Contents

Introduction to data protection
- Methods of protecting data ... 9
- Monitoring and protecting database validity by using NVFAIL 10
- What a data loss disaster is .. 10
 - Tools for protecting against data-loss disasters 11
- Data protection in a SAN environment .. 12
- Types of data protection policies .. 12

Planning your data protection strategy ... 14
- Working with Snapshot copies ... 14
 - What a Snapshot copy is ... 14
 - User access to Snapshot copies ... 14
 - Backup and recovery tasks you can perform with Snapshot copies 15
 - Maximum number of Snapshot copies .. 16
 - Where to find information about Snapshot copies of Infinite Volumes 17
 - Creation of Snapshot copy schedules ... 17
 - Deleting Snapshot copies automatically .. 19
 - Viewing settings for the automatic deletion of Snapshot copies 20
 - What Snapshot disk consumption is ... 21
 - What the Snapshot copy reserve is .. 22
- Working with mirroring technology ... 25
 - Components of a mirror relationship .. 25
 - Data protection mirror relationships for FlexVol volumes 25
 - Where to find information about data protection mirror relationships for
 Infinite Volumes ... 26
 - When a destination volume grows automatically 26
 - Path name pattern matching ... 26
 - Language setting requirement .. 27
 - User access to destination volumes ... 27
 - Guidelines for creating relationships between clusters or SVMs 27
 - Limitations for data protection mirror relationships 29
- Working with FlexVol volume SnapVault backups 30
 - What a SnapVault backup is .. 30
Which data gets backed up and restored from a SnapVault backup 32
Which data does not get backed up to a SnapVault backup 32
How a SnapVault backup works ... 33
How SnapVault backups work with data compression 34
SnapVault backup limitations ... 34
Data protection for SVM namespace and root information 34
Guidelines for planning Snapshot copy schedule and retention for
 SnapVault backups .. 35
Supported data protection deployment configurations 36
 What a basic backup deployment is .. 38
 Firewall requirements for intercluster SnapMirror relationships 38
 What source-to-destination-to-tape backup is .. 38
 How a mirror-mirror cascade works .. 39
 How a mirror-SnapVault cascade works .. 40
 How a SnapVault-SnapMirror cascade works .. 41
 How a mirror-SnapVault fanout works .. 42
 How a multiple-mirrors fanout works ... 43

Protecting data using Snapshot copies ... 45
 Managing Snapshot copies .. 45
 Commands for managing Snapshot copies .. 45
 Managing Snapshot policies .. 46
 How Snapshot policies are associated with volumes 46
 Commands for managing Snapshot policies and schedules 47
 Strategies for creating a Snapshot copy policy .. 48
 Naming convention for scheduled Snapshot copies 49
 What prefixes are .. 49
 Using prefixes to name automatic Snapshot copies 49
 Restoring files from the Snapshot copy of a FlexVol volume 50
 Restoring a single file from a Snapshot copy of a FlexVol volume 50
 Restoring part of a file from a Snapshot copy of a FlexVol volume 50
 Restoring the contents of a volume from a Snapshot copy 51
 Snapshot restoration using Shadow Copy Client tools 52
 Managing Snapshot copy disk space .. 52
 Monitoring Snapshot copy disk consumption .. 53

Managing data protection using SnapMirror policies 54
 Commands for managing SnapMirror and SnapVault policies 54
How SnapMirror policies work with clusters and SVMs .. 55
Comparison of what cluster administrators and SVM administrators can manage .. 55
Guidelines for naming Snapmirror and SnapVault policies .. 56
Preserving Snapshot copies for SnapVault relationships after reaching retention limit .. 56
Example of creating a tiered backup policy .. 57

Managing peer relationships for data backup and recovery .. 59
Managing cluster peer relationships ... 59
What a cluster peer is .. 59
Commands for managing cluster peer relationships ... 59
Cluster peer security using authentication passphrases .. 61
Connecting one cluster to another cluster in a peer relationship .. 62
Modifying a cluster peer relationship .. 77
Deleting a cluster peering relationship ... 78
Managing SVM peer relationships ... 79
What an SVM peer relationship is .. 80
States of SVM peer relationships .. 80
Creating an SVM peer relationship .. 81
Accepting an SVM peer relationship .. 84
Rejecting an SVM peer relationship ... 86
Modifying the peering application on an SVM peer relationship ... 87
Deleting an SVM peer relationship ... 88
Suspending an SVM peer relationship ... 89
Resuming an SVM peer relationship .. 90
Displaying information about SVM peer relationships ... 91

Providing disaster recovery using mirroring technology .. 93
Creating a data protection mirror copy for FlexVol volumes ... 93
Correcting a SnapMirror initialization failure ... 95
Creating a version-flexible SnapMirror relationship ... 95
Considerations when using version-flexible SnapMirror relationships 99
Ways to set up version-flexible SnapMirror relationships ... 99
Converting a SnapMirror relationship to a version-flexible SnapMirror relationship 100
Managing mirror relationships ... 102
Commands for managing SnapMirror relationships ... 102
Using extended queries to operate on many SnapMirror relationships 105
What tape seeding is .. 106
Performing tape seeding using SMTape ... 106
Scalability limits for SMTape backup and restore sessions ... 114
Listing the schedule state of a mirror relationship ... 114
Scheduling SnapMirror transfers .. 115
Changing mirror relationship schedules ... 115
Manually updating data protection mirror copies on destination volumes 116
Deleting a mirror copy .. 117
Considerations when breaking SnapMirror relationships .. 118
Reversing the data protection mirror relationship when disaster occurs 119
Reversing the version-flexible SnapMirror relationship when disaster occurs 123
Converting a data protection mirror destination to a writeable volume 128
Testing database applications .. 128

Protecting data on FlexVol volumes by using SnapVault backups 130

Creating SnapVault backups on FlexVol volumes ... 130
Guidelines for creating SnapVault relationships on FlexVol volumes 130
SnapVault updates fail if destination aggregate is full .. 132
Prepopulated SnapVault secondary scenarios .. 132
Creating a SnapVault backup in an empty FlexVol volume .. 133
Creating the SnapVault relationship of a mirror-SnapVault cascade 136
Preserving a Snapshot copy on the primary source volume .. 138
Creating a SnapVault backup in a prepopulated FlexVol volume 139
Creating a destination baseline using a tape backup .. 141
Converting a SnapVault relationship to a version flexible SnapMirror relationship 141
Converting a data protection destination to a SnapVault secondary 143
Managing backup and restore operations for SnapVault backups 144
Backing up from a Snapshot copy that is older than the base Snapshot copy 144
Backing up FlexVol volumes that contain the maximum limit of Snapshot copies 148
Managing the backup of a copied source volume .. 149
Guidelines for restoring the active file system ... 149
Guidelines for restoring LUNs in SAN environments .. 150
Introduction to data protection

Data protection means backing up data and being able to recover it. You protect the data by making copies of it so that it is available for restoration even if the original is no longer available.

Businesses need data backup and protection for the following reasons:

• To protect data from accidentally deleted files, application crashes, data corruption, and viruses
• To archive data for future use
• To recover from a disaster

Methods of protecting data

Depending on your data protection and backup needs, Data ONTAP offers a variety of features and methods that enable you to protect data against accidental, malicious, or disaster-induced loss of data.

Snapshot copies

Enable you to manually or automatically create, schedule, and maintain multiple backups (also called *Snapshot copies*) of data on a volume. Snapshot copies use only a minimal amount of additional volume space, and do not have a performance cost.

If a user accidentally modifies or deletes crucial data on a volume with Snapshot technology enabled, that data can be easily and quickly restored from one of the latest Snapshot copies created. You can also create clones of FlexVol volumes using Snapshot copies.

This method is valid for FlexVol volumes and Infinite Volumes.

SnapRestore (license required)

Enables you to perform fast, space-efficient, on-request Snapshot recovery from Snapshot copies on an entire volume.

This method is valid for FlexVol volumes and Infinite Volumes.

Data protection mirror copies (SnapMirror license required)

Provide asynchronous disaster recovery. Data protection mirror relationships enable you to periodically create Snapshot copies of data on one volume; copy those Snapshot copies to a partner volume (the destination volume), usually on another cluster; and retain those Snapshot copies. The mirror copy on the destination volume ensures quick availability and restoration of data from the time of the latest Snapshot copy, if the data on the source volume is corrupted or lost.

If you conduct tape backup and archival operations, you can perform them on the data that is already backed up on the destination volume.
This method is valid for FlexVol volumes and Infinite Volumes.

SnapVault backups (SnapVault license required)

Provide storage-efficient and long-term retention of backups. SnapVault relationships enable you to back up selected Snapshot copies of volumes to a destination volume and retain the backups.

If you conduct tape backup and archival operations, you can perform them on the data that is already backed up on the SnapVault secondary volume.

This method is valid only for FlexVol volumes.

volume copy

Enables you to perform fast block-copy of data from one volume to another.

This method is valid only for FlexVol volumes.

nvfail option to the volume modify command

Provides protection against data corruption by failures of nonvolatile RAM (NVRAM).

This method is valid for FlexVol volumes and Infinite Volumes.

Monitoring and protecting database validity by using NVFAIL

The `-nvfail` parameter of the `volume modify` command enables Data ONTAP to detect nonvolatile RAM (NVRAM) inconsistencies at boot time, then warns you and protects the system against data access and modification until the volume can be manually recovered.

If Data ONTAP finds any problems, database instances stop responding or shut down, and Data ONTAP sends error messages to the console to alert you to check the state of the database. You can enable NVFAIL to warn database administrators of NVRAM inconsistencies among clustered nodes that can compromise database validity. After a system crash, NFS clients cannot access data from any of the nodes until the NVFAIL state is cleared. CIFS clients are unaffected.

Note: The NVFAIL option is automatically enabled when a LUN is created in a volume.

What a data loss disaster is

A data loss disaster is a situation in which service from one physical site (for example, a building or a corporate campus) on the network is lost for an extended period of time.

The following are examples of disasters:

- Fire
- Earthquake
- Prolonged power outages at a site
- Prolonged loss of connectivity from clients to the storage system at a site

When a disaster occurs, it can affect all the computing infrastructure including storage systems, application servers, networking connectivity, and client connectivity. When you create a disaster plan, you should take your computing infrastructure into consideration.

Tools for protecting against data-loss disasters

Data ONTAP provides tools that enable you to back up or replicate data stored at a primary data storage site to an off-site network location. This ensures that you can restore data if data loss is caused by disaster at a primary data storage site.

SnapVault backups for FlexVol volumes

SnapVault is a Snapshot copy backup and restorability tool on FlexVol volumes. You can locate a SnapVault secondary volume on the same cluster or on a different cluster.

Data recoverability

If a data-loss disaster occurs at a source volume, you can restore data that is backed up to a SnapVault secondary volume. You can restore the data to the source volume after it is running again, or you can restore data to an alternate volume.

Currency of restore data

You can restore data from any Snapshot copy that was replicated to the destination system.

Advantage

A SnapVault backup provides an inexpensive backup solution.

Data protection mirror copy

A data protection mirror copy is a Snapshot copy replication, availability, and restorability tool. You can locate a data protection mirror destination on the same cluster or on a different cluster.

Data availability

If a source site experiences a data-loss disaster, you can quickly make available data at the data protection mirror copy destination site.

Data recoverability

If a data-loss disaster occurs at a source storage site, you can restore data from a data protection mirror copy destination volume. You can restore the data to the source volume after it is running again, or you can restore data to an alternate volume.

Currency of restore data

You can restore data from the last Snapshot copy that was replicated to the destination volume.
Advantage

Data protection mirror copies provide data protection and availability.

Data protection in a SAN environment

If FlexVol volumes contain logical units of storage (LUNs) created to enable integration into a storage area network (SAN) environment, the procedures to implement data protection might have to be modified. Infinite Volumes do not support SAN environments or LUNs.

Data protection mirror copies and SnapVault backups are achieved by the use of volume-to-volume relationships. Therefore, to protect data in a LUN, you back up the volume that contains the LUN.

Path-related metadata such as Persistent Reservations, are not replicated to a SnapVault backup. When you restore a volume from a SnapVault secondary volume, the LUNs in the SnapVault secondary volume are exported with a different identity from their counterparts in the source volume. Therefore, you must configure new access controls for the restored LUNs.

For more information about the descriptions of data backup and restore on volumes containing Data ONTAP LUNs, see the Clustered Data ONTAP SAN Administration Guide.

Types of data protection policies

You can assign Snapshot policies to FlexVol volumes and Infinite Volumes, and SnapMirror policies to data protection mirror relationships and SnapVault relationships.

Snapshot policy

When you assign a Snapshot policy, the policy configures the Snapshot copy creation schedule and retention rules.

You can assign the same Snapshot policy to multiple volumes. For example, you might configure a Snapshot policy to create a Snapshot copy every hour, at the end of every day, and at the end of every week, and then assign that same policy to more than one volume.

You can assign only one Snapshot policy to a volume. You can assign Snapshot policies to FlexVol volumes and Infinite Volumes.

Note: You cannot assign a Snapshot policy that contains the -snapmirror-label to an Infinite Volume.

SnapMirror policy

The SnapMirror policy specifies the configuration attributes of a relationship.

A SnapMirror policy can be applied to a data protection mirror relationship or a SnapVault relationship. Whether the SnapMirror policy has rules determines if the policy is applied to a SnapVault relationship or applied to a data protection mirror copy. If the policy has rules that define which Snapshot copies are protected, then that policy can be
applied to SnapVault relationships only. If the policy does not have rules, then that policy can be applied to data protection mirror copies only.

Note: If no policy is assigned to a relationship, a default policy is assigned. If it is a data protection mirror relationship, the DPDefault policy is assigned. If it is a SnapVault relationship, the XDPDefault policy is assigned.
Planning your data protection strategy

Data ONTAP provides a variety of tools that you can use to build a comprehensive strategy to protect your company's data.

Storage Virtual Machine (SVM) administrators can plan data protection for FlexVol volumes and Infinite volumes within their assigned SVMs. Cluster administrators can plan data protection for FlexVol volumes and Infinite Volumes within their assigned clusters.

Working with Snapshot copies

Snapshot copies are the first line of defense for data protection. Data ONTAP maintains a configurable Snapshot schedule that creates and deletes Snapshot copies automatically for each FlexVol volume and Infinite Volume. You can also create and delete Snapshot copies, and manage Snapshot schedules based on your requirements.

What a Snapshot copy is

A Snapshot copy is a read-only image of a FlexVol volume or Infinite Volume that captures the state of the file system at a point in time.

For information about FlexVol volumes, see the Clustered Data ONTAP Physical Storage Management Guide.

User access to Snapshot copies

A Snapshot copy is a copy of a FlexVol volume that represents the volume's contents at a particular point in time. You can view the contents of the Snapshot copy and use the Snapshot copy to restore data that you lost recently.

A Snapshot copy of a volume is located on the parent volume but has read-only access. It represents the contents of the original volume at a particular point in time. A parent volume and a Snapshot copy of it share disk space for all blocks that have not been modified between the creation of the volume and the time the Snapshot copy is made, thereby making Snapshot copies lightweight.

Similarly, two Snapshot copies share disk space for those blocks that were not modified between the times that the two Snapshot copies were created. You can create a chain of Snapshot copies to represent the state of a volume at a number of points in time. Users can access Snapshot copies online, enabling users to retrieve their own data from past copies, rather than asking a system administrator to restore data from tape. Administrators can restore the contents of a volume from a Snapshot copy.
Each volume has a .snapshot directory that is accessible to NFS users by using the `ls` command and to CIFS users by double-clicking the `~snapshot` folder. The contents of the .snapshot directory are a set of subdirectories, labeled by type, date, and time, resembling the following:

```
$ ls .snapshot
daily.2006-05-14_0013/  hourly.2006-05-15_1306/
hourly.2006-05-15_1106/  weekly.2006-05-14_0019/
hourly.2006-05-15_1206/
```

Each subdirectory of the .snapshot directory includes a list of the parent volume's files and directories. If users accidentally delete or overwrite a file, they can locate it in the most recent Snapshot directory and restore it to their main read-write volume simply by copying it back to the main directory. The following example shows how an NFS user can locate and retrieve a file named `my.txt` from the .snapshot directory:

```
$ ls my.txt
ls: my.txt: No such file or directory
$ ls .snapshot
$ ls .snapshot
daily.2006-05-14_0013/  hourly.2006-05-15_1306/
hourly.2006-05-15_1106/  weekly.2006-05-14_0019/
hourly.2006-05-15_1206/
$ ls .snapshot/hourly.2006-05-15_1506/my.txt
my.txt
$ ls my.txt
my.txt
```

The .snapshot directory is always visible to NFSv2 and NFSv3 clients and available from within the volume, and not visible but still available from any other volume. For NFSv4 clients, the .snapshot directory is not visible, but accessible in all paths of a volume.

Backup and recovery tasks you can perform with Snapshot copies

Snapshot copies enable system administrators and end users to perform important tasks in backup and recovery.

Snapshot copies enable system administrators to perform the following tasks:

- Create instantaneous backups
- Create a clone of a FlexVol volume
- Create a clone of a Data ONTAP LUN

For information about cloning a FlexVol volume, see the *Clustered Data ONTAP Logical Storage Management Guide.*
Snapshot copies enable end users to perform the following tasks:

- Recover older versions or sets of files that were accidentally changed or deleted
- Restore their own files without needing a system administrator to restore files from tape

Maximum number of Snapshot copies

You should know what the maximum number of Snapshot copies you can accumulate is to minimize the possibility that you do not have Snapshot copies available when you need them.

The maximum number of Snapshot copies follows:

- You can accumulate a maximum of 255 Snapshot copies of a FlexVol volume.
- If the FlexVol volume is in a data protection mirror relationship, the maximum number of Snapshot copies is 254 because one Snapshot copy is reserved for use by the relationship during recovery operations.
- If the FlexVol volume is in a disk to disk backup relationship, the maximum number of Snapshot copies is 251.
- If the Infinite Volume is in a data protection mirror relationship, the maximum number of Snapshot copies is reduced by two because two Snapshot copies are used for the data protection mirror relationship.

Over time, automatically generated hourly, weekly, and monthly Snapshot copies accrue. Having a number of Snapshot copies available gives you a greater degree of accuracy if you have to restore a file.

The number of Snapshot copies can approach the maximum if you do not remove older Snapshot copies. You can configure Data ONTAP to automatically delete older Snapshot copies of volumes as the number of Snapshot copies approaches the maximum.

The following data protection mirror copies affect the maximum number of Snapshot copies available to a volume:

- A FlexVol volume in a data protection mirror relationship
- A FlexVol volume with a load-sharing mirror copy
- An Infinite Volume with one or more namespace mirror constituents
 Each namespace mirror constituent uses two Snapshot copies. By default, a read/write Infinite Volume contains one namespace mirror constituent. If you enable SnapDiff on an Infinite Volume, each additional namespace mirror uses two Snapshot copies.

An Infinite Volume also uses up to four Snapshot copies when technical support runs some commands that require diagnostic privilege. You must keep the number of Snapshot copies far enough below the limit to ensure that technical support can run commands.
Where to find information about Snapshot copies of Infinite Volumes

Information about Snapshot copies of Infinite Volumes is available in the *Clustered Data ONTAP Infinite Volumes Management Guide*.

Creation of Snapshot copy schedules

Data ONTAP provides a default Snapshot copy schedule for each FlexVol volume and Infinite Volume. You can create schedules to fit your needs if the default Snapshot copy schedule is not adequate.

For FlexVol volumes, the default Snapshot copy schedule automatically creates one daily Snapshot copy Monday through Saturday at midnight, an hourly Snapshot copy five minutes past the hour, every hour, and a weekly Snapshot copy. Data ONTAP retains the two most recent nightly Snapshot copies and the six most recent hourly Snapshot copies, and deletes the oldest nightly and hourly Snapshot copies when new Snapshot copies are created.

Types of user-specified Snapshot copy schedules

Data ONTAP contains weekly, daily, and hourly Snapshot copy schedules that you can use to create Snapshot copy policies that retain the number and type of Snapshot copies you want.

The following table describes the available types of Snapshot copy schedules:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Weekly | Data ONTAP creates these Snapshot copies every Sunday at 15 minutes after midnight.
Weekly Snapshot copies are named *weekly*.n, where *n* is the date in year-month-day format followed by an underscore (_) and the time. For example, a weekly Snapshot copy created on 25 November 2012 is named *weekly*.2012-11-25_0015. |
| Daily | Data ONTAP creates these Snapshot copies every night at 10 minutes after midnight.
Daily Snapshot copies are named *daily*.n, where *n* is the date in year-month-day format followed by an underscore (_) and the time. For example, a daily Snapshot copy created on 4 December 2012 is named *daily*.2012-12-04_0010. |
| Hourly | Data ONTAP creates these Snapshot copies five minutes after the hour.
Hourly Snapshot copies are named *hourly*.n, where *n* is the date in year-month-day format followed by an underscore (_) and the time. For example, an hourly Snapshot copy created on 4 December 2012 at 1:00 (1300) is named *hourly*.2012-12-04_1305. |
Creating a Snapshot copy schedule

If the default Snapshot copy schedule does not meet your needs, you can create a schedule that does.

Step

1. Create a Snapshot copy schedule by using the `job schedule cron create` command or the `job schedule interval create` command.

 The command you use depends on how you want to implement the schedule. See the man page for each command to determine the command that meets your needs.

If scheduled Snapshot copy creation fails

Scheduled Snapshot copy creation might fail for various reasons, such as a volume being unavailable. In such cases, Data ONTAP attempts to create a Snapshot copy, when possible, outside the schedule.

If a scheduled Snapshot copy creation fails, Data ONTAP checks the Snapshot copies present in the volume. The checks performed and the actions taken depend on the type of scheduled Snapshot copy creation that failed. The process is described in the following list:

1. When a volume becomes available again for creating a Snapshot copy, Data ONTAP checks whether any Snapshot copies were created during a time period represented by `period_snap`. `period_snap` is a variable representing a time period that depends on the type of Snapshot copy schedule, as shown in the following table:

<table>
<thead>
<tr>
<th>Type of Snapshot copy schedule</th>
<th>Value of the <code>period_snap</code> variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly</td>
<td>3 days</td>
</tr>
<tr>
<td>Nightly</td>
<td>3 days</td>
</tr>
<tr>
<td>Hourly</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

 Note: You cannot change the value of `period_snap`.

2. The check in the previous step returns one of the following values:

<table>
<thead>
<tr>
<th>If the check returns...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (One or more Snapshot copies were created in the <code>period_snap</code> period)</td>
<td>Data ONTAP performs Step 3.</td>
</tr>
<tr>
<td>No (Snapshot copies were not created in the <code>period_snap</code> period)</td>
<td>Data ONTAP performs Step 4.</td>
</tr>
</tbody>
</table>
3. Data ONTAP checks whether any scheduled Snapshot copy creations failed after the most recent Snapshot copy. This check returns one of the following values:

<table>
<thead>
<tr>
<th>If the check returns...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (One or more scheduled Snapshot copy creations were missed)</td>
<td>Data ONTAP creates a Snapshot copy.</td>
</tr>
<tr>
<td>No (No scheduled Snapshot copy creation was missed)</td>
<td>Data ONTAP does not create a Snapshot copy.</td>
</tr>
</tbody>
</table>

4. Data ONTAP checks whether any scheduled Snapshot copy creation have failed in the past 25 minutes. This check returns one of the following values:

<table>
<thead>
<tr>
<th>If the check returns...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (A scheduled Snapshot copy creation was missed in the past 25 minutes)</td>
<td>Data ONTAP creates a Snapshot copy.</td>
</tr>
<tr>
<td>No (No scheduled Snapshot copy creation was missed in the past 25 minutes)</td>
<td>Data ONTAP does not create a Snapshot copy.</td>
</tr>
</tbody>
</table>

Deleting Snapshot copies automatically

You can define and enable a policy for automatically deleting Snapshot copies and FlexClone LUNs. Automatically deleting Snapshot copies and FlexClone LUNs can help you manage space utilization.

About this task

You can automatically delete Snapshot copies from read-write volumes and FlexClone LUNs from read-write parent volumes. You cannot set up automatic deletion of Snapshot copies from Infinite Volumes or from read-only volumes, for example, SnapMirror destination volumes.

Step

1. Define and enable a policy for automatically deleting Snapshot copies by using the `volume snapshot autodelete modify` command.

 See the `volume snapshot autodelete modify` man page for information about the parameters that you can use with this command to define a policy that meets your needs.

Example

The following command enables the automatic deletion of Snapshot copies and sets the trigger to `snap_reserve` for the `vol3` volume, which is part of the `vs0.example.com` Storage Virtual Machine (SVM):

Planning your data protection strategy | 19
Example

The following command enables the automatic deletion of Snapshot copies and of FlexClone LUNs marked for autodeletion for the vol3 volume, which is part of the vs0.example.com Storage Virtual Machine (SVM):

```
cluster1::> volume snapshot autodelete modify -vserver vs0.example.com -volume vol3 -enabled true -trigger snap_reserve
```

Viewing settings for the automatic deletion of Snapshot copies

You can view the settings for the automatic deletion of Snapshot copies to help you when you are deciding if the settings are meeting your needs.

Step

1. View the settings for the automatic deletion of Snapshot copies by using the `volume snapshot autodelete show` command.

 See the `volume snapshot autodelete show` command man pages for information about parameters shown by this command.

Example

The following command displays the automatic deletion settings of Snapshot copies for the vol3 volume, which is part of the vs0.example.com Storage Virtual Machine (SVM):

```
cluster1::> volume snapshot autodelete show -vserver vs0 -volume vol3
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Volume</th>
<th>Option Name</th>
<th>Option Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>vol3</td>
<td>Enabled</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commitment</td>
<td>try</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trigger</td>
<td>volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target Free Space</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delete Order</td>
<td>oldest_first</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defer Delete</td>
<td>user_created</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defer Delete Prefix</td>
<td>(not specified)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destroy List</td>
<td>none</td>
</tr>
</tbody>
</table>
What Snapshot disk consumption is

Data ONTAP preserves pointers to all the disk blocks currently in use at the time the Snapshot copy is created. When a file is changed, the Snapshot copy still points to the disk blocks where the file existed before it was modified, and changes are written to new disk blocks.

How Snapshot copies consume disk space

Snapshot copies minimize disk consumption by preserving individual blocks rather than whole files. Snapshot copies begin to consume extra space only when files in the active file system are changed or deleted. When this happens, the original file blocks are still preserved as part of one or more Snapshot copies.

In the active file system the changed blocks are rewritten to different locations on the disk or removed as active file blocks entirely. As a result, in addition to the disk space used by blocks in the modified active file system, disk space used by the original blocks is still reserved to reflect the status of the active file system before the change.

The following illustration shows disk space usage for a Snapshot copy:

- **Before any Snapshot copy is created**, disk space is consumed by the active file system only.
- **After a Snapshot copy is created**, the active file system and Snapshot copy point to the same disk blocks. The Snapshot copy does not use extra disk space.
- **After myfile.txt is deleted from the active file system**, the Snapshot copy still includes the file and references its disk blocks. That is why deleting active file system data does not always free disk space.

- **Space used by the active file system**
- **Space used by the Snapshot copy only**
- **Space shared by the Snapshot copy and the active file system**
- **Unused disk space**
How changing file content consumes disk space

A given file might be part of a Snapshot copy. The changes to such a file are written to new blocks. Therefore, the blocks within the Snapshot copy and the new (changed or added) blocks both use space within the volume.

Changing the contents of the myfile.txt file creates a situation where the new data written to myfile.txt cannot be stored in the same disk blocks as the current contents because the Snapshot copy is using those disk blocks to store the old version of myfile.txt. Instead, the new data is written to new disk blocks. As the following illustration shows, there are now two separate copies of myfile.txt on disk—a new copy in the active file system and an old one in the Snapshot copy:

What the Snapshot copy reserve is

The Snapshot copy reserve sets a specific percent of the disk space for Snapshot copies. For FlexVol volumes, the default Snapshot copy reserve is set to 5 percent of the disk space. By default, the Snapshot copy reserve is 5 percent of the disk space for a FlexVol volume and 0 percent for aggregates.

The active file system cannot consume the Snapshot copy reserve space, but the Snapshot copy reserve, if exhausted, can use space in the active file system.
How Data ONTAP uses deleted active file disk space

When enough disk space is available for Snapshot copies in the Snapshot copy reserve, deleting files in the active file system frees disk space for new files, while the Snapshot copies that reference those files consume only the space in the Snapshot copy reserve.

If Data ONTAP created a Snapshot copy when the disks were full, deleting files from the active file system does not create any free space because everything in the active file system is also referenced by the newly created Snapshot copy. Data ONTAP has to delete the Snapshot copy before it can create any new files.

The following example shows how disk space being freed by deleting files in the active file system ends up in the Snapshot copy:

If Data ONTAP creates a Snapshot copy when the active file system is full and there is still space remaining in the Snapshot reserve, the output from the `df` command—which displays statistics about the amount of disk space on a volume—is as follows:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>kbytes</th>
<th>used</th>
<th>avail</th>
<th>capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vserver /vol/vol0/</td>
<td>3000000</td>
<td>3000000</td>
<td>0</td>
<td>100%</td>
<td>--</td>
</tr>
<tr>
<td>vs1 /vol/vol0/.snapshot</td>
<td>1000000</td>
<td>500000</td>
<td>500000</td>
<td>50%</td>
<td>--</td>
</tr>
</tbody>
</table>

If you delete 100,000 KB (0.1 GB) of files, the disk space used by these files is no longer part of the active file system, so the space is reassigned to the Snapshot copies instead.

Data ONTAP reassigns 100,000 KB (0.1 GB) of space from the active file system to the Snapshot reserve. Because there was reserve space for Snapshot copies, deleting files from the active file system freed space for new files. If you enter the `df` command again, the output is as follows:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>kbytes</th>
<th>used</th>
<th>avail</th>
<th>capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vserver /vol/vol0/</td>
<td>3000000</td>
<td>2900000</td>
<td>100000</td>
<td>97%</td>
<td>--</td>
</tr>
<tr>
<td>vs1 /vol/vol0/.snapshot</td>
<td>1000000</td>
<td>600000</td>
<td>400000</td>
<td>60%</td>
<td>--</td>
</tr>
</tbody>
</table>
Example of what happens when Snapshot copies exceed the reserve

Because there is no way to prevent Snapshot copies from consuming disk space greater than the amount reserved for them, it is important to reserve enough disk space for Snapshot copies so that the active file system always has space available to create new files or modify existing ones.

Consider what happens in the following example if all files in the active file system are deleted. Before the deletion, the `node run -node nodename df` output is as follows:

```
Filesystem      kbytes  used    avail  capacity
/vol/vol0/      3000000 3000000 0       100%
/vol/vol0/.snapshot 1000000 500000  500000   50%
```

After the deletion, the `node run -node nodename df` command generates the following output:

```
Filesystem      kbytes  used    avail  capacity
/vol/vol0/      3000000 2500000 500000   83%
/vol/vol0/.snapshot 1000000 3500000 0       350%
```

The output shows that the entire 3,000,000 KB (3 GB) in the active file system is still being used by Snapshot copies in addition to the 500,000 KB (0.5 GB) that was used by Snapshot copies before the deletion. Therefore, a total of 3,500,000 KB (3.5 GB) is being used by Snapshot copy data, which is 2,500,000 KB (2.5 GB) more than the space reserved for Snapshot copies. This means that 2.5 GB of space that would be available to the active file system is now unavailable to it. The post-deletion output of the `node run -node nodename df` command lists this unavailable space as `used` even though no files are stored in the active file system.

Recovery of disk space for file system use

Whenever Snapshot copies consume more than 100% of the Snapshot reserve, they begin to occupy the active file system space. This process is called Snapshot spill. When the Snapshot copies continue to occupy the active file system space, the system is in danger of becoming full. If the system becomes full due to Snapshot spill, you can create files only after you delete enough Snapshot copies.

If 500,000 KB (0.5 GB) of data is added to the active file system, a `node run -node nodename df` command generates the following output:

