
OnCommand® Unified Manager 6.1

API Developer's Guide

NetApp, Inc.
495 East Java Drive
Sunnyvale, CA 94089
U.S.

Telephone: +1 (408) 822-6000
Fax: +1 (408) 822-4501
Support telephone: +1 (888) 463-8277
Web: www.netapp.com
Feedback: doccomments@netapp.com

Part number: 215-08263_A0
December 2013

Contents

API and protection service concepts ... 5
What Unified Manager protection APIs are .. 5

Resource pools and the Unified Manager APIs .. 5

Snapshot copies and the Unified Manager APIs ... 5

Volumes and the Unified Manager APIs .. 6

How APIs use resource keys ... 6

API calls that return resource keys .. 6

What storage services are .. 7

API support for storage services ... 8

Summary of basic API calls .. 8

What a storage service topology is .. 9

How a storage service topology is specified in the API 9

Connection types supported between source and destination volumes 10

Destination provisioning storage service workflow support 10

Simple one-hop storage service topology API call example 11

Fanout storage service topology API call example 13

Cascade storage service topology API call example 15

API task flows ... 18
Where to find detailed API descriptions ... 18

Creation of a storage service ... 18

Subscription of volumes to an existing storage service .. 20

Replication of local Snapshot copies to remote nodes .. 22

On-demand conformance of a storage service .. 23

Data restoration from a source to destination location .. 25

Destruction of a storage service .. 27

Import of existing storage relationships into a storage service 29

Unsubscription of a root member and destruction of protection artifacts 33

Unsubscription of a root member and relinquishment of its protection artifacts 35

Detection and troubleshooting of a failed job ... 37

Recovery from unexpected deletion of a non-root storage service member 38

Cleanup of unexpected deletion of a root storage service member 40

API guidelines ... 42

Table of Contents | 3

Storage service compatibility requirements .. 42

Restriction on mirror-to-vault cascade protection ... 42

Currency of storage service conformance checks ... 42

Link insertion to failed job detail information .. 43

Storage service destination volume naming format .. 43

Glossary ... 44
Glossary terms ... 44

Copyright information ... 45
Trademark information ... 46
How to send your comments .. 47
Index ... 48

4 | Unified Manager 6.1 API Developer's Guide

API and protection service concepts

Unified Manager provides a client application developer access to protection services through a set
of APIs. These services include defining protection configurations, creating replication copies, and
performing restore operations.

What Unified Manager protection APIs are
The Unified Manager protection APIs are interfaces between a client application and the Unified
Manager server that permit the client application to issue requests to the Unified Manager server for
tasks supporting the execution, configuration, management, and monitoring of volume data
protection and destination provisioning.

In response to the client application requests, the Unified Manager protection API transmits those
requests to the Unified Manager server, which either executes those requests directly or issues
supporting requests to the Data ONTAP API for execution at that level. In addition, the Unified
Manager protection API returns status or other data for each request to the client application.

Resource pools and the Unified Manager APIs
A client application can call Unified Manager APIs to configure storage services provisioned with
specified resource pools that are already set up by a storage administrator in the main Unified
Manager user interface.

Resource pools are groups of aggregates that are created by a storage administrator using the main
Unified Manager user interface to provide provisioning to partner applications for backup
management.

The Unified Manager administrator might pool resources based on attributes such as performance,
cost, physical location, or availability. By grouping related resources into a pool, the Unified
Manager administrator can treat the pool as a single unit for monitoring and provisioning.

Snapshot copies and the Unified Manager APIs
A client application can call Unified Manager APIs to start mirror or backup vault jobs that transfer
Snapshot copies of data from source volumes to destination volumes. Other Unified Manager APIs
can be called to start the restore of specified Snapshot copies from mirror or backup vault destination
volumes to original or alternate primary locations.

When mirror or backup vault jobs are run, the protected data is transferred and stored in the form of
Snapshot copies.

5

Volumes and the Unified Manager APIs
A client application calls Unified Manager APIs to carry out mirror and backup vault protection of
entire volumes of data, rather than of smaller units of data such as directories or files.

Volumes are data containers that enable a cluster or virtual server administrator to partition and
manage data. Volumes are the highest-level logical storage object.

Unlike aggregates, which are composed of physical storage resources, volumes are completely
logical objects.

Data ONTAP provides two types of volumes: FlexVol volumes and Infinite Volumes, but the
Unified Manager APIs implement storage service protection only for FlexVol volumes.

How APIs use resource keys
Resource keys are unique identifiers that client applications and related OnCommand management
tools use to unambiguously specify the objects of their API calls.

A resource key is an identification string unique to an object, formulated by a syntax unique to that
object type. For example, the syntax of a volume type object's resource key is a combination of the
UUID of its containing cluster and its own UUID:

<cluster_uuid>:type=volume,uuid=<uuid>

The resulting volume resource key is a string similar to the following:

abcd7215-1f6b-11e1-a744-123478563412
:type=volume,uuid=14477215-1f6b-11e1-a744-12347856abcd

An API call to configure, update, manage, associate, delete, or destroy an object often includes the
object's resource key to identify it.

API calls that return resource keys

Some Unified Manager APIs can be included in a client application to retrieve the object-related
resource keys that must be specified for other configuration and management API calls.

The following sections list API calls that return resource keys for object types that might require
specification in other API calls.

Detailed input and output descriptions of all API calls are provided in the OnCommand Core
Package API Documentation downloadable compressed file. This file is accessed through the
NMSDK API Documentation link in the Download section of the NetApp Developer Community
site:

http://developer.netapp.com

6 | Unified Manager 6.1 API Developer's Guide

http://developer.netapp.com

APIs calls that list objects and their resource keys

The following API calls list objects of a particular type, along with their associated resource keys:

aggregate-iter Lists aggregates and their resource keys.

cluster-iter Lists clusters and their resource keys.

cluster-node-iter Lists cluster nodes and their resource keys.

dp-relationship-iter Lists data protection relationships and their resource keys.

disk-iter Lists disks and their resource keys.

igroup-iter Lists igroups and their resource keys.

lun-iter Lists LUNs and their resource keys.

net-interface-iter Lists networked interfaces and their resource keys.

qtree-iter Lists qtrees and their resource keys.

resource-pool-iter Lists resource pools and their resource keys.

snapshot-get-location Lists Snapshot resource keys.

storage-class-iter Lists storage classes and their resource keys.

vserver-iter Lists and their resource keys.

API calls that look up or search objects and their resource keys

The following API calls can return the resource keys for objects specified by fully qualified name or
by search strings:

resource-lookup Returns the resource key of an object specified by its fully qualified name.

resource-search Lists and returns the resource keys for objects of a specified type and character
string.

What storage services are
A storage service is a preconfigured set of automated data protection and backup provisioning
services to which multiple volumes can be subscribed.

When volumes are subscribed to a storage service, OnCommand Unified Manager configures
secondary storage, SnapMirror or SnapVault relationships, and creates replication copies of primary
data according to the properties defined in the storage service.

The subscribed volumes for which the storage service provides protection are called "root members."
The destination volumes and the relationships between the root member volumes and destination
volumes are called "protection artifacts." The root member volumes and the destination volumes,
together are the "storage service members."

API and protection service concepts | 7

API support for storage services
Unified Manager provides a set of storage APIs that a developer can use to enable creation,
management, and monitoring of storage services in a client application.

Functions that the APIs support include the following:

• Creating, configuring, modifying, cleaning up, and deleting storage services
• Configuring storage service protection topology
• Subscribing and unsubscribing volumes as root members of a storage service
• Initializing storage service protection
• Assigning context identification to sets of subscribed volumes
• Importing existing protection relationships into a storage service
• Enforcing storage system and member conformance to storage service requirements
• Listing storage services
• Listing storage service members
• Tracking all operations related to the storage service through jobs and tasks

Summary of basic API calls
Seven common API calls are used by the client application developer to implement the basic Unified
Manager protection functions.

