation Conflict Response for Test Unit Ready</td>
<td>Default (Normal)</td>
</tr>
<tr>
<td>Change Volume Mapping</td>
<td>Default (No Report)</td>
</tr>
<tr>
<td>Volume Capacity Expansion</td>
<td>Default (No Report)</td>
</tr>
</tbody>
</table>
General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

Fujitsu ETERNUS storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the storage arrays supported in various Data ONTAP 8.x releases organized by family:

- DX Generation 1 family
 - DX8000 (DX8700, DX8400)
 - DX400 1st generation (DX410, DX440)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor Unique Sense Code</td>
<td>Default (No Report)</td>
</tr>
<tr>
<td>Host Specific Mode</td>
<td>Default (Normal)</td>
</tr>
<tr>
<td>Asymmetric/Symmetric Logical Unit Access</td>
<td>Active/Active/Preferred_Path (Default)</td>
</tr>
<tr>
<td>Sense Data Conversion</td>
<td>Default (no conversion)</td>
</tr>
<tr>
<td>The following additional parameters must be set if you are using firmware version V10L50 or later:</td>
<td></td>
</tr>
<tr>
<td>iSCSI Discovery Reply Mode</td>
<td>All - Reply All Ports (Default)</td>
</tr>
<tr>
<td>TPGS Mode</td>
<td>Enable (Default)</td>
</tr>
<tr>
<td>TPG Referrals</td>
<td>Disable (Default)</td>
</tr>
<tr>
<td>iSCSI Reservation Range</td>
<td>CA Port (Default)</td>
</tr>
</tbody>
</table>
• DX Generation 2 family
 ◦ DX400 S2 (DX410, DX440)
 ◦ DX8000 S2 (DX8700)

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.

Note: This guide discusses only the Fujitsu storage arrays that are supported in the Data ONTAP 8.x releases. See the Interoperability Matrix for information about the ETERNUS family of storage arrays, which are supported in releases earlier than Data ONTAP 8.x. For Data ONTAP 8.0.2 and earlier, the V-Series Implementation Guide for Fujitsu ETERNUS Storage provides information about setting up the ETERNUS family models to work with Data ONTAP.
Hitachi storage arrays

You must meet certain requirements when configuring Hitachi storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on storage arrays and deploying only supported configurations.

Required parameters for Hitachi storage arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

Required system parameter for NSC55, USP, and VSP storage arrays

The required parameter setting is shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host type</td>
<td>Standard or 00</td>
</tr>
</tbody>
</table>

Required system parameters for AMS and HUS storage arrays

The parameters that must be set are listed in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping mode</td>
<td>Enabled</td>
</tr>
<tr>
<td>Host group security</td>
<td>Enabled</td>
</tr>
<tr>
<td>Product ID</td>
<td>DF600F</td>
</tr>
<tr>
<td>Mode Setting > Common Setting</td>
<td>Standard Mode</td>
</tr>
<tr>
<td>Platform</td>
<td>Not specified</td>
</tr>
<tr>
<td>Middleware</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

Required system parameters for HUS VM storage arrays

The parameters that must be set are listed in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host mode</td>
<td>Standard or 00</td>
</tr>
<tr>
<td>Parameter</td>
<td>Setting</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Port security</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Note: A host group that is separate from the default host groups should be created for each initiator-target port pair.

The storage array parameters should be set and LUNs should be mapped to the host groups before the switch is zoned to connect the Data ONTAP system to the Hitachi storage array.

If Data ONTAP system FC initiator ports are zoned with Hitachi array target ports before the storage array parameters are set and the LUNs are mapped to the host groups, you might not be able to see any LUNs presented to the Data ONTAP interface.

In this situation, Data ONTAP generates one of the following EMS messages:

- [fci.device.login.reject:info] The PLOGI transmitted by port XX was rejected by port_id 0xYYYY with reason code 0x9 'Invalid R_CTL Field', explanation code 0x29 'Insufficient Resources to Support Login'
- [fci.device.login.reject:info]: The PLOGI transmitted by port XX was rejected by port_id 0xYYYY with reason code 0x3 'Nx_Port Not Available, Temporary', explanation code 0x29 'Insufficient Resources to Support Login'

Workaround

If zoning was configured prior to setting the parameters and mapping the LUNs to the host groups, you can resolve the problem of LUNs not being visible by performing a path re-initialization to force a rediscovery of the array LUNs that are mapped from the Hitachi storage array.

General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

Requirements for creating LUNs in dynamic pools

When creating LUNs in the dynamic pools, do not over-provision the pool capacity.

Requirements for formatting array LUNs

You can perform different types of array LUN formatting. Each type has an impact on the availability of LUNs or the entire storage array.

If you must present a new LUN to the Data ONTAP system immediately, you should use quick formatting. If you plan to present LUNs to the Data ONTAP system in the future, quick formatting is recommended but Online formatting is acceptable.
Quick formatting is recommended because both Online and Offline formatting delay disk discovery until after the LUN formatting is complete, as described in the following list:

- Online formatting takes the array LUN that is being formatted completely offline, and the array LUN does not respond to any SCSI commands.
 Formatting is performed on one array LUN at a time until all array LUNs are formatted.

- Offline formatting takes the entire storage array offline and the storage array does not respond to any SCSI commands.
 The array LUNs are formatted six at a time per controller until the formatting is complete.
 The storage array does not respond until all formatting is complete.