```
Filesystem      kbytes  used    avail  capacity
/vol/vol0/      3000000 3000000 0       100%
/vol/vol0/.snapshot 1000000 3500000 0       350%
```

As soon as Data ONTAP creates a new Snapshot copy, every disk block in the file system is referenced by some Snapshot copy. Therefore, no matter how many files you delete from the...
Working with mirroring technology

Before using mirroring technology, you should understand the components of a mirror relationship, types of mirror copies, where mirror copies are located, path naming and language requirements, and what mirror relationships are not intended to do.

Components of a mirror relationship

In its simplest configuration, a mirror relationship is between a source volume and a destination volume and data is replicated to the destination volume using Snapshot copies.

Typically, the source volume is a read-write volume that clients can access and modify. The destination volume is a read-only volume that exports a Snapshot copy to clients for read-only access. The only time the source volume is not a read-write volume is in a cascade configuration where the source volume is a destination of one mirror relationship and the source of another mirror relationship.

Snapshot copies are used by the source volume to update destination volumes. Snapshot copies are transferred from the source volume to the destination volume using an automated schedule or manually; therefore, mirror copies are updated asynchronously. You use the set of `snapmirror` commands to create and manage mirror relationships.

Related concepts

- Supported data protection deployment configurations on page 36

Data protection mirror relationships for FlexVol volumes

You can create a mirror relationship to a destination within a cluster to protect your data or, for greater disaster protection, you can create a mirror relationship to a destination in a different cluster in a different location.

A data protection mirror configuration consists of a source volume that can be replicated to one or more destination volumes. Each data protection mirror relationship is independent from the other.

Note: The version of Data ONTAP that is running on the destination volume must be the same or a later version than the one running on the source volume.

You can create data protection mirror relationships to destinations on the same aggregate as the source volume, and on the same Storage Virtual Machine (SVM) or on a different SVM. For greater protection, you can create the relationships to destinations on a different aggregate, which enables you to recover from the failure of the source volume's aggregate. Neither of these two configurations protects against a cluster failure.
To protect against a cluster failure, you can create a data protection mirror relationship in which the source volume is on one cluster and the destination volume is on a different cluster. If the cluster on which the source volume resides experiences a disaster, you can direct user clients to the destination volume on the cluster peer until the source volume is available again.

You can also use mirror relationships for limited disaster recovery, off-loading tape backup, data distribution, and making offline copies of production data for research, such as data mining.

Where to find information about data protection mirror relationships for Infinite Volumes

Information about creating and managing data protection mirror relationships for Infinite Volumes and recovering Infinite Volumes is available in the *Clustered Data ONTAP Infinite Volumes Management Guide*.

When a destination volume grows automatically

During a data protection mirror transfer, the destination volume grows to ensure the success of the transfer. You do not need to be concerned if you observe volume growth during this time.

At the start of a data protection mirror transfer, the destination volume grows in size if the source volume has grown. This occurs irrespective of any automatic growth setting on the destination volume. The automatic growth of the destination volume occurs as long as there is available space in the aggregate that contains the destination volume. You cannot prevent Data ONTAP from growing or limiting its growth.

Path name pattern matching

You can use pattern matching when you use `snapmirror` commands to have the command work on selected mirroring relationships.

The `snapmirror` commands use fully qualified path names in the following format: `vserver:volume`. You can abbreviate the path name by not entering the Storage Virtual Machine (SVM) name. If you do this, the `snapmirror` command assumes the local SVM context of the user.

Assuming that the SVM is called “vserver1” and the volume is called “vol1”, the fully qualified path name is `vserver1:vol1`.

You can use the asterisk (*) in paths as a wildcard to select matching, fully qualified path names. The following table provides examples of using the wildcard to select a range of volumes.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Matches all paths.</td>
</tr>
<tr>
<td>vs*</td>
<td>Matches all SVMs and volumes with SVM names beginning with vs.</td>
</tr>
<tr>
<td>:src</td>
<td>Matches all SVMs with volume names containing the src text.</td>
</tr>
<tr>
<td>:vol</td>
<td>Matches all SVMs with volume names beginning with vol.</td>
</tr>
</tbody>
</table>
Language setting requirement

The source and destination FlexVol volumes or Infinite Volumes of a mirror relationship must have the same language setting; otherwise, NFS or CIFS clients might not be able to access data.

For FlexVol volumes, it is not a problem if the source and destination volumes are located on the same Storage Virtual Machine (SVM) because the language is set on the SVM. For FlexVol volumes and Infinite Volumes with mirror relationships between volumes on two different SVMs, the language setting on the SVMs must be the same.

User access to destination volumes

Users have read-only access to the active file system on the destination FlexVol volume or Infinite Volume. The active file system on the destination volume is an exported Snapshot copy of the active file system from the source volume.

For information about user access to destination Infinite Volumes, see the Clustered Data ONTAP Infinite Volumes Management Guide.

When clients can access the active file system on the destination FlexVol volume

The active file system on a destination volume is available to clients after the system transfers Snapshot copies of the source volume to the destination volume. When the active file system is available differs between FlexVol volumes in mirror relationships and SnapVault relationships.

For a FlexVol volume in a mirror relationship, the storage system automatically directs clients to use the active file system in the latest Snapshot copy on the destination FlexVol volume. For FlexVol volumes that are secondary volumes of a SnapVault relationship, the active file system on the secondary volume is available after the baseline transfer. Attributes of the file system, such as the number of files or the amount of space consumed, are refreshed after the Snapshot copy for the volume is transferred.

Guidelines for creating relationships between clusters or SVMs

Before you create a mirror or SnapVault relationship between volumes in different clusters or Storage Virtual Machines (SVMs), you should ensure that the relationship follows the supported
configurations. Mirror relationships are supported by FlexVol volumes and Infinite Volumes. SnapVault relationships are supported only by FlexVol volumes.

Relationships between volumes in different clusters

Before you can create a relationship between volumes in different clusters, there must be a cluster peer relationship established between the two clusters and an SVM peer relationship established between the two SVMs.

Mirror relationships between clusters running different versions of Data ONTAP

The version of Data ONTAP that is running on the destination volume must be the same or a later version than the one running on the source volume.

For example, you can create a mirror relationship between a source volume running Data ONTAP 8.1.x and a destination volume running Data ONTAP 8.2.x but not vice versa. Data ONTAP 8.1 commands are supported only for creating and managing these relationships, and you must specify the cluster names.

The `snapmirror show` command displays mixed-version relationships in addition to same-version relationships.

SnapVault relationships are supported only between clusters running Data ONTAP 8.2 or later.

For more information about mirror relationships between clusters running different versions of Data ONTAP, see the *Clustered Data ONTAP Upgrade and Revert/Downgrade Guide*.

SnapVault relationships between clusters running different versions of Data ONTAP

A mixed cluster has at least one node that is running Data ONTAP 8.1.x and other nodes running Data ONTAP 8.2.x. data protection mirror relationships created in Data ONTAP 8.1.x are supported in Data ONTAP 8.2.x, but only the cluster administrator can manage and modify them. Only Data ONTAP 8.1 commands are supported for managing these data protection mirror relationships.

For SnapVault relationships, the version of Data ONTAP that is running on the primary and secondary volumes must be Data ONTAP 8.2 or later. You cannot create a SnapVault relationship with a secondary volume that is running a later version of Data ONTAP than the source volume.

Relationships between volumes in different SVMs

Before you can create a relationship between volumes in different SVMs, there must be a peer relationship established between the two SVMs. You can only establish an SVM peer relationship between SVMs with unique names. You should use unique, fully qualified domain names for each SVM.

You can create a peer relationship between two SVMs with FlexVol volumes or between two SVMs with Infinite Volume, but you cannot create a peer relationship between an SVM with FlexVol volume and an SVM with Infinite Volume.
Limitations for data protection mirror relationships

When working with data-protection mirror relationships, you should be aware that there are limitations to data protection mirror relationships.

The following limitations apply to data-protection mirror relationships:

- Snapshot copies cannot be deleted on destination volumes.
- An empty junction path on a destination FlexVol volume is not accessible from CIFS clients.
- A volume can have a maximum of 255 Snapshot copies.
- A FlexClone volume cannot be the source of a data-protection mirror relationship.

Supported number of destination volumes in fanout SnapMirror relationships

When you are planning the number and types of SnapMirror relationships for a single source volume, you should remember that the source volume supports a certain number of destination volumes.

The number of destination volumes you can fan out depends on the type of SnapMirror relationship that you want to fan out from a single source volume:

- For load-sharing mirror relationships, you can fan out a maximum of one destination volume on a node for a single source volume.
 The maximum number of nodes within a cluster depends on the platform model and licensed protocols. For details about cluster size limits, see the Hardware Universe at hwu.netapp.com.
- For data protection mirror relationships, you can fan out a maximum of eight destination volumes from a single source volume.
- A single source volume can have both one load-sharing destination volume on a node and eight data protection destination volumes.

Snapshot copies cannot be deleted automatically on destination volumes

You cannot automatically delete old Snapshot copies on destination FlexVol volumes or Infinite Volumes of mirror relationships because the destination volume is a read-only version of the source volume and should contain the same data as the source.

This is not true of Snapshot copies on destination FlexVol volumes of SnapVault relationships. You can delete old Snapshot copies on SnapVault secondary volumes.

Note: Using the `snap autodelete` command to automatically delete Snapshot copies from a destination volume to remove older Snapshot copies will fail.
Empty junction path on a destination volume is not accessible from CIFS clients

If internally mounted FlexVol volumes form a namespace and you have a mirror relationship, CIFS clients on a destination volume that attempt to view mirrored volumes not at the highest level of the namespace are denied access.

This occurs when you create a namespace using more than one volume, in which one volume is the source volume of a mirror relationship and the other volumes are members of the namespace. For example, assume that you have two volumes: vol x, which has a junction path /x, and vol y, which has a junction path /x/y. When a SnapMirror transfer occurs, a directory under vol x is created for vol y on the destination volume. From an NFS client, you can see that the directory is empty, but from a CIFS client, you get the following message:

```
access is denied.
```

Maximum number of Snapshot copies for volumes that are mirrored

The maximum number of Snapshot copies that a FlexVol volume in a mirror relationship can contain is 251. The maximum number of Snapshot copies that an Infinite Volume in a data protection mirror relationship can contain is 250.

For FlexVol volumes, whenever an update to a data protection mirror copy or set of load-sharing mirror copies occurs, Data ONTAP creates one new Snapshot copy. For Infinite Volumes, whenever an update to a data protection mirror copy occurs, Data ONTAP creates one new Snapshot copy. You should consider this as you manage the number of Snapshot copies on the source volume. You must keep the number of Snapshot copies far enough below the limit that updates to the mirror copy do not exceed the limit.

Related concepts

- Maximum number of Snapshot copies on page 16

Working with FlexVol volume SnapVault backups

Before using SnapVault technology, you should understand how SnapVault backups work, where SnapVault volumes are located, and what SnapVault relationships are not intended to do.

What a SnapVault backup is

A SnapVault backup is a collection of Snapshot copies on a FlexVol volume that you can restore data from if the primary data is not usable. Snapshot copies are created based on a Snapshot policy. The SnapVault backup backs up Snapshot copies based on its schedule and SnapVault policy rules.

A SnapVault backup is a disk-to-disk backup solution that you can also use to offload tape backups. In the event of data loss or corruption on a system, backed-up data can be restored from the
SnapVault secondary volume with less downtime and uncertainty than is associated with conventional tape backup and restore operations.

The following terms are used to describe SnapVault backups:

baseline transfer
An initial complete backup of a primary storage volume to a corresponding volume on the secondary system.

secondary volume
A volume to which data is backed up from a primary volume. Such a volume can be a secondary or tertiary (and onward) destination in a cascade or fanout backup configuration. The SnapVault secondary system maintains Snapshot copies for long-term storage and possible restore operations.

incremental transfer
A follow-up backup to the secondary system that contains only the changes to the primary data since the last transfer action.

SnapMirror label
An attribute that identifies Snapshot copies for the purpose of selection and retention in SnapVault backups. Each SnapVault policy configures the rules for selecting Snapshot copies on the primary volume and transferring the Snapshot copies that match a given SnapMirror label.

Snapshot copy
The backup images on the source volume that are created manually or automatically as scheduled by an assigned policy. Baseline Snapshot copies contain a copy of the entire source data being protected; subsequent Snapshot copies contain differential copies of the source data. Snapshot copies can be stored on the source volume or on a different destination volume in a different Storage Virtual Machine (SVM) or cluster.

Snapshot copies capture the state of volume data on each source system. For SnapVault and mirror relationships, this data is transferred to destination volumes.

primary volume
A volume that contains data that is to be backed up. In cascade or fanout backup deployments, the primary volume is the volume that is backed up to a SnapVault backup, regardless of where in the chain the SnapVault source is. In a cascade chain configuration in which A has a mirror relationship to B and B has a SnapVault relationship to C, B serves as the source for the SnapVault backup even though it is a secondary destination in the chain.

SnapVault relationship
A backup relationship, configured as a SnapVault relationship, between a primary volume and a secondary volume.
Which data gets backed up and restored from a SnapVault backup

You create SnapVault relationships to back up and restore volumes. You can select the Snapshot copies that the SnapVault relationship uses to backup and restore volumes.

The SnapVault operation backs up a specified volume on the primary system to the associated volume on the SnapVault secondary system. If necessary, data is restored from the SnapVault secondary volume back to the associated primary volume or to a different volume.

The Snapshot policy assigned to the source volume specifies when Snapshot copies are performed. The SnapVault policy assigned to the SnapVault relationship specifies which of the source volume Snapshot copies are replicated to the SnapVault backup.

If the destination volume is a FlexClone volume, the volume retains two more Snapshot copies than the number you configure in the policy. This occurs because the volume retains the FlexClone Snapshot copy and an exported Snapshot copy. For example, if your policy specifies to retain three Snapshot copies, five Snapshot copies are retained (three specified Snapshot copies, one FlexClone Snapshot copy, and one exported Snapshot copy).

In SAN environments, LUN identifiers are preserved on the SnapVault secondary volume. The secondary system uses slightly more disk space and directories than the source system.

Related concepts

Which data does not get backed up to a SnapVault backup on page 32
Guidelines for restoring the active file system on page 149

Which data does not get backed up to a SnapVault backup

If you back up an entire Storage Virtual Machine (SVM) to a SnapVault backup by establishing a SnapVault relationship for each volume in the SVM, namespace and root information is not backed up. To protect namespace and root information for an SVM, you must manually create the namespace and root on the SnapVault secondary volume. When backing up LUNs to a SnapVault secondary volume, not all LUN information is replicated.

In SAN environments, the following LUN attributes are not replicated to the secondary volume:

- Path
 The LUN in the SnapVault secondary volume can be in a different SVM or volume from the source LUN. Path-related metadata, such as persistent reservations, are not replicated to the SnapVault primary volume.
- Serial number
- Device ID
- UUID
- Mapped status
• **Read Only state**
 The Read Only state is always set to `true` on the destination LUN.

• **NVFAIL attribute**
 The NVFAIL attribute is always set to `false` on the destination LUN.

You can set persistent reservations for LUNs on the SnapVault secondary volume.

Related concepts

Which data gets backed up and restored from a SnapVault backup on page 32

How a SnapVault backup works

Backing up volumes to a SnapVault backup involves starting the baseline transfers, making scheduled incremental transfers, and restoring data upon request.

Baseline transfers

In general, baseline transfers work as follows:

A baseline transfer occurs when you initialize the SnapVault relationship. When you do this, Data ONTAP creates a new Snapshot copy. Data ONTAP transfers the Snapshot copy from the primary volume to the secondary volume. This Snapshot copy is the baseline of the volume at the time of the transfer and is a complete transfer, not an incremental transfer. As a result, none of the other Snapshot copies on the primary volume are transferred as part of the initial SnapVault transfer, regardless of whether they match rules specified in the SnapVault policy.

Incremental transfers

The source system creates incremental Snapshot copies of the source volume as specified by the Snapshot policy that is assigned to the primary volume. Each Snapshot copy for a specific volume contains a label that is used to identify it.

The SnapVault secondary system selects and retrieves specifically labeled incremental Snapshot copies, according to the rules that are configured for the SnapVault policy that is assigned to the SnapVault relationship. The Snapshot label is retained to identify the backup Snapshot copies.

Snapshot copies are retained in the SnapVault backup for as long as is needed to meet your data protection requirements. The SnapVault relationship does not configure a retention schedule, but the SnapVault policy does specify number of Snapshot copies to retain.

SnapVault backup updates

At the end of each Snapshot copy transfer session, which can include transferring multiple Snapshot copies, the most recent incremental Snapshot copy in the SnapVault backup is used to establish a new common base between the primary and secondary volumes and is exported as the active file system.
Data restore

If data needs to be restored to the primary volume or to a new volume, the SnapVault secondary transfers the specified data from the SnapVault backup.

How SnapVault backups work with data compression

SnapVault relationships preserve storage efficiency when replicating data from the source to the SnapVault secondary volume except when additional data compression is enabled.

If additional compression is enabled on the SnapVault secondary volume, storage efficiency is affected as follows:

- Storage efficiency is not preserved for data transfers between the primary and secondary volumes.
- You do not have the option of returning to replicating data while preserving storage efficiency.

Related tasks

 Managing storage efficiency for SnapVault secondaries on page 159

SnapVault backup limitations

When planning SnapVault relationships, you must keep in mind what is supported and what is not supported.

The following limitations apply to SnapVault backups:

- 32-bit aggregates are not supported.
 Clustered Data ONTAP systems do not support the SnapVault backup feature for volumes in 32-bit aggregates.

- A SnapVault secondary volume cannot be the secondary volume for multiple primary volumes.
 A volume can be the secondary for one SnapVault relationship only. However, that same volume can be the source for other relationships.

- SnapVault backups are not supported on Infinite Volumes.

Data protection for SVM namespace and root information

Backups to secondary volumes in SnapVault relationships between FlexVol volumes replicate only volume data, not the Storage Virtual Machine (SVM) namespace or root information.

SnapVault relationships replicate only volume data. If you want to back up an entire SVM to a SnapVault secondary volume, you must first create SnapVault relationships for every volume in the SVM.

To provide data protection of the SVM namespace information, you must manually create the namespace on the SnapVault secondary immediately after the first data transfer is completed for all of the volumes in the SVM and while the source SVM volumes are still active. When subsequent
changes are made to the namespace on the source SVM, you must manually update the namespace on
the destination SVM.

You cannot create the namespace for an SVM on a SnapVault secondary volume if only a subset of
the SVM volumes are in a SnapVault relationship, or if only a subset of the SVM volumes have
completed the first data transfer.

Guidelines for planning Snapshot copy schedule and retention for SnapVault backups

It is important to plan the Snapshot copy transfer schedule and retention for your SnapVault backups.

When planning SnapVault relationships, consider the following guidelines:

- Before you create a SnapVault policy, you should create a table to plan which Snapshot copies
 you want replicated to the SnapVault secondary volume and how many of each you want to keep.
 For example:

 - Hourly (periodically throughout the day)
 Does the data change often enough throughout the day to make it worthwhile to replicate a
 Snapshot copy every hour, every two hours, or every four hours?

 - Nightly
 Do you want to replicate a Snapshot copy every night or just workday nights?

 - Weekly
 How many weekly Snapshot copies is it useful to keep in the SnapVault secondary volume?

- The primary volume should have an assigned Snapshot policy that creates Snapshot copies at the
 intervals you need, and labels each Snapshot copy with the appropriate `snapmirror-label`
 attribute name.

- The SnapVault policy assigned to the SnapVault relationship should select the Snapshot copies
 you want from the primary volume, identified by the `snapmirror-label` attribute name, and
 specify how many Snapshot copies of each name you want to keep on the SnapVault secondary
 volume.

<table>
<thead>
<tr>
<th><code>snapmirror-label</code> attribute value</th>
<th>Source volume: Snapshot copy schedule</th>
<th>Primary volume: Snapshot copies retained</th>
<th>SnapVault secondary volume: Snapshot copies retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekly</td>
<td>Every Saturday at 19:00</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Supported data protection deployment configurations

A simple data protection deployment consists of a FlexVol volume or Infinite Volume in a single mirror relationship or a FlexVol volume in a SnapVault relationship. More complex deployment configurations that provide additional data protection consist of a cascade chain of relationships between FlexVol volumes or a set of fanout relationships for a FlexVol volume or Infinite Volume.

Although a single volume-to-volume relationship does provide data protection, your data protection needs might require the additional protection that is provided by more complex cascade and fanout configurations.

An example of a cascade chain is an A to B to C configuration. In this example, A is the source that is replicated to B as a data protection mirror, and B is the primary that is backed up to C as a SnapVault backup. Cascade chains can be more complex than A to B to C, but the more relationships that are involved in the chain, the greater the number of temporary locks on volumes while replication or update operations are in progress.

An example of a fanout is an A to B and A to C backup or mirror replication configuration. In this example, A is the primary source that is replicated to both B (either in a mirror or SnapVault relationship) and C.

Note: Only one SnapVault relationship is supported in a cascade chain configuration, but many SnapVault relationships are supported in a fanout configuration; multiple mirror relationships are supported.

Attention: The longer you configure a chain of relationships or the more you add fanout destinations, the greater the risk of Snapshot copies being locked on the source. Depending on the update schedule, the worst case is when one Snapshot copy is locked for each cascade or fanout destination.

The types of supported deployment configurations are as follows:

- Basic data protection configuration (for FlexVol volumes and Infinite Volumes)
A FlexVol volume or Infinite Volume is in a single relationship with another volume as the source or the destination of mirror replication operations, or a FlexVol volume is in a single relationship with another volume as the primary or the secondary of SnapVault operations.

- **Cascade (one-to-one-to-one relationship)**
 The three types of cascade chain relationships that you can configure are as follows:
 - Mirror-mirror cascade (for FlexVol volumes only)
 A chain of at least two mirror relationships in which a volume is the source for replication operations to a secondary volume, and the secondary volume is the source for replication operations to a tertiary volume. This configuration might be described as follows: A mirror to B mirror to C.
 - Mirror-SnapVault cascade (for FlexVol volumes only)
 A chain of a mirror relationship followed by a SnapVault relationship in which a volume is the source for replication operations to a secondary volume, and the secondary volume is the primary for SnapVault operations to a tertiary volume. This configuration might be described as follows: A mirror to B SnapVault backup to C.
 - SnapVault-mirror cascade (for FlexVol volumes only)
 A chain of a SnapVault relationship followed by a mirror relationship in which a volume is the primary for SnapVault operations to a secondary volume, and the secondary volume is the source for replication operations to a tertiary volume. This configuration might be described as follows: A SnapVault backup to B mirror to C.

A load-sharing mirror source volume or destination volume cannot be a part of any cascade relationship. See the *Clustered Data ONTAP Logical Storage Management Guide* for information about load-sharing mirror relationships.

- **Fanout (one-to-many relationship)**
 In a fanout relationship structure, the source is replicated to multiple destinations, which can be mirror or SnapVault destinations. Only one SnapVault relationship is allowed in a fanout.
 - Mirror-SnapVault fanout (for FlexVol volumes only)
 A volume is the source for replication operations to a secondary volume and also the source for SnapVault operations to a different secondary volume. This configuration might be described as follows: A mirror to B and A also SnapVault backup to C.
 - Multiple-mirrors fanout (for FlexVol volumes and Infinite Volumes)
 A volume is the source for replication operations to a destination volume and also the source for replication operations to another, different destination volume. This configuration might be described as follows: A mirror to B and A also mirror to C.

Related concepts

- *Components of a mirror relationship* on page 25
- *What source-to-destination-to-tape backup is* on page 38
- *How a mirror-mirror cascade works* on page 39
What a basic backup deployment is

A basic data protection deployment consists of two volumes, either FlexVol volumes or Infinite Volumes, in a one-to-one, source-to-destination relationship. This deployment backs up data to one location, which provides a minimal level of data protection.

In a data protection configuration, source volumes are the data objects that need to be replicated. Typically, users can access and write to source volumes.

Destination volumes are data objects to which the source volumes are replicated. Destination volumes are read-only. Destination FlexVol volumes are usually placed on a different Storage Virtual Machine (SVM) from the source SVM. Destination Infinite Volumes must be placed on a different SVM from the source SVM. Destination volumes can be accessed by users in case the source becomes unavailable. The administrator can use SnapMirror commands to make the replicated data at the destination accessible and writable.

The following illustration depicts a basic data protection deployment:

![Diagram of a basic data protection deployment]

Firewall requirements for intercluster SnapMirror relationships

SnapMirror relationships that have source volumes on one cluster and destination volumes on another cluster require certain ports on the intercluster network.

SnapMirror relationships use port 11104 and port 11105 on the intercluster network to replicate data from their source volumes to their destination volumes. Clustered Data ONTAP uses port 11104 to manage intercluster communication sessions and uses port 11105 to transfer data.

What source-to-destination-to-tape backup is

A common variation of the basic data protection backup deployment adds a tape backup of a destination FlexVol volume. By backing up to tape from the destination volume, you do not subject the heavily accessed source volume to the performance degradation and complexity of a direct tape backup.

The following illustration depicts a data protection chain deployment with a tape backup:
NDMP is required for this configuration, and Infinite Volumes do not support NDMP. However, you can use other methods to create a tape backup of an Infinite Volume. For more information, see the *Clustered Data ONTAP Infinite Volumes Management Guide*.

How a mirror-mirror cascade works

A mirror-mirror cascade deployment is supported on FlexVol volumes and consists of a chain of mirror relationships in which a volume is replicated to a secondary volume and the secondary is replicated to a tertiary volume. This deployment adds one or more additional backup destinations without degrading performance on the source volume.

By replicating source A (as shown in the following illustration) to two different volumes (B and C) in a series of mirror relationships in a cascade chain, you create an additional backup. The base for the B-to-C relationship is always locked on A to ensure that the backup data in B and C always stay synchronized with the source data in A.

If the base Snapshot copy for the B-to-C relationship is deleted from A, the next update operation from A to B fails and an error message is generated that instructs you to force an update from B to C. The forced update establishes a new base Snapshot copy and releases the lock, which enables subsequent updates from A to B to finish successfully.

If the volume on B becomes unavailable, you can synchronize the relationship between C and A to continue protection of A without performing a new baseline transfer. After the resynchronize operation finishes, A is in a direct mirror relationship with C, bypassing B. Before you perform a resynchronization operation in a cascade, you should be aware that a resynchronization operation deletes Snapshot copies and might cause a relationship in the cascade to lose its common Snapshot copy. If this happens, the relationship will require a new baseline.

The following illustration depicts a mirror-mirror cascade chain:
How a mirror-SnapVault cascade works

A mirror-SnapVault cascade deployment, which is supported on FlexVol volumes, consists of a chain of relationships in which a volume is replicated to a destination volume, and then the destination volume becomes the primary for a SnapVault backup on a tertiary volume. This deployment adds a SnapVault backup, which fulfills more strict protection requirements.

In a typical mirror-SnapVault cascade, only the exported Snapshot copies from the mirror destination are transferred to the SnapVault secondary when the SnapVault update occurs. These exported Snapshot copies are created by Data ONTAP and have a “snapmirror” prefix and a “sm_created” SnapMirror label.

If the default SnapVault policy is used, the SnapVault destination will accumulate up to 251 “sm_created” Snapshot copies. After this limit is reached, when a newer “sm_created” Snapshot copy is transferred, the oldest one is rotated out. This retention and rotation behavior can be managed by adding a rule for the “sm_created” SnapMirror label to the SnapVault policy.

For example, if a rule is added with a -snapmirror-label of “sm_created” and with a -keep value of 40, then only 40 “sm_created” Snapshot copies are retained on the SnapVault destination. If the -preserve value for this rule is set to true, then no rotation will occur and “sm_created” Snapshot copy transfers will halt when the SnapVault destination reaches a count of 40 “sm_created” Snapshot copies. If the -preserve value for this rule is set to false, then “sm_created” Snapshot copy transfers will occur after 40 Snapshot copies with the oldest copy rotating out for the newest copy.

Note: A cascade chain can contain multiple mirror relationships but only one SnapVault relationship. The SnapVault relationship can occur anywhere in the chain, depending on your data protection requirements.

As with other cascade configurations, a source or destination volume can become unavailable and you might consider temporarily breaking that relationship to bypass the issue and resynchronizing the relationship after fixing the issue. Before you perform a resynchronization operation in a cascade, you should be aware that a resynchronization operation deletes Snapshot copies and might cause a relationship in the cascade to lose its common Snapshot copy. If this happens, the relationship will require a new baseline.
The following illustration depicts a mirror-SnapVault cascade chain:

![Mirror-SnapVault Cascade Illustration]

Storage system A → Storage system B → Storage system C

vol 1 → vol 1 → vol 1

Mirror Relationship → SnapVault Relationship

Related references

Creating the SnapVault relationship of a mirror-SnapVault cascade on page 136

How a SnapVault-SnapMirror cascade works

A SnapVault-SnapMirror cascade consists of a chain of relationships in which a volume has a SnapVault backup on a secondary volume, and then that secondary volume data is replicated to a tertiary volume. In effect, this deployment provides two SnapVault backups.

A SnapVault-SnapMirror cascade deployment is only supported on FlexVol volumes. The first leg of the cascade consists of a SnapVault backup. A cascade chain in which the first leg is a SnapVault relationship behaves in the same manner as does a single leg SnapVault relationship. The updates to the SnapVault backup include the Snapshot copies that are selected in conformance with the SnapVault policy assigned to the relationship. In a typical SnapVault-SnapMirror cascade, all Snapshot copies up to the latest one are replicated from the SnapVault backup to the SnapMirror destination.

As with other cascade configurations, a source or destination volume can become unavailable and you might consider temporarily breaking that relationship to bypass the issue and resynchronizing the relationship after fixing the issue. Before you perform a resynchronization operation in a cascade, you should be aware that a resynchronization operation deletes Snapshot copies and might cause a relationship in the cascade to lose its common Snapshot copy. If this happens, the relationship will require a new baseline.

The following illustration depicts a SnapVault-SnapMirror cascade chain:

![SnapVault-SnapMirror Cascade Illustration]
Related concepts

- Managing a SnapVault-mirror cascade when the SnapVault backup is unavailable on page 156

How a mirror-SnapVault fanout works

A mirror-SnapVault fanout deployment is supported on FlexVol volumes and consists of a source volume that has a direct mirror relationship to a secondary volume and also a direct SnapVault relationship to a different secondary volume.

Note: A fanout deployment might not provide as much data protection as a cascade chain.
How a multiple-mirrors fanout works

A multiple-mirrors fanout deployment is supported on FlexVol volumes and Infinite Volumes, and consists of a source volume that has a direct mirror relationship to multiple secondary volumes.

The volume on A (as shown in the following illustration) always contains the base Snapshot copies for both B and C. Because updates to B or C automatically include the base Snapshot copy of the other relationship, B and C always have a common Snapshot copy.

Note: A fanout deployment might not provide as much data protection as a cascade chain.
The following illustration depicts a mirror and mirror fanout:

Storage system A

Storage system B

Storage system C
Protecting data using Snapshot copies

You can use Snapshot copies to restore data that is lost because of accidental deletion to FlexVol volumes and Infinite Volumes.

Data ONTAP maintains a configurable Snapshot schedule that creates and deletes Snapshot copies automatically for each volume. You can also create and delete Snapshot copies, and manage Snapshot schedules based on your requirements.

If you lose data due to a disaster, you use data protection mirror copies to restore data.

Managing Snapshot copies

You can create multiple schedules that create and delete Snapshot copies, as desired.

Commands for managing Snapshot copies

Cluster administrators can use the `volume snapshot` commands to create and manage all Snapshot copies. Storage Virtual Machine (SVM) administrators can use the same commands to create and manage Snapshot copies within SVMs.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about Snapshot copies</td>
<td><code>volume snapshot show</code></td>
</tr>
<tr>
<td>Display information about Snapshot copies created before, after, or on a certain date</td>
<td><code>volume snapshot show</code> with the <code>-create-time</code> parameter</td>
</tr>
<tr>
<td></td>
<td>For example, you can view Snapshot copies created fewer than 5 days ago by using the following command:</td>
</tr>
<tr>
<td></td>
<td><code>volume snapshot show -create-time >5d</code></td>
</tr>
<tr>
<td>Create a Snapshot copy of a volume</td>
<td><code>volume snapshot create</code></td>
</tr>
<tr>
<td></td>
<td>If you are using Infinite Volumes, you must ensure that the Infinite Volume is in an online state. You cannot create a Snapshot copy if the Infinite Volume is in a mixed state due to an offline constituent.</td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
Modify the attributes of a Snapshot copy | `volume snapshot modify`
 If you are using Infinite Volumes, you cannot change the comment or name associated with a Snapshot copy of an Infinite Volume.
 Rename a Snapshot copy of a FlexVol volume | `volume snapshot rename`
 You cannot rename a Snapshot copy that is created as a reference copy during execution of the `volume copy` or `volume move` commands.
 If you are using Infinite Volumes, you cannot rename a Snapshot copy of an Infinite Volume.
 Delete a Snapshot copy | `volume snapshot delete`
 If you are using Infinite Volumes, the Infinite Volume must be online. You cannot delete a Snapshot copy of an Infinite Volume when the Infinite Volume is in a mixed state without assistance from technical support.
 If you are using SnapMirror, base Snapshot copies must exist and at least one common Snapshot copy must exist between the source and destination volume to use the `snapmirror resync` command.

Related information

Clustered Data ONTAP 8.3 Commands: Manual Page Reference

Managing Snapshot policies

Snapshot policies automatically manage Snapshot copy schedules and retention on FlexVol volumes or Infinite Volumes. You must be a cluster administrator or Storage Virtual Machine (SVM) administrator to perform most of the Snapshot policy commands.

How Snapshot policies are associated with volumes

Unless you specify a Snapshot policy when you create a FlexVol volume or an Infinite Volume, a volume inherits the Snapshot policy associated with its containing Storage Virtual Machine (SVM).

When you create the SVM, you can specify a Snapshot policy. If you do not specify a Snapshot policy when you create the SVM, a default Snapshot policy is associated with the SVM. The default
Snapshot policy for an SVM with FlexVol volume is named `default`, and the default Snapshot policy for an SVM with Infinite Volume is named `default-1weekly`.

Note: When you upgrade the SVM with Infinite Volume from Data ONTAP 8.1.x, the default Snapshot policy changes from `default` to `default-1weekly`.

When you create a volume, you can specify a Snapshot policy. If you do not specify a Snapshot policy when you create a volume, the volume inherits the Snapshot policy associated with its containing SVM.

Note: A Snapshot policy is not associated with each constituent in an Infinite Volume, and you cannot associate a Snapshot policy with constituents. A Snapshot policy is only associated with an Infinite Volume.

Commands for managing Snapshot policies and schedules

Cluster administrators can use the `volume snapshot policy` commands to create and manage all Snapshot copy policies. Storage Virtual Machine (SVM) administrators can use the same commands to create and manage Snapshot policies within SVMs.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about Snapshot copy policies</td>
<td><code>volume snapshot policy show</code></td>
</tr>
<tr>
<td>Create a new Snapshot copy policy</td>
<td><code>volume snapshot policy create</code></td>
</tr>
<tr>
<td>Create a schedule that can be used in Snapshot copy policies</td>
<td><code>job schedule cron create</code></td>
</tr>
<tr>
<td>Add a schedule to an existing Snapshot copy policy</td>
<td><code>volume snapshot policy add-schedule</code></td>
</tr>
<tr>
<td>A Snapshot policy can have up to five schedules. If you are using Infinite Volumes, scheduled Snapshot copies cannot occur more often than hourly. Cluster administrator only</td>
<td></td>
</tr>
<tr>
<td>Remove a schedule from a Snapshot copy policy</td>
<td><code>volume snapshot policy remove-schedule</code></td>
</tr>
<tr>
<td>Cluster administrator only</td>
<td></td>
</tr>
<tr>
<td>Modify the maximum number of Snapshot copies for a Snapshot copy policy schedule Cluster administrator only</td>
<td><code>volume snapshot policy modify-schedule</code></td>
</tr>
<tr>
<td>Modify the description of a Snapshot copy policy</td>
<td><code>volume snapshot policy modify</code></td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
Dissociate a Snapshot copy policy from a volume | volume modify
Cluster administrator only |
Delete a Snapshot copy policy | volume snapshot policy delete
Cluster administrator only |

See the man page for each command for more information.

Strategies for creating a Snapshot copy policy

You should create a Snapshot copy policy that meets the needs of your organization and users.

Following are some strategies for using policies and schedules to schedule and retain Snapshot copies:

- If users rarely lose files or typically notice lost files right away, you can use the default Snapshot copy policy.

 This policy uses the weekly schedule to create two weekly Snapshot copies; the daily schedule to create a Snapshot copy every day and keeps two; and the hourly schedule to create hourly Snapshot copies and keeps six.

- If users commonly lose files or do not typically notice lost files right away, you should delete the Snapshot copies less often than you would if you used the default policy.

 Following is the recommended Snapshot copy policy for this situation. It uses the weekly schedule to keep two weekly Snapshot copies, the daily schedule to keep six daily Snapshot copies, and the hourly schedule to keep eight hourly Snapshot copies:

  ```
  snapshot policy create -vserver vs1.example.com -policy keep-more-snapshot -enabled true -schedule1 weekly -count1 2 -prefix1 weekly -schedule2 daily -count2 6 -prefix2 daily -schedule3 hourly -count3 8 -prefix3 hourly
  ```

 On many systems, only 5 to 10 percent of the data changes each week, so the Snapshot copy schedule of six daily and two weekly Snapshot copies consumes 10 to 20 percent of disk space. Considering the benefits of Snapshot copies, it is worthwhile to reserve this amount of disk space for Snapshot copies.

- You can create different Snapshot copy policies for different volumes on a Vserver.

 On a very active volume, you should schedule Snapshot copies every hour and keep them for just a few hours, or turn off Snapshot copies. For example, the following schedule creates a Snapshot copy every hour and keeps the last three:

  ```
  snapshot policy create -vserver vs1.example.com -policy hourly-keep-3 -enabled true -schedule1 hourly -count1 3 -prefix1 hourly
  ```

- When you create a new volume, the new volume inherits the Snapshot copy schedule from the root volume.
After you use the volume for a while, you should check how much disk space the Snapshot copies consume and how often users need to recover lost files, and then adjust the schedule as necessary.

Naming convention for scheduled Snapshot copies

The scheduled Snapshot copy name is composed of an optional prefix or the schedule name specified in the Snapshot policy, and the timestamp. Snapshot names cannot be longer than 255 characters.

If prefix is specified, the Snapshot name is made up of prefix and the timestamp.

If you do not specify the prefix, by default, the schedule name is prepended with the timestamp to form a Snapshot name.

What prefixes are

A prefix is an optional string that you can specify to be used in creating automatic Snapshot copies. Using prefixes in Snapshot names provides more flexibility than using schedule names in naming automatic Snapshot copies.

Prefix names must be unique within a policy. The length of the prefix cannot exceed the maximum allowable length for Snapshot names; that is, Snapshot names cannot be longer than 255 characters. Prefix names must follow the character encoding rules used by Snapshot names.

If a prefix is specified in the Snapshot schedule, then the schedule name is not used to name Snapshot copies. If the prefix is not specified for a Snapshot schedule within a Snapshot policy, then the schedule name is used.

Using prefixes to name automatic Snapshot copies

You can use prefixes to provide flexibility to the naming convention for scheduled Snapshot copies. It removes the dependency on using the schedule names in naming scheduled Snapshot copies.

About this task

- A schedule cannot have more than one prefix.
- Prefixes within a policy should be unique.

Step

1. You can specify prefixes when you create a Snapshot policy or when you add a schedule to the Snapshot policy.

Example

The following command creates a Snapshot policy “test”, which contains the schedule named “5min” having the temp prefix:
Example

The following command adds the “6min” schedule with the “test” prefix to the default policy:

```
cluster1::> volume snapshot policy add-schedule -policy default
          -schedule 6min -count 4 -prefix test
```

Restoring files from the Snapshot copy of a FlexVol volume

You might have to restore a file from the Snapshot copy of a FlexVol volume if the file was accidentally erased or corrupted. You can use the SnapRestore feature to automatically restore files from the Snapshot copy of a FlexVol volume.

Steps

1. If the original file still exists and you do not want it overwritten by the file in a Snapshot copy, then use your UNIX or Windows client to rename the original file or move it to a different directory.
2. Locate the Snapshot copy that contains the version of the file that you want to restore.
3. Copy the file from the `.snapshot` directory to the directory in which the file originally existed.

Restoring a single file from a Snapshot copy of a FlexVol volume

You can restore a single file to the required version from a Snapshot copy of a FlexVol volume.

Before you begin

- The volume to which you want to restore the file should be online and writeable.
- The volume to which you want to restore the file should have enough space for the restore operation to be completed successfully.

About this task

The restored file can replace an existing file with the same name in the active file system or become a new file if there is data in the existing file that you want to retain. You can also restore LUNs, but you cannot restore a single file from a Snapshot copy of an Infinite Volume.

If you are restoring an existing LUN, a LUN clone is created and is backed up in the form of a Snapshot copy. During the restore operation, you can read to and write from the LUN.
Step

1. To restore a single file or LUN, use the `volume snapshot restore-file` command. The restore operation might take a long time, depending on the size of the file or LUN that you are restoring.

 If you want to display the number of in-progress single file restore operations, use the `volume snapshot restore-file-info` command.

Restoring part of a file from a Snapshot copy of a FlexVol volume

You can restore a range of data from a file in a Snapshot copy to an existing file in the active file system. Partial file restores can only be used to restore specific pieces of a LUN, and NFS or CIFS container files.

Before you begin

- You must understand the metadata of the host LUN or container file so that you know which bytes belong to the object that you want to restore.

- The volume where the LUN or the container file is to be restored must be online and writeable.

About this task

Write operations are not allowed on the object that you are restoring; otherwise, it might result in inconsistent data.

Steps

1. Restore part of a file by using the `volume snapshot partial-restore-file` command.

 To get the settings for partial file restore on a cluster, use the `volume snapshot partial-restore-file-list-info` command.

 After the restore is complete, purge operating system or application buffers so that the stale data is cleaned.

Restoring the contents of a volume from a Snapshot copy

You can restore the contents of a FlexVol volume or Infinite Volume from a Snapshot copy to quickly recover lost or damaged data.

Before you begin

- You must have the advanced privilege level or higher to run the command.

- If you are working with a Snapshot copy of an Infinite Volume, the Snapshot copy must be valid and the Infinite Volume must be online.
• You must not have any I/O traffic running on the volume.

Steps
1. If the volume is an Infinite Volume, use the `volume unmount` command to unmount it.
2. Use the `volume snapshot restore` command to restore the contents of a volume from a Snapshot copy.

Example
The following command restores data to a volume named `src_os` from a Snapshot copy named `src_os_snap_3` on the Storage Virtual Machine (SVM) named `vs0`:

```
vs1::*> volume snapshot restore -vserver vs0.example.com -volume src_os -snapshot src_os_snap_3
```

3. If the volume is an Infinite Volume, use the `volume mount` command to mount it.
4. If the volume has SnapMirror relationships, manually replicate all mirror copies of the volume immediately after you restore from a Snapshot copy.
 Not doing so can result in unusable mirror copies that must be deleted and re-created.

Snapshot restoration using Shadow Copy Client tools
You can access and restore Data ONTAP Snapshot files using the Windows Shadow Copy Client. The Shadow Copy Client provides a Previous Versions tab in the Properties menu from which you can view and restore Data ONTAP Snapshot images.

The Shadow Copy Client software for Windows 2003 is called the Previous Versions Client. Downloads available from Microsoft allow you to use Shadow Copy client tools on most older versions of Windows. For more information about Shadow Copy Client or Previous Versions Client software, consult the Microsoft documentation.

Managing Snapshot copy disk space
The data referenced by a Snapshot copy cannot be accidentally deleted because of the Snapshot feature's design.
Monitoring Snapshot copy disk consumption

You can monitor Snapshot copy disk consumption using the `df` command, which displays the amount of free space on a disk.

About this task

For an Infinite Volume, the `df` command displays information about all of the data constituents, not about the Infinite Volume as a whole.

Step

1. To display information about Snapshot copy disk consumption, use the `df` command.

Example

The `df` command treats Snapshot copies as a partition different from the active file system. The following example shows a volume with these characteristics:

- The total volume capacity (kbytes column) is 4,000,000 KB (4 GB): 3,000,000 KB (75 percent) for the active file system, and 1,000,000 KB (25 percent) for Snapshot copies.

- The active file system is using 2,000,000 KB of its 3,000,000 KB capacity (66 percent, rounded to 65 percent in the capacity column), leaving 1,000,000 KB (34 percent) available.

- Snapshot copies are using 500,000 KB of their 1,000,000 KB capacity (50 percent in the capacity column), leaving 500,000 KB (50 percent of the space allotted for Snapshot copies, not 50 percent of disk space) available.

Note: It is important to understand that the `/vol/vol0/.snapshot` line counts data that exists only in a Snapshot copy. The Snapshot copy calculation does not include Snapshot copy data that is shared with the active file system.
Managing data protection using SnapMirror policies

To manage a data protection mirror or SnapVault relationship, you must assign a policy to the relationship. You use the policy to maximize the efficiency of the transfers to the backup secondaries and manage the update operations for SnapVault backups.

FlexVol volumes support data protection mirror and SnapVault relationships and policies. Infinite Volumes support only data protection mirror relationships and policies.

Commands for managing SnapMirror and SnapVault policies

Cluster administrators can use the `snapmirror policy` commands to create and manage all data protection mirror and SnapVault policies. Storage Virtual Machine (SVM) administrators can use the same commands to create and manage all data protection mirror and SnapVault policies within SVMs.

- All policy-management commands (except for the `snapmirror policy show` command) must be run on the SVM that contains the destination volume.
- Commands for SnapVault policies are supported only by FlexVol volumes.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a new rule to a SnapVault policy</td>
<td><code>snapmirror policy add-rule create</code></td>
</tr>
<tr>
<td>Create a new SnapMirror or SnapVault policy</td>
<td><code>snapmirror policy create</code></td>
</tr>
<tr>
<td>Delete a SnapMirror or SnapVault policy</td>
<td><code>snapmirror policy delete</code></td>
</tr>
<tr>
<td>Modify a SnapMirror or SnapVault policy</td>
<td><code>snapmirror policy modify</code></td>
</tr>
<tr>
<td>Add network compression to a SnapMirror or SnapVault policy</td>
<td><code>snapmirror policy create</code> with the <code>-is-network-compression-enabled true</code> parameter or <code>snapmirror policy modify</code> with the <code>-is-network-compression-enabled true</code> parameter</td>
</tr>
<tr>
<td>Modify an existing rule in a SnapVault policy</td>
<td><code>snapmirror policy modify-rule</code> command</td>
</tr>
<tr>
<td>Remove a rule in a SnapVault policy</td>
<td><code>snapmirror policy remove-rule</code></td>
</tr>
<tr>
<td>Display a list of SnapMirror and SnapVault policies</td>
<td><code>snapmirror policy show</code></td>
</tr>
</tbody>
</table>
How SnapMirror policies work with clusters and SVMs

A SnapMirror policy in which the `vserver` parameter contains the cluster name is a cluster-wide policy. You can assign cluster-wide SnapMirror policies to relationships in a cluster. Cluster-wide policies can be configured only by a cluster administrator.

A SnapMirror policy in which the `vserver` parameter contains a Storage Virtual Machine (SVM) name is an SVM-wide policy. You can assign SVM-wide SnapMirror policies to relationships within the SVM in which the policy was created. SVM policies can be configured by either a cluster administrator or an SVM administrator.

Comparison of what cluster administrators and SVM administrators can manage

Cluster administrators and Storage Virtual Machine (SVM) administrators have different privileges for creating, managing, and assigning policies to mirror and SnapVault relationships.

Cluster administrators can do the following:

- Create and manage any policy in a cluster or SVM
 For cluster-wide policies, the `vserver` parameter contains the cluster name. For SVM-wide policies, the `vserver` parameter contains the SVM name.
- View, modify, or delete policies in a cluster or SVM
- Assign a cluster-wide or SVM-wide policy to a relationship

SVM administrators can do the following:

- Create and manage policies within an SVM
 Policies created by an SVM administrator are automatically configured with the SVM name in the `vserver` parameter.
- View cluster-wide policies and SVM-wide policies created in a specified SVM
 Although SVM administrators can view cluster-wide policies, they cannot modify or delete them. SVM administrators can view only the SVM-wide policies that were created within the SVM on which the `snapmirror policy show` command is executed.
- Assign a cluster-wide or SVM-wide policy to a relationship

SVM administrators cannot access SVM-wide policies of another SVM.
Guidelines for naming Snapmirror and SnapVault policies

Before you create a SnapMirror or SnapVault policy, you should ensure that the policy name is unique.

Cluster-wide policy names must be unique within the cluster and must not conflict with any Storage Virtual Machine (SVM)-wide policy names.

SVM-wide policy names must be unique within the SVM in which the policy is created. However, an SVM policy name can be the same as a policy name created in a different SVM, as long as the name does not conflict with any cluster-wide policy name.

Preserving Snapshot copies for SnapVault relationships after reaching retention limit

After the Snapshot copy retention limit defined by a SnapMirror policy for a SnapVault relationship is reached, the oldest Snapshot copy is automatically deleted to create space before transferring a new Snapshot copy. You can configure or modify the policy rule to preserve all Snapshot copies.

About this task

You can configure or modify the policy rule to preserve all Snapshot copies when you create the SnapMirror policy rule, or you can modify a previously created SnapMirror policy. Configuring or modifying the policy rule to preserve Snapshot copies causes incremental updates to the SnapVault secondary to fail after Snapshot copies reach the retention count.

Steps

1. Configure or modify the policy rule to preserve Snapshot copies by using the `snapmirror policy add-rule` command or the `snapmirror policy modify-rule` command with the `-preserve` parameter.

Example

The following example configures the XDPDefault policy rule to preserve the 40 `sm_created` Snapshot copies that you want to retain.

```
cluster1::> snapmirror policy add-rule -vserver vs1 -policy XDPDefault -snapmirror-label sm_created -keep 40 -preserve true
```
Example

The following example modifies the XDPDefault policy rule to preserve the 40 sm_created Snapshot copies that you want to retain.

```
cluster1::> snapmirror policy modify-rule -vserver vs1 -policy XDPDefault -snapmirror-label sm_created -preserve true
```

2. Optionally, check the policy rules to ensure that you enabled the `-preserve` parameter by using the `snapmirror policy show` command with the `-instance` parameter:

Example

```
cluster1::> snapmirror policy show -instance
Vserver: vs1
SnapMirror Policy Name: XDPDefault
Policy Owner: cluster-admin
Tries Limit: 8
Transfer Priority: normal
Ignore accesstime Enabled: false
Transfer Restartability: always
Comment: Default policy for XDP relationship with daily and weekly rules.
Total Number of Rules: 3
Total Keep: 139
Rules: Snapmirror-label Keep Preserve Warn
-------------------------------- ---- -------- ----
daily                               7 false       0
weekly                             52 false       0
sm_created                         40 true        0
```

Example of creating a tiered backup policy

Data ONTAP uses the `snapmirror-label` attribute to identify Snapshot copies between primary and secondary FlexVol volumes in a SnapVault relationship. When you configure rules in a SnapVault policy, you enter the `snapmirror-label` name that you want to use to identify the Snapshot copies to which the rule applies.

In a tiered backup strategy, a SnapVault policy might have several rules, each one identifying a different set of Snapshot copies. In this example, you have a volume to which you have assigned a Snapshot policy that specifies the following schedule:

- An hourly Snapshot copy
 Every two hours, a Snapshot copy is created and is assigned the attribute `-snapmirror-label hourly`.
- A daily Snapshot copy
Every day at 5:00 p.m., a Snapshot copy is created and is assigned the attribute -snapmirror-label daily.

- A weekly Snapshot copy
 Every Friday at 6:00 p.m., a Snapshot copy is created and is assigned the attribute weekly.

In addition, the volume is part of an Oracle database. Using the online management tool for Host Services Agent for Oracle, you set up a schedule that creates a Snapshot copy every day at 5:00 p.m. These Snapshot copies are assigned the attribute -snapmirror-label Oracle-consistent.

To set up tiered, disk-to-disk data protection for this volume, in which only the Snapshot copies labeled **daily**, **weekly**, and **Oracle-consistent** are replicated to the SnapVault backup, you do the following:

1. Create a separate rule for each of the three types of Snapshot copies that you want replicated to the SnapVault secondary volume.
 You should have three rules. Each rule must specify the retention count. For this example, you configure a retention count of 20 for the daily Snapshot copies, 24 for the weekly Snapshot copies, and 100 for the Oracle-consistent Snapshot copies.

2. Create a new “TieredOracle” SnapVault policy by using the `snapmirror policy create` command, and add the rules you created in Step 1.

3. Assign the new SnapVault policy to the SnapVault relationship that exists between the primary and secondary volumes.

The new SnapVault policy configuration is as follows:

<table>
<thead>
<tr>
<th>Vserver Name</th>
<th>Policy Name</th>
<th>Number Of Rules</th>
<th>Transfer Tries</th>
<th>Transfer Priority</th>
<th>Transfer Restart</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1</td>
<td>TieredOracle</td>
<td>3</td>
<td>8</td>
<td>normal</td>
<td>default</td>
<td>Example of a tiered backup policy</td>
</tr>
<tr>
<td></td>
<td>SnapMirror-label: daily weekly Oracle-consistent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related concepts

Commands for managing SnapMirror and SnapVault policies on page 54

Related references

Commands for managing SnapMirror and SnapVault policies on page 54
Managing peer relationships for data backup and recovery (cluster administrators only)

Establishing peer relationships between two clusters or two Storage Virtual Machines (SVMs) enables you to back up and recover the data on the clusters or SVMs.

Managing cluster peer relationships

You can create data protection mirroring relationships from one cluster to another and you can manage the jobs on a remote cluster from another cluster if you have cluster peer relationships.

What a cluster peer is

The cluster peer feature allows two clusters to coordinate and share resources between them.

Commands for managing cluster peer relationships

There are specific Data ONTAP commands for managing cluster peer operations.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an authenticated cluster peer relationship</td>
<td><code>cluster peer create</code></td>
</tr>
<tr>
<td></td>
<td>This creates an authenticated cluster peer relationship by default. If you want to create an unauthenticated cluster peer relationship, you use this command with the <code>-no-authentication</code> parameter and unauthenticated cluster peer relationships must also be allowed by the cluster peer policy.</td>
</tr>
<tr>
<td>Create an authenticated cluster peer relationship</td>
<td><code>cluster peer create</code> with the <code>-offer-expiration</code> parameter.</td>
</tr>
<tr>
<td>with an extended authentication offer</td>
<td>This is useful if the second cluster in the relationship cannot be authenticated in the default time of one hour.</td>
</tr>
<tr>
<td>Create an unauthenticated cluster peer relationship</td>
<td><code>cluster peer create</code> with the <code>-no-authentication</code> parameter.</td>
</tr>
<tr>
<td></td>
<td>Unauthenticated cluster peer relationships must also be allowed by the cluster peer policy.</td>
</tr>
<tr>
<td>Delete a cluster peer relationship</td>
<td><code>cluster peer delete</code></td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Modify a cluster peer relationship</td>
<td><code>cluster peer modify</code></td>
</tr>
<tr>
<td>Initiate an intercluster connectivity test</td>
<td><code>cluster peer ping</code></td>
</tr>
<tr>
<td>Display information about the cluster peer relationship</td>
<td><code>cluster peer show</code></td>
</tr>
<tr>
<td>Display TCP connection information for a cluster peer</td>
<td><code>cluster peer connection show</code></td>
</tr>
<tr>
<td>Display health information of the nodes in a cluster</td>
<td><code>cluster peer health show</code></td>
</tr>
<tr>
<td>Display information about outstanding authentication</td>
<td><code>cluster peer offer show</code></td>
</tr>
<tr>
<td>offers to peer clusters</td>
<td></td>
</tr>
<tr>
<td>Disable an existing cluster peer relationship</td>
<td><code>cluster peer modify</code> with the <code>-auth-status-admin</code></td>
</tr>
<tr>
<td>Update a cluster peer relationship to use authentication with a different passphrase</td>
<td><code>cluster peer modify</code> with the <code>-auth-status-admin</code> parameter set to <code>revoked</code>.</td>
</tr>
<tr>
<td>You can use this command to perform one of the following tasks:</td>
<td></td>
</tr>
<tr>
<td>• Add authentication to an existing unauthenticated cluster peer relationship</td>
<td></td>
</tr>
<tr>
<td>• Add authentication to a revoked cluster peer relationship</td>
<td></td>
</tr>
<tr>
<td>• Change a passphrase for an authenticated cluster peer relationship</td>
<td></td>
</tr>
<tr>
<td>Reestablish a disabled cluster peer relationship with no-authentication</td>
<td><code>cluster peer modify</code> with the <code>-auth-status-admin</code> parameter set to <code>no-authentication</code>.</td>
</tr>
<tr>
<td>Modify an outstanding authentication offer to a peer cluster</td>
<td><code>cluster peer offer modify</code> with the <code>-offer-expiration</code> parameter.</td>
</tr>
<tr>
<td>You can change when the authentication offer expires if you determine that there is not enough time to authenticate the cluster peer relationship before the offer expires.</td>
<td></td>
</tr>
</tbody>
</table>
If you want to... | Use this command...
---|---
Cancel an outstanding authentication offer to a peer cluster | `cluster peer offer cancel`
Display whether unauthenticated cluster peer relationships can exist and what the minimum passphrase character length is | `cluster peer policy show`
Modify whether unauthenticated cluster peer relationships can exist and change the minimum passphrase character length | `cluster peer policy modify`

Related information

Clustered Data ONTAP 8.3 Commands: Manual Page Reference

Cluster peer security using authentication passphrases

When creating a cluster peer relationship, a passphrase is used by the administrators of the two clusters to authenticate the relationship. This ensures that the cluster to which you send data is the cluster to which you intend to send data.

A part of the cluster peer creation process is to use a passphrase to authenticate the cluster peers to each other. The passphrase is used when creating the relationship from the first cluster to the second and, again, when creating the relationship from the second cluster to the first. The passphrase is not exchanged on the network by Data ONTAP, but each cluster in the cluster peer relationship recognizes the passphrase when Data ONTAP creates the cluster peer relationship.

When you create the cluster peer relationship from the first cluster to the second, the first cluster waits for the administrator of the second cluster to create the cluster peer relationship. The administrator of the second cluster must create the cluster peer relationship before the waiting period expires, one hour by default. If the cluster peer relationship is not created from the second cluster to the first before the waiting period expires, the cluster peer relationship is not created and the administrators must start again.

Related tasks

Creating the cluster peer relationship on page 76

Related references

Commands for managing cluster peer relationships on page 59
Connecting one cluster to another cluster in a peer relationship

You connect clusters together in a cluster peer relationship to share information and to provide access to operations on the peer cluster.

About this task

Connecting clusters together requires network ports, network interfaces configured with the intercluster role, and creating the cluster peer relationship.

Steps

1. What cluster peer intercluster networking is on page 62
2. Supported cluster peer network topologies on page 63
3. Prerequisites for cluster peering on page 66
4. Considerations when sharing data ports on page 68
5. Considerations when using dedicated ports on page 69
6. Configuring intercluster LIFs to share data ports on page 69
7. Configuring intercluster LIFs to use dedicated intercluster ports on page 72
8. Creating the cluster peer relationship on page 76

What cluster peer intercluster networking is

You create and use cluster peer intercluster networks to transfer data between clusters to protect that data, as when you transfer data for a SnapVault backup. You should understand what an intercluster network is before creating one.

A cluster peer intercluster network consists of intercluster logical interfaces (LIFs) that are assigned to network ports. The intercluster network on which replication occurs between two different clusters is defined when the intercluster LIFs are created. Replication between two clusters can occur on the intercluster network only; this is true regardless of whether the intercluster network is on the same subnet as a data network in the same cluster.

The IP addresses assigned to intercluster LIFs can reside in the same subnet as data LIFs or in a different subnet. When an intercluster LIF is created, an intercluster routing group is automatically created on that node too. A gateway address for the intercluster routing group must be defined, and the intercluster routing group must be routed to the defined gateway address.

System Manager enables you to create an authenticated cluster peer relationship between clusters that are running Data ONTAP 8.3 or later. An authenticated peer relationship uses passphrases to ensure that the intercluster communication is secure.

Related concepts

- Considerations when sharing data ports on page 68
- Considerations when using dedicated ports on page 69
Supported cluster peer network topologies

To provide data protection, all of the intercluster LIFs of one cluster must be able to communicate with all of the intercluster LIFs of the cluster peer using *pair-wise full-mesh* connectivity. You need to understand how this connectivity works for different cluster topologies.

Pair-wise full-mesh connectivity applies only to the two clusters in the peer relationship. All of the intercluster LIFs of all the nodes in one cluster must be able to communicate with all of the intercluster LIFs of all the nodes in the other cluster. You cannot designate specific intercluster LIFs to work for specific cluster peer relationships.

Intercluster LIFs can be configured on different subnets on a single node or within a cluster. There are no restrictions on which networks intercluster LIFs may be configured or how many networks may be used for intercluster communication.

Using the concept of *pair-wise full-mesh* connectivity helps you to build more complex cluster peer topologies. Understanding how this connectivity works for two cluster, cluster cascade, and cluster fan-out or fan-in topologies will help you to create viable intercluster networks without adding intercluster networks that are unnecessary.

Intercluster networking between two clusters

Creating an intercluster network between two clusters is the basic cluster peer configuration. For example, you want to create an intercluster network between two clusters, Cluster A and Cluster B. Cluster A has two intercluster LIFs, A1 and A2, and Cluster B has two intercluster LIFs, B1 and B2. The LIFs are connected as follows:

- A1 communicates with B1 and
- A1 communicates with B2 and
- A2 communicates with B1 and
- A2 communicates with B2

Intercluster networking in a cluster cascade

When you connect three clusters in a cascade, all of the intercluster LIFs of the primary cluster must be able to communicate with all of the intercluster LIFs of the secondary cluster. Likewise, all of the intercluster LIFs of the secondary cluster must be able to communicate with all of the intercluster LIFs of the tertiary cluster. You do not need to create an intercluster network between the primary cluster and the tertiary cluster if you do not want to connect the two clusters in a cluster peer relationship.
For example, you want to create an intercluster network between Cluster A and Cluster B and an intercluster network between Cluster B and Cluster C. Cluster A has two intercluster LIFs, A1 and A2, Cluster B has two intercluster LIFs, B1 and B2, and Cluster C has two intercluster LIFs, C1 and C2. The intercluster LIFs between Cluster A and Cluster B are connected as follows:

- A1 communicates with B1 and
- A1 communicates with B2 and
- A2 communicates with B1 and
- A2 communicates with B2 and

The intercluster LIFs between Cluster B and Cluster C are connected as follows:

- B1 communicates with C1 and
- B1 communicates with C2 and
- B2 communicates with C1 and
- B2 communicates with C2

You might have a cluster cascade configured in which you want the tertiary cluster to connect to the primary cluster if something happens to the secondary cluster. An example is if you have a disaster recovery relationship between the primary cluster and the secondary cluster, and a backup relationship between the secondary cluster and the tertiary cluster, and you want the tertiary cluster to communicate with the primary cluster if something happens to the secondary cluster. If this configuration is what you want, then the intercluster LIFs of the tertiary cluster must be able to communicate with all of the intercluster LIFs of the primary cluster. Therefore, in addition to the connections previously mentioned, you would also have the following intercluster LIF connections between Cluster C and Cluster A:

- A1 communicates with C1 and
- A1 communicates with C2 and
- A2 communicates with C1 and
- A2 communicates with C2
Intercluster networking in a cluster fan-out or fan-in

When you connect clusters in a fan-out or fan-in configuration, the intercluster LIFs of each cluster that connects to the primary cluster must be able to communicate with all of the intercluster LIFs of the primary cluster. You do not need to connect intercluster LIFs between the remote clusters if the remote clusters do not need to communicate with each other.

For example, you want to create an intercluster network between Cluster A and Cluster B and an intercluster network between Cluster A and Cluster C. Cluster A has two intercluster LIFs, A1 and A2, Cluster B has two intercluster LIFs, B1 and B2, and Cluster C has two intercluster LIFs, C1 and C2. The intercluster LIFs between Cluster A and Cluster B are connected as follows:

- A1 communicates with B1 and
- A1 communicates with B2 and
- A2 communicates with B1 and
- A2 communicates with B2

The intercluster LIFs between Cluster A and Cluster C are connected as follows:

- A1 communicates with C1 and
- A1 communicates with C2 and
- A2 communicates with C1 and
- A2 communicates with C2

Cluster B is not connected to Cluster C.
If you do want a cluster peer relationship between two remote clusters in addition to the fan-in or fan-out configuration, then use the concept of *pair-wise full-mesh* connectivity to create an intercluster network between them.

Intercluster networking with a router

If you want to use intercluster networks for dedicated purposes, you can use a router. A router can forward data along the networks for which you configure the router without the need to connect to every intercluster LIF on the peer cluster. One example of how a router might be used is if you want to designate one intercluster network for local back up and you want to designate another intercluster network to a storage service provider. In the following example, if you are not peering Cluster B and Cluster C, then the router can disallow all communication between the intercluster LIFs of Cluster B and Cluster C.

Prerequisites for cluster peering

Before you set up cluster peering, you should confirm that the IPspace, connectivity, port, IP address, subnet, firewall, and cluster-naming requirements are met.

Connectivity requirements

The subnet used in each cluster for intercluster communication must meet the following requirements:

- The subnet must belong to the **Default** IPspace.
The subnet must belong to the broadcast domain that contains the ports used for intercluster communication.

The subnet must contain all of the IP addresses used for intercluster LIFs.

You must have considered whether the subnet will be dedicated to intercluster communication or shared with data communication.

Each node must have an intercluster LIF with an IP address on the intercluster network.

The intercluster network must be configured so that cluster peers have pair-wise full-mesh connectivity, which means that each pair of clusters in a cluster peer relationship has connectivity among all of their intercluster LIFs.

A cluster's intercluster LIFs must use the same IP address version: all IPv4 addresses or all IPv6 addresses. Similarly, all of the intercluster LIFs of the peered clusters must use the same IP addressing version.

Port requirements

The ports that will be used for intercluster communication must meet the following requirements:

- All of the ports must be in the Default IPspace.
- The broadcast domain that is used for intercluster communication must include at least two ports per node so that intercluster communication can fail over from one port to another.
 The ports added to a broadcast domain can be physical network ports, VLANs, or interface groups (ifgrps).
- All of the ports must be cabled.
- All of the ports must be in a healthy state.
- The MTU settings of the ports must be consistent.
- You must have considered whether the ports used for intercluster communication will be shared with data communication.
 If you want to dedicate ports to intercluster communication, you can create a broadcast domain specifically for intercluster communication.

Firewall requirements

Firewalls and the intercluster firewall policy must allow the following:

- ICMP service
- TCP to the IP addresses of all of the intercluster LIFs over all of the following ports: 10000, 11104, and 11105
- HTTPS
Although HTTPS is not required when you set up cluster peering, HTTPS is required later if you use OnCommand System Manager to configure data protection. However, if you use the command-line interface to configure data protection, HTTPS is not required to configure cluster peering or data protection.

The default intercluster firewall policy allows access through the HTTPS protocol and from all IP addresses (0.0.0.0/0), but the policy can be altered or replaced.

Cluster requirements

Clusters must meet the following requirements:

- Each cluster must have a unique name.
 You cannot create a cluster peering relationship with any cluster that has the same name or is in a peer relationship with a cluster of the same name.

- The time on the clusters in a cluster peering relationship must be synchronized within 300 seconds (5 minutes).
 Cluster peers can be in different time zones.

- Each cluster cannot be in a peer relationship with more than 255 clusters.

Considerations when sharing data ports

When determining whether sharing a data port for intercluster replication is the correct interconnect network solution, you should consider configurations and requirements such as LAN type, available WAN bandwidth, replication interval, change rate, and number of ports.

Consider the following aspects of your network to determine whether sharing data ports is the best interconnect network solution:

- For a high-speed network, such as a 10-Gigabit Ethernet (10-GbE) network, a sufficient amount of local LAN bandwidth might be available to perform replication on the same 10-GbE ports that are used for data access.
 In many cases, the available WAN bandwidth is far less than 10 GbE, which reduces the LAN network utilization to only that which the WAN is capable of supporting.

- All nodes in the cluster might have to replicate data and share the available WAN bandwidth, making data port sharing more acceptable.

- Sharing ports for data and replication eliminates the extra port counts required to dedicate ports for replication.

- If the replication interval is set to perform only after hours when little or no client activity exists, then using data ports for replication during this time is acceptable, even without a 10-GbE LAN connection.

- The maximum transmission unit (MTU) size of the replication network will be the same size as that used on the data network.
• Consider the data change rate and replication interval and whether the amount of data that must be replicated on each interval requires enough bandwidth that it might cause contention with data protocols if sharing data ports.

• When data ports for intercluster replication are shared, the intercluster LIFs can be migrated to any other intercluster-capable port on the same node to control the specific data port that is used for replication.

Considerations when using dedicated ports

When determining whether using a dedicated port for intercluster replication is the correct interconnect network solution, you should consider configurations and requirements such as LAN type, available WAN bandwidth, replication interval, change rate, and number of ports.

Consider the following aspects of your network to determine whether using a dedicated port is the best interconnect network solution:

• If the amount of available WAN bandwidth is similar to that of the LAN ports and the replication interval is such that replication occurs while regular client activity exists, then you should dedicate Ethernet ports for intercluster replication to avoid contention between replication and the data protocols.

• If the network utilization generated by the data protocols (CIFS, NFS, and iSCSI) is such that the network utilization is above 50 percent, then you should dedicate ports for replication to allow for nondegraded performance if a node failover occurs.

• When physical 10-GbE ports are used for data and replication, you can create VLAN ports for replication and dedicate the logical ports for intercluster replication.

• Consider the data change rate and replication interval and whether the amount of data that must be replicated on each interval requires enough bandwidth that it might cause contention with data protocols if sharing data ports.

• If the replication network requires configuration of a maximum transmission unit (MTU) size that differs from the MTU size used on the data network, then you must use physical ports for replication because the MTU size can only be configured on physical ports.

Configuring intercluster LIFs to share data ports

Configuring intercluster LIFs to share data ports enables you to use existing data ports to create intercluster networks for cluster peer relationships. Sharing data ports reduces the number of ports you might need for intercluster networking.

About this task

Creating intercluster LIFs that share data ports involves assigning LIFs to existing data ports. In this procedure, a two-node cluster exists in which each node has two data ports, e0c and e0d, and these data ports are in the default IPspace. These are the two data ports that are shared for intercluster replication. You must configure intercluster LIFs on the peer cluster before you can create cluster
peer relationships. In your own environment, you replace the ports, networks, IP addresses, subnet masks, and subnets with those specific to your environment.

Steps

1. List the ports in the cluster by using the `network port show` command:

 Example

   ```
   cluster01::> network port show
   