Although additional API calls are also necessary, the API calls most important to implementing
storage service-based data protection are the following:

storage-

service-create

Creates and configures a storage service. The inputs to this API call create a
storage service and define its topology, which includes the type of data
replication connection (mirror or vault), the location of the destination
volumes, the provisioning requirements of the destination volumes, lag
warning and error thresholds, and the resource pool for provisioning the
destination volumes.

storage-

service-

subscribe

Subscribes volumes as root members to a storage service.

storage-

service-import

Imports existing mirror or vault relationships that are currently not included in
a storage service into a Unified Manager storage service.

storage-

service-

conform

Executes the cluster configuration of storage service members and
connections to match the specifications made with the storage-service-
create, storage-service-subscribe, and storage-service-import
API calls.

8 | Unified Manager 6.1 API Developer's Guide

storage-

service-

update-start

After the storage service is created, new members imported or subscribed,
connections configured, and destination volumes generated, starts either the
initial replication or the update replication of data from the root member
volumes to the destination volumes.

What a storage service topology is
A storage service topology is the model that the Unified Manager server uses to configure data
protection services. It contains the properties of the source node, the destination nodes, and the
connections that theUnified Manager server uses to generate replicated data protection components
for the subscribed root members of a storage service.

If a volume is subscribed as a root member to a storage service that is configured to provide mirror or
vault protection, the Unified Manager server uses the storage service topology to generate destination
volumes to contain the replicated data and to establish SnapMirror or SnapVault relations with those
destination volumes.

If an existing data protection relationship, consisting of source volumes and destination volumes that
are not currently managed by the Unified Manager server, is imported into a storage service, the
Unified Manager server attempts to fit the source volumes, destination volumes into the storage
service topology.

How a storage service topology is specified in the API

The Unified Manager API set enables the client application to specify a variety of storage service
topologies to use for configuring and providing mirror or backup vault protection.

Inputs to the storage-service-create API call enable the client application to define the storage
service topology by defining the topology's connections and nodes.

The client application developer defines a connection by specifying a source node name, a mirror or
vault connection type, and a destination node name.

The developer further defines a destination node by specifying one or more resource pools from
which the destination node is provisioned and a storage service workflow that specifies additional
provisioning configuration requirements.

By defining and combining one or more connections for a storage service topology, the client
application developer can create a variety of storage service topologies, from simple one-hop mirror
or vault topologies, to fanout topologies, to cascading topologies.

After a storage service topology is defined, inputs to the storage-service-modify API enable
the client application to modify it.

Unified Manager server supports all protection topologies that are supported in Data ONTAP. The
APIs might allow the creation of unvalidated topologies, but only those topologies that Data ONTAP
specifies as supported should be used.

API and protection service concepts | 9

Connection types supported between source and destination volumes

The Unified Manager API set supports two basic connection types between a source volume and a
destination volume.

The storage-service-create API provides input for the client application developer to specify
one of two connection types used in a storage service topology:

mirror
connection

A mirror connection enables exact replication of all data in the source data object to
the destination volume. After a transfer, all active data and Snapshot copies of that
data at the source location are also included at the destination. All Snapshot copy
retention policies applied to the source object also apply to the destination volume.
Mirror connection destination volumes can be provisioned by the SnapMirror
Destination storage service workflow.

vault
connection

A vault connection enables replication of specified Snapshot copies of data from the
source data object to the destination volume. The destination volume can retain a
different number of Snapshot copies and follow different retention policies. Vault
connection destination volumes can be provisioned by one of the following storage
service workflows:

• SnapVault Destination
• SnapVault Destination with Deduplication
• SnapVault Destination with Deduplication and Compression

Destination provisioning storage service workflow support

A storage service workflow is a preconfigured set of actions that is specified by a client application
through APIs to provide provisioning for destination data objects. Destination volumes are generated
by Unified Manager to provide data protection for root member volumes that are newly subscribed to
a storage service.

Preconfigured storage service workflows ensure that destination volumes are optimally provisioned
to support a specified set of features. You can use them only as provided; you cannot modify them.
The following storage service workflows are available:

SnapMirror
Destination

Provisions a SnapMirror destination volume by selecting from the available
resource pools an aggregate with the appropriate free space and thresholds.

When deduplication, compression, or both are enabled on the source, the data
sent for replication over the network remains compressed, deduplicated, or both,
resulting in the savings being inherited at the destination.

SnapVault
Destination

Provisions a SnapVault destination volume by selecting from the available
resource pools an aggregate with the appropriate free space and thresholds.

10 | Unified Manager 6.1 API Developer's Guide

No deduplication or compression is enabled on the destination. When
deduplication, compression, or both are enabled on the source, the data sent for
replication over the network remains compressed, deduplicated, or both,
resulting in the savings being inherited at the destination.

This storage service workflow is recommended when deduplication or
compression is enabled on the primary volume.

SnapVault
Destination with
Deduplication

Provisions a SnapVault destination volume by selecting from the available
resource pools an aggregate with the appropriate free space and thresholds.

On the destination, deduplication is enabled, and compression is disabled. When
deduplication, compression, or both are enabled on the source, the data sent for
replication over the network remains compressed, deduplicated, or both,
resulting in the savings being inherited at the destination.

This storage service workflow is recommended when deduplication is disabled
on the primary volume.

SnapVault
Destination with
Deduplication
and
Compression

Provisions a SnapVault destination volume by selecting from the available
resource pools an aggregate with the appropriate free space and thresholds.

Deduplication and compression are enabled on the destination volume.

Enabling compression on a secondary volume is strongly discouraged, because
storage efficiency on the source volume is not preserved during replication, and
an offline storage efficiency scanner must be run for compression and
deduplication to achieve storage savings. Additional compression on the
destination uses more resources. In environments where much dense data exists
on the source, such as virtualized environments employing file clones, data
inflation during a transfer might cause failed backups due to lack of space on
the secondary volume.

Simple one-hop storage service topology API call example

One of the simplest storage service topologies that the storage-service-create API enables the
client application developer to specify is a one-hop, storage service topology consisting of a single
mirror or vault type connection.

In this type of topology the source node defined for the single connection functions as the root node
and the destination node functions as the secondary node.

Subscription example

Based on this topology, when primary storage volumes are subscribed as root members to the storage
service, the Unified Manager server creates a mirror relationship with a newly-generated destination
volume for each newly-subscribed root member. This relationship enables a mirror replication of the
data in the root member volumes to their destination volumes. The destination volumes are

API and protection service concepts | 11

provisioned from resource pool rp-1 according to the requirements specified in storage service
workflow SnapMirror Destination.

A

B

C

D1-A

D1-B

D1-C

MirrorSource node
(Root)

Destination
node

(Secondary)

Resource
pool (rp-1)

Mirror

Mirror

Mirror

(SM Dest)

rp-1

XML call example

The following XML code example shows a storage-service-create API call that specifies
simple storage service topology with the following components: a single mirror type connection
consisting of a source node (Root) and a destination node (Secondary), a resource pool (rp-1), and a
storage service workflow (SnapMirror Destination).

 <storage-service-create>
 <storage-service-name>SimpleService</storage-service-name>
 <storage-service-client-tag>App-xz</storage-service-client-tag>
 <storage-service-topology-info>
 <nodes>
 <storage-service-topology-node-info>
 <node-name>primary</node-name>
 </storage-service-topology-node-info>
 <storage-service-topology-node-info>
 <node-name>Secondary</node-name>
 <resource-pools>
 <resource-key>063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=resource_pool,uuid=e98c5a56-21a3-40c

12 | Unified Manager 6.1 API Developer's Guide

1-9ade-59e17b859639</resource-key>
 </resource-pools>
 <service-workflow-resource-key>063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=service_workflow,uuid=d22126c0-
e8b4-4eab-a2ef-d7243effe630</service-workflow-resource-key>
 </storage-service-topology-node-info>
 </nodes>
 <connections>
 <storage-service-topology-connection-info>
 <connection-type>mirror</connection-type>
 <destination-node-name>secondary</destination-node-name>
 <source-node-name>Root</source-node-name>
 </storage-service-topology-connection-info>
 </connections>
 </storage-service-topology-info>
 </storage-service-create>

Fanout storage service topology API call example

The storage-service-create API enables the client application developer to specify a fanout
storage service topology in which one node is included as the source node in several connections to
as many different destination nodes.

In this type of topology the source node of all the connections functions as the root node, and the
destination nodes of the connections function as fanout secondary nodes. The data in a single source
data object is protected by simultaneous replication through multiple mirror or vault connections to
multiple destination volumes.