- If you are creating array LUNs (for any host) after initial setup of the Data ONTAP system and you are using Offline formatting, the system panics.
 Any array LUNs that are mapped to the Data ONTAP system, including array LUNs in the root volume, become unavailable until formatting is complete.

- Online and quick formatting of LUNs for other hosts do not impact the Data ONTAP system.

Requirements for using disks external to the storage array

Data ONTAP supports using the same disks behind the storage arrays that the vendor supports (that is, disks external to the storage array). Data ONTAP assumes that the configuration between the storage array and the external disks behind it is correct.

The following list shows restrictions and best practice recommendations for deploying storage arrays that use external disks:

- Root volumes and spare core LUNs are not supported on external disks.
- Array LUNs from external and internal disks should not be in the same Data ONTAP aggregate.
- Array LUNs from SATA drives and array LUNs from FC drives should not be in the same aggregate.
- Rules for the number of paths to array LUNs on external disks are the same as for array LUNs on disks on the storage array.
 In the case of external disks, the paths go from the Data ONTAP system through the storage array to the external disks. See the FlexArray Virtualization Installation Requirements and Reference Guide for information about the number of paths supported for different Data ONTAP releases and modes.
- Only block checksum is supported for array LUNs on external disks.

Guidelines for configuring ports on Hitachi storage arrays

You should follow certain guidelines when configuring ports on Hitachi storage arrays.

The guidelines for configuring ports on Hitachi storage arrays are as follows:
• You should add only one host group per port.

• You should ensure that a host group includes all the FC initiator ports of the V-Series systems in an array LUN neighborhood.

Hitachi storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the storage arrays organized by family:

• Family 1
 ◦ USP-V
 ◦ USP-VM

• Family 2
 ◦ VSP

• Family 3
 ◦ AMS 200
 ◦ AMS 500
 ◦ AMS 1000

• Family 4
 ◦ AMS 2100
 ◦ AMS 2300
 ◦ AMS 2500

• Family 5
 ◦ HUS 110
 ◦ HUS 130
 ◦ HUS 150
• Family 6
 ◦ USP 1100
 ◦ USP 600
 ◦ USP 100
 ◦ NSC55

• Family 7
 ◦ HUS VM

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
HP EVA storage arrays

You must meet certain requirements when configuring storage arrays to work with Data ONTAP systems. These requirements include setting configuration parameters on storage arrays and deploying only supported configurations.

Required parameters for HP EVA arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

System parameter settings are provided in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy</td>
<td>Any RAID level except VRAID0</td>
</tr>
<tr>
<td>Preferred path/mode</td>
<td>No preference (default)</td>
</tr>
<tr>
<td>Host type</td>
<td>SUN Solaris</td>
</tr>
</tbody>
</table>

General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

Requirements for configuring the HP EVA Storage Management Server

Sharing FC initiator ports present on a Data ONTAP system and initiator ports present on an HP EVA Storage Management Server with common EVA target ports causes compatibility issues.

The compatibility issues result from the different host settings for the FC initiator ports present on a Data ONTAP system and the EVA Storage Management Server initiator ports.

HP recommends that any HP EVA Storage Management Server that resides in a fabric be configured in a zone that is separate from all operating systems.

Preparing HP EVA storage arrays for NDU

HP EVA storage arrays have a tendency to bring target ports offline during a firmware upgrade. Starting in Data ONTAP 8.2, Data ONTAP provides commands that increase Data ONTAP resiliency so that the Data ONTAP system is not disrupted if target ports go offline during the
firmware upgrade. These commands can be used only with storage systems running clustered Data ONTAP.

About this task

You must follow the guidelines provided by HP for performing the firmware upgrade, including guidelines about the load recommendation (HP EVA). You can upgrade only to firmware that HP supports. This procedure pertains to the HP EVA firmware upgrade type *online upgrade*.

Note: During the firmware upgrade, both HP EVA controllers are rebooted.

This procedure instructs you to use Data ONTAP commands that increase Data ONTAP resiliency throughout the firmware upgrade. After the firmware upgrade is complete, you use the Data ONTAP commands again to return the ports to their normal operating mode.

Steps

1. On the Data ONTAP system, set the privilege level of the command session to advanced:

   ```
   set -privilege advanced
   ```

2. Set the *is-upgrade-pending* parameter to **true** for the HP EVA storage array that is undergoing a firmware upgrade:

   ```
   storage array modify -name array_name -is-upgrade-pending true
   ```

3. On the storage array, start the firmware upgrade.

4. After the firmware upgrade is complete, set the privilege level to advanced again, if necessary, and then on the Data ONTAP system, set the *is-upgrade-pending* parameter to **false** to return the storage array ports to normal operation:

   ```
   storage array modify -name array_name -is-upgrade-pending false
   ```

 If you did not exit advanced mode in Step 2 you do not need to access it again.

 The *is-upgrade-pending* parameter contains the following features to ensure proper use of the command:

 - If you attempt to set *is-upgrade-pending* to **false** while the upgrade is in progress on the storage array, the command fails and an EMS message is returned.
 - If the *is-upgrade-pending* status is not returned to **false** within 60 minutes from the time it is set to **true**, EMS messages are logged hourly until *is-upgrade-pending* is returned to **false**.
ALUA support for HP EVA storage arrays

Starting with Data ONTAP 8.1, support has been added for asymmetric logical unit access (ALUA) with HP EVA arrays.

By default, support for ALUA is enabled in Data ONTAP as well as on all the HP EVA storage arrays.