   Speed (Mbps)  
   Node Port IPspace Broadcast Domain Link MTU Admin/Oper
   ------ --------- ------------ ---------------- ----- ------- ------------
   cluster01-01 e0a Cluster Cluster up 1500 auto/1000
   e0b Cluster Cluster up 1500 auto/1000
   e0c Default Default up 1500 auto/1000
   e0d Default Default up 1500 auto/1000
   cluster01-02 e0a Cluster Cluster up 1500 auto/1000
   e0b Cluster Cluster up 1500 auto/1000
   e0c Default Default up 1500 auto/1000
   e0d Default Default up 1500 auto/1000
   ```

2. Create an intercluster LIF on the admin SVM cluster01 by using the `network interface create` command.

 Example

 This example uses the LIF naming convention `adminSVMname_icl#` for the intercluster LIF:

   ```
   cluster01::> network interface create -vserver cluster01 -lif cluster01_icl01 -role intercluster
   -home-node cluster01-01 -home-port e0c -address 192.168.1.201 -netmask 255.255.255.0
   
   cluster01::> network interface create -vserver cluster01 -lif cluster01_icl02 -role intercluster
   -home-node cluster01-02 -home-port e0c -address 192.168.1.202 -netmask 255.255.255.0
   ```

3. Verify that the intercluster LIFs were created properly by using the `network interface show` command with the `-role intercluster` parameter:

 Example

   ```
   cluster01::> network interface show -role intercluster
   
   Logical Status Network Current Is
   Vserver Interface Admin/Oper Address/Mask Node Port Home
   ------- ------- ---------------- ------------ ------ -------
   cluster01 cluster01_icl01 up/up 192.168.1.201/24 cluster01-01 e0c true
   cluster01_icl02 up/up 192.168.1.202/24 cluster01-02 e0c true
   ```
4. Verify that the intercluster LIFs are configured to be redundant by using the `network interface show` command with the -role `intercluster` and -failover parameters.

Example

The LIFs in this example are assigned the e0c port on each node. If the e0c port fails, the LIF can fail over to the e0d port.

```
cluster01::> network interface show -role intercluster -failover
```

```
Vserver Interface       Home:Port             Failover        Failover
-------- --------------- --------------------- --------------- --------
cluster01 cluster01_icl01 cluster01-01:e0c   local-only      192.168.1.201/24
Failover Targets: cluster01-01:e0c, cluster01-01:e0d
cluster01_icl02 cluster01-02:e0c   local-only      192.168.1.201/24
Failover Targets: cluster01-02:e0c, cluster01-02:e0d
```

5. Display the routes in the cluster by using the `network route show` command to determine whether intercluster routes are available or you must create them.

Creating a route is required only if the intercluster addresses in both clusters are not on the same subnet and a specific route is needed for communication between the clusters.

Example

In this example, no intercluster routes are available:

```
cluster01::> network route show
```

```
Vserver Destination     Gateway         Metric
--------- --------------- --------------- ------
Cluster 0.0.0.0/0       192.168.0.1     20
cluster01 0.0.0.0/0     192.168.0.1     10
```

6. If communication between intercluster LIFs in different clusters requires routing, create an intercluster route by using the `network route create` command.

Example

In this example, 192.168.1.1 is the gateway address for the 192.168.1.0/24 network. If the destination is specified as 0.0.0.0/0, then it becomes a default route for the intercluster network.

```
cluster01::> network route create -vserver cluster01
```

```
Vserver Destination     Gateway         Metric
--------- --------------- --------------- ------
Cluster 0.0.0.0/0       192.168.1.1     40
```

7. Verify that you created the routes correctly by using the `network route show` command.
Example

```
cluster01::> network route show
Vserver   Destination     Gateway         Metric
--------- --------------- --------------- -----
Cluster   0.0.0.0/0       192.168.0.1     20
cluster01 0.0.0.0/0       192.168.0.1     10
               0.0.0.0/0       192.168.1.1     40
```

8. Repeat these steps on the cluster to which you want to connect.

Configuring intercluster LIFs to use dedicated intercluster ports

Configuring intercluster LIFs to use dedicated data ports allows greater bandwidth than using shared data ports on your intercluster networks for cluster peer relationships.

About this task

Creating intercluster LIFs that use dedicated ports involves creating a failover group for the dedicated ports and assigning LIFs to those ports. In this procedure, a two-node cluster exists in which each node has two data ports that you have added, e0e and e0f. These ports are ones you will dedicate for intercluster replication and currently are in the default IPspace. These ports will be grouped together as targets for the intercluster LIFs you are configuring. You must configure intercluster LIFs on the peer cluster before you can create cluster peer relationships. In your own environment, you would replace the ports, networks, IP addresses, subnet masks, and subnets with those specific to your environment.

Steps

1. List the ports in the cluster by using `network port show` command.

Example

```
cluster01::> network port show
Node  Port  IPspace  Broadcast Domain Link  MTU     Speed (Mbps)  Admin/Oper
-----  ------  --------  ----------------- ------  -------------------  --------
cluster01-01  e0a  Cluster  Cluster    up           1500  auto/1000
cluster01-01  e0b  Cluster  Cluster    up           1500  auto/1000
cluster01-01  e0c  Default  Default    up           1500  auto/1000
cluster01-01  e0d  Default  Default    up           1500  auto/1000
cluster01-01  e0e  Default  Default    up           1500  auto/1000
cluster01-01  e0f  Default  Default    up           1500  auto/1000
cluster01-02  e0a  Cluster  Cluster    up           1500  auto/1000
cluster01-02  e0b  Cluster  Cluster    up           1500  auto/1000
cluster01-02  e0c  Default  Default    up           1500  auto/1000
cluster01-02  e0d  Default  Default    up           1500  auto/1000
cluster01-02  e0e  Default  Default    up           1500  auto/1000
cluster01-02  e0f  Default  Default    up           1500  auto/1000
```
2. Determine whether any of the LIFs are using ports that are dedicated for replication by using the `network interface show` command.

Example

Ports e0e and e0f do not appear in the following output; therefore, they do not have any LIFs located on them:

```
cluster01::> network interface show -fields home-port,curr-port
vserver lif                  home-port curr-port
------- -------------------- --------- ---------
Cluster cluster01-01_clus1   e0a       e0a
Cluster cluster01-01_clus2   e0b       e0b
Cluster cluster01-02_clus1   e0a       e0a
Cluster cluster01-02_clus2   e0b       e0b
cluster01 cluster_mgmt       e0c       e0c
cluster01 cluster01-01_mgmt1 e0c       e0c
cluster01 cluster01-02_mgmt1 e0c       e0c
```

3. Group the ports that you will use for the intercluster LIFs by using the `network interface failover-groups create` command.

Example

```
cluster01::> network interface failover-groups create -vserver cluster01
-failover-group intercluster01 -targets cluster01-01:e0e,cluster01-01:e0f,
cluster01-02:e0e,cluster01-02:e0f
```

4. Display the failover-group that you created by using the `network interface failover-groups show` command.

Example

```
cluster01::> network interface failover-groups show
Failover Group Targets
------------------------ --------------------------------------------
Cluster Cluster          cluster01-01:e0a, cluster01-01:e0b,
cluster01-02:e0a, cluster01-02:e0b
cluster01 Default        cluster01-01:e0c, cluster01-01:e0d,
cluster01-02:e0c, cluster01-02:e0d,
cluster01-01:e0e, cluster01-01:e0f
cluster01-02:e0e, cluster01-02:e0f
intercluster01 cluster01-01:e0e, cluster01-01:e0f
cluster01-02:e0e, cluster01-02:e0f
```

5. Create an intercluster LIF on the admin SVM cluster01 by using the `network interface create` command.
Example

This example uses the LIF naming convention `adminSVMname_icl #` for the intercluster LIF:

```bash
cluster01::> network interface create -vserver cluster01 -lif cluster01_icl01 -role intercluster -home-node cluster01-01 -home-port e0e -address 192.168.1.201 -netmask 255.255.255.0 -failover-group intercluster01
cluster01::> network interface create -vserver cluster01 -lif cluster01_icl02 -role intercluster -home-node cluster01-02 -home-port e0e -address 192.168.1.202 -netmask 255.255.255.0 -failover-group intercluster01
```

6. Verify that the intercluster LIFs were created properly by using the `network interface show` command.

Example

```bash
cluster01::> network interface show
Logical Interface Status Network Admin/Oper Address/Mask Current Node Current Port Home Is
--------- -------------- ----------- ------------------ -------------- ------- ----
Cluster
cluster01-01_clus_1 up/up 192.168.0.xxx/24 cluster01-01 e0a true
cluster01-01_clus_2 up/up 192.168.0.xxx/24 cluster01-01 e0b true
cluster01-02_clus_1 up/up 192.168.0.xxx/24 cluster01-01 e0a true
cluster01-02_clus_2 up/up 192.168.0.xxx/24 cluster01-01 e0b true
cluster01 cluster_mgmt up/up 192.168.0.xxx/24 cluster01-01 e0c true
cluster01_icl01 up/up 192.168.1.201/24 cluster01-01 e0e true
cluster01_icl02 up/up 192.168.1.202/24 cluster01-02 e0e true
cluster01-01_mgmt1 up/up 192.168.0.xxx/24 cluster01-01 e0c true
cluster01-02_mgmt1 up/up 192.168.0.xxx/24 cluster01-02 e0c true
```

7. Verify that the intercluster LIFs are configured for redundancy by using the `network interface show` command with the `-role intercluster` and `-failover` parameters.

Example

The LIFs in this example are assigned the e0e home port on each node. If the e0e port fails, the LIF can fail over to the e0f port.

```bash
cluster01::> network interface show -role intercluster -failover
Logical Interface Home Address/Port Failover Failover
--------- -------------- --------------------- ---------------------
Cluster
cluster01-01_icl01 cluster01-01:e0e local-only intercluster01
   Failover Targets: cluster01-01:e0e, cluster01-01:e0f
cluster01-01_icl02 cluster01-02:e0e local-only intercluster01
   Failover Targets: cluster01-02:e0e, cluster01-02:e0f
```
8. Display the routes in the cluster by using the `network route show` command to determine whether intercluster routes are available or you must create them.

Creating a route is required only if the intercluster addresses in both clusters are not on the same subnet and a specific route is needed for communication between the clusters.

Example

In this example, no intercluster routes are available:

```
cluster01::> network route show
Vserver Destination Gateway Metric
--------- --------------- --------------- ------
Cluster 0.0.0.0/0       192.168.0.1     20
cluster01 0.0.0.0/0       192.168.0.1     10
```

9. If communication between intercluster LIFs in different clusters requires routing, create an intercluster route by using the `network route create` command.

Example

In this example, 192.168.1.1 is the gateway address for the 192.168.1.0/24 network. If the destination is specified as 0.0.0.0/0, then it becomes a default route for the intercluster network.

```
cluster01::> network route create -vserver cluster01 -destination 0.0.0.0/0 -gateway 192.168.1.1 -metric 40
```

10. Verify that you created the routes correctly by using the `network route show` command.

Example

```
cluster01::> network route show
Vserver Destination Gateway Metric
--------- --------------- --------------- ------
Cluster 0.0.0.0/0       192.168.0.1     20
cluster01 0.0.0.0/0       192.168.0.1     10
0.0.0.0/0       192.168.1.1     40
```

11. Repeat these steps to configure intercluster networking in the peer cluster.

12. Verify that the ports have access to the proper subnets, VLANs, and so on.

Dedicating ports for replication in one cluster does not require dedicating ports in all clusters; one cluster might use dedicated ports, while the other cluster shares data ports for intercluster replication.
Creating the cluster peer relationship

You create the cluster peer relationship using a set of intercluster logical interfaces to make information about one cluster available to the other cluster for use in cluster peering applications.

Before you begin

- Intercluster LIFs should be created on all of the nodes of both clusters you want to peer
- You should ensure that the intercluster LIFs of the clusters can route to each other.
- If there are different administrators for each cluster, the passphrase used to authenticate the cluster peer relationship should be agreed upon.

Steps

1. Create the cluster peer relationship on each cluster by using the `cluster peer create` command.

 The passphrase that you use is not displayed as you type it.

 Example

 In the following example, cluster01 is peered with a remote cluster named cluster02. Cluster01 is a two-node cluster that has one intercluster LIF per node. The IP addresses of the intercluster LIFs created in cluster01 are 192.168.2.201 and 192.168.2.202. Similarly, cluster02 is a two-node cluster that has one intercluster LIF per node. The IP addresses of the intercluster LIFs created in cluster02 are 192.168.2.203 and 192.168.2.204. These IP addresses are used to create the cluster peer relationship.

   ```
   cluster01::> cluster peer create -peer-addrs 192.168.2.203,192.168.2.204
   Please type the passphrase:
   Please type the passphrase again:
   ```

   ```
   cluster02::> cluster peer create -peer-addrs 192.168.2.201,192.168.2.202
   Please type the passphrase:
   Please type the passphrase again:
   ```

 If DNS is configured to resolve host names for the intercluster IP addresses, you can use host names in the `–peer-addrs` option. It is not likely that intercluster IP addresses frequently change; however, using host names allows intercluster IP addresses to change without having to modify the cluster peer relationship.

2. Display the cluster peer relationship by using the `cluster peer show` command with the `–instance` parameter.
Displaying the cluster peer relationship verifies that the relationship was established successfully.

Example

```
cluster01::> cluster peer show -instance
Peer Cluster Name: cluster02
Remote Intercluster Addresses: 192.168.2.203,192.168.2.204
Availability: Available
Remote Cluster Name: cluster02
Active IP Addresses: 192.168.2.203,192.168.2.204
Cluster Serial Number: 1-80-000013
```

3. Preview the health of the nodes in the peer cluster by using the `cluster peer health show` command.

Previews the health checks the connectivity and status of the nodes on the peer cluster.

Example

```
cluster01::> cluster peer health show
Node       cluster-Name                Node-Name
Ping-Status               RDB-Health Cluster-Health Avail-
---------- --------------------------- ---------  --------------- --------
cluster01-01
cluster02       cluster02-01
Data: interface_reachable
ICMP: interface_reachable true       true            true
cluster02-02
Data: interface_reachable
ICMP: interface_reachable true       true            true
cluster01-02
cluster02       cluster02-01
Data: interface_reachable
ICMP: interface_reachable true       true            true
cluster02-02
Data: interface_reachable
ICMP: interface_reachable true       true            true
```

Related tasks

- Configuring intercluster LIFs to share data ports on page 69
- Configuring intercluster LIFs to use dedicated intercluster ports on page 72

Modifying a cluster peer relationship

You can modify a cluster peer relationship if the name of the cluster you connected to, the logical interface you used, or the IP address you used when creating the cluster peer relationship changes. For example, the IP address of the cluster you used when creating the relationship changed.

Step

1. To change the configuration of a cluster peer relationship, use the `cluster peer modify` command.
The following example changes the IP address of the cluster peer configuration of a cluster named cluster_b to 172.19.7.3:

```
node::> cluster peer modify -cluster cluster_b -stable-addrs 172.19.7.3
```

Deleting a cluster peering relationship

You can delete a cluster peering relationship if the relationship is no longer needed. You must delete the cluster peering relationship from each of the clusters in the relationship.

Before you begin

All Storage Virtual Machine (SVM) peer relationships between the two cluster peers must have been deleted.

About this task

This procedure assumes that you are the administrator of only one of the clusters in the cluster peering relationship.

Steps

1. Delete the cluster peering relationship from the cluster of which you are the administrator by using the `cluster peer delete` command.

 Example

 The following example deletes the cluster peering relationship with the cluster2 cluster from the cluster1 cluster:

   ```
   cluster1::> cluster peer delete -cluster cluster2
   ```

2. Ask the administrator of the other cluster to delete the cluster peering relationship from the other cluster by using the `cluster peer delete` command.

 Example

 The following example deletes the cluster peering relationship with the cluster1 cluster from the cluster2 cluster:

   ```
   cluster2::> cluster peer delete -cluster cluster1
   ```
Managing SVM peer relationships

A cluster administrator can create and manage SVM peer relationships between two Storage Virtual Machines (SVMs, formerly known as Vservers) either existing within a cluster (intracluster) or in peered clusters (intercluster) to provide an infrastructure for peering applications, such as SnapMirror.

Peered clusters and peered SVMs can be managed either by the same cluster administrator or different cluster administrators.

The cluster administrator can perform the following SVM peer management tasks:

- Creating SVM peer relationships
- Accepting SVM peer relationships
- Rejecting SVM peer relationships
- Suspending SVM peer relationships
- Resuming SVM peer relationships
- Modifying SVM peering applications on the SVM peer relationships
- Deleting SVM peer relationships
- Viewing SVM peer relationships
- Setting up SnapMirror relationships between volumes of the peered SVMs

Note: You cannot set up a load-sharing SnapMirror relationship between volumes of intercluster SVM peers.

An SVM administrator can perform only the following SVM peer management tasks:

- Viewing SVM peer relationships to identify the peered SVMs
- Setting up SnapMirror relationships, such as a data protection relationship (DP), SnapVault relationship (XDP), and transition relationship (TDP), between volumes of the peered SVMs

Note: The Data ONTAP command-line interface (CLI) continues to use the term *Vserver* in the output, and *vserver* as a command or parameter name has not changed.
What an SVM peer relationship is

An SVM peer relationship is an authorization infrastructure that enables a cluster administrator to set up peering applications such as SnapMirror relationships between SVMs either existing within a cluster (intracluster) or in the peered clusters (intercluster). Only a cluster administrator can set up SVM peer relationships.

The following illustration shows the intercluster and intracluster SVM peer relationships:

![SVM Peer Relationship Diagram](image_url)

The SVM peer infrastructure enables you to set up a backup and recovery mechanism between SVMs. You can set up a mirroring relationship at the volume level between peered SVMs. If a volume in the SVM becomes unavailable, the cluster administrator or SVM administrator can configure the respective mirrored volume of the peered SVM to serve data.

One SVM can be peered with multiple SVMs within a cluster or across clusters.

You can set up only SnapMirror data protection (DP) and SnapVault (XDP) relationships by using the SVM peer infrastructure.

States of SVM peer relationships

SVM peer relationships can be in different states depending on the operation performed on the SVM peer relationship. You must be aware of the states of the SVM peer relationship to perform other operations such as SnapMirror data transfer between peered SVMs.

The following table lists the different states of an SVM peer relationship and helps you understand when an SVM peer relationship is in a particular state:
Creating an SVM peer relationship

A cluster administrator can create a Storage Virtual Machine (SVM) peer relationship to provide an authorization infrastructure for running SVM peering applications between two SVMs by using the `vserver peer create` command. You can create an SVM peer relationship between two SVMs either in a single cluster (intracluster) or in peered clusters (intercluster).

Before you begin

- If you want to create an intercluster SVM peer relationship, you must have ensured that both the clusters are peered with each other.

- The names of the SVMs in the peered clusters must be unique across the clusters to be peered and any other clusters with which either of the clusters are individually peered.

If the SVMs do not have unique names, you must rename one of the SVMs by using the `vserver rename` command.

For example, consider two clusters, cluster A and cluster B, that are peered with cluster C. Clusters A and cluster B must not have SVMs with identical names even though cluster A and
cluster B are not peered. You must rename one of the SVMs, if there are SVMs with identical names.

- The admin state of the SVMs to be peered must not be in initializing or deleting state.
- If any previously attempted SVM peer relationship between the same SVMs is in the rejected state, you must have deleted these SVM peer relationships.

About this task

- Peered clusters can be managed by a single cluster administrator or different cluster administrators.
- You can specify the applications that will communicate over the peer relationship when you create an SVM peer relationship. If you do not specify the application for the peer relationship, such as snapmirror, an SVM administrator cannot perform operations related to the applications between the peered SVMs.
- For SVMs with FlexVol volumes, you can create intercluster and intracluster SVM peer relationships.
- For SVMs with Infinite Volume, you can create only intercluster SVM peer relationships.
- You cannot create an SVM peer relationship between SVMs with FlexVol volumes and SVMs with Infinite Volume.
- You can create multiple SVM peer relationships simultaneously either by using different SSH sessions or by using a script.

 Note: It is best to create not more than five SVM peer relationships simultaneously to avoid any performance degradation.

Choices

- Creating an intercluster SVM peer relationship on page 82
- Creating an intracluster SVM peer relationship on page 83

Creating an intercluster SVM peer relationship

You can create intercluster SVM peer relationships between two clusters to provide the infrastructure for use cases such as intercluster volume SnapMirror configurations.

Before you begin

The two clusters must already be peered.

Steps

1. Use the vserver peer create command to create an SVM peer relationship.
Example

The following command creates an intercluster SVM peer relationship between vs1.example0.com (on cluster1) and vs3.example0.com (on cluster2):

```bash
cluster1::> vserver peer create -vserver vs1.example0.com -peer-vserver vs3.example0.com -applications snapmirror -peer-cluster cluster2
Info: [Job 43] 'vserver peer create' job queued
```

The intercluster SVM peer relationship is in initiated state.

2. Use the `vserver peer show-all` command to view the status and other details of the SVM peer relationship.

Example

```bash
cluster1::> vserver peer show-all
Peer              Peer                        Peering
Vserver            Vserver           State       Peer Cluster    Applications
-----------        -----------       ---------- -------------- ---------------
vs1.example0.com   vs3.example0.com  initiated   Cluster2         snapmirror
```

For more information about this command, see the man pages.

After you finish

You must inform the cluster administrator of the peered cluster about the SVM peer request for the authentication to be completed.

The SVM peer relationship is not established until the cluster administrator of the peered cluster accepts the SVM peer request.

Related tasks

- **Accepting an SVM peer relationship** on page 84

Creating an intracluster SVM peer relationship

You can create SVM peer relationships between SVMs within a cluster for operations such as backup of SVM data within a cluster.

About this task

You cannot create intracluster SVM peer relationships for SVMs with Infinite Volumes.

Steps

1. Use the `vserver peer create` command to create an SVM peer relationship.
Example

The following command creates an intracluster SVM peer relationship between the SVMs vs4.example1.com and vs0.example1.com, both residing on cluster2:

```bash
cluster2::> vserver peer create -vserver vs4.example1.com -peer-vserver vs0.example1.com -applications snapmirror
Info: 'vserver peer create' command is successful.
```

An intracluster SVM peer relationship is created and is in peered state. Authentication is not required because the cluster is managed by a single cluster administrator.

2. Use the `vserver peer show-all` command to view the status and other details of the SVM peer relationship.

Example

```bash
cluster2::> vserver peer show-all
Peer               Peer                   Peering
Vserver            Vserver            State   Peer Cluster   Applications
-----------       ---------------   --------- ------------- ---------------
vs4.example1.com  vs0.example1.com   peered    cluster2       snapmirror
vs0.example1.com  vs4.example1.com   peered    cluster2       snapmirror
```

Accepting an SVM peer relationship

When a cluster administrator creates an intercluster SVM peer relationship, the cluster administrator of the remote cluster can accept the SVM peer request to establish the peer relationship between the SVMs by using the `vserver peer accept` command.

About this task

Peered clusters can be managed by a single administrator or different cluster administrators. If a single cluster administrator is managing the peered clusters, the cluster administrator has to accept the SVM peer request on the peered cluster. If different administrators are managing the peered clusters, the cluster administrator who initiates the SVM peer request has to notify the cluster administrator of the peered cluster about the incoming SVM peer request through any channel such as email.

Steps

1. Use the `vserver peer show` command to view the SVM peer requests.

Example

The following example shows how to view the SVM peer requests on cluster2:
2. Use the `vserver peer accept` command to accept the SVM peer request and establish the SVM peer relationship.

Example

The following example shows how to accept an incoming SVM peer request to establish an SVM peer relationship between `vs1.example0.com` and `vs3.example0.com` on `cluster1` and `cluster2` respectively:

```
cluster2::> vserver peer accept -vserver vs3.example0.com -peer- vserver vs1.example0.com
Info: [Job 46] 'vserver peer accept' job queued
```

The SVM peer relationship is established and state is `peered`.

3. Use the `vserver peer show` command on either of the peered clusters to view the state of the SVM peer relationship.

Example

The following example shows how to view the state of the SVM peer relationships:

```
cluster2::> vserver peer show
          Peer          Peer
Vserver | Vserver | State
---------- | ---------- | ----------
vs3.example0.com | vs1.example0.com | peered
```

For more information about these commands, see the man pages.

Result

A cluster or SVM administrator can establish peering applications such as SnapMirror between the peered SVMs.
Rejecting an SVM peer relationship

When a cluster administrator creates an intercluster SVM peer relationship, the cluster administrator of the peered cluster can reject the SVM peer request to prevent peer relationship between the SVM by using the `vserver peer reject` command.

About this task

If the SVM peer request is initiated with an unauthorized SVM, then the cluster administrator of the peered cluster can reject the relationship. Other peering operations cannot be performed on the rejected peering relationship.

Steps

1. Use the `vserver peer show` command to view the SVM peer requests on the peered cluster.

 Example

 The following example shows how to view the SVM peer requests on cluster2:

   ```
   cluster2::> vserver peer show
   Vserver        Peer          Peer
   -----------    -----------    ------------
   vs5.example0.com vs1.example0.com pending
   ```

2. Use the `vserver peer reject` command to reject the SVM peer request.

 Example

 The following example illustrates how to reject an incoming SVM peer request between vs1.example0.com and vs5.example0.com on cluster1 and cluster2 respectively:

   ```
   cluster2::> vserver peer reject -vserver vs5.example0.com -peer-
   vserver vs1.example0.com
   Info: [Job 48] 'vserver peer reject' job queued
   ```

 The SVM peer relationship is in rejected state.

3. Use the `vserver peer show` command on the cluster from which the SVM peer request was created to view the state of the SVM peer relationship.

 Example

 The following example shows how to view to state of the SVM peer relationships:
4. Use the `vserver peer delete` command to delete the rejected SVM peer requests because when you create the SVM relationship between the same SVM again, it fails.

Example

The following example shows how to delete the rejected SVM peer requests:

```
cluster1::> vserver peer delete -vserver vs1.example0.com -peer-vserver vs5.example0.com
Info: 'vserver peer delete' command is successful.
```

For more information about these commands, see the man pages.

Modifying the peering application on an SVM peer relationship

A cluster administrator can modify an SVM peering application running on the SVM peer relationship by using the `vserver peer modify` command. The SVM peering relationship can have SnapMirror, FileCopy, or no application.

About this task

The SVM peer relationship must have peering application as **snapmirror** for all SnapMirror operations between the peered SVMs or **file-copy** for all the FileCopy related operations between the peered SVMs.

Steps

1. Use the `vserver peer modify` command to modify the application on the SVM peer relationship.

Example

The following command modifies the application on the SVM peer relationship:

```
cluster2::>vserver peer modify -vserver vs4.example0.com -peer-vserver vs0.example.com -applications snapmirror
Warning: The following applications were enabled between Vserver "vs4.example.com" and peer Vserver "vs0.example.com": file-copy, snapmirror. The following applications will be removed: file-copy. Any operations related to the removed application in the context of
```

Table: SVM Peer Relationship

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Peer Vserver</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example0.com</td>
<td>vs5.example0.com</td>
<td>rejected</td>
</tr>
</tbody>
</table>

```
2. Use the `vserver peer show-all` command to view the applications running on the SVM peer relationship.