Subscription example

Based on this fan out topology, when primary storage volumes are subscribed as root members to the
storage service, the Unified Manager server creates two mirror relationships with two newly
generated destination volumes for each newly subscribed root member. These relationships enable a
mirror replication of the data in each root member volume to its two destination volumes. The
destination volumes are provisioned from resource pools rp-1 and rp-2 according to the requirements
specified in storage service workflow SnapMirror Destination.

API and protection service concepts | 13

M
irr

or M
irror

Mirro
r

Mirro
r

Mirro
r

Mirror

Mirror

Mirror

Source node
(Root node 1)

Resource
pool
(rp-1)

Resource
pool
(rp-2)

(SM
Dest)

(SM
Dest)

Destination
node

(Secondary-1)

Destination
node

(Secondary-2)

rp-1 rp-2

D1-A

D1-B

D1-C

D2-A

D2-B

D2-C

A

B

C

XML call example

The following XML code example shows a storage-service-create API call that specifies a
fanout storage service topology example with the following components: two mirror type
connections with the same source node (Root-1) and two different destination nodes (Secondary-1
and Secondary-2), two resource pools (rp-1 and rp-2) that provision destination nodes Secondary-1
and Secondary-2, respectively, and one storage service workflow (SnapMirror Destination) applied
to both destination nodes.

<storage-service-create>
<storage-service-name>SSFanout</storage-service-name>
<storage-service-topology-info>
 <connections>
 <storage-service-topology-connection-info>
 <connection-type>mirror</connection-type>
 <destination-node-name>Secondary-1</destination-node-name>

14 | Unified Manager 6.1 API Developer's Guide

 <source-node-name>Root-1</source-node-name>
 </storage-service-topology-connection-info>
 <storage-service-topology-connection-info>
 <connection-type>mirror</connection-type>
 <destination-node-name>Secondary-2</destination-node-name>
 <source-node-name>Root-1</source-node-name>
 </storage-service-topology-connection-info>
 </connections>
 <nodes>
 <storage-service-topology-node-info>
 <node-name>Secondary-1</node-name>
 <resource-pools>
 <resource-key>063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=resource_pool,uuid=e98c5a56-21a3-40c
1-9ade-59e17b859639</resource-key>
 </resource-pools>
 <service-workflow-resource-key>
 063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=service_workflow,uuid=d22126c0-
e8b4-4eab-a2ef-d7243effe630
 </service-workflow-resource-key>
 </storage-service-topology-node-info>
 <storage-service-topology-node-info>
 <node-name>Secondary-2</node-name>
 <resource-pools>
 <resource-key>063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=resource_pool,uuid=e98c5a56-21a3-40c
1-9ade-59e17b859640</resource-key>
 </resource-pools>
 <service-workflow-resource-key>
 063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=service_workflow,uuid=d22126c0-
e8b4-4eab-a2ef-d7243effe631
 </service-workflow-resource-key> </storage-service-topology-node-
info>
 </nodes>
</storage-service-topology-info>
</storage-service-create>

Cascade storage service topology API call example

The storage-service-create API enables the client application developer to specify a cascade
storage service topology that enables secondary and tertiary protection of primary data.

In this type of topology, the connections are chained so that the source node of the first connection
functions as the root node, the destination node of the first connection functions as the secondary
node, and the destination node of the second connection functions as the tertiary node.

Data in a primary source object is protected by replication through a mirror or vault connection to a
destination volume in a secondary location, which is, in turn, replicated to another destination
volume in a tertiary location. The intention is to provide source data with two or more levels of
destination protection.

API and protection service concepts | 15

Subscription example

Based on this topology, when primary storage volumes are subscribed as root members to the storage
service, the Unified Manager server creates two mirror relationships with two newly generated
destination volumes for each newly subscribed root member. These relationships enable a mirror
replication of the data in each root member volume to its two destination volumes. The destination
volumes are provisioned from resource pools rp-1 and rp-2 according to the requirements specified in
storage service workflow SnapMirror Destination.

Resource
pool

Resource
pool (rp-1)

Resource
pool (rp-2)

Resource
pool

(SM Dest) (SM Dest)

Source node
(Root)

Destination
node

(Secondary)

Destination
node

(Tertiary)
Mirror

Mirror

Mirror

Mirror

Mirror

Mirror

Mirror

Mirror

A

B

C

D1-A

D1-B

D1-C

D2-A

D2-B

D2-C

XML call example

The following XML code example shows a storage-service-create API call that defines a
mirror-mirror cascade storage service topology that specifies as components: one mirror type
connection consisting of a source node (Root) and a destination node (Secondary) and second mirror
type connection consisting of Secondary as the source node and a destination node (Tertiary), two

16 | Unified Manager 6.1 API Developer's Guide

resource pools (rp-1 and rp-2) provisioning destination nodes Secondary and Tertiary and a storage
service workflow (SnapMirror Destination) applied to both destination nodes.

<storage-service-create>
<storage-service-name>SSCascade</storage-service-name>
<storage-service-topology-info>
 <nodes>
 <storage-service-topology-node-info>
 <node-name>Root</node-name>
 </storage-service-topology-node-info>
 <storage-service-topology-node-info>
 <node-name>Secondary</node-name>
 <resource-pools>
 <resource-key>063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=resource_pool,uuid=e98c5a56-21a3-40c
1-9ade-59e17b859639</resource-key>
 </resource-pools>
 <service-workflow-resource-key>
 063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=service_workflow,uuid=d22126c0-
e8b4-4eab-a2ef-d7243effe630
 </service-workflow-resource-key>
 </storage-service-topology-node-info>
 <storage-service-topology-node-info>
 <node-name>Tertiary</node-name>
 <resource-pools>
 <resource-key>063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=resource_pool,uuid=e98c5a56-21a3-40c
1-9ade-59e17b859640</resource-key>
 </resource-pools>
 <service-workflow-resource-key>
 063da002-97ac-43ca-
b43b-264a7d256017:app_type=OCUM,type=service_workflow,uuid=d22126c0-
e8b4-4eab-a2ef-d7243effe631
 </service-workflow-resource-key>
 </storage-service-topology-node-info>
 </nodes>
 <connections>
 <storage-service-topology-connection-info>
 <connection-type>mirror</connection-type>
 <destination-node-name>Secondary</destination-node-name>
 <source-node-name>Root</source-node-name>
 </storage-service-topology-connection-info>
 <storage-service-topology-connection-info>
 <connection-type>mirror</connection-type>
 <destination-node-name>Tertiary</destination-node-name>
 <source-node-name>Secondary</source-node-name>
 </storage-service-topology-connection-info>
 </connections>
</storage-service-topology-info>
</storage-service-create>

API and protection service concepts | 17

API task flows

API task flows provide client application developers with examples of how Unified Manager APIs
can be called by an client application to execute common protection-related functions. Task flows
summarize API requests made by a client application and responses returned by Unified Manager
server during execution of common protection jobs.

Where to find detailed API descriptions
Fully detailed API input and output descriptions necessary to implement the API calls that are
summarized in the API task flows are provided in the "OnCommand Core Package API
Documentation" downloadable compressed file.

This compressed file is accessed through the NMSDK API Documentation link in the Download
section of NetApp Developer Community site:

http://developer.netapp.com

Creation of a storage service
The client application can call the resource-pool-iter, storage-service-workflow-list-
info, and storage-service-create APIs to create a storage service. After a storage service is
created, it can provide preconfigured and automated services, such as data protection, to volumes that
subscribe to it.

Scenario

In this scenario, the client application operator uses the client application to create and configure a
storage service capable of providing data protection to subscribed volumes.

This scenario is based on the assumption that the client application has the following items available:

• A storage service workflow that supports destination provisioning
• One or more resource pools with one or more aggregates and

Task flow

1. The storage administrator starts creation of a storage service.

2. The client application requests from Unified Manager a list of storage service workflows that
support destination provisioning by calling the following API:

storage-service-workflow-list-info

18 | Unified Manager 6.1 API Developer's Guide

http://developer.netapp.com

3. Unified Manager returns a list of storage service workflows to the client application in the
following element:

storage-service-workflows

4. The client application requests a list of resource pools that can provide provisioning by calling the
following API:

resource-pool-iter

When issuing these calls, the client application enables the is-provisionable flag.