HP EVA storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the storage arrays organized by family:

- Family 1
 - P6300
 - P6350
 - P6500
 - P6550
- Family 2: HP EVAx100
 - EVA 4100
 - EVA 6100
 - EVA 8100
- Family 3
 - EVA 4000
 - EVA 6000
 - EVA 8000
- Family 4
The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
HP XP storage arrays

You must meet certain requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on storage arrays and deploying only supported configurations.

Required parameters for HP XP storage arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

The required parameter setting is shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host type</td>
<td>standard or 00</td>
</tr>
</tbody>
</table>

The storage array parameters should be set and LUNs should be mapped to the host groups before the switch is zoned to connect the Data ONTAP system to an HP XP storage array.

If Data ONTAP system FC initiator ports are zoned with HP XP array target ports before the storage array parameters are set and the LUNs are mapped to the host groups, you might not be able to see any LUNs presented to the Data ONTAP interface.

In this situation, Data ONTAP generates one of the following EMS messages:
[fci.device.login.reject:info] The PLOGI transmitted by port XX was rejected by port_id 0xYYYY with reason code 0x9 'Invalid R_CTL Field', explanation code 0x29 'Insufficient Resources to Support Login'
[fci.device.login.reject:info]: The PLOGI transmitted by port XX was rejected by port_id 0xYYYY with reason code 0x3 'Nx_Port Not Available, Temporary', explanation code 0x29 'Insufficient Resources to Support Login'

Workaround

If zoning was configured prior to setting the parameters and mapping the LUNs to the host groups, you can resolve the problem of LUNs not being visible by performing a path re-initialization to force a rediscovery of the array LUNs that are mapped from the HP XP storage array.
General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

Requirements for creating LUNs in dynamic pools

When creating LUNs in the dynamic pools, do not over-provision the pool capacity.

Requirements for formatting array LUNs

You can perform different types of array LUN formatting. Each type has an impact on the availability of LUNs or the entire storage array.

If you must present a new LUN to the Data ONTAP system immediately, you should use quick formatting. If you plan to present LUNs to the Data ONTAP system in the future, quick formatting is recommended but Online formatting is acceptable.

Quick formatting is recommended because both Online and Offline formatting delay disk discovery until after the LUN formatting is complete, as described in the following list:

- Online formatting takes the array LUN that is being formatted completely offline, and the array LUN does not respond to any SCSI commands.
 Formatting is performed on one array LUN at a time until all array LUNs are formatted.

- Offline formatting takes the entire storage array offline and the storage array does not respond to any SCSI commands.
 The array LUNs are formatted six at a time per controller until the formatting is complete.
 The storage array does not respond until all formatting is complete.

- If you are creating array LUNs (for any host) after initial setup of the Data ONTAP system and you are using Offline formatting, the system panics.
 Any array LUNs that are mapped to the Data ONTAP system, including array LUNs in the root volume, become unavailable until formatting is complete.

- Online and quick formatting of LUNs for other hosts do not impact the Data ONTAP system.

Requirements for using disks external to the storage array

Data ONTAP supports using the same disks behind the storage arrays that the vendor supports (that is, disks external to the storage array). Data ONTAP assumes that the configuration between the storage array and the external disks behind it is correct.

The following list shows restrictions and best practice recommendations for deploying storage arrays that use external disks:
• Root volumes and spare core LUNs are not supported on external disks.

• Array LUNs from external and internal disks should not be in the same Data ONTAP aggregate.

• Array LUNs from SATA drives and array LUNs from FC drives should not be in the same aggregate.

• Rules for the number of paths to array LUNs on external disks are the same as for array LUNs on disks on the storage array. In the case of external disks, the paths go from the Data ONTAP system through the storage array to the external disks. See the FlexArray Virtualization Installation Requirements and Reference Guide for information about the number of paths supported for different Data ONTAP releases and modes.

• Only block checksum is supported for array LUNs on external disks.

Guidelines for configuring ports on HP XP storage arrays

You should follow certain guidelines when configuring ports on HP XP storage arrays.

The guidelines for configuring ports on HP XP storage arrays are as follows:

• You should add only one host group per port.

• You should ensure that a host group includes all the FC initiator ports of the V-Series systems in an array LUN neighborhood.

HP XP storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the storage arrays organized by family:

• Family 1
 ◦ P9500

• Family 2
 ◦ XP24000
 ◦ XP20000
- XP12000
- XP10000

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
IBM DS storage arrays

You must meet certain requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on storage arrays and deploying only supported configurations.

Required settings for IBM DS storage arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

Required host type for DS8xxx storage arrays

The required host type setting is shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host type</td>
<td>nseries</td>
</tr>
</tbody>
</table>

Required host type for DS3950, DS4xxx, and DS5xxx storage arrays

The required host type setting is shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host type</td>
<td>AIX</td>
</tr>
</tbody>
</table>

Requirements for configuring DS8300 9A2 LPAR models

When setting up the DS8300 9A2 LPAR (system logical partition) model to interact with Data ONTAP systems, you must set up access to each array LUN so that the redundant paths are both accessing the same LPAR.
General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

Requirements for volume groups on DS8xxx storage arrays

You must be aware of limitations on the number of volume groups that you can use with a LUN group when configuring DS8xxx arrays.

You must use a single volume group for each LUN group on a DS8xxx storage array to guarantee that the DS8xxx array LUNs are consistently presented to all the FC initiators (that are on the Data ONTAP system) that access them.

Attention: If array LUNs are not presented consistently, there is a potential for data corruption.

Requirements for direct-attached configurations with all IBM DS arrays

Direct-attached connections to IBM DS storage arrays, supported only for existing deployments, require specific configuration settings on the storage array.