**Example**

The following command displays the applications running on the SVM peer relationship:

```
cluster2::> vserver peer show-all

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Vserver</th>
<th>State</th>
<th>Peer Cluster</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs4.example1.com</td>
<td>vs0.example1.com</td>
<td>peered</td>
<td>cluster2</td>
<td>snapmirror</td>
</tr>
</tbody>
</table>
```

### Deleting an SVM peer relationship

A cluster administrator can delete the Storage Virtual Machine (SVM) peer relationship by using the `vserver peer delete` command when the relationship between two SVMs is no longer required.

**Before you begin**

The SnapMirror relationship defined on the SVM peer relationship must be deleted.

**About this task**

If one of the peered clusters is running clustered Data ONTAP 8.2 or 8.2.1, then you must delete the SVM peer relationship from both the peered clusters.

You can delete multiple SVM peer relationships simultaneously either by using different SSH sessions or by using a script.

**Note:** It is best to delete not more than five SVM peer relationships simultaneously to avoid any performance degradation.

**Steps**

1. Use the `vserver peer delete` command on one of the peered clusters to delete the SVM peer relationship.

**Example**

The following command deletes the SVM peer relationship from both the clusters:
2. If the `vserver peer delete` command fails due to unavailability of one of the peered clusters, choose one of the following actions:

   - Establish the network connectivity between the two clusters and use the `vserver peer delete` command to delete the SVM peer relationship (recommended).
   - Use the `vserver peer delete` command with the `-force` option on both the local and peered clusters to delete the SVM peer relationship if the cluster peer relationship is not reestablished.

3. Use the `vserver peer show` command on both the clusters to verify that the deleted SVM peer relationship is not displayed.

**Example**

```
cluster1::> vserver peer show
Peer Peer
Vserver Vserver State
-------------- -------------- -------------
vs1.example0.com vs3.example0.com peered
```

4. If any SVM peer relationship is in the `deleted` state, delete that SVM peer relationship again by using the `vserver peer delete` command.

**Related tasks**

*Connecting one cluster to another cluster in a peer relationship* on page 62

### Suspending an SVM peer relationship

A cluster administrator can suspend an established SVM peer relationship whenever needed by using the `vserver peer suspend` command. For example, during the maintenance period, you might want to suspend the SVM peer relationship.

**About this task**

When you suspend the SVM peer relationship, any SnapMirror data transfer that was initiated before suspending an SVM peer relationship is not affected and the operation is completed. Any data transfer that was scheduled to run during suspension period will not get initiated.
Steps

1. Use the `vserver peer suspend` command on either of the peered cluster to suspend an active SVM peer relationship.

   **Example**

   The following example shows how to suspend an SVM peer relationship:

   ```
 cluster2::> vserver peer suspend -vserver vs4.example1.com -peer-vserver vs0.example1.com
 Info: [Job 50] 'vserver peer suspend' job queued
   ```

   The SVM peer relationship is in suspended state.

2. Use the `vserver peer show` command to verify the status of the SVM peer relationship.

   **Example**

   The following example shows how to verify the status of the SVM peer relationship:

   ```
 cluster2::> vserver peer show
 Peer Peer
 Vserver Vserver State
 ----------- ------------
 vs4.example1.com vs0.example1.com suspended
   ```

   For more information about these commands, see the man pages.

**Resuming an SVM peer relationship**

A cluster administrator can resume a suspended SVM peer relationship by using the `vserver peer resume` command. For example, after the maintenance is complete, you can resume the suspended SVM peering relationship.

**About this task**

Any SnapMirror data transfer that was scheduled to run during the suspension period will not get initiated when you resume the SVM peer relationship. You must manually initiate the data transfer.

**Steps**

1. Use the `vserver peer resume` command to resume a suspended SVM peer relationship from either of the peered clusters.

   **Example**

   The following example shows how to resume a suspended SVM peer relationship:
Managing peer relationships for data backup and recovery (cluster administrators only) | 91

```
cluster1::> vserver peer resume -vserver vs4.example1.com -peer- vserver vs0.example1.com

Info: [Job 76] 'vserver peer resume' job queued
```

The SVM peer relationship is in peered state.

2. Use the `vserver peer show` command to verify the status of the SVM peer relationship.

**Example**

The following example shows how to verify the status of the SVM peer relationship:

```
cluster1::> vserver peer show

Peer Peer
Vserver Vserver State
----------- ----------- ---------
vs4.example1.com vs0.example1.com peered
```

For more information about these commands, see the man pages.

**Displaying information about SVM peer relationships**

Peer Storage Virtual Machines (SVMs) are fully functional SVMs which could be either local or remote. Cluster administrators and SVM administrators can view the peers of the SVM to set up peering applications such as SnapMirror between volumes of the peer SVMs by using the `vserver peer show` command.

**About this task**

You can also view the status of the SVM peer relationships.

**Step**

1. Use the `vserver peer show` command to view the peered SVMs and the state of the SVM peer relationship.

**Example**

The following example shows how to view the information about peered SVMs:
vs1.example.com::> vserver peer show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Peer</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example0.com</td>
<td>vs5.example0.com</td>
<td>peered</td>
</tr>
<tr>
<td>vs1.example0.com</td>
<td>vs3.example0.com</td>
<td>peered</td>
</tr>
</tbody>
</table>

For more information about this command, see the man pages.
Providing disaster recovery using mirroring technology

Stored data is susceptible to disaster, either through hardware failure or environmental catastrophe. You can use mirroring technology to create an identical second set of data to replace the primary set of data, should something happen to the primary set of data.

Creating a data protection mirror copy for FlexVol volumes

You can protect data by replicating it to data protection mirror copies. You can use data protection mirror copies to recover data when a disaster occurs.

Before you begin

• You must have installed a SnapMirror license on both the source and destination cluster.

• You must have created the cluster and Storage Virtual Machine (SVM) peering relationship. To learn about creating cluster and SVM peering, see the Clustered Data ONTAP System Administration Guide for Cluster Administrators.

About this task

You can create data protection mirror copies in a cluster using FlexVol volumes only.

Steps

1. Create a destination volume on the destination SVM that will become the data protection mirror copy by using the volume create command.

Example

The following command creates a data protection mirror volume named dept_eng_dr_mirror1 on SVM vs1.example.com. The destination volume is located on an aggregate named aggr3. The destination volume is also on SVM vs1.example.com.

```bash
vs1::> vol create -volume dept_eng_dr_mirror1 -aggregate aggr3 -size 20MB -type DP
```

If you are creating a data protection mirror copy on an SVM peer, the destination volume is created on the SVM peer:
2. Create a data protection mirror relationship by using the `snapmirror create` command.

**Example**

The following command creates a data protection relation with the destination volume named `dept_eng_dp_mirror2` of the source volume named `dept_eng`. The SVM is named `vs1`.

```
vs1::> snapmirror create -destination-path
 vs1.example.com:dept_eng_dp_mirror2
 -source-path vs1.example.com:dept_eng -type DP -schedule 5min
```

If you are creating the data protection mirror relationship with the destination volume on an SVM peer, you create the data protection mirror relationship from the SVM that contains the destination volume. For example, if the destination volume were on the SVM peer named `vs2`, the command to create the data protection mirror relationship is as follows:

```
vs2::> snapmirror create -destination-path
 vs2.example.com:dept_eng_dp_mirror2
 -source-path vs1.example.com:dept_eng -type DP -schedule 5min
```

Data ONTAP creates the data protection mirror relationship, but the relationship is left in an uninitialized state.

3. Initialize the data protection mirror copy by using the `snapmirror initialize` command.

**Example**

The following command initializes a data protection mirror copy named `dept_eng_dp_mirror2` of a source volume named `dept_eng`. The source volume and the data protection mirror copy are on the same SVM named `vs1.example.com`.

```
vs1::> snapmirror initialize -destination-path
 vs1.example.com:dept_eng_dp_mirror2
```

If you are initializing the data protection mirror relationship with the destination volume on an SVM peer, you must initialize the data protection mirror relationship from the SVM that contains the destination volume. For example, if the destination volume of the single SVM example were on an SVM peer named `vs2.example.com`, the command to create the data protection mirror relationship is as follows:

```
vs2::> snapmirror initialize -destination-path
 vs2.example.com:dept_eng_dp_mirror2
```
Correcting a SnapMirror initialization failure

A SnapMirror initialization can fail with the error message *Volume volume_name is restricted* if a previous initialization attempt failed. The initialization fails because the destination volume was restricted in the first failed attempt.

**About this task**

You correct a SnapMirror initialization failure by changing the state of the destination volume from *restricted* to *online* and then running another initialization attempt.

**Steps**

1. Change the state of the destination volume by using the `volume modify` command with the `-state` parameter.

   **Example**

   ```
 vs2::> volume modify -vserver vs2.example.com -volume vol3_dst -state online
   ```

2. Initialize the SnapMirror relationship by using the `snapmirror initialize` command.

   **Example**

   ```
 vs2::> snapmirror initialize -destination-path vs2.example.com:vol3_dst
   ```

Creating a version-flexible SnapMirror relationship

You can protect data by replicating selected Snapshot copies to a version-flexible SnapMirror destination volume on another Storage Virtual Machine (SVM) or cluster.

**Before you begin**

- You must have cluster administrator privileges to perform this task for a cluster, and SVM administrator privileges to perform this task for an SVM.

- If the primary and secondary volumes are in different SVMs, the SVMs must be in a peer relationship.
  If the primary and secondary volumes are in different clusters, the clusters must be in a peer relationship.
  For information about creating peer relationships, see the *Clustered Data ONTAP System Administration Guide for Cluster Administrators.*
• A version-flexible SnapMirror policy must exist. You must either create a version-flexible SnapMirror policy or use an existing one (named MirrorAllSnapShots, MirrorLatest, or MirrorAndVault). Only Snapshot copies with the labels configured in the version-flexible SnapMirror policy rules are replicated in version-flexible SnapMirror operations. This behavior applies to relationships that have a SnapMirror policy type of mirror-vault.

• The Snapshot policy assigned to the primary volume must include the snapmirror-label attribute. You can create a new Snapshot policy by using the volume snapshot policy create command, or you can modify an existing policy by using the volume snapshot policy modify command. You set the snapmirror-label attribute for the set of Snapshot copies that you want backed up to the version-flexible SnapMirror secondary volume. Other Snapshot copies on the primary volume are ignored by the version-flexible SnapMirror relationship.

• Your work environment must be able to accommodate the time it might take to transfer a baseline Snapshot copy with a large amount of data.

Steps

1. On the destination SVM, create a SnapMirror destination volume with a volume type DP. For information about creating a FlexVol volume, see the Clustered Data ONTAP System Administration Guide for Cluster Administrators.

2. On the source SVM, create a Snapshot copy policy that contains the schedule of when Snapshot copies with snapmirror-label attributes occur.

   You can use the volume snapshot policy create command with the snapmirror-label parameter.

Example

The following command creates a Snapshot copy policy called “keep-more-snapshot”:

```
vserverB::> snapshot policy create -vserver vs1 -policy keep-more-snapshot -enabled true -schedule1 weekly -count1 2 -prefix1 weekly -snapmirror-label1 all_source_snapshots -schedule2 daily -count2 6 -prefix2 daily -snapmirror-label2 all_source_snapshots -schedule3 hourly -count3 8 -prefix3 hourly -snapmirror-label3 all_source_snapshots
```

The name specified in the snapmirror-label attribute for the new Snapshot policy must match the snapmirror-label attribute that is specified in the version-flexible SnapMirror policy. This ensures that all subsequent Snapshot copies created on the primary volume have labels that are recognized by the version-flexible SnapMirror policy.
The default Snapshot copy policy has two snapmirror-label attributes associated with it, daily and weekly.

3. Create a version-flexible SnapMirror policy by using the `snapmirror policy create` command.

**Example**

The following command creates a version-flexible SnapMirror policy called “vserverB-DR-policy” that will be used for SnapMirror style disaster recovery in which only the SnapMirror created Snapshot copy is transferred:

```
vserverB::> snapmirror policy create -vserver vserverB -policy vserverB-DR-policy -policy-type async-mirror -comment "DR policy"
```

**Example**

The following command creates a version-flexible SnapMirror policy called “vserverB-asyncDR-policy” that will be used for SnapMirror style disaster recovery in which all source Snapshot copies are transferred:

```
vserverB::> snapmirror policy create -vserver vserverB -policy vserverB-asyncDR-policy -policy-type async-mirror -comment "Async DR policy"
```

**Example**

The following command creates a version-flexible SnapMirror policy called “vserverB-SM-SV-policy” that will be used for both SnapMirror and SnapVault relationships in the same volume:

```
vserverB::> snapmirror policy create -vserver vserverB -policy vserverB-SM-SV-policy -policy-type mirror-vault -comment "SnapMirror and SnapVault combo policy"
```

4. Add the snapmirror-label attribute to the version-flexible SnapMirror policy you created by using the `snapmirror policy add-rule` command.

**Example**

No added rule is needed because the SnapMirror policy transfers on the SnapMirror created Snapshot copies and keeps one Snapshot copy.
Example

The following command adds a rule to the vserverB-asyncDR-policy to transfer Snapshot copies with the “sm_created” and “all_source_snapshots” snapmirror-label attribute and to keep 1 Snapshot copy of each:

```
vserverB::> snapmirror policy add-rule -vserver vserverB -policy vserverB-asyncDR-policy -snapmirror-label all-source-snapshots -keep 1
```

Example

The following command adds rules to the vserverB-SM-SV-policy to transfer Snapshot copies with the “sm_created”, “daily”, and “weekly” snapmirror-label attributes and to keep 1 “sm_created” Snapshot copy, 20 “daily” Snapshot copies, and 26 “weekly” Snapshot copies:

```
vserverB::> snapmirror policy add-rule -vserver vserverB -policy vserverB-SM-SV-policy -snapmirror-label sm_created -keep 1
vserverB::> snapmirror policy add-rule -vserver vserverB -policy vserverB-DR-policy -snapmirror-label daily -keep 20
vserverB::> snapmirror policy add-rule -vserver vserverB -policy vserverB-DR-policy -snapmirror-label weekly -keep 26
```

5. On the destination SVM, create a version-flexible SnapMirror relationship and assign a version-flexible SnapMirror policy by using the `snapmirror create` command with the `type XDP` parameter and the `policy` parameter.

In the path specification, a single name is interpreted as a volume name in the SVM from which the command is executed. To specify a volume in a different SVM or in a different cluster, you must specify the full path name.

Example

The following command creates a version-flexible SnapMirror relationship between the source volume “srcvolA” on SVM “vserverA” and the empty destination volume “dstvolB” on SVM “vserverB”. It assigns the version-flexible SnapMirror policy named “vserverB-DR-policy” and uses the “daily” schedule:

```
vserverB::> snapmirror create -source-path vserverA:srcvolA -destination-path vserverB:dstvolB -type XDP -policy vserverB-DR-policy -schedule daily
```

If you are creating version-flexible SnapMirror relationships using one of the other version-flexible SnapMirror policies, the command syntax is the same but you replace the policy name with the policy that you want to use.

6. On the destination SVM, initialize the version-flexible SnapMirror relationship by using the `snapmirror initialize` command to start a baseline transfer.
The command creates a new Snapshot copy that is transferred to the destination volume and used as a baseline for subsequent incremental Snapshot copies. The command does not use any Snapshot copies that currently exist on the source volume.

**Note:** Creating a baseline for a large amount of data might take hours.

**Example**

The following command begins the relationship initialization by creating and transferring a baseline Snapshot copy to the destination volume “dstvolB” on SVM “vserverB”:

```bash
vserverB::> snapmirror initialize -destination-path vserverB:dstvolB
```

**Related concepts**

*Managing Snapshot policies* on page 46

**Considerations when using version-flexible SnapMirror relationships**

You should understand the conditions in which your use of Version-flexible SnapMirror relationships will best meet your needs.

The following considerations should be understood before creating version-flexible SnapMirror relationships:

- The schedule frequency for replicating volumes must be more than 60 minutes.
- You should not use version-flexible SnapMirror relationships for volumes that contain millions of files because performance can be affected.

**Ways to set up version-flexible SnapMirror relationships**

You can set up version-flexible SnapMirror relationships to optimize the number of Snapshot copies that you need for your application.

You can set up version-flexible SnapMirror relationships to retain the Snapshot copies that you want to retain by creating policies and rules that transfer and keep combinations of SnapMirror-created and user-created Snapshot copies. Because of the flexibility that version-flexible SnapMirror relationships gives you, you can set up a relationship to transfer and retain Snapshot copies according to your application. The following are some examples of useful applications that demonstrate this flexibility:

- You can create a relationship that transfers only SnapMirror created Snapshot copies during initialization and updates, and retains only the last two Snapshot copies. This behavior is useful if you if you want SnapMirror relationships that are similar to how qtree SnapMirror works in earlier versions of Data ONTAP. The policy for such an application has no rules or retention set, but is configured to replicate SnapMirror created Snapshot copies.
You can create a relationship that transfers all Snapshot copies on the source volume, including SnapMirror created Snapshot copies. This behavior is useful because it retains the same number of Snapshot copies on the destination volume as on the source volume. During the initialization, all Snapshot copies are transferred. The Snapshot copies retained on the destination match the Snapshot copies on the source. For updates, transferred Snapshot copies that are deleted on the source are also deleted on the destination and new Snapshot copies created on the source are also transferred to the destination. The policy for such an application allows a specific value for rules and retention that would replicate and retain the same Snapshot copies as the source volume. This includes configuring the policy to replicate SnapMirror created Snapshot copies.

You can create a relationship that transfers a specified set of Snapshot copies in addition to the SnapMirror created Snapshot copies. This behavior is useful for retaining application consistent Snapshot copies on the destination volume in addition to SnapMirror created Snapshot copies. Also, you have the flexibility to retain more Snapshot copies on the destination volume than on the source volume. The policy for such an application allows rules and retention that would replicate the application-consistent Snapshot copies and retain more Snapshot copies than on the source volume. This includes configuring the policy to replicate SnapMirror created Snapshot copies.

Converting a SnapMirror relationship to a version-flexible SnapMirror relationship

You can convert SnapMirror relationships that you created in a previous Data ONTAP release to version-flexible SnapMirror relationships because you can better control the Snapshot copies you replicate and retain for better resource utilization.

Steps
1. On the destination volume, break the SnapMirror relationship by using the `snapmirror break` command.

   Example
   ```
 cluster2::> snapmirror break -destination-path vserverB:dstvolB
   ```

2. On the destination volume, delete the SnapMirror relationship by using the `snapmirror delete` command.

   Example
   ```
 cluster2::> snapmirror delete -destination-path vserverB:dstvolB
   ```
3. Create a policy by using the `snapmirror policy create` command.
   Alternatively, you can use an existing policy that is a policy type of **async-mirror**.

   **Example**
   The following command creates a version-flexible SnapMirror policy called “vserverB-DR-policy” that will be used for SnapMirror style disaster recovery in which only the SnapMirror created Snapshot copy is transferred:

   ```bash
 cluster2::> snapmirror policy create -vserver vserverB -policy vserverB-DR-policy -policy-type mirror-vault -comment "DR policy"
   ```

4. Add a rule to the “vserverB-DR-policy” policy by using the `snapmirror policy add-rule` command.

   Adding a rule that matches the all-source-snapshots SnapMirror label will cause the version-flexible SnapMirror relationship to transfer all of the Snapshot copies to the destination volume, closely matching the behavior of the previous SnapMirror relationship.

   **Example**
   The following command adds a rule to the “vserverB-DR-policy” policy to retain all of the Snapshot copies on the source volume:

   ```bash
 cluster2::> snapmirror policy add-rule -vserver vserverB -policy vserverB-DR-policy -snapmirror-label all-source-snapshots
   ```

5. On the destination volume, create the version-flexible SnapMirror relationship by using the `snapmirror create` command with the `-type XDP` parameter and the `-policy` parameter.

   The version-flexible Snapmirror relationship must use the same source volume and destination volume as the previous SnapMirror relationship.

   **Example**
   ```bash
 cluster2::> snapmirror create -source-path vserverA:srcvolA -destination-path vserverB:dstvolB -type XDP -policy vserverB-DR-policy -schedule daily
   ```

6. On the destination volume, resynchronize the source volume and destination volume of the version-flexible SnapMirror relationship by using the `snapmirror resync` command.

   ```bash
 cluster2::> snapmirror resync -destination-path vserverB:dstvolB
   ```
Managing mirror relationships

You manage mirror relationships to optimize the performance of those relationships.

Commands for managing SnapMirror relationships

Data ONTAP includes many commands for managing SnapMirror relationships of FlexVol volumes and Infinite Volumes.

You must have installed a SnapMirror license before you can manage SnapMirror relationships.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abort an active transfer</td>
<td><code>snapmirror abort</code></td>
</tr>
<tr>
<td></td>
<td>You can use the <code>snapmirror show</code> command to determine</td>
</tr>
<tr>
<td></td>
<td>the status of the abort operation.</td>
</tr>
<tr>
<td></td>
<td>If you are using Infinite Volumes, management tasks</td>
</tr>
<tr>
<td></td>
<td>must be performed on the Infinite Volume and not its</td>
</tr>
<tr>
<td></td>
<td>individual constituents.</td>
</tr>
<tr>
<td>Make a data protection mirror copy destination</td>
<td><code>snapmirror break</code></td>
</tr>
<tr>
<td>writeable</td>
<td>This command must be used from the destination Storage</td>
</tr>
<tr>
<td></td>
<td>Virtual Machine (SVM).</td>
</tr>
<tr>
<td></td>
<td>You must not have I/O traffic running on the volume</td>
</tr>
<tr>
<td></td>
<td>when you use this command.</td>
</tr>
<tr>
<td>Create a new data protection mirror relationship</td>
<td><code>snapmirror create</code></td>
</tr>
<tr>
<td></td>
<td>This command must be used from the destination SVM.</td>
</tr>
<tr>
<td></td>
<td>If you are using Infinite Volumes, you can create data</td>
</tr>
<tr>
<td></td>
<td>protection mirror relationships between clusters only,</td>
</tr>
<tr>
<td></td>
<td>not within a cluster.</td>
</tr>
<tr>
<td>Delete a data protection mirror relationship</td>
<td><code>snapmirror delete</code></td>
</tr>
<tr>
<td></td>
<td>This command must be used from the destination SVM.</td>
</tr>
<tr>
<td></td>
<td>If you are using Infinite Volumes, management tasks</td>
</tr>
<tr>
<td></td>
<td>must be performed on the Infinite Volume and not its</td>
</tr>
<tr>
<td></td>
<td>individual constituents.</td>
</tr>
<tr>
<td>Start a baseline transfer</td>
<td><code>snapmirror initialize</code></td>
</tr>
<tr>
<td></td>
<td>This command must be used from the destination SVM.</td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Display a list of data protection mirror relationships whose source endpoints are in the current SVM</td>
<td><code>snapmirror list-destinations</code>&lt;br&gt;This command must be used from the source SVM.</td>
</tr>
<tr>
<td>Modify a data protection mirror relationship</td>
<td><code>snapmirror modify</code>&lt;br&gt;This command must be used from the destination SVM.</td>
</tr>
<tr>
<td>Display a list of data protection and load-sharing mirror relationships or display the state of a scheduled transfer for a SnapMirror relationship</td>
<td><code>snapmirror show</code>&lt;br&gt;The information that this command shows is updated periodically; therefore, any changes to a relationship might not be displayed immediately.&lt;br&gt;This command must be used from the destination SVM.</td>
</tr>
<tr>
<td>Display a list of completed SnapMirror operations</td>
<td><code>snapmirror show-history</code>&lt;br&gt;This command must be used from the destination SVM or cluster.&lt;br&gt;This task does not support relationships with a “Pre 8.2” relationship capability, for example, load-sharing mirror relationships.</td>
</tr>
<tr>
<td>Disable future transfers for a mirror relationship</td>
<td><code>snapmirror quiesce</code>&lt;br&gt;This command must be used from the destination SVM.</td>
</tr>
<tr>
<td>Enable future transfers for a mirror relationship</td>
<td><code>snapmirror resume</code>&lt;br&gt;This command must be used from the destination SVM.</td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>---------------------------------------------------------</td>
</tr>
<tr>
<td>Start a resynchronize operation</td>
<td><code>snapmirror resync</code></td>
</tr>
<tr>
<td></td>
<td>This command must be used from the destination SVM.</td>
</tr>
<tr>
<td></td>
<td>You must not have I/O traffic running on the volume when you use this command.</td>
</tr>
<tr>
<td></td>
<td>Quotas are turned off on the volume you resynchronize. After resynchronizing, if you had quotas on the volume before the resynchronization you must reactivate quotas on the volume.</td>
</tr>
<tr>
<td></td>
<td><strong>Attention:</strong> A resynchronize operation can cause data loss on the destination volume because the command can remove the exported Snapshot copy on the destination volume.</td>
</tr>
<tr>
<td>Add an owner to prevent premature deletion of a user-created Snapshot copy for a SnapMirror-to-SnapVault cascade configuration</td>
<td><code>snapmirror snapshot-owner create</code></td>
</tr>
<tr>
<td></td>
<td>A typical use case is to preserve an application-consistent Snapshot copy.</td>
</tr>
<tr>
<td></td>
<td>This task is not supported for Infinite Volumes.</td>
</tr>
<tr>
<td>Delete an owner used to preserve a user-created Snapshot copy for a SnapMirror-to-SnapVault cascade configuration</td>
<td><code>snapmirror snapshot-owner delete</code></td>
</tr>
<tr>
<td></td>
<td>This task is not supported for Infinite Volumes.</td>
</tr>
<tr>
<td>Show all the Snapshot copies with owners that were added using the <code>snapmirror snapshot-owner create</code> command</td>
<td><code>snapmirror snapshot-owner show</code></td>
</tr>
<tr>
<td></td>
<td>This task is not supported for Infinite Volumes.</td>
</tr>
<tr>
<td>Start an incremental transfer</td>
<td><code>snapmirror update</code></td>
</tr>
<tr>
<td></td>
<td>This command must be used from the destination cluster.</td>
</tr>
<tr>
<td></td>
<td>If you are using Infinite Volumes, aggregate requirements must be met before performing the incremental transfer. Management tasks must be performed on the Infinite Volume and not its individual constituents.</td>
</tr>
<tr>
<td></td>
<td>You can disregard error messages that result from updating a SnapMirror relationship from a Snapshot copy that exists on the destination volume. Any such messages are for support use.</td>
</tr>
<tr>
<td>If you want to...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>Create a new policy for a data protection mirror</td>
<td><code>snapmirror policy create</code></td>
</tr>
<tr>
<td>relationship</td>
<td></td>
</tr>
<tr>
<td>Delete a policy of a data protection mirror</td>
<td><code>snapmirror policy delete</code></td>
</tr>
<tr>
<td>relationship</td>
<td></td>
</tr>
<tr>
<td>Add a new rule to a SnapVault relationship</td>
<td><code>snapmirror policy add-rule</code></td>
</tr>
<tr>
<td>Modify an existing rule in the policy of a SnapVault</td>
<td><code>snapmirror policy modify-rule</code></td>
</tr>
<tr>
<td>relationship</td>
<td></td>
</tr>
<tr>
<td>Modify a policy of a data protection mirror</td>
<td><code>snapmirror policy modify</code></td>
</tr>
<tr>
<td>relationship</td>
<td></td>
</tr>
<tr>
<td>Remove a rule from the policy of a data protection</td>
<td><code>snapmirror policy remove-rule</code></td>
</tr>
<tr>
<td>mirror relationship</td>
<td></td>
</tr>
<tr>
<td>Show the policy of a data protection mirror</td>
<td><code>snapmirror policy show</code></td>
</tr>
<tr>
<td>relationship</td>
<td></td>
</tr>
<tr>
<td>Copy data to a volume</td>
<td><code>snapmirror restore</code></td>
</tr>
<tr>
<td>Quotas are turned off on the volume you restore.</td>
<td></td>
</tr>
<tr>
<td>After the restore, you must activate quotas on the</td>
<td></td>
</tr>
<tr>
<td>volume, if you had quotas on the volume before the</td>
<td></td>
</tr>
<tr>
<td>restore. This task is not supported for Infinite</td>
<td></td>
</tr>
<tr>
<td>Volumes.</td>
<td></td>
</tr>
<tr>
<td>Remove the SnapMirror relationship information from</td>
<td><code>snapmirror release</code></td>
</tr>
<tr>
<td>the source SVM</td>
<td></td>
</tr>
<tr>
<td>This command must be used from the source SVM.</td>
<td></td>
</tr>
</tbody>
</table>

**Related information**

Clustered Data ONTAP 8.3 Commands: Manual Page Reference
Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

**Using extended queries to operate on many SnapMirror relationships**

You can use extended queries to perform SnapMirror operations on many SnapMirror relationships at one time. For example, you might have many uninitialized SnapMirror relationships that you want to initialize using one command.

**About this task**

You can apply extended queries to the following SnapMirror operations:

- Initializing many **Uninitialized** SnapMirror relationships
• Resuming many **Quiesced** SnapMirror relationships
• Resynchronizing many **Broken** SnapMirror relationships
• Updating many **Idle** SnapMirror relationships
• Aborting many currently **Transferring** SnapMirror relationships

**Step**

1. You perform a SnapMirror operation on many SnapMirror relationships by using the following syntax: `snapmirror command {-state state } *`

**Example**

The following command initializes only SnapMirror relationships that are in an **Uninitialized** state:

```
vs1::> snapmirror initialize {-state Uninitialized} *
```

**What tape seeding is**

Tape seeding is an SMTape functionality that helps you initialize a destination FlexVol volume in a data protection mirror relationship.

Tape seeding enables you to establish a data protection mirror relationship between a source system and a destination system over a low-bandwidth connection. Incremental mirroring of Snapshot copies from the source to the destination is feasible over a low bandwidth connection. However, an initial mirroring of the base Snapshot copy would take a long time over a low-bandwidth connection. In such a case, you can perform an SMTape backup of the source volume to a tape and use the tape to transfer the initial base Snapshot copy to the destination. You can then set up incremental SnapMirror updates to the destination system using the low-bandwidth connection.

**Performing tape seeding using SMTape**

Using SMTape, cluster administrators can perform tape seeding to initialize a destination FlexVol volume in a data protection mirror relationship. The time taken to initialize this destination volume over a low bandwidth connection using SMTape is faster when compared to using the `snapmirror initialize` command.