5. Unified Manager returns the list of available resource pools in the following element:

records

6. The backup administrator uses the client application user interface to define a storage service
policy with at least the following parameters:

• A storage service topology source node
• One or more storage service topology destination nodes, associated resource pool, and storage

service workflow
• One or more connections between the source and one or more destination nodes:

• The connection type specifies whether the relationship between two nodes is a mirror
relationship or a vault relationship.

• The lag threshold
Specifies the amount of time, in seconds, after which the system generates a warning event
if the relationship is not updated.

• The maximum transfer rate specifies the upper boundary at which data is transferred for
relationships created in this connection.

• Additional general storage service attributes, such as owner, contact, and description

7. The client application requests that Unified Manager create the storage service with the selected
policy parameters by calling the following API:

storage-service-create

When issuing the storage-service-create API, the client application specifies elements that
reflect the selected policy parameters, resource pools, and topology.

8. Unified Manager creates a storage service and returns a storage service resource key to the client
application in the following element:

storage-service-resource-key

API task flows | 19

Subscription of volumes to an existing storage service
A client application can call the storage-service subscribe and the storage-service-
conform APIs to subscribe data objects to an existing storage service. The subscribed data objects
then receive data protection or whatever other service that the storage service is configured to
provide.

Scenario

In this scenario, an object or set of objects needing protection, such as a virtual machine (VM),
database, NFS export, CIFS share, or volume are mapped by the client application to one or more
Data ONTAP volumes, and then those volumes are subscribed to a storage service.

At the end of this task flow protection relationships are set up from the newly subscribed volumes to
newly-generated destination volumes. Actual data replication is enabled, but has not yet taken place.

Requirements

In Unified Manager, you must have a storage service available.

Task flow

1. The client application lists existing volumes in need of storage service based protection by calling
the following API:

volume-iter

OnCommand Unified Manager returns a list of volumes along with their resource keys.

2. The client application lists existing storage services by calling the following API:

storage-service-iter

OnCommand Unified Manager returns a list of storage services along with their resource keys.

3. The backup administrator selects one or more volumes to protect and associates them with a
specific protection topology.

4. The client application determines the storage footprint of the object being protected and then
chooses the OnCommand Unified Manager storage service that best matches the selected
protection topology.
The client application then subscribes the volumes to that storage service by calling the following
API:

storage-service-subscribe

When issuing this call the client application includes the following inputs:

20 | Unified Manager 6.1 API Developer's Guide

• Either the appropriate context tag or the resource keys of the volumes being subscribed
• The resource key of the storage service to which the volumes are being subscribed

5. Unified Manager starts the storage service subscription job and returns a job identifier in the
following element:

job-id

6. The client application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

7. The client application requests Unified Manager to start the storage service conformance and
configuration job by calling the following API:

storage-service-conform

When issuing this call the client application includes the following inputs:

• Either the appropriate context tag or the resource keys of the volumes being subscribed
• The resource key of the storage service to which the volumes are being subscribed

8. Unified Manager starts the storage service conformance job and returns a job identifier using the
following element:

job-id

9. The storage service conformance job checks all volumes associated with the specified
subscription-context input, and starts tasks for bringing the specified data objects into
conformance.
In the case of a storage service that provides data protection, these tasks might include
provisioning destination data objects and creating SnapMirror relationships.

10. The client application performs the following process loop to monitor the progress of the job:

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. This loop repeats until the job finishes.

API task flows | 21

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

11. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

12. If the storage service conformance job is successful, the specified data objects are successfully
subscribed to the storage service, and no errors or failures are returned.

Replication of local Snapshot copies to remote nodes
A client application can call the storage-service-protection-update-start and the
snapshot-get-location APIs to replicate local Snapshot copies to remote nodes.

Task flow

Replication of local Snapshot copies to remote nodes proceeds as follows:

1. The client application begins SnapMirror updates for the root member volumes by calling the
following API:

storage-service-protection-update-start

When making this call, the client application specifies the resource key of the affected storage
service. If this is the only input, the protection relationships of all members subscribed to this
storage service are updated by Snapshot copy replication.
Additional optional inputs restrict the scope of the Snapshot replication relationship updates
within the storage service:

• Specifying resource keys of one or more storage service root member volumes restricts the
update to relationships in which those volumes are the root member.

• Specifying resource keys for Snapshot copies of one or more root members restricts the
update to those relationships in which those volumes are the root members.

• Specifying a context ID restricts the scope of the update to those relationships associated with
that context ID.

• Specifying a storage service “source node” resource key restricts the scope of the update to
the volumes on the specified storage service node.

• Specifying a storage service “destination node” resource key restricts the scope of the update
to the volumes on the storage service node root only up to the volumes on the specified
storage service node.

2. The Unified Manager server starts a SnapMirror update from source to destination volumes, and
returns a job identifier in the element:

job-ID

3. The client application performs the following process loop to monitor the progress of the job:

22 | Unified Manager 6.1 API Developer's Guide

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. This loop repeats until the job finishes.

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

4. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

5. When the job finishes, the client application retrieves the locations of the destination Snapshot
copies by calling the following API:

snapshot-get-location

When issuing this call, the client application specifies either a Snapshot copy UUID or the
original volume name plus the name of its local Snapshot copy.

6. Unified Manager returns the requested information in the following element:

snapshot-location-results

7. The client application records the destination location Snapshot copies in the backup catalog.

On-demand conformance of a storage service
The client application can call the storage-service-conform API to perform an on-demand
storage service conformance check of failed protection relationships and to attempt repair of those
relationships.

Scenario

In this scenario, an attempt by the backup administrator to subscribe a set of volumes to a storage
service has failed due to improper network configuration.

Informed by the backup administrator of the failure, the system administrator has remedied the
configuration problem and instructed the backup administrator to attempt an on-demand automated
storage service conformance check to repair the missing relationships.

API task flows | 23

This task flow description is based on the following assumptions:

• In Unified Manager, the backup administrator has a storage service available.
• In Unified Manager, the backup administrator has the following credentials for the source cluster

and, if applicable, the destination cluster:

• IP address
• Administrator rights

Task flow

The on-demand attempt to automatically confirm or establish storage service conformance proceeds
as follows:

1. The backup administrator, through the client application interface, requests on-demand storage
service conformance, causing the client application to signal Unified Manager to start the storage
service conformance job by calling the following API:

storage-service-conform

When issuing this API call, the client application includes the following inputs:

• The context string or the resource keys of the volumes whose protection relationship failed
• The resource key of the affected storage service

2. Unified Manager starts the storage service conformance job and returns a job identifier for this
check in the following element:

job-id

3. The storage service conformance job confirms whether all volumes associated with the specified
context ID conform to the storage service's protection requirements.

4. If the specified objects are not yet in conformance with the storage service membership
requirements, the storage service conformance job starts tasks for bringing the specified objects
into conformance.

5. The client application performs the following process loop to monitor the progress of the job:

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. This loop repeats until the job finishes.

24 | Unified Manager 6.1 API Developer's Guide

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

6. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

7. The client application checks the success or failure status of the completed storage service
conformance job by calling the following APIs:

job-iter

8. If the storage service conformance job is successful, no errors or failures are returned.

Data restoration from a source to destination location
The client application can call the snapshot-get-location and dp-restore-start APIs to
restore Snapshot copy data from a source location to a destination location.

Scenario

In this scenario, data stored in a Snapshot copy in a backup location, needs to be restored to its
original location or another non-backup location where it is active and accessible by authorized users.
In this task flow, the backup location is the source and the non-backup location is the destination. No
membership in a storage service is necessary.

This task flow description is based upon the following assumptions:

• In Unified Manager, the operator has the following credentials for the source cluster and, if
applicable, the destination cluster:

• IP address
• Admin rights
• NDMP

• The SnapRestore feature is licensed on the source cluster and, if applicable, the destination
cluster.

Task flow

In this task flow, a data restore job from the restore job's source location to its destination location is
set up, executed, and tracked.

1. The backup administrator starts the restore operation by requesting, through the client application,
a list of replicated Snapshot copies in backup storage locations that contain the data to be
restored.

2. If information about Snapshot copies in backup storage locations is not maintained in the client
application database, this information is retrieved from Unified Manager, as follows:

API task flows | 25

a. The client application requests a list of the appropriate Snapshot copies from Unified Manager
by calling the following API:

snapshot-get-location

When issuing this call, the client application includes one of the following inputs:

• The Snapshot copy name plus the resource key of the volume
• The resource key of the copy itself

b. Unified Manager returns the requested information in the following element:

snapshot-location-results

3. The client application displays to the backup administrator the list of replicated Snapshot copies
in backup locations.