The following list describes the requirements that must be met when configuring direct-attached IBM DS arrays.

• Host Attachment files for the array ports must be created.

• The Host Attachment Port type must be set to FcAL (Fibre Channel Arbitrated Loop).

• The Storage Image I/O port must be set to FcAL.

Note: Direct-attached configurations are not supported for new deployments. This information is provided as a reference for configurations that might already exist in the field.

IBM DS storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.
The following list shows arrays organized by family:

- **Family 1**
 - DS4800
 - DS4700
 - DS4200

- **Family 2**
 - DS5100
 - DS5300

- **Family 3**
 - DS8300
 - DS8100

- **Family 4**
 - DS5020
 - DS3950

- **Family 5**
 - DS8800 model 951
 - DS8700 models 941, 94E
 - DS8870

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
IBM XIV storage arrays

You must meet certain requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on storage arrays and deploying only supported configurations.

Requirements for configuring IBM XIV arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

System parameter settings

System parameter settings for IBM XIV Gen2 and Gen3 arrays are provided in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Default</td>
</tr>
<tr>
<td>Host</td>
<td>User-supplied host name</td>
</tr>
<tr>
<td>Cluster</td>
<td>User-supplied cluster name</td>
</tr>
</tbody>
</table>

IBM XIV storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the storage arrays organized by family:

- IBM XIV Gen 2
 - 2810-A14
 - 2812-A14
• IBM XIV Gen 3
 ◦ 2810-114
 ◦ 2812-114

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
3PAR storage arrays

You must meet certain requirements when configuring storage arrays to work with Data ONTAP systems that use array LUNs. These requirements include setting configuration parameters on storage arrays and deploying only supported configurations.

Required parameters for 3PAR arrays with Data ONTAP systems

Certain parameter settings are required on the storage array for the storage array to work successfully with Data ONTAP systems.

Host persona settings

For 3PAR arrays with firmware 2.3.1 and later, the required host persona values must be set as shown in the following table:

<table>
<thead>
<tr>
<th>Connection type</th>
<th>Host persona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct connect</td>
<td>10</td>
</tr>
<tr>
<td>Fabric attached</td>
<td>10</td>
</tr>
</tbody>
</table>

The host definition, with the required host persona, should be created on a 3PAR storage array before the switch is zoned to connect the Data ONTAP system to a 3PAR storage array. If zoning is configured before the host definition, Data ONTAP discovers a 3PAR LUN as LUN 254 and product type SES, which Data ONTAP cannot use. The result is that newly mapped 3PAR LUNs cannot be assigned to Data ONTAP system and some 3PAR LUNs that might have already been added to an aggregate cannot be used because Data ONTAP sees a LUN 254 instead of a 3PAR LUN. If this problem occurs, Data ONTAP generates the following EMS message:

mlm.array.unknown:warning - Array LUN XXXXXXXXXX.126L254 [S/N 'XXXXXXX' vendor '3PARdata' product 'SES'] is unknown and is not supported in this version of Data ONTAP.

If zoning was configured prior to the host definition, you can resolve the problem by doing path re-initialization to force a rediscovery of the array LUNs that are mapped from the 3PAR storage array. See Workaround for the unknown device (L254/SES) problem with 3PAR storage arrays on page 44 for the workaround for this problem.

Port persona settings

For 3PAR arrays with firmware 2.2.x, the required port persona values must be set as shown in the following table:
<table>
<thead>
<tr>
<th>Connection type</th>
<th>Port persona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct connect</td>
<td>18</td>
</tr>
<tr>
<td>Fabric attached</td>
<td>19</td>
</tr>
</tbody>
</table>

Workaround for the unknown device (L254/SES) problem with 3PAR storage arrays

The host definition, with the host persona specified in the *Required parameters for 3PAR arrays with Data ONTAP systems* on page 43, should be created on a 3PAR storage array before the switch is zoned to connect the Data ONTAP system to a 3PAR storage array. If zoning is configured before the host definition, Data ONTAP discovers a 3PAR array LUN as LUN 254 and product type SES, which Data ONTAP cannot use.

When Data ONTAP discovers 3PAR array LUNs as LUN 254 and product type SES, newly mapped 3PAR LUNs cannot be assigned to Data ONTAP systems and some 3PAR LUNs that might have already been added to an aggregate cannot be used because Data ONTAP sees a LUN 254. Data ONTAP generates EMS messages for the LUN it discovered as LUN 254 and product type SES, reporting some LUNs as unknown devices.

If zoning was configured before the host definition, you can resolve the LUN 254/SES unknown device problem by forcing a rediscovery of the array LUNs that are mapped from the 3PAR storage array. The procedure you use depends on whether aggregates with 3PAR array LUNs have already been configured on the Data ONTAP system. (In the following procedures, assume that Node-1 and Node-2 are the names of the Data ONTAP nodes.)

General configuration guidelines

Information in this section includes cautions, restrictions, special requirements, and information about array characteristics that you might need to consider when configuring or using your storage array.

3PAR storage array families

Data ONTAP does not support mixing some types of storage in aggregates. To help you determine the array LUNs that can be mixed in an aggregate, the storage arrays from each vendor are grouped into families. When you create aggregates, you cannot mix array LUNs from different vendors and from different storage array families in the same aggregate.

Storage arrays in the same family share the same performance and failover characteristics. For example, members of the same family all perform active-active failover, or they all perform active-passive failover. More than one factor might be used to determine storage array families. For example, storage arrays with different architectures would be in different families even though other characteristics might be the same.