**Before you begin**

- The tape must be connected to the same node on which the volume is located.
- All nodes in the cluster must be running Data ONTAP 8.2 or later.
- Source and destination volumes must be located on storage systems running clustered Data ONTAP.
About this task

If you back up 32-bit volumes, then you can restore these volumes only in the Data ONTAP 8.2 release family.

Steps

1. Determine which Snapshot copy you want to use for tape seeding by using the `volume snapshot show` command.

Example

The following example lists the Snapshot copies:

```
clus1:>). vol snapshot show -vserver vs1 -volume vol1
(volume snapshot show)

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Volume</th>
<th>Snapshot</th>
<th>State</th>
<th>Size</th>
<th>Total% Used%</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1</td>
<td>vol1</td>
<td>hourly.2013-01-25_0005</td>
<td>valid</td>
<td>224KB</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>daily.2013-01-25_0010</td>
<td>valid</td>
<td>92KB</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hourly.2013-01-25_0105</td>
<td>valid</td>
<td>228KB</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hourly.2013-01-25_0205</td>
<td>valid</td>
<td>236KB</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hourly.2013-01-25_0305</td>
<td>valid</td>
<td>244KB</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hourly.2013-01-25_0405</td>
<td>valid</td>
<td>244KB</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hourly.2013-01-25_0505</td>
<td>valid</td>
<td>244KB</td>
<td>0%</td>
</tr>
</tbody>
</table>

7 entries were displayed.
```

2. If you do not have an existing Snapshot copy, manually create a Snapshot copy of the source volume by using the `volume snapshot create` command.

You must specify Storage Virtual Machine (SVM, formerly known as Vserver) name, source volume name, and Snapshot copy name.

Attention: You must not delete this Snapshot copy until tape seeding is over.

Example

The following example shows how to create a Snapshot copy mysnap of the source volume src1 on the SVM vs1. You can view the details of the Snapshot copy mysnap by using the `volume snapshot show` command:

```
clus1:>). volume snapshot create -vserver vs1 -volume src1 -snapshot mysnap
clus1:>). volume snapshot show -vserver vs1 -volume src1 -snapshot mysnap

Vserver: vs1
Volume: src1
Snapshot: mysnap
Creation Time: Thu Aug 09 12:03:46 2012
Snapshot Busy: false
List of Owners: -
```
3. Move and position the tape correctly by using the `storage tape position` command.

**Example**

The following example moves and positions the no-rewind tape device, st01, and shows the status of the rewind operation:

```
clus1::> storage tape position -node clus1-01 -name nrst01 -operation rewind
```

Note: Rewind operation in progress. Use the "storage tape show -status" command to view the status of the operation.

```
clus1::> storage tape show -status -device-name-nr nrst01 -node clus1-01
```

Device ID: fc215-21:5.126L1
Description: IBM LTO 4 ULTRIUM
Device Type: tape drive
  WWNN: 5:00a:098200:01dc69
  WWPN: 5:10a:098200:01dc69
Serial Number: bdf31432387ba0980a026c
Errors: -

<table>
<thead>
<tr>
<th>Node</th>
<th>Alias</th>
<th>Device Status</th>
<th>FileNo</th>
<th>BlockNo</th>
<th>Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus-01</td>
<td>st01</td>
<td>read-write-enabled</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Use the `smtape backup` command to copy all the volume Snapshot copies, including the base Snapshot copy, to tape.

**Example**

The following example backs up the Snapshot copy mysnap to the tape device st01:

```
clus1::> system smtape backup -vserver vs1 -volume src1 -backup-snapshot mysnap -tape /clus1-01/nrst01
```

Session 35 created successfully

5. Use the `smtape status show` command to view the progress of the baseline transfer.
Example

The following example shows the progress and status of the SMTape backup operation triggered in the previous step:

```
clus1::> system smtape status show -session 35 -instance

Session Identifier: 35
 Node Name: clus1-01
Operation Type: backup
 Session Status: ACTIVE
 Path Name: /vs1/src1
 Device Name: /clus1-01/nrst01
Bytes Transferred: 0B
 Start Time: 8/9/2012 12:03:55
 End Time: -
 Snapshot Name: mysnap
 Tape Block Size: 240
 Error Description: None

clus1::> smtape status show
(system smtape status show)

<table>
<thead>
<tr>
<th>Session</th>
<th>Type</th>
<th>Status</th>
<th>Progress</th>
<th>Path</th>
<th>Device</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>backup</td>
<td>COMPLETED</td>
<td>6.01MB</td>
<td>/vs1/src1</td>
<td>/clus1-01/nrst01</td>
<td>clus1-01</td>
</tr>
</tbody>
</table>
```

6. Depending on the status of the SMTape backup operation, perform one of the following actions:

<table>
<thead>
<tr>
<th>If the Status shows...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>COMPLETED</strong></td>
<td>Go to step 7. The baseline transfer is complete.</td>
</tr>
</tbody>
</table>
| **WAITING**            | a. Load and position the new tape by using the `storage tape position` command.  
                          | b. Continue the SMTape backup operation by using the `smtape continue` command. |
| **FAILED**             | The SMTape backup operation may fail due to a number of reasons; such as loss of network connectivity, failure to access the named snapshot, unable to find the snapshot and so on. You must resolve the failure and restart the operation. |
| **ACTIVE**             | The system displays the following message if the SMTape backup is in active state:  
                          | The SMTape backup is in progress. |

7. Physically transport the tapes to the destination node.
8. Optional: View the data backed up on a tape by using the `smtape showheader` command.

9. Create a destination volume of type DP and appropriate size (same or larger than the source volume size) on the destination cluster that will become the data protection mirror by using the `volume create` command and restrict the volume.

**Example**

The following example creates the data protection mirror volume dst1 on the Storage Virtual Machine (SVM, formerly known as Vserver) vs1. The destination volume is located on the aggregate aggr5 and the destination volume dst1 is in the restricted state:

```
clus1::> volume create -vserver vs1 -volume dst1 -aggregate aggr5 -size 400m -type DP -state restricted
[Job 83] Job succeeded: Successful
```

10. Move and position the tape correctly by using the `storage tape position` command.

**Example**

The following example moves and positions the no-rewind tape device, st01, at the destination volume and shows the status of the rewind operation:

```
clus1::> storage tape position -node clus1-01 -name nrst01 -operation rewind
Note: Rewind operation in progress. Use the "storage tape show -status" command to view the status of the operation.

clus1::> storage tape show -status -device-name-nr nrst01 -node clus1-01
Device ID: fc215-21:5.126L1
Description: IBM LTO 4 ULTRIUM
Device Type: tape drive
 WWNN: 5:00a:098200:01dc69
 WWPN: 5:10a:098200:01dc69
Serial Number: bdf31432387ba0980a026c
Errors: -

 Node Alias Device Status FileNo BlockNo Resid
 -------- ------ ------------------ ------- -------- ------
 clus-01 st01 read-write-enabled 0 0 0
```

11. Use the `smtape restore` command to restore all the volume Snapshot copies, including the base Snapshot copy, from tape to the destination volume.
Example

The following example restores all the data from tape to the destination volume dst1 on the Storage Virtual Machine (SVM, formerly known as Vserver) vs1:

```
clus1::> system smtape restore -vserver vs1 -volume dst1 -tape /clus1-01/nrst01
Session 36 created successfully
```

12. Use the `smtape status show` command to view the progress of the baseline transfer.

Example

The following example shows the progress and status of the SMTape restore operation triggered in the previous step:

```
clus1::> system smtape status show -session 36 -instance

Session Identifier: 36
 Node Name: clus1-01
Operation Type: restore
Session Status: ACTIVE
 Path Name: /vs1/dst1
 Device Name: /clus1-01/nrst01
Bytes Transferred: 0B
 Start Time: 8/9/2012 12:04:15
 End Time: -
 Snapshot Name: None
 Tape Block Size: 240
 Error Description: None
```

```
clus1::> system smtape status show

Session Type Status Progress Path Device Node
------- ------- --------- -------- ------------ ------------------ ----------
36 restore COMPLETED 6.01MB /vs1/dst1 /clus1-01/nrst01 clus1-01
35 backup COMPLETED 6.01MB /vs1/src1 /clus1-01/nrst01 clus1-01
2 entries were displayed.
```

13. Depending on the status of the SMTape restore operation, perform one of the following actions:

<table>
<thead>
<tr>
<th>If the Status shows...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>COMPLETED</strong></td>
<td>Go to step 14.</td>
</tr>
<tr>
<td></td>
<td>The baseline transfer is complete.</td>
</tr>
<tr>
<td><strong>WAITING</strong></td>
<td>a. Load and position the new tape by using the <code>storage tape position</code> command.</td>
</tr>
<tr>
<td></td>
<td>b. Continue the SMTape restore operation by using the <code>smtape continue</code> command.</td>
</tr>
</tbody>
</table>
14. Use the `smtape break` command to break the volume and tape relationship.

   **Note:** This command is also available for SVM administrators.

   **Example**

   The following example breaks the SMTape relationship between the tape and the volume dst1:

   ```
 clus1::> system smtape break -vserver vs1 -volume dst1
 Operation succeeded: snapmirror break for destination vs1:dst1
   ```

   The destination volume is now writeable and a mirror relationship can be reestablished.

15. Establish the SnapMirror or SnapVault relationship by using the `snapmirror resync` command.

   A SnapMirror relationship creates a data protection copy of the source volume; a SnapVault relationship creates a backup copy. The `-type` parameter determines the type of relationship established. The value of the `-type` parameter for a SnapMirror relationship is `DP` and the value for a SnapVault relationship is `XDP`.

   **Example**

   The following example reestablishes a SnapMirror relationship between the destination volume dst1 and the source volume src1:

   ```
 clus1::> snapmirror resync -destination-path vs1:dst1 -source-path vs1:src1 -type DP
 [Job 85] Job is queued: initiate snapmirror resync to destination "vs1:dst1".
 [Job 85] [Job 85] Job succeeded: SnapMirror Resync Transfer Queued
   ```

16. Use the `snapmirror show` command to view the progress of the data protection mirror relationship reestablished between the destination volume and source volume in the previous step.

   **Example**

   The following example shows the data protection mirror relationship established between the source volume vs1 and destination volume dst1. The data protection mirror relationship type established is `DP`:

   ```
 clus1::> snapmirror show -destination-path vs1:dst1
 Source Path: vs1:src1
 Destination Path: vs1:dst1
 Relationship Type: DP
 SnapMirror Schedule: -
   ```
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tries Limit</td>
<td>-</td>
</tr>
<tr>
<td>Throttle (KB/sec)</td>
<td>unlimited</td>
</tr>
<tr>
<td>Mirror State</td>
<td>-</td>
</tr>
<tr>
<td>Relationship Status</td>
<td>Transferring</td>
</tr>
<tr>
<td>Transfer Snapshot</td>
<td>snapmirror.58621f01-e214-11e1-833d-123478563412_2147484708.2012-08-09_120444</td>
</tr>
<tr>
<td>Snapshot Progress</td>
<td>0B</td>
</tr>
<tr>
<td>Total Progress</td>
<td>0B</td>
</tr>
<tr>
<td>Snapshot Checkpoint</td>
<td>-</td>
</tr>
<tr>
<td>Newest Snapshot</td>
<td>-</td>
</tr>
<tr>
<td>Exported Snapshot</td>
<td>-</td>
</tr>
<tr>
<td>Exported Snapshot Timestamp</td>
<td>-</td>
</tr>
<tr>
<td>Healthy</td>
<td>true</td>
</tr>
<tr>
<td>Constituent Relationship</td>
<td>false</td>
</tr>
<tr>
<td>Relationship ID</td>
<td>6485d262-e21a-11e1-833d-123478563412</td>
</tr>
<tr>
<td>Transfer Type</td>
<td>resync</td>
</tr>
<tr>
<td>Transfer Error</td>
<td>-</td>
</tr>
<tr>
<td>Current Throttle</td>
<td>103079214</td>
</tr>
<tr>
<td>Current Transfer Priority</td>
<td>normal</td>
</tr>
<tr>
<td>Last Transfer Type</td>
<td>-</td>
</tr>
<tr>
<td>Last Transfer Error</td>
<td>-</td>
</tr>
<tr>
<td>Last Transfer Size</td>
<td>-</td>
</tr>
<tr>
<td>Last Transfer Duration</td>
<td>-</td>
</tr>
<tr>
<td>Last Transfer From</td>
<td>-</td>
</tr>
<tr>
<td>Progress Last Updated</td>
<td>08/09 12:04:45</td>
</tr>
<tr>
<td>Relationship Capability</td>
<td>8.2 and above</td>
</tr>
<tr>
<td>Healthy</td>
<td>true</td>
</tr>
<tr>
<td>Constituent Relationship</td>
<td>false</td>
</tr>
<tr>
<td>Relationship ID</td>
<td>6485d262-e21a-11e1-833d-123478563412</td>
</tr>
<tr>
<td>Transfer Type</td>
<td>resync</td>
</tr>
<tr>
<td>Transfer Error</td>
<td>-</td>
</tr>
</tbody>
</table>

When the relationship status shows **idle**, the data protection mirror relationship is established and tape seeding is complete.

**Example**

clus1::> snapmirror show -destination-path vs1:dst1

```
Source Path: vs1:src1
Destination Path: vs1:dst1
Relationship Type: DP
SnapMirror Schedule: -
Tries Limit: -
Throttle (KB/sec): unlimited
Mirror State: Snapmirrored
Relationship Status: Idle
Transfer Snapshot: -
Snapshot Progress: -
Total Progress: -
Snapshot Checkpoint: -
Newest Snapshot: snapmirror.58621f01-e214-11e1-833d-123478563412_2147484708.2012-08-09_120444
Newest Snapshot Timestamp: 08/09 12:04:44
Exported Snapshot: snapmirror.58621f01-e214-11e1-833d-123478563412_2147484708.2012-08-09_120444
Exported Snapshot Timestamp: 08/09 12:04:44
Healthy: true
Constituent Relationship: false
Relationship ID: 6485d262-e21a-11e1-833d-123478563412
Transfer Type: resync
Transfer Error: -
```
Scalability limits for SMTape backup and restore sessions

While performing SMTape backup and restore operations through NDMP or CLI (tape seeding), you must be aware of the maximum number of SMTape backup and restore sessions that can be performed simultaneously on storage systems with different system memory capacities. This maximum number depends on the system memory of a storage system.

<table>
<thead>
<tr>
<th>System memory of the storage system</th>
<th>Total number of SMTape backup and restore sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 16 GB</td>
<td>6</td>
</tr>
<tr>
<td>Greater than or equal to 16 GB but less than 24 GB</td>
<td>16</td>
</tr>
<tr>
<td>Greater than or equal to 24 GB</td>
<td>32</td>
</tr>
</tbody>
</table>

You can obtain the system memory of your storage system by using the `sysconfig -a` command (available through the nodeshell). For more information about using this command, see the man pages.

Listing the schedule state of a mirror relationship

You might want to see what state a scheduled transfer for a mirror relationship is in to ensure that jobs are running as they should.

About this task

The state of a scheduled job might be dormant. The dormant state means that the job is waiting for the scheduled start time to begin the transfer. There is nothing wrong with the job and you do not need to do anything.

Step

1. To see the state of scheduled jobs, use the `snapmirror show` command.
Scheduling SnapMirror transfers

If you want scheduled SnapMirror transfers, you can add a schedule to a mirror relationship after you initially create the relationship.

About this task

Unless you create and implement a schedule for SnapMirror transfers, you are limited to manually updating destination FlexVol volumes or Infinite Volumes with mirror relationships. The following are characteristics of adding a SnapMirror transfer schedule:

- When you add a schedule for a data protection mirror copy of Infinite Volumes, do not schedule updates for less than one-hour intervals.
  If you schedule updates for less than one-hour intervals, Data ONTAP tries but cannot meet the schedule for Infinite Volumes, and the data protection mirror relationship is displayed as unhealthy.

- Scheduled SnapMirror transfers (or even manual updates) can disrupt Snapshot copy schedules when a transfer lasts longer than the full retention period of the schedule.

Steps

1. Create the schedule you want to implement by using the `job schedule cron create` command.
   
   **Note:** You cannot use the `job schedule interval create` command to schedule SnapMirror transfers.

2. Apply the schedule to the mirror relationship by using the `-schedule` option of the `snapmirror modify` command.
   
   See the `snapmirror modify` command man page for more information about the command.

Changing mirror relationship schedules

You can change a schedule that updates mirror relationships for FlexVol volumes and Infinite Volumes if the schedule impacts other backups or updates.

Before you begin

- You must have created the cluster and Storage Virtual Machine (SVM) peering relationship. To know about creating cluster and SVM peering, see the *Clustered Data ONTAP System Administration Guide for Cluster Administrators.*

About this task

Changing a schedule affects load-sharing mirror copies differently than it does for data-protection mirror copies. If you change a schedule to a load-sharing mirror relationship, Data ONTAP makes
the change to the relationships of all the load-sharing mirror copies in the group. Data ONTAP
determines the load-sharing mirror group by the SVM and source volume specified by the command.
See the *Clustered Data ONTAP Logical Storage Management Guide* for more information about
load-sharing mirror copies.

**Steps**

1. **Create the new schedule by using the** `job schedule cron create` **command.**

   Creating a schedule is described in the cron job creation section of the *Clustered Data ONTAP
   System Administration Guide for Cluster Administrators*. See the man page for details about the
   `job schedule cron create` command.

2. **Change the schedule for a mirror relationship by using the** `snapmirror modify -schedule`
   **command.**

   This command must be used from the destination SVM.

**Example**

The following command changes the update schedule used by a data protection mirror
relationship for destination volume named “dept_eng_ls1” to a schedule named
“dept_eng_mirror_sched”:

```
vs2::> snapmirror modify -source-path vs1:dept_eng
 -destination-path vs2:dept_eng_ls1 -schedule dept_eng_mirror_sched
```

**Manually updating data protection mirror copies on destination volumes**

You can schedule updates to data protection mirror copies for destination FlexVol volumes or
Infinite Volumes, or you can manually update a data protection mirror copy to transfer Snapshot
copies between the source and destination volume. However, for Infinite Volumes, you cannot
choose which Snapshot copies to transfer.

**Before you begin**

- A base Snapshot copy must exist on the source volume and the destination volume.
- The destination volume must be the same size or bigger than the source volume.

**About this task**

You can have cluster administrator or Storage Virtual Machine (SVM) administrator privileges to
perform this task.

When you update a destination volume, all of the Snapshot copies from the source volume are
transferred to the destination volume. In addition, any Snapshot copies deleted from the source
volume are deleted from the destination volume during the update. Similarly, any new Snapshot
copies on the source volume are transferred to the destination volume.
Step

1. On the destination cluster, manually update a destination volume by using the `snapmirror update` command.

Example

The following command updates the data protection mirror relationship for a destination volume named `repo_vol_dest` on an SVM named `vs0_dest`:

```
vs2::> snapmirror update -destination-path vs0_dest:repo_vol_dest
```

Deleting a mirror copy

You can delete a mirror relationship and the destination FlexVol volume or Infinite Volume if you no longer want the mirror copy.

About this task

When you delete a mirror copy, you must delete the mirror relationship and the destination volume. Deleting the mirror relationship does not delete SnapMirror created Snapshot copies on either the source or destination volumes. Deleting the mirror relationship attempts to delete Snapshot copy owners for the SnapMirror created Snapshot copies on both source and destination volumes.

When you delete a load-sharing mirror copy from a set of load-sharing mirror copies, the destination volume of the deleted load-sharing mirror relationship cannot be used again as a destination volume of a load-sharing relationship if it contains any data or Snapshot copies.

Steps

1. Optional: On the source Storage Virtual Machine (SVM), use the `snapmirror list-destination` command to view the list of destination volumes for that source volume.

Example

```
vs1::> snapmirror list-destinations

<table>
<thead>
<tr>
<th>Source Path</th>
<th>Type</th>
<th>Destination Path</th>
<th>Status</th>
<th>Transfer Progress</th>
<th>Last Updated</th>
<th>Relationship Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1:src_ui</td>
<td>DP</td>
<td>vs2:vsrsrc_ui_1s_mir2</td>
<td>Idle</td>
<td>-</td>
<td>-</td>
<td>3672728c-</td>
</tr>
<tr>
<td>ad06-11e2-981e-123478563412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

2. Use the `snapmirror delete` command to delete a mirror relationship.
Example

The following command deletes a mirror relationship between a destination volume named src_ui_ls_mir2 and a source volume named src_ui:

```
vs2::> snapmirror delete -source-path vs1:src_ui -destination-path vs2:src_ui_ls_mir2
```

The command deletes the mirror relationship, but does not delete the destination volume. In the case of a load-sharing mirror copy, the destination volume will be in the restricted state. If you want to use it as a destination volume of a data protection relationship, you must wait at least 10 minutes. This is the amount of time required to refresh internal caches and place the volume back online.

3. Use the `snapmirror release` command from the source SVM to remove the configuration information and Data ONTAP created Snapshot copies on the source volume.

Example

The following command removes the DP or XDP relationship from the source SVM named vs1:

```
vs1::> snapmirror release -source-path vs1:src_ui -destination-path vs2:src_ui_ls_mir2
```

This command removes the DP or XDP relationship information from the source SVM and does not delete any volumes. This command deletes the base Snapshot copies for the destination volume named src_ui_ls_mir2 from the source volume named src_ui.

4. Optional: Use the `volume delete` command to delete the destination volume.

Delete the destination volume if you no longer need the volume.

**Considerations when breaking SnapMirror relationships**

You might break a SnapMirror relationship when a disaster impacts the source volume so that you can temporarily serve data from the destination volume. There are some considerations you should understand before breaking a SnapMirror relationship so that you can avoid issues.

- When you break a SnapMirror relationship, the common Snapshot copy between the source and destination volumes is not protected on the source volume and can be deleted.

  This is evident when the SnapMirror relationship is part of a cascade and is the expected behavior. If, for example, you have a cascade from volume A to volume B and volume B to volume C, and you break the relationship between volume A and volume B. The relationship between volume B and volume C still exists. When a replication update from volume B to volume C occurs, volume B will lose the common Snapshot copy it has with volume A.

  You can avoid this issue by creating your own Snapshot copy on the source that will not get deleted automatically, and then replicating it to the destination volume before breaking the relationship.
The destination volume of a SnapMirror relationship that has the NVFAIL parameter disabled will have the NVFAIL parameter enabled after you break the relationship.

**Reversing the data protection mirror relationship when disaster occurs**

When disaster disables the source FlexVol volume of a data protection mirror relationship, you can use the destination FlexVol volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.

**About this task**

The following procedure describes a data protection mirror relationship that has the source volume on one Storage Virtual Machine (SVM) and the destination volume on another SVM. The source and the destination clusters and source and destination SVMs are in peer relationships. The original source (the one disabled by the disaster) is vs1:volA and the original destination is vs2:volB.

All data from the last scheduled SnapMirror Snapshot copy before the source was disabled and all the data written to vs2:volB after it was made writeable is preserved. Any data written to vs1:volA between the last SnapMirror Snapshot copy and the time that vs1:volA was disabled is not preserved.

For information about retrieving data from Infinite Volumes during disaster recovery, see the *Clustered Data ONTAP Infinite Volumes Management Guide*.

**Steps**

1. Temporarily make the original source volume a read-only destination volume and reverse the data protection mirror relationship to continue to serve data.

   If the source vs1:volA is recoverable and its data is intact, complete the following steps:

   a. After the source volume (in this case, vs1:volA) is disabled, use the `snapmirror break` command on the destination volume, vs2:volB, to make the destination volume, vs2:volB, writeable.

      **Example**

      ```
 vs2::> snapmirror break vs2:volB
      ```

   b. Redirect the clients of the source volume vs1:volA to the new source volume vs2:volB.

      The former clients of vs1:volA access and write to vs2:volB.

   c. On the destination volume, vs2:volB, use the `snapmirror delete` command to remove the data protection mirror relationship between the source vs1:volA and the destination vs2:volB.
d. On the source volume, `vs1:volA`, use the `snapmirror release` command to remove relationship information from the source.

Example

```
vs1::> snapmirror release vs2:volB
```

e. On the new destination volume, `vs1:volA`, use the `snapmirror create` command to create the mirror relationship, but with `vs2:volB` as the new source and `vs1:volA` as the new destination.

Example

```
vs1::> snapmirror create vs2:volB vs1:volA -type DP
```

f. If there are LUNs on the original source volume, `vs1:volA`, remove the mapping by using the `lun unmap` command.

g. On the new destination volume, `vs1:volA`, use the `snapmirror resync` command to resynchronize `vs1:volA` with `vs2:volB`.

Example

```
vs1::> snapmirror resync vs1:volA
```

h. If there were LUNs, map the LUNs on the new source `vs2:volB` by using the `lun map` command.

If the source `vs1:volA` is unrecoverable, complete the following steps:

a. After the source volume (in this case, `vs1:volA`) is disabled, use the `snapmirror break` command on the destination volume, `vs2:volB`, to make the destination volume, `vs2:volB`, writeable.

Example

```
vs2::> snapmirror break vs2:volB
```

b. Redirect the clients of the source volume `vs1:volA` to the new source volume `vs2:volB`.

The former clients of `vs1:volA` access and write to `vs2:volB`. 
c. On the destination volume, `vs2:volB`, use the `snapmirror delete` command to remove the data protection mirror relationship between the source `vs1:volA` and the destination `vs2:volB`.

**Example**

```bash
test::> snapmirror delete vs2:volB
```

d. On the source SVM, `vs1`, use the `snapmirror release` command to remove relationship information from the source.

Even though the source volume is unrecoverable, the data protection mirror relationship still exists and must be removed.

**Example**

```bash
vs1::> snapmirror release vs2:volB
```

e. Delete the old volume `volA` and use the `volume create` command to create a new data protection destination volume called `vs1:volA`.

**Note:** Remember to use the `-type DP` parameter when creating the destination volume.

**Example**

```bash
vs1::> volume delete -volume vs1:volA

vs1::> volume create -volume volA -aggr aggr1 -type DP -vserver vs1
```

f. On the new destination volume, `vs1:volA`, use the `snapmirror create` command to create the data protection mirror relationship with `vs2:volB` as the new source volume and `vs1:volA` as the new destination volume.

**Example**

```bash
vs1::> snapmirror create vs2:volB vs1:volA -type DP
```

g. On the new destination volume, `vs1:volA`, use the `snapmirror initialize` command to create the baseline on the data protection mirror copy.

This command also makes `vs1:volA` a read-only destination.
h. If there were LUNs, map the LUNs on the new source `vs2:volB` by using the `lun map` command.

You can keep this configuration or, after resolving the problem with the original source volume, you can complete the following steps to reestablish the original data protection mirror relationship.

2. On the new destination volume, `vs1:volA`, update the new destination volume `vs1:volA` to transfer the latest data from the new source volume `vs2:volB` by using the `snapmirror update` command.

Example

```
vs1::> snapmirror update vs1:volA
```

3. On the new destination volume, `vs1:volA`, use the `snapmirror break` command to make `vs1:volA` writeable.

Example

```
vs1::>> snapmirror break -source-path vs2:volB -destination-path vs1:volA
```

4. On the new destination volume, `vs1:volA`, use the `snapmirror delete` command to remove the data protection mirror relationship between the new source `vs2:volB` and the new destination `vs1:volA`.

Example

```
vs1::> snapmirror delete vs1:volA
```

5. On the new source volume, `vs2:volB`, use the `snapmirror release` command to remove the data protection mirror relationship between the new source `vs2:volB` and the new destination `vs1:volA`.

Example

```
vs2::> snapmirror release vs1:volA
```
6. On the original destination volume, vs2:volB, use the snapmirror create command to re-create the original data protection mirror relationship with vs1:volA as the source and vs2:volB as the destination.

Example

```
vs2::> snapmirror create vs1:volA vs2:volB -type DP
```

7. If there are LUNs on the source vs2:volB, remove the mapping by using the lun unmap command.

8. On the original destination volume, vs2:volB, use the snapmirror resync command to resynchronize the original source and original destination volumes.

Example

```
vs2::> snapmirror resync vs2:volB
```

9. Redirect the clients from vs2:volB back to their original source volume vs1:volA.

10. If there were LUNs, map them back to the original source vs1:volA.

### Reversing the version-flexible SnapMirror relationship when disaster occurs

When disaster disables the source FlexVol volume of a version-flexible SnapMirror relationship, you can use the destination FlexVol volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.

**About this task**

The following procedure describes the following version flexible SnapMirror relationship:

- The original source volume and Storage Virtual Machine (SVM) is vs1:volA. This is the volume disabled by the disaster.
- The original destination volume and SVM is vs2:volB. This is the volume that will serve data while you address the issues with the source.
- The source and destination clusters and source and destination SVMs are in peer relationships. Peer relationships are required for you to have any kind of SnapMirror replication between SVMs or clusters.

All data from the last scheduled version-flexible SnapMirror Snapshot copy before the source was hit by the disaster and all the data written to the destination, vs2:volB, after it is made writeable during
the procedure, is preserved. Any data written to \texttt{vs1:volA} between the last SnapMirror Snapshot copy and the time that \texttt{vs1:volA} was stricken is not preserved.

**Steps**

1. Temporarily create a new SnapMirror relationship that uses the destination volume from the disaster-stricken SnapMirror relationship as the new source volume.

   This allows you the time to either reuse the stricken source volume, if it is recoverable, or create a new volume that can become the source volume, if it is not recoverable.

   If the source \texttt{vs1:volA} is recoverable and its data is intact, complete the following steps:

   a. Make the \texttt{vs2:volB} destination volume writeable by using the \texttt{snapmirror break} command.

      **Example**

      \begin{verbatim}
      vs2::> snapmirror break vs2:volB
      \end{verbatim}

   b. Redirect the clients from the original \texttt{vs1:volA} source volume to the \texttt{vs2:volB} volume.

      This gives the former clients of the \texttt{vs1:volA} volume access and write capability to the \texttt{vs2:volB} volume. The \texttt{vs2:volB} volume will become the temporary source volume of a new SnapMirror relationship while you repair the original \texttt{vs1:volA} source volume.

   c. On the \texttt{vs1:volA} volume, use the \texttt{snapmirror create} command to create the mirror relationship with \texttt{vs2:volB} as the source and \texttt{vs1:volA} as the destination.

      This SnapMirror relationship is the reverse of the original SnapMirror relationship and will replicate new data to the \texttt{vs1:volA} volume.

      **Example**

      This example uses the “MirrorLatest” policy, which retains only the latest SnapMirror created Snapshot copy.

      \begin{verbatim}
      vs1::> snapmirror create -source-path vs2:volB -destination-path vs1:volA -type XDP -policy MirrorLatest
      \end{verbatim}

   d. If there are LUNs on the original source volume, \texttt{vs1:volA}, remove the mapping by using the \texttt{lun unmap} command.

   e. On the \texttt{vs1:volA} destination volume, use the \texttt{snapmirror resync} command to resynchronize \texttt{vs1:volA} with \texttt{vs2:volB}.
Example

vs1::> snapmirror resync vs1:volA

f. From the SVM that contains the vs2:volB volume, remove the original SnapMirror relationship between volumes by using the snapmirror delete command.

Example

vs2::> snapmirror delete vs2:volB

g. From the SVM that contains the vs1:volA volume, remove the original SnapMirror relationship information and Snapshot copies by using the snapmirror release command.

Example

vs1::> snapmirror release vs2:volB

h. If there were LUNs, map the LUNs on the new source vs2:volB by using the lun map command.

If the source vs1:volA is unrecoverable, complete the following steps:

a. After the source volume (in this case, vs1:volA) is disabled, use the snapmirror break command on the destination volume, vs2:volB, to make the destination volume, vs2:volB, writeable.

Example

vs2::> snapmirror break vs2:volB

b. Redirect the clients of the source volume vs1:volA to the new source volume vs2:volB. The former clients of vs1:volA access and write to vs2:volB.

c. Delete the old volA volume by using the volume delete command.

Example

vs1::> volume delete -volume vs1:volA

d. Create a new SnapMirror destination volume called vs1:volA by using the volume create command with the -type DP parameter.

Note: Remember to use the -type DP parameter when creating the destination volume.
Example

```
vs1::> volume create -volume volA -aggr aggr1 -type DP -vserver vs1
```

e. On the new destination volume, vs1:volA, use the `snapmirror create` command to create the data protection mirror relationship with vs2:volB as the new source volume and vs1:volA as the new destination volume.

Example