4. The backup administrator uses the client application user interface to specify the restoration
parameters.

5. The client application requests Unified Manager to restore data by calling the following API:

dp-restore-start

When issuing this call, the client application specifies the following information:

• The resource key of the Snapshot copy that contains the data to be restored
• The path within that copy to the volume, directory, or file to be restored
• The path to the location where the data is to be restored
• If the restore is to an alternate location and the use-snapshot-restore-volume parameter

is false, the destination volume name or resource key

6. Depending on the specific requirements of the dp-restore-start request Unified Manager
starts the appropriate Data ONTAP operation for restoring the source Snapshot copy to the
specified destination path and returns a job identifier in the element:

job-id

7. The client application performs the following process loop to monitor the progress of the job:

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

26 | Unified Manager 6.1 API Developer's Guide

c. This loop repeats until the job finishes.

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

8. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

9. If the dp-restore-start job is successful, no errors or failures are returned.

Destruction of a storage service
The client application can use storage-service-destroy API to destroy a storage service that is
no longer required. Destroying a storage service does not destroy the subscribed root members, but it
does destroy the protection artifacts, such as the Snapshot copies, protection relationships, and
destination volumes that the destroyed storage service created to support its services.

Scenario

In this scenario, a storage administrator decides to destroy a storage service and its associated
protection artifacts to free cluster and Unified Manager resources because the subscribed root
members of the storage service no longer require the protection services that the storage service
provides.

This task flow is based upon the assumption that the client application operator, normally a storage
administrator for this task, has the following credentials for the source cluster and, if applicable, the
destination cluster:

• IP address
• Administrator rights

Task flow

The destruction of a storage service proceeds as follows:

1. The storage administrator, through the client application interface, requests destruction of a
specified storage service, causing the client application to signal Unified Manager to start the
destroy job by calling the following API:

storage-service-destroy

When issuing this API call, the client application specifies the resource key of the storage service
to destroy.

2. Unified Manager starts the job and returns a job identifier in the following element:

job-id

API task flows | 27

3. The job begins the destruction of all protection artifacts (the Snapshot copies, protection
relationships, and the secondary volumes) that the specified storage service generated when
volumes were subscribed to it.

4. The client application starts a process loop to monitor the progress of the job:

a. The client application starts monitoring for completion of the job associated with the job-ID
by calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. The client application repeats this loop until the storage service destroy job achieves a
completed state.

5. When the storage service destroy job achieves a completed state, the job-wait-for-state API
returns with the following element:

job-id

6. The client application checks the success or failure status of the completed job by calling the
following API:

job-iter

7. At the end of the success or failure status check, the client application does one of the following:

• If the job is successful, no errors or failures are returned and the client applicationdisplays
feedback that the operation is successful.

• If the storage service destroy job is not successful, the client application executes an error
condition routine.

Error condition
An error condition routine, executed if the storage service destroy job is unsuccessful, returns error
message information that might help the client application operator with troubleshooting information.
The routine includes the following actions:

1. The client application checks the state of the storage services in Unified Manager by calling the
following API:

storage-service-iter

28 | Unified Manager 6.1 API Developer's Guide

2. Unified Manager returns storage service state information in the following element:

records

If the target storage service remains undeleted, the records element is-storage-service-
marked-for-deletion flag is enabled.

3. The client application retrieves any related error messages by calling the following API:

job-task-iter

When making these API calls, the client application specifies the job-id value.

4. The Unified Manager server returns task message information in the following element:

job-task-info

This element contains timestamp information, type information, and the reason for failure of the
job.

5. To facilitate further troubleshooting, if necessary, the client application can provide an HTTP link
to information on a failed job on the server task details page of the Unified Manager server.
The HTTP link is specified by the following syntax:

https://<name_address_um_srvr>:8443
/#job-details:details-place-object-id=
<job-id_with_colons_replaced_by_%253A>

For example, if the IP address of the Unified Manager server is 10.229.155.49:8443, and the job-
id value is bb9a5ff37d10cb4e:e2c16a8:13a8da5bf0d:5671, then the client application generates a
link such as the following:

https://10.229.155.49:8443/
#job-details:details-place-object-id=
bb9a5ff37d10cb4e%253Ae2c16a8%253A13a8da5bf0d%253A5671

Import of existing storage relationships into a storage
service

To provide managed protection to existing unmanaged relationships, a client application can call the
storage-service-import API to import them into a storage service.

Requirements

The client application operator, normally a backup administrator for this task, must have the
following credentials for the source cluster and, if applicable, the destination cluster:

• IP address

API task flows | 29

• Administrator rights

In Unified Manager, the backup administrator must have a storage service and an existing
relationship available.

Task flow

The relationship import operation proceeds as follows:

1. The storage administrator, through the client application interface, requests that one or more
existing relationships be imported into a specified storage service, causing the client application
to signal the Unified Manager server to start the import job by calling the following API:

storage-service-import

When issuing this API call, the client application specifies the following information:

• The resource key of the storage service into which a relationship is to be imported
• For each relationship, a storage-service-import-info element that contains the following:

• The resource key of the storage service connection to which the relationship is to be
mapped.
This information can be found by using the storage-service-iter or resource-
lookup APIs.

• The resource key of either the relationship or the relationship's destination volume.
This information can be found by using the dp-relationship-iter, volume-iter, or
resource-lookup APIs.

• The subscription context (required unless the source volume of the relationship being
imported is already a member of the storage service).

2. The Unified Manager server starts the storage service import job and returns a job identifier in the
element:

job-ID

3. The storage service import job begins to import the relationship into the storage service.

4. The client application performs the following process loop to monitor the progress of the job:

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

30 | Unified Manager 6.1 API Developer's Guide

c. This loop repeats until the job finishes.

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

5. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

6. After the import job succeeds, a storage service conformance check must be performed to ensure
that the imported relationships and members conform to the properties of the storage service.
This might include provisioning and creating new relationships to match the storage service
topology. The client application calls the following API:

storage-service-conform

When issuing this API call, the client application specifies the resource key of the storage service
on which to run the conformance check.

7. The Unified Manager server starts the storage service conform job and returns a job identifier in
the following element:

job-ID

8. The storage service conform job begins to check conformance for all subscribed members of the
storage service.

9. The client application starts a process loop to monitor the progress of the storage service conform
job, checks the success or failure status of the completed job, and retrieves error messages if the
job has failed, as detailed in Steps 4 and 5.

Example: Import two relationships into a fan-out when the shared source volume is a
storage service member

Two relationships, R1 and R2, are being imported into storage service SS1, which has a two-leg fan-
out topology. Both relationships share a source volume that is already a member of the storage
service. (This could happen in some cases if, for example, the volume was subscribed, but
conformance failed, and the relationships were then created outside of Unified Manager.)

Since the source volume is already a member of the storage service, subscription context is not
required. Each relationship and connection pair is specified in its own storage-service-import-info
element. During the import job, relationship R1 is imported to connection C1, and R2 to C2. When
the conformance check is performed after the import job, no fixes are required, since the imported
relationships perfectly match the storage service topology.

The following sample XML shows the required inputs for this example:

<storage-service-import>
 <storage-service-resource-key>SS1 resource key</storage-service-
resource-key>

API task flows | 31

 <import-info>
 <storage-service-import-info>
 <connection-resource-key>C1 resource key</connection-
resource-key>
 <relationship-resource-key>R1 resource key</relationship-
resource-key>
 </storage-service-import-info>
 <storage-service-import-info>
 <connection-resource-key>C2 resource key</connection-
resource-key>
 <relationship-resource-key>R2 resource key</relationship-
resource-key>
 </storage-service-import-info>
 </import-info>
</storage-service-import>

Secondary node 1

Secondary node 2

Relationship R2

Connection C1

Data ONTAP

OnCommand Unified Manager

Connection C2

Relationship R1

Storage service
SS1

Source volume
(already subscribed in

root node)

Primary (root) node

Destination
volume A

Destination
volume B

Example: Import one relationship into a fan-out when the source volume is not a
storage service member

Relationship R3 is being imported into connection C1 of storage service SS1, which has a two-leg
fan-out topology. The source volume of relationship R3 is not a member of the storage service, and a
subscription context is required. When the conformance check is performed after the import job, a
new relationship is created for connection C2 to complete the storage service topology.