The following list shows the storage arrays organized by family:
• Family 1
 ◦ E200
• Family 2
 ◦ S400
 ◦ S800
• Family 3
 ◦ T400
 ◦ T800
• Family 4
 ◦ F200
 ◦ F400
• Family 5
 ◦ P10000 - V400
 ◦ P10000 - V800
 ◦ 3PAR StoreServ 7200
 ◦ 3PAR StoreServ 7400

The storage arrays and families shown are current at the time of publication. The Interoperability Matrix at support.netapp.com is the final authority for which storage arrays are supported for each vendor.
Supported fabric-attached configurations

The fabric-attached configurations included in this section are supported for all the storage array vendors unless mentioned otherwise.

For additional information about configuration with specific storage arrays, see the Interoperability Matrix at support.netapp.com.

Stand-alone basic configuration

The stand-alone basic configuration of a Data ONTAP system that uses array LUNs is a simple, fabric-attached configuration with a single FC initiator port pair accessing a single LUN group.

This configuration is supported for use with all storage arrays listed in the Interoperability Matrix as supported for the release and mode of Data ONTAP running on your system.

The following illustration shows this configuration:
Stand-alone with two 2-port array LUN groups

This is a stand-alone Data ONTAP system in a fabric-attached simple configuration. In this configuration, each Data ONTAP system FC initiator port pair accesses a separate array LUN group.

This configuration is supported for use with all storage arrays listed in the Interoperability Matrix as supported for the release and mode of Data ONTAP running on your system.

The following illustration shows this configuration:

Single 4-port array LUN group

This configuration contains a single, 4-port LUN group with each target port accessed by a single Data ONTAP system FC initiator port from the HA pair. Zoning ensures that there are only two paths to a specific array LUN from each Data ONTAP system.

This configuration is supported for use with all storage arrays listed in the Interoperability Matrix as supported for the release and mode of Data ONTAP running on your system.

The following illustration shows this configuration:
Two 4-port array LUN groups

In this configuration, each Data ONTAP FC initiator port pair accesses a separate array LUN group. The zoning is a single Data ONTAP system FC initiator to a single array target port.

This configuration is supported for use with all storage arrays listed in the Interoperability Matrix as supported for the release and mode of Data ONTAP running on your system.

The following illustration shows a block diagram of this configuration:
Eight-port array LUN group configuration

Starting in Data ONTAP 8.2, an eight-port LUN group configuration is supported on clustered V-Series systems and, starting in Data ONTAP 8.2.1, also on Data ONTAP systems that can use array LUNs.

This configuration is supported for use with all storage arrays listed in the Interoperability Matrix as supported for the release and mode of Data ONTAP running on your system.

There are two ways of deploying this configuration: crossed and uncrossed back-end connections.

Crossed back-end connections

In this configuration with the back-end connections crossed, the FC connections from the same storage array controller go to both fabric switches (redundant).

In this illustration of crossed back-end connections, note how the nodes are attached to the switches and to the storage array. Vs1 uses switch 1 when attaching to the storage array Controller 1 port 1A and Controller 2 port 2C, and uses switch 2 when attaching to storage array Controller 2 ports 2A and...
Controller 1 port 1C. This optimizes the use of switch ports and array ports, which reduces the impact of a switch or storage array controller failure.

![Diagram showing storage array connections and controller ports]

Note: The following problem can occur with Active-Passive storage arrays in crossed back-end connections: If one of the fabric switches is taken offline or goes down and a path failure from both Data ONTAP systems occurs, the Data ONTAP systems panic even though the alternate path from each system is still online. For example, if switch 2 is down and the “0b” paths on both vs1 and vs2 go down, vs1 and vs2 panic even though the “0a” paths are still online.

Back-end connections are not crossed

In this configuration in which the back-end connections are not crossed, the FC connections from the same storage array controller go to only one fabric switch.

The following illustration shows this configuration when the back-end connections are not crossed.
Data ONTAP FC initiator port attaching to multiple targets ports

Starting in Data ONTAP 8.2, a Data ONTAP FC initiator port can be attached to multiple target ports on separate storage arrays within the same family. The *FlexArray Virtualization Installation Requirements and Reference Guide* contains the rules for setting up this configuration. This configuration is not supported with MetroCluster configurations.

This configuration is supported for use with all storage arrays listed in the *Interoperability Matrix* as supported for the release and mode of Data ONTAP running on your system.

The following illustration shows a shared Data ONTAP FC initiator port configuration with an HA pair. However, sharing an FC initiator port with multiple target ports is supported with both stand-alone systems and HA pairs.

For details about sharing an FC initiator port with multiple target ports and zoning, see the information in the *FlexArray Virtualization Installation Requirements and Reference Guide*.
One Data ONTAP FC initiator port connecting to target ports on separate storage arrays

The following example shows an HA pair in which a single Data ONTAP FC initiator port connects to multiple target ports on different storage arrays:
Supported direct-attached configurations

Direct-attached configurations are not supported for new deployments. For older deployments, direct-attached configurations are limited to some storage arrays and some Data ONTAP releases. See the Interoperability Matrix for information about configurations supported for direct attachment.

Two-port direct-attached stand-alone configurations

Direct-attached configurations are not supported for new deployments. For older deployments, direct-attached configurations are limited to some storage arrays and some Data ONTAP releases. See the Interoperability Matrix for information about configurations supported for direct attachment.