```
vs1::> snapmirror create -source-path vs2:volB -destination-path vs1:volA -type XDP -policy MirrorLatest
```

f. On the new destination volume, vs1:volA, use the `snapmirror initialize` command to create the baseline on the data protection mirror copy.

This command also makes vs1:volA a read-only destination.

Example

```
vs1::> snapmirror initialize vs1:volA
```

g. On the destination volume, vs2:volB, use the `snapmirror delete` command to remove the data protection mirror relationship between the source vs1:volA and the destination vs2:volB.

Example

```
vs2::> snapmirror delete vs2:volB
```

h. Remove relationship information from the vs1 SVM by using the `snapmirror release` command.

Even though the source volume is unrecoverable, the data protection mirror relationship still exists and must be removed.

Example

```
vs1::> snapmirror release vs2:volB
```

i. If there were LUNs, map the LUNs on the new source vs2:volB by using the `lun map` command.
You can keep this configuration or, after resolving the problem with the original source volume, you can complete the following steps to reestablish the original data protection mirror relationship.

2. On the new destination volume, vs1:volA, update the new destination volume vs1:volA to transfer the latest data from the new source volume vs2:volB by using the snapmirror update command.

   **Example**

   ```
 vs1::> snapmirror update vs1:volA
   ```

3. On the new destination volume, vs1:volA, use the snapmirror break command to make vs1:volA writeable.

   **Example**

   ```
 vs1::>> snapmirror break -source-path vs2:volB -destination-path vs1:volA
   ```

4. On the original destination volume, vs2:volB, use the snapmirror create command to re-create the original data protection mirror relationship with vs1:volA as the source and vs2:volB as the destination.

   **Example**

   ```
 vs2::> snapmirror create -source-path vs1:volA -destination-path vs2:volB -type XDP -policy MirrorLatest
   ```

5. If there are LUNs on the source vs2:volB, remove the mapping by using the lun unmap command.

6. On the original destination volume, vs2:volB, use the snapmirror resync command to resynchronize the original source and original destination volumes.

   **Example**

   ```
 vs2::> snapmirror resync vs2:volB
   ```

7. On the new destination volume, vs1:volA, use the snapmirror delete command to remove the data protection mirror relationship between the new source vs2:volB and the new destination vs1:volA.
Example

```
vs1::> snapmirror delete vs1:volA
```

8. On the new source volume, vs2:volB, use the `snapmirror release` command to remove the data protection mirror relationship between the new source vs2:volB and the new destination vs1:volA.

Example

```
vs2::> snapmirror release vs1:volA
```

9. Redirect the clients from vs2:volB back to their original source volume vs1:volA.

10. If there were LUNs, map them back to the original source vs1:volA.

Related information

*Clustered Data ONTAP 8.3 Infinite Volumes Management Guide*

**Converting a data protection mirror destination to a writeable volume**

You can convert the destination volume of a data protection mirror relationship to a writable volume if you want to use that volume to serve data. For example, you might do this if you want to migrate a volume.

**Steps**

1. On the destination Storage Virtual Machine (SVM), make the destination volume writable by using the `snapmirror break` command.

2. Remove the data protection mirror relationship that the destination volume has with the source volume by using the `snapmirror delete` command.

3. On the source SVM, remove the configuration information and Data ONTAP created Snapshot copies by using the `snapmirror release` command.

**Testing database applications**

You can use data protection mirror relationships to create a copy of database data on which to test software applications that run on a database, to avoid the possibility of changing or corrupting the database.

**Before you begin**

The volume that contains the database must be in a data protection mirror relationship.
Steps

1. On the destination Storage Virtual Machine (SVM), make the destination volume writeable by using the `snapmirror break` command.

   **Example**

   The following example breaks a SnapMirror relationship that has the `vs2:Test_vol` volume as its destination volume.

   ```
 vs2::>> snapmirror break -destination-path vs2:Test_vol
   ```

2. Run the application on the data in the former destination volume (`vs2:Test_vol`).

3. Check the data in the former destination volume (`vs2:Test_vol`).

4. If testing results in alterations to the data that you do not want, use the `snapmirror resync` command to reestablish the mirror relationship.

5. Repeat Steps 2, 3, and 4, until you are satisfied with the testing.

6. Optional: After completing the test, you can restore the SnapMirror relationship by resynchronizing the source and the destination volumes.
Protecting data on FlexVol volumes by using SnapVault backups

You can create a SnapVault relationship between FlexVol volumes and assign a SnapVault policy to it to create a SnapVault backup. A SnapVault backup contains a set of read-only backup copies, located on a secondary volume.

**Note:** SnapVault relationships are supported on clusters running Data ONTAP 8.2 or later. SnapVault relationships are not supported on Infinite Volumes.

A SnapVault backup differs from a set of Snapshot copies or a set of mirror copies on a destination volume. In a SnapVault backup, the data in the secondary volume is periodically updated to keep the data in the secondary volume up to date with changes made in the primary data.

Creating SnapVault backups on FlexVol volumes

You configure a SnapVault relationship and assign a SnapVault policy to the relationship to establish a SnapVault backup.

**About this task**

The commands you use to create SnapVault backups are the same commands you use to create data protection mirrors. You must have a SnapVault license before you can create and manage SnapVault relationships.

**Related concepts**

*Supported data protection deployment configurations* on page 36

**Related references**

*Commands for managing SnapMirror relationships* on page 102

**Related information**

*Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators*

Guidelines for creating SnapVault relationships on FlexVol volumes

You must follow certain guidelines when creating SnapVault relationships.

**General guidelines for creating a SnapVault relationship**

The following guidelines apply to all SnapVault relationships:
• A volume can be in multiple relationships, either as the secondary or the primary.
A volume can be the primary for multiple secondaries and also the secondary for another primary.

• A volume can be the secondary for only one SnapVault relationship.

• You cannot configure SnapVault relationships from multiple primary volumes to a single
SnapVault secondary volume.
For example, if you want to back up an entire Storage Virtual Machine (SVM) to a SnapVault
backup, then you must create a separate secondary volume for each volume in the SVM, and
create a separate SnapVault relationship for each primary volume.

• You can configure SnapVault relationships to be used simultaneously with data protection mirror
relationships.

• Primary or secondary volumes cannot be 32-bit volumes.

• The primary of a SnapVault backup should not be a FlexClone volume.
The relationship will work, but the efficiency provided by FlexClone volumes is not preserved.

• Primary and secondary volumes must have the same \texttt{vol\_lang} settings.

• After you establish a SnapVault relationship, you cannot change the language assigned to the
secondary volume.

• A SnapVault relationship can be only one leg of a cascade chain.

• After you establish a SnapVault relationship, you can rename primary or secondary volumes.
If you rename a primary volume, it can take a few minutes for the relationship to recover from the
name change.

\textbf{Guidelines for creating a SnapVault relationship to a prepopulated secondary}

Typically, you create a prepopulated secondary volume when you copy a primary volume to a
secondary volume using tape. This process is known as \textit{tape seeding}.

If the SnapVault secondary volume already contains data, you can create a SnapVault relationship by
using the \texttt{snapmirror resync} command with the [-type XDP] option.

Before creating a SnapVault relationship to a prepopulated secondary, you must use the following
guidelines:

• The primary and secondary volumes must have a common Snapshot copy.

• Snapshot copies on the secondary volume that are newer than the common Snapshot copy are
deleted.
When a SnapVault relationship is created, all Snapshot copies on the secondary volume that are
more recent than the common Snapshot copy and that are not present on the primary volume are
deleted. Newer Snapshot copies on the primary volume that match the configured SnapVault
policy are transferred to the secondary volume according to the SnapVault policy.
You can use the -preserve option to keep any Snapshot copies that are more recent than the common Snapshot copy on the SnapVault secondary volume and that are not present on the primary volume. When you use the -preserve option, data on the secondary volume is logically made the same as the common Snapshot copy. All newer Snapshot copies on the primary volume that match the SnapVault policy are transferred to the secondary volume. This option is useful when the latest common Snapshot copy is deleted from the primary volume but another, older common Snapshot copy between the primary and secondary volumes still exists.

**SnapVault updates fail if destination aggregate is full**

If the aggregate that contains the secondary volume of the SnapVault backup is out of space, SnapVault updates fail, even if the secondary volume has space.

Ensure that there is free space in the aggregate and the volume for transfers to succeed.

**Prepopulated SnapVault secondary scenarios**

There are several ways in which a secondary FlexVol volume for a SnapVault relationship might be prepopulated with data.

The following are some scenarios in which a SnapVault secondary might be populated before a SnapVault relationship is created:

- You used tape backups to provide a baseline transfer to a secondary volume.
  
  **Note:** Disk seeding to establish a baseline is not supported for SnapVault backups.

- A SnapVault primary volume in a cascade becomes unavailable.
  You have a data protection mirror relationship between a source and a destination volume (a mirror relationship from A to B) and a SnapVault relationship between the secondary destination volume and a tertiary destination volume (a SnapVault relationship from B to C). The backup cascade chain is A mirror to B and B SnapVault backup to C. If the volume on B becomes unavailable, you can configure a SnapVault relationship directly from A to C. The cascade chain is now A SnapVault backup to C, where C was prepopulated with data.

- You created a SnapVault relationship between two flexible clones.
  You create a SnapVault relationship between two flexible clones for which their respective parent volumes are already in a SnapVault relationship.

- You extended the SnapVault backup protection beyond 251 Snapshot copies.
  To extend the SnapVault backup protection beyond the volume limit of 251 Snapshot copies, you can clone the secondary volume. The original SnapVault secondary volume is the parent volume for the new flexible clone.

- You restored data from a SnapVault secondary to a new primary volume.
You have a SnapVault relationship from A to B. A becomes inaccessible, so the SnapVault secondary volume (B) is used for a baseline restore operation to a new SnapVault secondary volume (C).

After the restore operation finishes, you establish a new SnapVault relationship from the new secondary volume (C), which now becomes the primary volume, and the original SnapVault secondary volume (in other words, C to B). The disk to disk backup relationship is now C to B, where B was prepopulated with data.

- You deleted the base Snapshot copy from the primary volume.
- You deleted the base Snapshot copy from the primary volume that was used for a SnapVault transfer, but another, older Snapshot copy exists that is common between the primary and secondary volumes.

### Creating a SnapVault backup in an empty FlexVol volume

You can protect data that has long-term storage requirements on a FlexVol volume by replicating selected Snapshot copies to a SnapVault backup on another Storage Virtual Machine (SVM) or cluster.

**Before you begin**

- You must have cluster administrator privileges to perform this task for a cluster, and SVM administrator privileges to perform this task for an SVM.

- If the primary and secondary volumes are in different SVMs, the SVMs must be in a peer relationship.
  - If the primary and secondary volumes are in different clusters, the clusters must be in a peer relationship.
  - For information about creating peer relationships, see the *Clustered Data ONTAP System Administration Guide for Cluster Administrators*.

- A SnapVault policy must exist.
  - You must either create one or accept the default SnapVault policy (named XDPDefault) that is automatically assigned.
  - Only Snapshot copies with the labels configured in the SnapVault policy rules are replicated in SnapVault operations.

- The Snapshot policy assigned to the primary volume must include the snapmirror-label attribute.
  - You can create a new Snapshot policy by using the `volume snapshot policy create` command, or you can modify an existing policy by using the `volume snapshot policy modify` command to set the snapmirror-label attribute for the set of Snapshot copies that you want backed up to the SnapVault secondary volume. Other Snapshot copies on the primary volume are ignored by the SnapVault relationship.

- Your work environment must be able to accommodate the time it might take to transfer a baseline Snapshot copy with a large amount of data.
Steps

1. On the destination SVM, create a SnapVault secondary volume with a volume type DP.
   For information about creating a FlexVol volume, see the Clustered Data ONTAP System Administration Guide for Cluster Administrators.

2. Create a schedule that Data ONTAP uses to update the SnapVault relationship by using the job schedule cron create command.
   For more information, see Scheduling SnapMirror transfers on page 115.

Example

The following command creates a schedule that runs on the weekend at 3 a.m.:

```
vserverB::> job schedule cron create -name weekendcron -dayofweek "Saturday, Sunday" -hour 3 -minute 0
```

3. On the source SVM, create a Snapshot copy policy that contains the schedule of when Snapshot copies with snapmirror-label attributes occur by using the volume snapshot policy create command with the snapmirror-label parameter, or use the default Snapshot copy policy called default.

Example

The following command creates a Snapshot copy policy called “keep-more-snapshot”:

```
vserverB::> snapshot policy create -vserver vs1 -policy keep-more-snapshot -enabled true -schedule1 weekly -count1 2 -prefix1 weekly -snapmirror-label1 weekly -schedule2 daily -count2 6 -prefix2 daily -snapmirror-label2 daily -schedule3 hourly -count3 8 -prefix3 hourly -snapmirror-label3 hourly
```

The name specified in the snapmirror-label attribute for the new Snapshot policy must match the snapmirror-label attribute that is specified in the SnapVault policy. This ensures that all subsequent Snapshot copies created on the primary volume have labels that are recognized by the SnapVault policy.

The default Snapshot copy policy has two snapmirror-label attributes associated with it, daily and weekly.

4. Create a SnapVault policy by using the snapmirror policy create command, or use the default SnapVault policy called XDPDefault.

Example

The following command creates a SnapVault policy called “vserverB-vault-policy”:
5. Add the snapmirror-label attribute to the SnapVault policy you created by using the `snapmirror policy add-rule` command.

If you used the XDPDefault SnapMirror policy, you do not need to perform this step. The XDPDefault SnapVault policy uses the daily and weekly snapmirror-label attributes specified by the default Snapshot copy policy.

**Example**

The following command adds a rule to the vserverB-vault-policy to transfer Snapshot copies with the “weekly” snapmirror-label attribute and to keep 40 Snapshot copies:

```
vserverB::> snapmirror policy add-rule -vserver vserverB -policy vserverB-vault-policy -snapmirror-label weekly -keep 40
```

6. On the destination SVM, create a SnapVault relationship and assign a SnapVault policy by using the `snapmirror create` command with the `type XDP` parameter and the `policy` parameter.

In the path specification, a single name is interpreted as a volume name in the SVM from which the command is executed. To specify a volume in a different SVM or in a different cluster, you must specify the full path name.

**Example**

The following command creates a SnapVault relationship between the primary volume “srcvolA” on SVM “vserverA” and the empty secondary volume “dstvolB” on SVM “vserverB”. It assigns the SnapVault policy named “vserverB-vault-policy” and uses the “weekendcron” schedule:

```
vserverB::> snapmirror create -source-path vserverA:srcvolA -destination-path vserverB:dstvolB -type XDP -policy vserverB-vault-policy -schedule weekendcron
```

7. On the destination SVM, initialize the SnapVault relationship by using the `snapmirror initialize` command to start a baseline transfer.

The command creates a new Snapshot copy that is transferred to the secondary volume and used as a baseline for subsequent incremental Snapshot copies. The command does not use any Snapshot copies that currently exist on the primary volume.

**Note:** Creating a baseline for a large amount of data might take a while.

**Example**

The following command begins the relationship initialization by creating and transferring a baseline Snapshot copy to the destination volume “dstvolB” on SVM “vserverB”: 

```
vserverB::> snapmirror initialize -vserver vserverB -policy vserverB-vault-policy
```

---

**Protecting data on FlexVol volumes by using SnapVault backups**

---
Creating the SnapVault relationship of a mirror-SnapVault cascade

The SnapVault relationship of a mirror-SnapVault cascade requires a different configuration from a SnapVault relationship that is not a part of a mirror-SnapVault cascade.

Before you begin

- You must have cluster administrator privileges to perform this task for a cluster, and Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.
- If the primary and secondary volumes are in different SVMs, the SVMs must be in a peer relationship.
  - If the primary and secondary volumes are in different clusters, the clusters must be in a peer relationship.
  - For information about creating peer relationships, see the *Clustered Data ONTAP System Administration Guide for Cluster Administrators*.

About this task

The Snapshot copies that are exported to the mirror destination are ones that are created by Data ONTAP. These Snapshot copies are called “sm_created” Snapshot copies. Only these Snapshot copies are replicated from the mirror to the SnapVault backup. If the default SnapVault policy is used, the SnapVault secondary accumulates up to 251 “sm_created” Snapshot copies. The next Snapshot copy transferred after this limit is reached will be added and the oldest “sm_created” Snapshot copy will be rotated out. You can manage this retention and rotation behavior by adding a rule specifying the “sm_created” SnapMirror label to the default SnapVault policy.

Steps

1. On the destination SVM, create a SnapVault secondary volume with a volume type DP.
   - For information about creating a FlexVol volume, see the *Clustered Data ONTAP System Administration Guide for Cluster Administrators*.

2. Create a SnapVault policy by using the `snapmirror policy create` command, or use the default SnapVault policy called XDPDefault.
Example

This procedure uses the **XDPDefault** policy in the examples.

3. Add the `sm_created` snapmirror-label to the SnapVault policy by using the `snapmirror policy add-rule` command.

   Only the `sm_created` rule is observed. Any other rules associated with the SnapVault policy, such as the daily or weekly rule, are disregarded.

Example

The following command adds a rule to the **XDPDefault** policy to retain 40 `sm_created` Snapshot copies on the SnapVault secondary:

   ```bash
 vserverB::> snapmirror policy add-rule -vserver vserverC -policy XDPDefault -snapmirror-label sm_created -keep 40
   ```

4. On the destination SVM, create a SnapVault relationship and assign a SnapVault policy by using the `snapmirror create` command with the `type XDP` parameter and the `policy` parameter.

Example

The following command creates a SnapVault relationship between the primary volume `srcvolB` on SVM `vserverB` and the empty secondary volume `dstvolC` on SVM `vserverC`. It assigns the SnapVault policy named **XDPDefault**:

   ```bash
 vserverC::> snapmirror create -source-path vserverB:srcvolB -destination-path vserverC:dstvolC -type XDP -policy XDPDefault
   ```

5. On the destination SVM, initialize the SnapVault relationship by using the `snapmirror initialize` command to start a baseline transfer.

   **Note:** Creating a baseline for a large amount of data can take many hours.

Example

The following command begins the relationship initialization by creating and transferring a baseline Snapshot copy to the secondary volume `dstvolC` on SVM `vserverC`:

   ```bash
 vserverC::> snapmirror initialize -destination-path vserverC:dstvolC
   ```

Related tasks

*How a mirror-SnapVault cascade works* on page 40
Preserving a Snapshot copy on the primary source volume

In a mirror-SnapVault cascade, you must preserve a Snapshot copy on the primary source volume until it transfers to the secondary volume of the SnapVault backup. For example, you want to ensure that application-consistent Snapshot copies are backed up.

Before you begin

You must have created the mirror-SnapVault cascade.

Steps

1. Ensure that the Snapshot copy you want to preserve has a snapmirror-label by using the `volume snapshot show` command.

2. If the Snapshot copy does not have a snapmirror-label associated with it, add one by using the `volume snapshot modify` command.

Example

The following command adds a snapmirror-label called “exp1” to the Snapshot copy called “snapappa”:

```
clust1::> volume snapshot modify -volume vol1 -snapshot snapappa -snapmirror-label exp1
```

3. Preserve the Snapshot copy on the source volume by using the `snapmirror snapshot-owner create` command to add an owner name to the Snapshot copy.

Example

The following command adds ApplicationA as the owner name to the snap1 Snapshot copy in the testvol volume on the vs1 Storage Virtual Machine (SVM):

```
clust1::> snapmirror snapshot-owner create -vserver vs1 -volume vol1 -snapshot snapappa -owner ApplicationA
```

4. Update the destination volume of the data protection mirror relationship by using the `snapmirror update` command.

Alternatively, you can wait for the scheduled update of the data protection mirror relationship to occur.

5. Update the secondary volume of the SnapVault relationship to transfer the specific Snapshot copy from the SnapMirror destination volume to the SnapVault secondary volume by using the `snapmirror update` command with the `-source-snapshot` parameter.
6. Remove the owner name from the primary source volume by using the `snapmirror snapshot-owner delete` command.

Example

The following command removes ApplicationA as the owner name to the snap1 Snapshot copy in the testvol volume on the vs1 SVM:

```
clust1::> snapmirror snapshot-owner delete -vserver vs1 -volume vol1 -snapshot snapappa -owner ApplicationA
```

Creating a SnapVault backup in a prepopulated FlexVol volume

You can protect data that has long-term storage requirements on a FlexVol Volume by replicating selected Snapshot copies to a SnapVault backup on another Storage Virtual Machine (SVM) or cluster. The SnapVault secondary volume might contain data that already exists from a previous data protection mirror or SnapVault relationship or has been loaded from a tape backup.

Before you begin

- You must have cluster administrator privileges to perform this task for a cluster, and you must have SVM administrator privileges to perform this task for an SVM.

- If the primary and secondary volumes are in different SVMs, the SVMs must be in a peer relationship.
  If the primary and secondary volumes are in different clusters, the clusters must be in a peer relationship.
  For information about creating peer relationships, see the *Clustered Data ONTAP System Administration Guide for Cluster Administrators*.

- The secondary volume must be prepopulated with data.

- A SnapVault policy must exist.
  You must either create one or accept the default SnapVault policy (named `XDPDefault`) that is automatically assigned.
  The SnapVault policy configuration includes the `snapmirror-label` attribute that is used to select Snapshot copies on the primary volume and match Snapshot copies between the primary and secondary volumes. Only Snapshot copies with the labels configured in the SnapVault policy rules are replicated in SnapVault operations.

- The Snapshot policy assigned to the primary volume must include the `snapmirror-label` attribute.
  The name specified in the `snapmirror-label` attribute for the new Snapshot policy must match the `snapmirror-label` attribute that is specified in the SnapVault policy. This ensures that all subsequent Snapshot copies created on the primary volume have labels that are recognized by the SnapVault policy.
You can create a new Snapshot policy by using the `volume snapshot policy add-schedule`, or you can modify an existing Snapshot policy by using the `volume snapshot policy modify-schedule` command to set the `snapmirror-label` attribute for the set of Snapshot copies that you want replicated to the SnapVault secondary volume. Other Snapshot copies on the primary volume are ignored by the SnapVault relationship.

- Your work environment must be able to accommodate the time it might take to transfer a baseline Snapshot copy with a large amount of data.

**Step**

1. On the destination SVM, establish the relationship by using the `snapmirror resync` command and the `-type XDP` parameter.

   If the most recent common Snapshot copy between the primary and the secondary is deleted from the primary but there exists another, older common Snapshot copy, you can also use the `-preserve` option. This option performs a logical local rollback to make the data in the primary and the secondary the same, and then it replicates all newer Snapshot copies from the source that match the SnapVault policy.

**Example**

The following command creates a SnapVault relationship between the primary volume `srcvolA` on SVM `vserverA` and the prepopulated secondary volume `dstvolB` on SVM `vserverB`:

```
vserverB::> snapmirror resync -source-path vserverA:srcvolA -destination-path vserverB:dstvolB -type XDP
```

**Related concepts**

- Guidelines for creating SnapVault relationships on FlexVol volumes on page 130
- Prepopulated SnapVault secondary scenarios on page 132

**Related tasks**

- Creating a destination baseline using a tape backup on page 141

**Related references**

- Commands for managing SnapMirror and SnapVault policies on page 54
Creating a destination baseline using a tape backup

You can perform a baseline transfer from local tape copies to a SnapVault secondary volume to manage your bandwidth or timing constraints over a network.

Before you begin

• You must have cluster administrator privileges to perform this task for a cluster.
• You must have Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.
• The destination volume must not contain data.

About this task

This operation physically copies data from tape to one or more secondary volumes. When the operation finishes, the secondary volume contains all the Snapshot copies that existed on the primary volume at the time the tape copy was created.

Steps

1. Create a copy of the primary volume on the tape by using the `system smtape backup` command.
   For information about backing up and restoring from tape, see Performing tape seeding using `SMTape` on page 106.

2. Restore the data to the empty secondary volume from the tape copy.
   For information about backing up and restoring from tape, see Performing tape seeding using `SMTape` on page 106.

3. Initialize the SnapVault relationship by using the `snapmirror resync` command with the `--type XDP` parameter on the secondary volume, and enable incremental updates.

Converting a SnapVault relationship to a version flexible SnapMirror relationship

You can convert a SnapVault relationship to a version flexible SnapMirror relationship to better control the Snapshot copies you replicate and retain.

About this task

Converting from a SnapVault relationship to a version-flexible SnapMirror relationship requires only a change of policy with its associated rules and retention. What Data ONTAP does with existing Snapshot copies on the destination volume depends on how you set up the policy.
• If you set up the policy to replicate and retain only the latest SnapMirror created Snapshot copies, or if the policy applies to SnapVault and SnapMirror replication on the same volume, Data ONTAP does nothing to the current backup Snapshot copies on the destination volume. You must delete the Snapshot copies from the destination if you do not want them.

• If you set up the policy as a SnapMirror style of replication in which the policy indicates a symmetric Snapshot copy selection and retention, Data ONTAP deletes the backup Snapshot copies on the destination volume. Only the Snapshot copies that are present on the source volume are kept on the destination volume.

Steps

1. Create a policy that the version flexible SnapMirror relationship will use by using the snapmirror policy create command with the -type async-mirror or -type mirror-vault parameter.

Example

The following command creates a version flexible SnapMirror policy called “vserverB-DR-policy” that will be used for SnapMirror style disaster recovery in which only the SnapMirror created Snapshot copy is transferred:

```
cluster2::> snapmirror policy create -vserver vserverB -policy vserverB-DR-policy
 -policy-type async-mirror -comment "DR policy"
```

2. Apply the policy to the existing SnapVault relationship by using the snapmirror modify command with the -policy parameter.

Example

```
vs2::> snapmirror modify -destination-path vserverB:dstvolB -policy vserverB-DR-policy
```

3. Update the relationship, which is now a version flexible SnapMirror relationship, by using the snapmirror update command.

Example

```
vs2::> snapmirror update -destination-path vserverB:dstvolB
```
Converting a data protection destination to a SnapVault secondary

You convert a data protection destination volume to a SnapVault secondary volume after a tape seeding operation or after you lose a SnapVault secondary volume in a backup to disaster protection mirror cascade.

Before you begin

- You must have cluster administrator privileges to perform this task for a cluster.
- You must have Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.

About this task

In the case of tape seeding, after you transfer the data from the tape to the volume, the volume is a data protection destination volume.

In the case of a SnapVault secondary volume to disaster protection volume cascade, if the SnapVault secondary volume is lost, you can resume SnapVault protection by creating a direct relationship between the SnapVault primary volume and the disaster protection destination volume. You must make the disaster protection destination volume a SnapVault secondary volume to do this.

Steps

1. Break the data protection mirror relationship by using the `snapmirror break` command.
   The relationship is broken and the disaster protection volume becomes a read-write volume.

2. Delete the existing data protection mirror relationship, if one exists, by using the `snapmirror delete` command.

3. Remove the relationship information from the source SVM by using the `snapmirror release` command.
   This also deletes the Data ONTAP created Snapshot copies from the source volume.

4. Create a SnapVault relationship between the primary volume and the read-write volume by using the `snapmirror create` command with the `-type XDP` parameter.

5. Convert the destination volume from a read-write volume to a SnapVault volume and establish the SnapVault relationship by using the `snapmirror resync` command.
Managing backup and restore operations for SnapVault backups

You configure SnapVault relationships on FlexVol volumes to establish SnapVault backups. You manage SnapVault relationships to optimize the performance of the relationships.

Backing up from a Snapshot copy that is older than the base Snapshot copy

You might want to replicate a special, manually initiated Snapshot copy to the SnapVault backup. The Snapshot copy is one that is not in the sequence scheduled by the SnapVault policy assigned to the SnapVault relationship.

Before you begin

You must have cluster administrator privileges to perform this task for a cluster. You must have Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.

Step

1. Begin the backup transfer of the older Snapshot copy by using the `snapmirror update` command.

Example

The following command starts an out-of-order transfer of Snapshot copy SC3 from the source volume srcvolA on SVM vserverA and the secondary volume dstvolB on SVM vserverB:

```
vserverA::> snapmirror update -source-path vserverA:srcvolA -destination-path vserverB:dstvolB -snapshot SC3
```

Result

After the backup finishes, the transferred Snapshot copy becomes the base.

How an out-of-order Snapshot copy transfer works

The transfer of a Snapshot copy that does not conform to the usual sequence scheduled by a SnapVault policy is an out-of-order Snapshot copy transfer.

In SnapVault relationships, Snapshot copies are selected and transferred from the primary volume to the secondary volume, according to the configured SnapVault policy. Only Snapshot copies that are newer than the common Snapshot copy between the primary and secondary volume are transferred. However, you can use the `snapmirror update` command to initiate the transfer of a Snapshot copy that was not originally selected and transferred.
When you initiate an out-of-order transfer, an older Snapshot copy is used to establish the base. To avoid subsequent transfers of Snapshot copies that already exist on the SnapVault secondary volume, the list of Snapshot copies that are selected for transfer in this update cycle are reconciled against the Snapshot copies that are already present on the secondary volume. Snapshot copies that are already present on the secondary volume are discarded from the transfer list.

**Example of a new base that is established from an out-of-order Snapshot copy transfer**

In this example, the SnapVault policy has a schedule in which only the even-numbered Snapshot copies on the primary volume are transferred to the secondary volume. Before the out-of-order transfer begins, the primary volume contains Snapshot copies 2 through 6; the secondary volume contains only the even-numbered Snapshot copies (noted as “SC” in the figures). Snapshot copy 4 is the common Snapshot copy that is used to establish the base, as shown in the following figure:

After Snapshot copy 3 is transferred to the secondary volume, out of order, it becomes the new common Snapshot copy that is used to establish the base, as shown in the following figure:
**Note:** Although Snapshot copy 3 is now the base, the exported Snapshot copy is still Snapshot copy 4.

When Snapshot copies are selected for subsequent updates according to the SnapVault policy, the policy selects Snapshot copy 4 and Snapshot copy 6 for transfer to the secondary volume. When the transfer list is reconciled, Snapshot copy 4 is removed from the transfer list because it already exists on the secondary volume. Only Snapshot copy 6 is transferred, which becomes the new common Snapshot copy that is used to establish the base, as shown in the following figure:
Example of SnapVault transfer behavior with an out-of-order Snapshot copy transfer

In this example, Data ONTAP created two SnapVault-labeled Snapshot copies, you made a user-created Snapshot copy, and then more SnapVault-labeled Snapshot copies were created. The order of Snapshot copies made would appear as shown in the following figure:

![Diagram showing the order of Snapshot copies](image)

You perform an out-of-order Snapshot transfer using the user-created Snapshot copy, which establishes that Snapshot copy as the new base Snapshot copy, as shown in the following figure:

![Diagram showing the new base Snapshot copy](image)

When the next SnapVault scheduled transfer occurs, only the SnapVault labeled Snapshot copies made after the user-created Snapshot copy are transferred. This occurs because the Snapshot copies created between the previous base Snapshot copy and the current base Snapshot copy are not transferred.
Back up FlexVol volumes that contain the maximum limit of Snapshot copies

To work around the limit of 251 Snapshot copies per volume, you can create a new destination volume clone, then establish a SnapVault relationship with the new clone.

**Before you begin**

You must have cluster administrator privileges to perform this task for a cluster. You must have Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.

**About this task**

Creating a new SnapVault relationship to a new volume clone enables you to continue SnapVault protection with minimum disruption on the clone volume and without starting a new baseline transfer. Because the source clone and the volume clone share the latest common Snapshot copy, subsequent updates are performed as usual, according to the policy assigned to the SnapVault relationship.

**Steps**

1. Quiesce the SnapVault relationship between the primary volume and the secondary volume by using the `snapmirror quiesce` command.

   This step prevents updates from starting until after the task is complete.

2. Verify that there are no active transfers on the relationship by using the `snapmirror show` command.

   The Relationships field should be **Idle**.
3. Create a volume clone based on the most recent common Snapshot copy between the SnapVault primary volume and the SnapVault secondary volume by using the `volume clone create` command with the `-type DP` parameter.

4. Establish the SnapVault relationship between the primary volume and the newly created secondary volume clone by using the `snapmirror resync` command and the `-type XDP` parameter.

5. Delete the SnapVault relationship between the primary volume and the original SnapVault secondary volume by using the `snapmirror delete` command.

Managing the backup of a copied source volume

If you use the `volume copy` command to copy the primary volume of a SnapVault relationship to a different volume, Data ONTAP does not copy SnapMirror labels for Snapshot copies, and you lose the capability to back up from the primary volume copy.

**About this task**

You must add the SnapMirror labels back before you can back up the volume copy.

**Step**

1. Add the SnapMirror labels to the copied volume by using the `volume snapshot modify` command or by using the `snapmirror update -s` command.

Guidelines for restoring the active file system

The restore operation from a SnapVault backup copies a single, specified Snapshot copy from a SnapVault secondary volume to a specified volume. Restoring a volume from a SnapVault secondary volume changes the view of the active file system but preserves all earlier Snapshot copies in the SnapVault backup.

Before restoring a volume, you must shut down any application that accesses data in a volume to which a restore is writing data. Therefore, you must dismount the file system, shut down any database, and deactivate and quiesce the Logical Volume Manager (LVM) if you are using an LVM.

The restore operation is disruptive. When the restore operation finishes, the cluster administrator or Storage Virtual Machine (SVM) administrator must remount the volume and restart all applications that use the volume.

The restore destination volume must not be the destination of another mirror or the secondary of another SnapVault relationship.

You can restore to the following volumes:

- Original source volume
  You can restore from a SnapVault secondary volume back to the original SnapVault primary volume.
• New, empty secondary volume
You can restore from a SnapVault secondary volume to a new, empty secondary volume. You must first create the volume as a data protection (DP) volume.

• New secondary that already contains data
You can restore from a SnapVault secondary volume to a volume that is prepopulated with data. The volume must have a Snapshot copy in common with the restore primary volume and must not be a DP volume.

Guidelines for restoring LUNs in SAN environments

The restore operation from a SnapVault backup copies a single, specified LUN from a SnapVault secondary volume to a specified volume. Restoring a LUN from a SnapVault secondary volume changes the view of the active system on the volume to which data is being restored, preserving all earlier Snapshot copies.

The following guidelines apply only to SAN environments:

• You can restore a single file or single LUN from a SnapVault secondary volume by using the NetApp OnCommand management software online management tools.

• When LUNs are restored to existing LUNs, new access controls do not need to be configured. You must configure new access controls for the restored LUNs only when restoring LUNs as newly created LUNs on the volume.

• If LUNs on the SnapVault secondary volume are online and mapped before the restore operation begins, they remain so for the duration of the restore operation and after the operation finishes.

• The host system can discover the LUNs and issue non-media access commands for the LUNs, such as inquiries or commands to set persistent reservations, while the restore operation is in progress.

• You cannot create new LUNs in a volume during a restore operation with the `lun create` command.

• Restore operations from tape and from a SnapVault backup are identical.

• You cannot restore a single LUN from a SnapVault secondary volume that is located on a system that is running in 7-Mode.

For more information about backing up and restoring data in a SAN environment, see the *Clustered Data ONTAP SAN Administration Guide*.

How restore operations work from a SnapVault backup

A restore operation from a SnapVault backup consists of a series of actions performed on a temporary restore relationship and on the secondary volume.

During a restore operation, the following actions occur:
1. A new temporary relationship is created from the restore source (which is the original SnapVault relationship secondary volume) to the restore destination. The temporary relationship is a restore type (RST). The `snapmirror show` command displays the RST type while the restore operation is in progress. The restore destination might be the original SnapVault primary or might be a new SnapVault secondary.

2. During the restore process, the restore destination volume is changed to read-only.

3. When the restore operation finishes, the temporary relationship is removed and the restore destination volume is changed to read-write.

**Restoring a volume from a SnapVault backup**

If the data on a volume becomes unavailable, you can restore the volume to a specific time by copying a Snapshot copy in the SnapVault backup. You can restore data to the same primary volume or to a new location. This is a disruptive operation.

**Before you begin**

- You must have cluster administrator privileges to perform this task for a cluster.
- You must have Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.
- CIFS traffic must not be running on the SnapVault primary volume when a restore operation is running.

**About this task**

This task describes how to restore a whole volume from a SnapVault backup. To restore a single file or LUN, you can restore the whole volume to a different, non-primary volume, and then select the file or LUN, or you can use the NetApp OnCommand management software online management tools.

**Steps**

1. If the volume to which you are restoring has compression enabled and the secondary volume from which you are restoring does not have compression enabled, disable compression.
   
   You disable compression to retain storage efficiency during the restore.

2. Restore a volume by using the `snapmirror restore` command.
Example

```bash
vs1::> snapmirror restore -destination-path
 vs1:vol1
 -source-path vs2:vol1_dp_mirror2 -source-snapshot
 snap3
 Warning: All data newer than Snapshot copy snap6 on volume
 vs1:vol1
 will be deleted.