32 | Unified Manager 6.1 API Developer's Guide

The following sample XML shows the required inputs for this example:

<storage-service-import>
 <storage-service-resource-key>SS1 resource key</storage-service-
resource-key>
 <import-info>
 <storage-service-import-info>
 <connection-resource-key>C1 resource key</connection-
resource-key>
 <relationship-resource-key>R3 resource key</relationship-
resource-key>
 </storage-service-import-info>
 </import-info>
 <subscription-context>12345</subscription-context>
</storage-service-import>

Secondary node 1

Secondary node 2

Connection C1

Connection C2

Data ONTAP

OnCommand
Unified Manager

Relationship R3

Storage service
SS1

Source volume

Primary (root) node

Destination
volume C

Unsubscription of a root member and destruction of
protection artifacts

A client application can use the storage-service-unsubscribe API to unsubscribe root
members from an existing storage service. Unsubscribing stops any further protection updates for a
member object but does not remove it. After unsubscribing objects, the client application can use the

API task flows | 33

storage-service-cleanup API to destroy all associated protection artifacts, such as data
protection relationships and all relevant provisioned data objects.

Requirements

In Unified Manager, the backup administrator must have the following credentials for the source
cluster and, if applicable, the destination cluster:

• IP address
• Administrator rights

Scenario

The following scenario describes the existing environment before the client application calls the
storage-service-unsubscribe API.

The client application requested the Unified Manager storage-service-create API to create a
mirror storage service called “Mirror to single destination”. Unified Manager provisioned three
destination volumes and created three SnapMirror relationships. Several SnapMirror updates were
initiated on the three volumes as the client application created local Snapshot copies on the primary
volumes and transferred them to SnapMirror destinations using the Unified Manager storage-
service-protection-update-start API.

Task flow

The unsubscription of a root member proceeds as follows:

1. The client application determines that one of the volumes no longer requires protection and
requests that Unified Manager unsubscribe the volume from the storage service by calling the
following API:

storage-service-unsubscribe

2. The client application requests the removal of the destination volume and the associated
SnapMirror relationships, signaling Unified Manager to start the cleanup job by calling the
following API:

storage-service-cleanup

When calling the API, the client application specifies the primary volume name and keep-
storage-artifacts=false inputs.

3. Unified Manager begins the storage service cleanup job and returns a job identifier using the
following element:

job-id

4. The client application performs the following process loop to monitor the progress of the job:

34 | Unified Manager 6.1 API Developer's Guide

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. This loop repeats until the job finishes.

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

5. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

The job runs in the background. The SnapMirror relationship and the destination are destroyed, and
both volumes are removed from the storage service; however, the primary volume is not destroyed.

Unsubscription of a root member and relinquishment of its
protection artifacts

The client application can use the storage-service-unsubscribe API to unsubscribe root
member objects from an existing storage service. Unsubscribing stops any further protection updates
for an object but does not remove it. After unsubscribing objects, the client application can use the
storage-service-cleanup API to relinquish the associated protection artifacts of the
unsubscribed object without destroying them.

Requirements

In Unified Manager, the backup administrator must have the following credentials for the source
cluster and, if applicable, the destination cluster:

• IP address
• Administrator rights

Scenario

• The client application requests the Unified Manager storage-service-create API to create a
mirror storage service called “Mirror to single destination.”

• The client application subscribes three volumes to the “Mirror to single destination” storage
service.

API task flows | 35

• Unified Manager provisions three destination volumes and creates three SnapMirror
relationships.

• Several SnapMirror updates are initiated on the three volumes as the client application creates
local Snapshot copies on the primary volumes and transfers them to SnapMirror destinations
using the Unified Manager storage-service-protection-update-start API.

Task flow

1. The client application requests that Unified Manager unsubscribe a root member volume from its
storage service by calling the following API:

storage-service-unsubscribe

2. The client application requests the removal of the destination volume and the associated
SnapMirror relationships, signaling Unified Manager to start the cleanup job by calling the
following API:

storage-service-cleanup

When calling the API, the client application specifies the primary volume name and keep-
storage-artifacts=true inputs. In this case, the client application requests that the artifacts
not be destroyed.

3. Unified Manager begins the storage service cleanup job and returns a job identifier using the
following element:

job-id

4. The client application performs the following process loop to monitor the progress of the job:

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. This loop repeats until the job finishes.

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

5. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

36 | Unified Manager 6.1 API Developer's Guide

The job runs in the background. The protection artifacts that are associated with the unsubscribe root
member volume (the SnapMirror relationship and the and destination volumes) are removed from the
storage service, but they are not destroyed. Keeping the artifacts enables the storage administrator to
either import the relationship into a new storage service or into the same storage service at a later
time.

Detection and troubleshooting of a failed job
The client application can call the job-iter and job-task-iter APIs to detect when a completed
job has failed and to retrieve error messages if so.

Scenario

In this task flow, a job has completed on the Unified Manager server, and the client application
detects that the job failed. The application then retrieves error messages that might indicate the
reason for failure, and provides an HTTP link to additional information about the failed job.

Task flow

1. The client application checks the success or failure of the completed job by calling the following
API:

job-iter

2. Detecting that the job has failed, the client application retrieves error messages by calling the
following API:

job-task-iter

When making these API calls, the client application specifies the job ID.

3. The Unified Manager server returns task message information in the following element:

records

This element includes information such as timestamps, task type, reason for failure, and any
messages generated during execution of the job.

4. To facilitate further troubleshooting, the client application provides an HTTP link to information
about the failed job on the job's task details page in the Unified Manager GUI.
The link should be constructed with the following syntax, using standard URL encoding for
strings (replacing colons with “%253A”):

https://<name_address_um_srvr>:8443
/#job-details:details-place-object-id=
<job-ID>

API task flows | 37

For example, if the IP address of the Unified Manager server is 10.229.155.49:8443, and the job
ID of the failed job is bb9a5ff37d10cb4e:e2c16a8:13a8da5bf0d:5671, then the client application
generates the following link:

https://10.229.155.49:8443/
#job-details:details-place-object-id=
bb9a5ff37d10cb4e%253Ae2c16a8%253A13a8da5bf0d%253A5671

Recovery from unexpected deletion of a non-root storage
service member

A client application can call the storage-service-member-iter API, the storage-service-
cleanup API, and the storage-service-conform API to recover from the unexpected deletion
of non-root storage service member volumes.

An unexpected deletion of a non-root storage service member volume is the deletion of that volume
by any means other than a storage-service-cleanup API call. Deletion of non-root storage
service member volumes by any other means, might cause disruption of operations related to the
storage service in question.

Scenario

If a non-root storage service member volume undergoes an unexpected deletion (for example, by a
Data ONTAP volume delete command), a transfer fail error results the next time a mirror or vault
update operation on the storage service members is attempted.

Task flow
To rectify the error condition, Unified Manager must clean up the affected protection relationship in
the affectedstorage service by first destroying or relinquishing all other protection artifacts associated
with that protection relationship, then re-creating those protection artifacts for the original root
member source volume.

The following task flow pin points and rectifies an unexpected deletion of a non-root storage service
member volume:

1. To detect which member volume is missing in the storage service, the client application calls the
following API:

storage-service-member-iter

2. For each member volume listed in the storage service record, the Unified Manager server returns
the following item:

storage-service-member-info

38 | Unified Manager 6.1 API Developer's Guide

Included in the storage-service-member-info item is the following information important
to this task flow:

• The resource key for the storage service node on which each member volume in the storage
service record is located

• The is-member-deleted flag set to true for the member volume that was deleted by non-
Unified Manager means

3. To clean up the storage service, the client application issues the following API:

storage-service-cleanup

Included in the API call are the following important inputs:

• The storage-service-nodes item, which specifies the resource key of the storage service
node on which the deleted volume is located

• The keep-storage-artifacts flag set either to false (to destroy the associated protection
artifacts) or to true (to relinquish the associated protection artifacts)

As a result of the cleanup operation, the original source root member volume remains subscribed
to the storage service but all protection artifacts associated with the root member volume are
destroyed or relinquished.