The following illustration is shown as a reference for configurations that might already exist in the field. Two Data ONTAP FC initiator ports provide access to LUNs on the storage array.
Four-port direct-attached HA pair configuration

Direct-attached configurations are not supported for new deployments. For older deployments, direct-attached configurations are limited to some storage arrays and some Data ONTAP releases. See the Interoperability Matrix for information about configurations supported for direct attachment.

The following illustration is shown as a reference for configurations that might already exist in the field. The illustration shows a direct-attached HA pair with four ports providing access to array LUNs on the storage array.
Terminology comparison between storage array vendors

Different storage array vendors occasionally use different terms to describe similar concepts. Conversely, the meaning of the same term might differ between array vendors.

The following table provides a mapping between some common vendor terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Vendor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>host group</td>
<td>Hitachi, Sun</td>
<td>A configuration entity that enables you to specify host access to ports on the storage array. You identify the FC initiator port WWNs for the Data ONTAP system that you want to access the LUNs; the process differs according to vendor and sometimes differs for different storage array models of the same vendor.</td>
</tr>
<tr>
<td></td>
<td>IBM DS4xxx/DS5xxx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMC DMX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP XP</td>
<td></td>
</tr>
<tr>
<td>volume group</td>
<td>IBM DS8xxx</td>
<td></td>
</tr>
<tr>
<td>Storage Group</td>
<td>EMC CX</td>
<td></td>
</tr>
<tr>
<td>cluster</td>
<td>IBM XIV</td>
<td></td>
</tr>
<tr>
<td>host affinity group</td>
<td>Fujitsu ETERNUS4000, ETERNUS6000,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETERNUS8000, ETERNUS DX8000, ETERNUS DX400</td>
<td></td>
</tr>
<tr>
<td>host definition</td>
<td>3PAR</td>
<td></td>
</tr>
<tr>
<td>host</td>
<td>3PAR, HP EVA, HP XP, Hitachi</td>
<td>No concept of host group. You must create a host in the ESS user interface for each FC initiator port that you plan to connect to the storage array and map each host to a port.</td>
</tr>
<tr>
<td>parity group</td>
<td>IBM DS8xxx, IBM ESS, Hitachi, HP XP, Sun</td>
<td>The arrangement of disks in the back-end that together form the defined RAID level.</td>
</tr>
<tr>
<td>RAID group</td>
<td>Data ONTAP, EMC CX, Fujitsu ETERNUS</td>
<td></td>
</tr>
<tr>
<td>array, RAID set</td>
<td>IBM DS4xxx/DS5xxx</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Vendor</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Parity RAID, Parity RAID</td>
<td>EMC DMX</td>
<td>A DMX feature that provides parity data protection on the disk device level using physical parity volumes.</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk group</td>
<td>HP EVA</td>
<td>A set of physical disks that form storage pools from which you can create virtual disks.</td>
</tr>
<tr>
<td>parity set, RAID set</td>
<td>3PAR</td>
<td>A group of parity-protected chunklets. (A chunklet is a 256-MB block of contiguous space on a physical disk.)</td>
</tr>
<tr>
<td>cluster</td>
<td>Data ONTAP</td>
<td>In clustered Data ONTAP 8.x, a grouping of nodes that enables multiple nodes to pool their resources into a large virtual server and to distribute work across the cluster.</td>
</tr>
<tr>
<td></td>
<td>Hitachi, HP XP, Sun</td>
<td>A hardware component on the storage arrays that contains the ports to which hosts attach.</td>
</tr>
<tr>
<td></td>
<td>IBM XIV</td>
<td>An entity that groups multiple hosts together and assigns the same mapping to all the hosts.</td>
</tr>
<tr>
<td>controller</td>
<td>Data ONTAP</td>
<td>The component of a storage system that runs the Data ONTAP operating system and interacts with back-end storage arrays. Controllers are also sometimes called heads or CPU modules.</td>
</tr>
<tr>
<td></td>
<td>Hitachi, HP EVA, HP XP, IBM</td>
<td>Hardware on the storage array on which the target ports are located.</td>
</tr>
<tr>
<td>Term</td>
<td>Vendor</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>interface module</td>
<td>IBM XIV</td>
<td>A hardware component on the storage arrays that contains the ports to which hosts attach.</td>
</tr>
<tr>
<td>node</td>
<td>3-PAR</td>
<td></td>
</tr>
<tr>
<td>FEBE Board</td>
<td>EMC Symmetrix</td>
<td></td>
</tr>
<tr>
<td>Storage processor (SP)</td>
<td>EMC CLARiiON</td>
<td></td>
</tr>
<tr>
<td>Controller Module</td>
<td>Fujitsu ETERNUS</td>
<td></td>
</tr>
<tr>
<td>LUN</td>
<td>Many storage arrays</td>
<td>A grouping of one or more disks or disk partitions into one span of disk storage space. In the Data ONTAP documentation, this is referred to as array LUN.</td>
</tr>
<tr>
<td>LDEV</td>
<td>Hitachi, HP XP</td>
<td></td>
</tr>
<tr>
<td>LUN</td>
<td>Data ONTAP</td>
<td>The Data ONTAP system can virtualize the storage attached to it and serve the storage up as LUNs to external applications and clients (for example, through iSCSI and FC). Clients are unaware of where a front-end LUN is stored.</td>
</tr>
<tr>
<td>LUN, virtual disk</td>
<td>HP EVA</td>
<td>A virtual disk (called a Vdisk in the user interface) is a simulated disk drive created in a disk group. You can assign a combination of characteristics to a virtual disk, such as a name, redundancy level, and size. Presenting a virtual disk offers its storage to a host.</td>
</tr>
<tr>
<td>array LUN</td>
<td>Data ONTAP documentation,</td>
<td>The Data ONTAP documentation uses the term array LUN to distinguish LUNs on the storage arrays from front-end LUNs (Data ONTAP LUNs).</td>
</tr>
<tr>
<td></td>
<td>Data ONTAP storage management</td>
<td>tools</td>
</tr>
<tr>
<td></td>
<td>tools</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Vendor</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>vLUN</td>
<td>3PAR</td>
<td>(volume-LUN) A pairing between a virtual volume and a logical unit number (LUN). For a host to see a virtual volume, the volume must be exported as a LUN by creating vLUNs on the storage array.</td>
</tr>
<tr>
<td>volume</td>
<td>IBM, IBM XIV</td>
<td>Equivalent to what other storage array vendors call a LUN.</td>
</tr>
<tr>
<td></td>
<td>Data ONTAP</td>
<td>A logical entity that holds user data that is accessible through one or more of the access protocols supported by Data ONTAP, including Network File System (NFS), Common Internet File System (CIFS), HyperText Transfer Protocol (HTTP), Fibre Channel (FC), and Internet SCSI (iSCSI).</td>
</tr>
<tr>
<td></td>
<td>EMC DMX</td>
<td>A general term referring to a storage device. A physical volume corresponds to a single disk device.</td>
</tr>
<tr>
<td>virtual volume</td>
<td>3PAR</td>
<td>A virtual storage unit created by mapping data from one or more logical disks.</td>
</tr>
</tbody>
</table>
Copyright information

Copyright © 1994–2014 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).
Trademark information

NetApp, the NetApp logo, Network Appliance, the Network Appliance logo, Akorri, ApplianceWatch, ASUP, AutoSupport, BalancePoint, BalancePoint Predictor, Bycast, Campaign Express, ComplianceClock, Customer Fitness, Cryptainer, CryptoShred, CyberSnap, Data Center Fitness, Data ONTAP, DataFabric, DataFort, Decru, Decru DataFort, DenseStak, Engenio, Engenio logo, E-Stack, ExpressPod, FAServer, FastStak, FilerView, Fitness, Flash Accel, Flash Cache, Flash Pool, FlashRay, FlexCache, FlexClone, FlexPod, FlexScale, FlexShare, FlexSuite, FlexVol, FPolicy, GetSuccessful, gFiler, Go further, faster, Imagine Virtually Anything, Lifetime Key Management, LockVault, Manage ONTAP, Mars, MetroCluster, MultiStore, NearStore, NetCache, NOW (NetApp on the Web), Onaro, OnCommand, ONTAPI, OpenKey, PerformanceStak, RAID-DP, ReplicatorX, SANscreen, SANshare, SANtricity, SecureAdmin, SecureShare, Select, Service Builder, Shadow Tape, Simplicity, Simulate ONTAP, SnapCopy, Snap Creator, SnapDirector, SnapDrive, SnapFilter, SnapIntegrator, SnapLock, SnapManager, SnapMigrator, SnapMirror, SnapMover, SnapProtect, SnapRestore, Snapshot, SnapSuite, SnapValidator, SnapVault, StorageGRID, StoreVault, the StoreVault logo, SyncMirror, Tech OnTap, The evolution of storage, Topio, VelocityStak, vFiler, VFM, Virtual File Manager, VPolicy, WAFL, Web Filer, and XBB are trademarks or registered trademarks of NetApp, Inc. in the United States, other countries, or both.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. A complete and current list of other IBM trademarks is available on the web at www.ibm.com/legal/copytrade.shtml.

Apple is a registered trademark and QuickTime is a trademark of Apple, Inc. in the United States and/or other countries. Microsoft is a registered trademark and Windows Media is a trademark of Microsoft Corporation in the United States and/or other countries. RealAudio, RealNetworks, RealPlayer, RealSystem, RealText, and RealVideo are registered trademarks and RealMedia, RealProxy, and SureStream are trademarks of RealNetworks, Inc. in the United States and/or other countries.

All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.

NetApp, Inc. is a licensee of the CompactFlash and CF Logo trademarks.

NetApp, Inc. NetCache is certified RealSystem compatible.
How to send your comments

You can help us to improve the quality of our documentation by sending us your feedback.

Your feedback is important in helping us to provide the most accurate and high-quality information. If you have suggestions for improving this document, send us your comments by email to doccomments@netapp.com. To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.

• Telephone: +1 (408) 822-6000

• Fax: +1 (408) 822-4501

• Support telephone: +1 (888) 463-8277
Index

3PAR storage arrays
 configuration requirements 43
 families (storage array) 44
 troubleshooting unknown device problems 44
8-port array LUN group configuration
 support for 49

A

ACLX LUN
 caution about using 19
ALUA support for HP EVA 32
ALUA support with EMC CX and VNX
 guidelines for enabling 14
AMS storage arrays
 required system parameters 25
array LUNs
 systems running Data ONTAP that can use 11
array port initialization
 requirements for 12

C

channel director ports
 parameter settings 17
configuration requirements
 3PAR 43
 EMC Symmetrix 17
 Fujitsu ETERNUS 21, 22
 Hitachi 25
 HP EVA 30
 HP XP 34
 IBM DS 38
 IBM XIV 41
configurations supported with storage arrays
 8-port array LUN group 49
 FC initiator port attaching to multiple targets ports 51
 four-port direct-attached HA pair 54
 single 4-port array LUN group 47
 stand-alone basic configuration 46
 stand-alone with two 2-Port array LUN groups 47
 two 4-port array LUN groups 48
 two-port direct-attached stand-alone 53