4. To restore the protection relationship that was just cleaned up, the client application calls the
following API:

storage-service-conform

When issuing this API call, the client application specifies the context string and object ID of the
volume whose protection relationship failed.

5. The Unified Manager server starts the storage service conform job and returns a job identifier in
the following element:

job-ID

6. The storage service conform job begins to check conformance for the specified root member
source volume.

7. The client application starts a process loop to monitor the progress of the storage service conform
job, checks the success or failure status of the completed job, and retrieves error messages if the
job has failed.

8. If the conformance job finishes successfully, the deleted non-root volume and its protection
relationship with the original root member volume are re-created.

API task flows | 39

Cleanup of unexpected deletion of a root storage service
member

If a periodic check issued by the Unified Manager server discovers an unexpected deletion of a
storage service root member volume, the Unified Manager server issues a
storageservice.unexpected.volume.deletion event, which the client application can
respond to with a storage-service-cleanup API call to destroy or relinquish the protection
artifacts of the deleted storage service root member volume.

An unexpected deletion of a storage service root member volume is any deletion of that volume
while it is still subscribed to a storage service. Any such deletion might disrupt operations related to
that storage service.

Scenario

In this scenario, a root storage service member volume is accidentally deleted (for example, a Data
ONTAP volume delete command).

Task flow
In the following task flow, the Unified Manager server discovers the occurrence of the unexpected
root member volume deletion while updating cluster status and issues an event for which the client
application can issue an operator-invoked storage service cleanup API request.

1. The Unified Manager server discovers the unexpected root member volume deletion, flags the
root member volume as deleted, and issues the following event:

storageservice.unexpected.volume.deletion

The event source is the storage service resource key of the affected storage service.
Included in the event is the resource key of the deleted volume and the resource key of the node
on which the missing volume is located.

2. In response, the client application displays the event information to the storage administrator and
presents an option to clean up the leftover protection artifacts.
If the storage administrator selects that option, the client application issues the following API:

storage-service-cleanup

Included in the API call are the following important inputs:

• The keep-storage-artifacts flag, set either to true or false:

• true relinquishes the storage service membership of the protection artifacts associated
with the deleted root member volume, but preserves the existence of those artifacts for
possible restore of the root member volume in a future operation.

• false destroys all protection artifacts associated with the deleted root member volume.

40 | Unified Manager 6.1 API Developer's Guide

• The members item, which specifies the resource key of the missing root member volume to
clean up

• The storage-service-nodes item, which specifies the resource key of the storage service
node on which the protection artifacts of the missing root member volume are located

3. Unified Manager begins the storage service cleanup job and returns a job identifier using the
following element:

job-id

4. The client application performs the following process loop to monitor the progress of the job:

a. The application starts monitoring for completion of the job associated with the job ID by
calling the following API:

job-wait-for-state

When issuing this call, the client application specifies a timeout value.

b. If the job-wait-for-state call times out before the job finishes, the client application
optionally tracks the progress of the job by calling the following API:

job-task-iter

c. This loop repeats until the job finishes.

d. When the job has completed, the job-wait-for-state API returns the following element:

job-ID

5. The client application checks the success or failure of the completed job and retrieves any error
messages by performing the task flow Detection and troubleshooting of a failed job on page 37.

As a result of the cleanup operation, all protection artifacts associated with the root member volume
are either destroyed or removed as members from the affected storage service.

API task flows | 41

API guidelines

API guidelines are known issues or practices recommended to address known issues associated with
the use of the Unified Manager APIs to implement storage service protection.

Storage service compatibility requirements
The storage service protection capabilities implemented by the Unified Manager API calls require
that Data ONTAP 8.2 or later be installed on the cluster nodes that are to host the storage service
member volumes.

Restriction on mirror-to-vault cascade protection
Unified Manager does not support a single volume being subscribed to more than one instance of a
mirror-to-vault cascade topology.

The storage-service-create API prevents specifying more than one mirror-to-vault cascade in
a single storage service. However, the API does not prevent a client application user from improperly
subscribing the same volume to two different storage services that both use a mirror to vault cascade
topology.

To address this issue, the best practice for the client application designer is to design the client
application user interface in a way that forestalls the user from subscribing a volume to more than
one storage service configured to provide mirror to vault protection.

Currency of storage service conformance checks
When the Unified Manager server executes a storage service conformance check, it checks for, and
then attempts to fix, any conformance issues apparent in the most-recently refreshed cache of cluster
configuration information.

When a storage service conformance check returns a SUCCESS status, it means only that the most-
recently refreshed cache of cluster conformance information is conformant with storage service
requirements. Changes to the cluster configuration since the last refresh are not accounted for in the
conformance check.

By default, automatic refreshes of cluster configuration information occur every 15 minutes.

If the cache currency of the cluster information is in doubt, the client application can issue a call
(datasource-object-refresh) to refresh the cached cluster information immediately before
issuing the storage-service-conform API call.

42 | Unified Manager 6.1 API Developer's Guide

Link insertion to failed job detail information
To enable a client application to link to information about a failed Unified Manager job, you can
construct an HTTP link to the Unified Manager task details page for that job.

The syntax of the link is as follows:

https://<name_address_um_srvr>:8443
/#job-details:details-place-object-id=
<job-id_with_colons_replaced_by_%253A>

For example, if the IP address of the Unified Manager server is 10.229.155.49:8443, and the job-ID
is bb9a5ff37d10cb4e:e2c16a8:13a8da5bf0d:5671, then the inserted link is as follows:

https://10.229.155.49:8443/
#job-details:details-place-object-id=
bb9a5ff37d10cb4e%253Ae2c16a8%253A13a8da5bf0d%253A5671

Storage service destination volume naming format
When Unified Manager provisions storage service destination volumes, it names those volumes
according to a predefined formula.

The naming format of a destination volume that is provisioned through a storage service is
<StorageServiceName>_<SourceSvmName>_<SourceVolName>_<DestStorageServiceNod
eName>: for example, storageserviceA_svmA_volumeA_storageserviceAnodeB.

When the name of a provisioned destination volume matches the name of an existing volume in the
destination , a suffix consisting of two underscores and four integers (__<nnnn>) is appended to the
generated destination volume name to avoid a name collision condition: for example,
storageserviceA_svmA_volumeA_storageserviceAnodeB__0002.

If the name of the matching generated destination volume is greater than 203 characters, that name is
truncated to 197 characters and appended with the same suffix: __<nnnn>.

API guidelines | 43

Glossary

The Unified Manager API glossary contains terms with specific meanings in the context of
OnCommand Unified Manager documentation.

Glossary terms
It is important for you to understand terminology that is specific to Unified Manager protection APIs.

client application An application that calls Unified Manager APIs to enable its operator to
configure, monitor, and initiate data management operations to be executed on
the Unified Manager server.

container object An object, such as an aggregate or a Vserver, in which data objects reside.

data object A container of data, such as a file, directory, volume, or LUN, that can be
discovered, monitored, protected, created, or restored by the Unified Manager
server.

destination The storage to which source data is backed up, mirrored, or migrated.

protection
artifact

An object, such as a destination data object, or a protection relationship that the
Unified Manager server creates to support protection jobs when a data object is
subscribed to a storage service.

protection
relationship

The SnapMirror or SnapVault relationship that exists between a source data
object and a destination data object.

resource pool A collection of unused physical storage (such as storage systems or aggregates)
from which new volumes or LUNs can be provisioned to contain data.

storage service • In clustered systems, a preconfigured set of automated data management
services, such as protection, that can be supplied to subscribed members.

• In 7-Mode systems, a user-defined combination of a protection policy,
provisioning policies, resource pools, and vFiler templates that you can
assign as a package to a dataset or a class of datasets with common needs
for protection, provisioning, and vFiler unit attachment.

member Any data object that subscribes to or is created by a storage service.

root member A data object that subscribes to a storage service.

volume A file system.

44 | Unified Manager 6.1 API Developer's Guide

Copyright information

Copyright © 1994–2014 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—
graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an
electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and
disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein,
except as expressly agreed to in writing by NetApp. The use or purchase of this product does not
convey a license under any patent rights, trademark rights, or any other intellectual property rights of
NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents,
or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

45

Trademark information

NetApp, the NetApp logo, Network Appliance, the Network Appliance logo, Akorri,
ApplianceWatch, ASUP, AutoSupport, BalancePoint, BalancePoint Predictor, Bycast, Campaign
Express, ComplianceClock, Cryptainer, CryptoShred, CyberSnap, Data Center Fitness, Data
ONTAP, DataFabric, DataFort, Decru, Decru DataFort, DenseStak, Engenio, Engenio logo, E-Stack,
ExpressPod, FAServer, FastStak, FilerView, Flash Accel, Flash Cache, Flash Pool, FlashRay,
FlexCache, FlexClone, FlexPod, FlexScale, FlexShare, FlexSuite, FlexVol, FPolicy, GetSuccessful,
gFiler, Go further, faster, Imagine Virtually Anything, Lifetime Key Management, LockVault, Mars,
Manage ONTAP, MetroCluster, MultiStore, NearStore, NetCache, NOW (NetApp on the Web),
Onaro, OnCommand, ONTAPI, OpenKey, PerformanceStak, RAID-DP, ReplicatorX, SANscreen,
SANshare, SANtricity, SecureAdmin, SecureShare, Select, Service Builder, Shadow Tape,
Simplicity, Simulate ONTAP, SnapCopy, Snap Creator, SnapDirector, SnapDrive, SnapFilter,
SnapIntegrator, SnapLock, SnapManager, SnapMigrator, SnapMirror, SnapMover, SnapProtect,
SnapRestore, Snapshot, SnapSuite, SnapValidator, SnapVault, StorageGRID, StoreVault, the
StoreVault logo, SyncMirror, Tech OnTap, The evolution of storage, Topio, VelocityStak, vFiler,
VFM, Virtual File Manager, VPolicy, WAFL, Web Filer, and XBB are trademarks or registered
trademarks of NetApp, Inc. in the United States, other countries, or both.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. A complete and current list of
other IBM trademarks is available on the web at www.ibm.com/legal/copytrade.shtml.

Apple is a registered trademark and QuickTime is a trademark of Apple, Inc. in the United States
and/or other countries. Microsoft is a registered trademark and Windows Media is a trademark of
Microsoft Corporation in the United States and/or other countries. RealAudio, RealNetworks,
RealPlayer, RealSystem, RealText, and RealVideo are registered trademarks and RealMedia,
RealProxy, and SureStream are trademarks of RealNetworks, Inc. in the United States and/or other
countries.

All other brands or products are trademarks or registered trademarks of their respective holders and
should be treated as such.

NetApp, Inc. is a licensee of the CompactFlash and CF Logo trademarks.

NetApp, Inc. NetCache is certified RealSystem compatible.

46 | Unified Manager 6.1 API Developer's Guide

http://www.ibm.com/legal/copytrade.shtml

How to send your comments

You can help us to improve the quality of our documentation by sending us your feedback.

Your feedback is important in helping us to provide the most accurate and high-quality information.
If you have suggestions for improving this document, send us your comments by email to
doccomments@netapp.com. To help us direct your comments to the correct division, include in the
subject line the product name, version, and operating system.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.
• Telephone: +1 (408) 822-6000
• Fax: +1 (408) 822-4501
• Support telephone: +1 (888) 463-8277

47

mailto:doccomments@netapp.com

Index

A

API calls
basic 8
that return resource keys 6

API task flows
assigning volumes to existing storage 20
cleanup of unexpected deletion of a root member
volume 40
creating a storage service 18
defined 18
destroying a storage service 27
error detection and troubleshooting 37
importing existing storage relationships into a
storage service 29
recovery from unexpected deletion of a non-root
storage service member 38
relinquish storage service objects 35
removing storage service objects 33
replicating local Snapshot copies to remote nodes 22
restoring data 25
storage service conformance 23
unsubscribing storage service objects 33, 35

APIs
where to find detailed descriptions 18

B

basic API calls
storage-service-conform 8
storage-service-create 8
storage-service-import 8
storage-service-subscribe 8
storage-service-upgrade start 8

C

cascade topology
API call example 15

client applications
definition 44
relationship to Unified Manager server 5

compatibility
Data ONTAP version required with storage service
42

conformance checks

storage service currency considerations 42
connection types

mirror 10
supported between source and destination data
objects 10
vault 10

D

data objects
definition 44

Data ONTAP version
requirements for compatibility with storage service
42

descriptions of basic API calls
storage-service-conform 8
storage-service-create 8
storage-service-import 8
storage-service-subscribe 8
storage-service-upgrade start 8

destination data object provisioning
workflows for 10

destination volumes
definition 44
naming format for storage service members 43
storage service naming format 43

E

error messages
retrieving 37

F

failed job details
linking to 43

fanout topology
API call example 13

J

job failures
detecting and troubleshooting 37

jobs
definition 44

48 | Unified Manager 6.1 API Developer's Guide

retrieving error messages on failure 37

M

mirror connection type
described 10

mirror-to-vault protection topology
restriction on 42

N

non-root storage service members
recovery from unexpected deletion 38

P

protection
basic functions implemented by API calls 8

protection API
overview 5

protection artifacts
defined 7
definition 44

protection relationships
definition 44

R

recovery
from unexpected deletion of non-root storage service
members 38

relationships
importing existing unmanaged into a storage service
29

resource keys
API calls that return 6
purpose 6

resource pools
and Unified Manager APIs 5
definition 44

root member volumes
cleanup after unexpected deletion 40

root members
defined 7

S

simple one-hop topology
API call example 11

Snapshot copies
and Unified Manager APIs 5

storage service members
definition 44

storage service objects
relinquish of using storage-service-cleanup API 35
removal of using storage-service-cleanup API 33
unsubscription of using storage-service-unsubscribe
API 33, 35

storage service root members
definition 44

storage service topologies
cascade topology API call example 15
defined 9
fanout topology API call example 13
how specified in the API 9
restriction on mirror-to-vault topologies 42
simple topology API call example 11

storage services
API support for 8
conformance 23
creating 18
currency of conformance checks 42
Data ONTAP version requirements 42
definition 44
importing existing unmanaged relationships into 29
overview 7

storage-service-cleanup API
calling in a task flow 38

storage-service-conform API call
summary description 8

storage-service-conformance API
calling in a task flow 38

storage-service-create API
cascade topology example call 15
fanout topology example call 13
simple one-hop topology example call 11

storage-service-create API call
summary description 8

storage-service-destroy API
calling in a task flow 27

storage-service-import API
calling in a task flow 29

storage-service-import API call
summary description 8

storage-service-member-list-iter-* API
calling in a task flow 38

storage-service-subscribe API call
summary description 8

Index | 49

U

Unified Manager server
relationship to client application 5

V

vault connection type
described 10

volumes

and Unified Manager APIs 6

W

workflows
destination data object provisioning 10
preconfigured 10

50 | Unified Manager 6.1 API Developer's Guide

	Contents
	API and protection service concepts
	What Unified Manager protection APIs are
	Resource pools and the Unified Manager APIs
	Snapshot copies and the Unified Manager APIs
	Volumes and the Unified Manager APIs
	How APIs use resource keys
	API calls that return resource keys

	What storage services are
	API support for storage services
	Summary of basic API calls
	What a storage service topology is
	How a storage service topology is specified in the API
	Connection types supported between source and destination volumes
	Destination provisioning storage service workflow support
	Simple one-hop storage service topology API call example
	Fanout storage service topology API call example
	Cascade storage service topology API call example

	API task flows
	Where to find detailed API descriptions
	Creation of a storage service
	Subscription of volumes to an existing storage service
	Replication of local Snapshot copies to remote nodes
	On-demand conformance of a storage service
	Data restoration from a source to destination location
	Destruction of a storage service
	Import of existing storage relationships into a storage service
	Unsubscription of a root member and destruction of protection artifacts
	Unsubscription of a root member and relinquishment of its protection artifacts
	Detection and troubleshooting of a failed job
	Recovery from unexpected deletion of a non-root storage service member
	Cleanup of unexpected deletion of a root storage service member

	API guidelines
	Storage service compatibility requirements
	Restriction on mirror-to-vault cascade protection
	Currency of storage service conformance checks
	Link insertion to failed job detail information
	Storage service destination volume naming format

	Glossary
	Glossary terms

	Copyright information
	Trademark information
	How to send your comments
	Index