D

direct-attached configurations
 requirements for IBM DS arrays 39
DS8xxx storage arrays
 volume group number requirements 39
DX4xx storage arrays
 host parameter settings 22
DX8xxx storage arrays
 host parameter settings 21

E

EMC CLARiiON storage arrays
 ALUA support 14
 array LUN numbering 14
 families (storage array) 14
 required parameters with Data ONTAP systems 13
 Storage Group use 13
EMC Symmetrix storage arrays
 caution about using the ACLX LUN 19
 caution about using the VCMDB LUN 19
 channel director port parameter settings 17
 configuration requirements 17
 gatekeeper LUN use restriction 19
 host configuration parameters 17
EMC VNX storage arrays
 ALUA support 14
 array LUN numbering 14
 families (storage array) 15
 required parameters with Data ONTAP systems 13
 Storage Group use 13

F

families (storage array)
 3PAR 44
 EMC CLARiiON 14
 EMC Symmetrix 19
 EMC VNX 15
 Fujitsu ETERNUS 23
 Hitachi 28
 HP EVA 32
 HP XP 36
 IBM DS 39
 IBM XIV 41
FC initiator ports
sharing target ports
 supported configuration 51
formatting array LUNs
 Hitachi 26, 35
 HP XP 26, 35
four-port direct-attached HA pair configuration
 support for 54
Fujitsu ETERNUS storage arrays
 configuration requirements 21, 22
 DX8xxx parameter settings 21
 families (storage array) 23
 Host Response pattern 21

G
gatekeeper LUNs
 restrictions for using 19

H
Hitachi storage arrays
 configuration requirements 25
 Data ONTAP requirements for external disks 27, 35
 families (storage array) 28
 formatting array LUNs 26, 35
 port configuration guidelines 27
host configuration parameters
 EMC Symmetrix 17
host parameter settings
 DX4xxx storage arrays 22
host persona 43
Host Response pattern 21
HP EVA storage arrays
 ALUA support 32
 configuration requirements 30
 families (storage array) 32
 preparing for NDU 30
 zoning requirements 30
HP XP storage arrays
 configuration requirements 34
 Data ONTAP requirements for external disks 27, 35
 families (storage array) 36
 formatting array LUNs 26, 35
 port configuration guidelines 36
HUS storage arrays
 required system parameters 25
I
IBM DS storage arrays
 configuration requirements 38
 families (storage array) 39
 host type setting 38
 requirements for direct-attached connections 39
IBM XIV storage arrays
 configuration requirements 41
 families (storage array) 41
 parameter settings 41
implementation planning
 information needed for 6
initiator ports
 sharing with multiple target ports
 supported configuration 51
Interoperability Matrix
 support information in 8
L
limits for storage arrays
 where to find information needed for planning 9
LUN limits
 where to find information needed for planning 9
LUN security
 EMC Symmetrix storage arrays
 LUN security methods 18
LUNs (array)
 systems running Data ONTAP that can use 11
LUNs, array
 See LUNs (array)
N
NDUs
 preparing HP EVA storage arrays for 30
NSC55 storage arrays
 required system parameters 25
P
parameters
 required for EMC CLARiiON and VNX storage
 arrays with Data ONTAP systems 13
port persona settings 43
portcfggport command
 use for array port initialization 12
ports
 configuration guidelines for Hitachi 27
configuration guidelines for HP XP 36
sharing initiator port with target ports
supported configuration 51

R
required parameters
for EMC CLARiiON storage arrays with Data
ONTAP systems 13
for EMC VNX storage arrays with Data ONTAP
systems 13

S
shared FC initiator target ports
supported configuration 51
single 4-port array LUN group configuration
support for 47
stand-alone basic configuration
support for 46
stand-alone with two 2-port array LUN groups
configuration
support for 47
storage array families
3PAR 44
EMC CLARiiON 14
EMC Symmetrix 19
EMC VNX 15
Fujitsu ETERNUS 23
Hitachi 28
HP EVA 32
HP XP 36
IBM DS 39
IBM XIV 41
storage arrays
configuration guidelines for 12
preparing for NDUs on HP EVA 30
supported, where to find information about 8
Storage Groups
ALUA support with 14
guidelines for enabling ALUA with 14
how used for access control 13
support for ALUA in HP EVA 32
Support Matrix
See Interoperability Matrix
supported configurations with storage arrays
8-port array LUN group 49
FC initiator port attaching to multiple targets ports 51
four-port direct-attached HA pair 54
single 4-port array LUN group 47
stand-alone basic configuration 46
stand-alone with two 2-port array LUN groups 47
two 4-port array LUN groups 48
two-port direct-attached stand-alone 53
switches
supported with back-end storage arrays
finding information about 8

T
terminology
storage array vendor 55
two 4-port array LUN groups configuration
support for 48
two-port direct-attached stand-alone configuration
support for 53

U
USP storage arrays
required system parameters 25

V
V-Series functionality
name change to FlexArray Virtualization 11
V-Series Support Matrix
See Interoperability Matrix
V-Series systems
See LUNs (array)
VCMDB LUNs
cautions about using 19
restricting visibility of 18
volume groups
requirements for number of 39
VSP storage arrays
required system parameters 25

Z
zoning
compatibility issues with HP EVA storage arrays 30
shared FC initiator port supported configuration 51