 Do you want to continue? {y|n}:
 y

 [Job 34] Job is queued: snapmirror restore from source
 vs2:vol1_dp_mirror2 for the snapshot snap3.
```

For more information about the `snapmirror restore` command, see the man pages.

3. If the volume had quotas before the restore operation, activate the quotas on the restored volume by using the `volume quota modify` command with the `-state` parameter.

   Quotas are not turned on when you restore a volume.

4. Remount the restored volume and restart all applications that use the volume.

5. If you previously disabled compression, reenable compression on the volume.

Related concepts

- Guidelines for restoring the active file system on page 149
- Guidelines for restoring LUNs in SAN environments on page 150
- How restore operations work from a SnapVault backup on page 150

Restoring a single file or LUN

You can restore a single file or LUN or a set of files or LUNs from a Snapshot copy in a SnapVault secondary volume to the active file system of a primary volume. You can restart a failed or aborted single file or LUN restore operation by reissuing the `snapmirror restore` command.

Before you begin

- The primary volume must be a read/write volume.
- The primary volume must not be the destination of a data protection mirror relationship. However, the primary volume can be the source volume of a data protection mirror relationship.
- The secondary and primary volumes must not be the source or destination of a load-sharing mirror relationship.
However, the secondary volume can be the source volume of a data protection mirror relationship and the secondary volume in other single file or LUN restore operations.

- Source path of each file or LUN that is copied from the Snapshot copy must be available. Each file or LUN on the secondary volume is copied to the same path in the active file system of the primary volume unless a different destination path is specified.

**About this task**

Multiple concurrent single file or LUN restore operations cannot be performed on the primary volume (to which file or LUNs are restored) if the volume is already in a single file or LUN restore operation.

An incremental restore occurs if the SnapVault secondary volume and the primary volume have common Snapshot copies and the file or LUN in the Snapshot copy on the primary volume is a different version from the file or LUN that is being restored. Otherwise, a baseline restore occurs.

During a baseline restore, one of the following occurs:

- If the restored file or LUN does not exist on the primary volume, then a new file or LUN is created on the primary volume.
  
  The data from the file or LUN on the SnapVault secondary volume is copied to the new file or LUN on the primary volume.

- If the restored file or LUN exists on the primary volume, then the data from the file or LUN in the SnapVault secondary volume replaces the data on the existing file or LUN in the primary volume.

**Steps**

1. Use the `snapmirror restore` command with the `-source-snapshot` and `-file-list` parameters to restore a single file or LUN or a set of files or LUNs from a Snapshot copy in the SnapVault secondary volume to the primary volume.

**Example**

The following command restores the files `file1` and `file2` from the Snapshot copy `snap1` in the SnapVault secondary volume `secondary1` to the same location of the active file system on the primary volume `primary1`:

```
vserverA::> snapmirror restore -source-path vserverB:secondary1 -destination-path vserverA:primary1 -source-snapshot snap1 -file-list /dir1/file1,/dir2/file2
[Job 3479] Job is queued: snapmirror restore for the relationship with destination vserverA:primary1
```

**Example**

The following command restores the files `file1` and `file2` from the Snapshot copy `snap1` in the SnapVault secondary volume `secondary1` to a different location on the primary volume `primary1`:
The destination file path begins with the @ symbol followed by the path of the file from the root of the active file system of the primary volume. In this example, file1 is restored to @/dir1/ file1.new and file2 is restored to @/dir2.new/file2 on primary1.

Example

The following command restores the files file1 and file3 from the Snapshot copy snap1 in the SnapVault secondary volume secondary1 to different locations on the primary volume primary1, and restores file2 from snap1 to the same location in the active file system on primary1:

The file file1 is restored to @/dir1/file1.new and file3 is restored to @/dir3.new/file3

2. Optional: Use the snapmirror show command with the -file-restore-file-list parameter to display the files that you are restoring to keep an account of the files you are restoring.

The file list that is displayed uses the UTF-8 Unicode format.

3. If the single file or LUN restore operation fails or is aborted, rerun the snapmirror restore command on the primary volume.

How single file or LUN restore works

If a file or LUN is accidentally deleted, modified, or corrupted, you can restore such a file or LUN from a Snapshot copy to a specific point in time. You can copy the file or LUN to a new location.

In a single file or LUN restore operation, a set of files or LUNs or a single file or LUN from a single Snapshot copy is copied from one volume to another volume. The volume from which the file or LUN is restored need not be a SnapVault secondary volume, and the volume to which the file or LUN is restored is not restricted to the volume from which the files or LUNs were initially backed up. You can restore the file or LUN from a volume that is not a SnapVault secondary volume, and you can restore to a volume that is not the volume from which the files or LUNs were originally backed up.

In single file or LUN restore operation, the volumes need not have a common Snapshot copy. If a common Snapshot copy exists, an incremental restore is performed for those files or LUNs that exist in the common Snapshot copy.
Which data does not get restored during a single file or LUN restore

You need to be aware of the type of files that cannot be restored in a single file or LUN restore operation. Only regular files and LUNs and their associated streams can be restored in this operation. However, just a stream of a file or LUN by itself cannot be restored.

Certain types of files cannot be restored during a single file or LUN restore operation such as the following:

- Symbolic links
- Junctions
- Directories
  Only files within a directory can be restored.
- UNIX domain sockets
- Special files in UNIX systems such as a device, block, and character

Cleaning up a failed single file or LUN restore operation

If you do not want to restart a failed or aborted single file or LUN restore operation, you can clean up the partially restored files or LUNs on the primary volume.

About this task

In the following scenarios, LUNs with client I/O restriction are not removed and therefore you must manually remove the LUNs:

- When the -clean-up-failure parameter is used to clean up the partially restored files or LUNs.
  This parameter removes files with client I/O restriction.
- When a single file or LUN restore operation is aborted by using the -hard parameter.
  This parameter deletes the files being restored.

Choices

- If you want to remove a partially restored file on the primary volume, use the snapmirror restore with the -clean-up-failure parameter.
- If you want to remove a partially restored LUN on the primary volume, manually delete the LUN that has a client I/O restriction.
  1. Use the lun show command with the -restore-inaccessible parameter to view the LUN that has a client I/O restriction.
2. Use the `lun delete` command with the `-force-fenced` parameter to delete the LUN that has a client I/O restriction.

Managing a SnapVault-mirror cascade when the SnapVault backup is unavailable

You can manipulate relationships in a SnapVault-mirror cascade to maintain data backup relationships if the secondary of the SnapVault relationship becomes unavailable.

Before you begin

You must have a SnapVault-mirror cascade already configured.

About this task

The destination of the SnapVault relationship is the middle of the SnapVault-mirror cascade. If it becomes unavailable, you might have the following issues:

- You cannot update the SnapVault backup.
- You cannot update the mirror copy of the SnapVault secondary.

To manage this issue, you can temporarily remove the SnapVault secondary volume from the cascade and establish a SnapVault relationship to the mirror copy of the SnapVault secondary volume. When the unavailable secondary volume becomes available, you can reestablish the original cascade configuration.

In the following steps, the primary volume of the cascade is called “A”, the secondary volume of the SnapVault relationship is called “B”, and the destination volume of the data protection mirror relationship is called “C”.

Steps

1. Identify the current exported Snapshot copy on C by using the `volume snapshot show` command with the `-fields busy` parameter.

   The busy field is set to `true` for the exported Snapshot copy.

   **Example**
   
   ```
 volume snapshot show C -fields busy
   ```

2. Break the data protection mirror relationship by using the `snapmirror break` command on C.

   **Example**
   
   ```
 snapmirror break C
   ```

3. Create a dummy `snapmirror-label` on the exported Snapshot copy you previously identified by using the `volume snapshot modify` command with the `-snapmirror-label` parameter.

   ```
 volume snapshot modify C -snapmirror-label
   ```
If a snapmirror-label already exists for the exported Snapshot copy, you do not need to perform this step.

**Example**

```
volume snapshot modify -volume C -snapshot name -snapmirror-label exp1
```

4. Create a Snapshot owner on the exported Snapshot copy of C by using the `snapmirror` `snapshot-owner create` command.

   This prevents clustered Data ONTAP from deleting the Snapshot copy.

   **Example**

   ```
snapmirror snapshot-owner create -volume C -snapshot exported -owner admin1
   ```

5. Delete the data protection mirror relationship between B and C by using the `snapmirror delete` command.

   **Example**

   ```
snapmirror delete C
   ```

6. Create the SnapVault relationship between A and C by using the `snapmirror resync` command and the `-type XDP` parameter.

   **Example**

   ```
snapmirror resync -source-path A -destination-path C -type XDP
   ```

   You can maintain this SnapVault relationship until you recover the original SnapVault secondary volume. At that time, you can reestablish the original cascade relationship by using the steps that follow this step.

7. Delete the data protection mirror relationship between A and B by using the `snapmirror delete` command.

8. Perform a disaster recovery resynchronization from C to B by using the `snapmirror resync` command.

   **Example**

   ```
snapmirror resync -source-path C -destination-path B
   ```

   This step copies from C to B, all of the Snapshot copies made after B became unavailable.

9. Identify the current exported Snapshot copy on B by using the `volume snapshot show` command with the `-fields busy` parameter.
Example

```
volume snapshot show B -fields busy
```

The `busy` field is set to `true` for the exported Snapshot copy.

10. Break the data protection mirror relationship by using the `snapmirror break` command on B.

Example

```
snapmirror break B
```

11. Create a dummy snapmirror-label on the exported Snapshot copy you previously identified by using the `volume snapshot modify` command with the `-snapmirror-label` parameter.

Example

```
volume snapshot modify -volume B -snapshot name -snapmirror-label exp2
```

If a snapmirror-label already exists for the exported Snapshot copy, you do not need to perform this step.

12. Create a Snapshot owner on the exported Snapshot copy of B by using the `snapmirror snapshot-owner create` command.

This prevents clustered Data ONTAP from deleting the Snapshot copy.

Example

```
snapmirror snapshot-owner create -volume B -snapshot exported -owner admin1
```

13. Delete the data protection mirror relationship between C and B by using the `snapmirror delete` command.

14. Perform a SnapVault resynchronization from A to B by using the `snapmirror resync` command and the `-type XDP` parameter.

Example

```
snapmirror resync -source-path A -destination-path B -type XDP
```

New Snapshot copies that meet the Snapshot policy of the SnapVault relationship are transferred from A to B.

15. Delete the data protection mirror relationship between A and C by using the `snapmirror delete` command.

16. Perform a disaster recovery resynchronization from B to C by using the `snapmirror resync` command.

This step copies from B to C, all of the Snapshot copies made after reestablishing the A to B relationship without deleting any Snapshot copies on C.
Example

snapmirror resync -source-path B -destination-path C

17. Remove the Snapshot copy owner from volumes B and C by using the snapmirror snapshot-owner delete command.

Example

snapmirror snapshot-owner delete -volume B -snapshot exported_snap

18. Remove SnapMirror labels that you created from volumes B and C by using the snapshot modify command.

Example

snapshot modify -volume B -snapshot exported_snap -snapmirror-label text

Example

snapshot modify -volume C -snapshot exported_snap -snapmirror-label text

Managing storage efficiency for SnapVault secondaries

SnapVault relationships preserve storage efficiency when backing up data from the primary volume to the secondary volume, with one exception: if post-process and optionally inline compression are enabled on the secondary volume, storage efficiency is not preserved for data transfers between the primary and secondary volumes.

Guidelines for managing storage efficiency for SnapVault backups

If both the primary and secondary volumes in a SnapVault relationship have storage efficiency enabled, then data transfers to the SnapVault secondary volume preserve storage efficiency. If the primary volume does not have storage efficiency enabled, you might want to enable storage efficiency only on the secondary volume.

Because SnapVault secondary volumes typically contain a large amount of data, storage efficiency on SnapVault secondary volumes can be very important.

If storage efficiency is enabled on the primary volumes

If the primary volume in a SnapVault relationship is enabled for storage efficiency, all data backup operations preserve the storage efficiency.
If storage efficiency is enabled only on the secondary volume

If the primary volume in a SnapVault relationship does not have storage efficiency enabled, you might want to enable storage efficiency for the secondary volume because it is likely to contain a large amount of data over time.

You can use the `volume efficiency` command to start a scan on the volume if there is already data on the volume from transfers. If this is a new relationship with no transfers, then there is no need to run the scan manually.

Changes to the volume’s efficiency schedule do not take effect for a SnapVault secondary volume. Instead, when storage efficiency is enabled, the SnapVault relationship manages the schedule. When a data transfer begins, the storage efficiency process automatically pauses until the transfer is finished, and then automatically begins again after the data transfer is complete. Because data transfers to a SnapVault secondary volume might include more than one Snapshot copy, the storage efficiency process is paused for the entire duration of the update operation. After the transfer is finished and the post-transfer storage efficiency process is complete, the last Snapshot copy created in the secondary volume is replaced by a new, storage-efficient Snapshot copy.

If the last Snapshot copy that is created in the secondary volume is locked before it can be replaced by a new, storage-efficient Snapshot copy, then a new, storage-efficient Snapshot copy is still created, but the locked Snapshot copy is not deleted. That Snapshot copy is deleted later during the storage-efficient cleanup process after a subsequent update to the SnapVault secondary volume and after the lock is released. A Snapshot copy in a SnapVault secondary volume might be locked because the volume is the source in another relationship, such as a data protection mirror relationship.

If the secondary volume has additional compression enabled, storage efficiency is not preserved

Storage efficiency on all data transfers in SnapVault relationships is not preserved when the secondary volume has additional compression enabled. Because of the loss of storage efficiency, a warning message is displayed when you enable compression on a SnapVault secondary volume. After you enable compression on the secondary volume, data transfers are no longer storage efficient. You can reenable storage efficiency on data transfers after you disable compression on the secondary volume.

Related tasks

*Enabling storage efficiency on a SnapVault secondary volume* on page 161
Enabling storage efficiency on a SnapVault secondary volume

If the primary volume does not have storage efficiency enabled, you can enable storage efficiency on a SnapVault secondary volume by enabling storage efficiency on the volume.

Before you begin

You must have cluster administrator privileges to perform this task for a cluster. You must have Vserver administrator privileges to perform this task for an SVM.

About this task

For information about increasing storage efficiency using deduplication and compression, see the Clustered Data ONTAP Logical Storage Management Guide.

Steps

1. Use the volume efficiency command with the -on parameter to enable storage efficiency.

2. If the volume already has data which you want to make storage efficient, use the volume efficiency command with the -start and -scan-old-data parameters to start a scan of the volume.

Related concepts

Guidelines for managing storage efficiency for SnapVault backups on page 159

Reenabling storage efficiency on a SnapVault destination volume

To reestablish storage-efficient data transfers after you disable compression for a SnapVault destination volume, you must manually enable storage efficiency on the volume. After you disable data compression, all data transfers continue to be physical transfers (storage efficiency is not preserved) until you manually reenable storage efficiency.

Before you begin

• You must have cluster administrator privileges to perform this task for a cluster.

• You must have Storage Virtual Machine (SVM) administrator privileges to perform this task for an SVM.

• Data compression on the SnapVault destination volume must have been enabled and then subsequently disabled.
Step

1. On the destination cluster of the SnapVault relationship, use the `snapmirror update` command with the `-enable-storage-efficiency` parameter.

   The command enables storage efficiency and begins processing a data transfer. The operation first enters the “preparing” state, during which the system might perform compression and uncompressed operations to achieve symmetry between the source and destination volumes. When symmetry is achieved, a storage-efficient Snapshot copy is transferred to the SnapVault destination.

   **Note:** Because the processing time for this transfer might take a longer time than usual, transfer progress is displayed as the percent complete instead of the number of bytes.
Data mirroring using SyncMirror

You can use SyncMirror to mirror aggregates, and thus provide increased data resiliency. SyncMirror removes single points of failure in connecting to disks or array LUNs.

Mirroring data using the SyncMirror feature

The SyncMirror feature is an optional feature of Data ONTAP that gives you the capability for real-time mirroring of data within a single aggregate.

SyncMirror provides for synchronous mirroring of data, implemented at the RAID level. You can use SyncMirror to create aggregates that consist of two copies of the same WAFL file system. The two copies, known as plexes, are simultaneously updated. Therefore, the copies are always identical. The two plexes are within a single aggregate.

The following provides information about the activities of SyncMirror:

- SyncMirror can be used to mirror aggregates.
- SyncMirror cannot be used to mirror FlexVol volumes. However, FlexVol volumes can be mirrored as part of an aggregate.

Related information

Clustered Data ONTAP 8.3 Logical Storage Management Guide
NetApp Documentation: Product Library A-Z

Advantages of using SyncMirror

A SyncMirror aggregate has two plexes. This setup provides a high level of data availability because the two plexes are physically separated.

For a system using disks, the two plexes are on different shelves connected to the system with separate cables and adapters. Each plex has its own collection of spare disks. For a system using array LUNs, the plexes are on separate sets of array LUNs, either on one storage array or on separate storage arrays.

Note: You cannot set up SyncMirror with disks in one plex and array LUNs in the other plex.

Physical separation of the plexes protects against data loss if one of the shelves or the storage array becomes unavailable. The unaffected plex continues to serve data while you fix the cause of the failure. Once fixed, the two plexes can be resynchronized.

Another advantage of mirrored plexes is faster rebuild time.
In contrast, if an aggregate using SnapMirror for replication becomes unavailable, you can use one of the following options to access the data on the SnapMirror destination (secondary):

- The SnapMirror destination cannot automatically take over the file serving functions. However, you can manually set the SnapMirror destination to allow read/write access to the data.
- You can restore the data from the SnapMirror destination to the primary (source).

An aggregate that is mirrored using SyncMirror requires twice as much storage as an unmirrored aggregate. Each of the two plexes requires an independent set of disks or array LUNs. For example, you require 2,880 GB of disk space to mirror a 1,440-GB aggregate—1,440 GB for each plex of the mirrored aggregate.

**How mirrored aggregates work**

Mirrored aggregates have two *plexes* (copies of their data), which use the SyncMirror functionality to duplicate the data to provide redundancy.

When a mirrored aggregate is created (or when a second plex is added to an existing unmirrored aggregate), Data ONTAP copies the data in the original plex (plex0) to the new plex (plex1). The plexes are physically separated (each plex has its own RAID groups and its own pool), and the plexes are updated simultaneously. This provides added protection against data loss if more disks fail than the RAID level of the aggregate protects against or there is a loss of connectivity, because the unaffected plex continues to serve data while you fix the cause of the failure. After the plex that had a problem is fixed, the two plexes resynchronize and reestablish the mirror relationship.

**Note:** The time for the two plexes to resynchronize can vary and depends on many variables such as aggregate size, system load, how much data has changed, and so on.

The disks and array LUNs on the system are divided into two pools: pool0 and pool1. Plex0 gets its storage from pool0 and plex1 gets its storage from pool1.

The following diagram shows an aggregate composed of disks with SyncMirror enabled and implemented. A second plex has been created for the aggregate, plex1. The data in plex1 is a copy of the data in plex0, and the RAID groups are also identical. The 32 spare disks are allocated to pool0 or pool1, 16 disks for each pool.
The following diagram shows an aggregate composed of array LUNs with SyncMirror enabled and implemented. A second plex has been created for the aggregate, plex1. Plex1 is a copy of plex0, and the RAID groups are also identical.
Requirements for using SyncMirror with disks

If you want to mirror aggregates, you need nodes that support the SyncMirror feature and an appropriate configuration of disk shelves.

The following are requirements for using SyncMirror:

• The nodes should support the SyncMirror feature.
• You must connect disk shelves in a configuration that supports mirrored aggregates.

Related information

Clustered Data ONTAP 8.3 MetroCluster Management and Disaster Recovery Guide
NetApp Hardware Universe

How SyncMirror works with array LUNs

For array LUN aggregates, SyncMirror creates two physically separated copies of the aggregate, just as it does for disks.

These copies of the aggregate, called plexes, are simultaneously updated; therefore, the two copies of the data are always identical. Data continues to be served if one copy becomes unavailable.

For array LUNs, the physical separation of the plexes protects against data loss if the following occurs:

• An array LUN fails.
  For example, a LUN failure can occur because of a double disk failure on the storage array.

• A storage array becomes unavailable.

• In a MetroCluster configuration, an entire site fails.
  The entire site might fail because of a disaster or prolonged power failure. If this situation occurs, the surviving site can take over the functions of the disaster site as a result of a switchover. Data is accessed on the plex of the surviving site.

Each of the two plexes must be on a separate set of array LUNs. In a MetroCluster configuration with Data ONTAP systems that use array LUNs, each plex must be on a separate set of LUNs on different storage arrays. For MetroCluster configurations with Data ONTAP systems that use both array LUNs and disks, the plexes for disks are separate from the plexes for array LUNs.

When SyncMirror is used in a setup other than a MetroCluster configuration, each of the plexes can be on the same storage array or on different storage arrays.

Plexes can be considered local or remote in the context of the storage array that is connected to the Data ONTAP system on which the aggregate is configured. For example, in MetroCluster
configurations, the plex at the local site is the local plex while the one at the remote site is the remote plex.

The following illustration shows the relationships of plexes and pools to an aggregate. One plex is associated with pool 0 and one plex is associated with pool 1. The local pool is pool 0 while the remote pool is pool 1. The remote plex is the mirror of the aggregate.

![Diagram of aggregate with plexes and pools]

**Requirements for setting up SyncMirror with array LUNs**

To set up SyncMirror with array LUNs, you must fulfill standard requirements for any SyncMirror deployment, plus a number of requirements that are unique to setting up SyncMirror with array LUNs. There are a few additional requirements specific to setting up SyncMirror for a MetroCluster configuration with array LUNs.

**Storage type considerations for mirroring**

When planning for mirroring of aggregates for systems that can use both array LUNs and disks, consider the following:

- You can mirror data only between the same types of storage. You cannot mirror an aggregate between a native disk shelf on a Data ONTAP system and a storage array.

- If your Data ONTAP system has disk shelves, you can mirror an aggregate with disks between two different disk shelves.
  The rules for setting up mirroring with disks are the same for FAS systems and V-Series systems.

- While setting up SyncMirror with array LUNs, you must follow the appropriate requirements because they are different from setting up SyncMirror with disks.

**Number and size of array LUNs needed**

SyncMirror requires twice as many array LUNs as you ordinarily would need for storage so you can create mirrored aggregates. The same number and size of array LUNs must be available in each set of array LUNs that you are going to use for the two plexes of the aggregate.
For example, assume that you have a 40 GB aggregate that is composed of four 10-GB LUNs, and you want to mirror it. You must have four 10-GB LUNs available in the local location and four 10-GB LUNs in the remote location to be able to mirror the aggregate.

If the LUNs are not the same size, the following occurs:

- If a LUN in the remote location is larger than the LUN in the local location, the mirror is created. However, space is wasted and cannot be reused. For example, if the array LUN in pool0 is 10 GB and the array LUN in pool0 is 20 GB, the mirror will be 10 GB (the pool0 LUN size.) The remaining 10 GB of space in the pool0 LUN is wasted and cannot be reused.

- If the local LUN is larger than the remote LUN, Data ONTAP does not allow creation of the mirror.
  For example, if the pool0 (local) array LUN is 20 GB and the pool0 array LUN is 10 GB, mirroring fails.

### Number of storage arrays needed for SyncMirror mirroring

For a MetroCluster configuration that uses array LUNs, you must use two separate storage arrays for the mirror. For SyncMirror that is not used in a MetroCluster configuration with array LUNs, you can use one or two storage arrays.

If you are using two storage arrays for mirroring, the requirements are as follows:

- Both storage arrays must be from the same vendor and from the same model family.
- The firmware version running on both the storage arrays must be the same.
- You must have two sets of LUNs—one set for the aggregate on the local storage array and another set of LUNs at the remote storage array for the mirror of the aggregate (the other plex of the aggregate).

If you are using only one storage array for mirroring, the requirements are as follows:

- The two sets of LUNs must be physically separated on the storage array.
- Each LUN must be from a different disk group (RAID group).

### Disk ownership assignment

You must assign all array LUNs that are used for the plexes of the aggregate to the same Data ONTAP system. This system owns the aggregate.

### Checksum consistency requirement

All array LUNs in both sets of LUNs that are used for the plexes of the aggregate must be the same checksum type.
SyncMirror pool assignment

You want the data mirrored exactly on the two storage arrays so that if one plex becomes unavailable, all data can continue to be served. How you assign array LUNs to SyncMirror pools determines how the array LUNs are distributed between the two storage arrays in the MetroCluster configuration.

For array LUNs, you must explicitly assign each array LUN to the local pool or the remote pool. To group the LUNs correctly, you must plan ahead so that you know which array LUNs are located on which storage array. Data ONTAP cannot determine this for you.

Specific requirements for a MetroCluster configuration that uses array LUNs

A MetroCluster configuration can preserve data only if volumes are mirrored. Unmirrored aggregates are not supported.

In addition, you must configure each plex to be on a separate set of array LUNs on different storage arrays.

For more information about a MetroCluster configuration that uses array LUNs, see the MetroCluster Installation and Configuration Guide.

Verification of pathing

Before you create your aggregate and mirror it, ensure that there are two paths to an array LUN for a given Data ONTAP system.

For more information about checking paths to array LUNs, see the Installation Requirements and Reference Guide.

Related concepts

SyncMirror pool assignment planning for array LUNs on page 169
Troubleshooting errors with SyncMirror pool assignment for array LUNs on page 172

Related information

Clustered Data ONTAP 8.3 MetroCluster Installation and Configuration Guide
FlexArray Virtualization Installation Requirements and Reference Guide

SyncMirror pool assignment planning for array LUNs

To set up SyncMirror with array LUNs, you must provide Data ONTAP information about which array LUNs are local and which array LUNs are remote.

For native disks, Data ONTAP automatically assigns a disk to the local pool or remote pool, as appropriate, or you can assign a disk to a pool. However, Data ONTAP cannot detect whether an array LUN is located on the local storage array (the local pool) or on the remote storage array (the remote pool). You must explicitly provide this information to Data ONTAP.
You want the data mirrored exactly the same on the two storage arrays so that if one plex becomes unavailable, all data can continue to be served. Your goal is to group the LUNs belonging to the storage arrays into two SyncMirror pools. One is the local pool and the other is the remote pool. Then, when you later create a mirrored aggregate, the LUNs for the same plex are derived from the same pool.

To group the LUNs, you must identify the appropriate SyncMirror pool for each array LUN you are using to create the two plexes of the aggregate. To specify the correct pool for each array LUN, you must know which array LUNs are located on which storage array. Data ONTAP cannot determine this for you.

You must ensure that each LUN group has the same number of LUNs and that the LUNs in each group are the same size.

If you are using one storage array (for example, in a setup other than a MetroCluster configuration), you must ensure that each LUN is from a different disk group (RAID group) on the storage array.

<table>
<thead>
<tr>
<th>Physical location of storage (assuming two storage arrays)</th>
<th>Pool to which the array LUNs need to be assigned</th>
<th>Command setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array LUN is on the storage array that is connected to the Data ONTAP system (the local storage array). The aggregate is created on this Data ONTAP system.</td>
<td>Local pool (pool0)</td>
<td>storage disk assign -pool 0</td>
</tr>
<tr>
<td>Array LUN is on the storage array whose LUNs are to be used to mirror the array LUNs in the aggregate. (This is the remote storage array.)</td>
<td>Remote pool (pool1)</td>
<td>storage disk assign -pool 1</td>
</tr>
</tbody>
</table>

**Note:** You use the `-pool` parameter of the `storage disk assign` command to specify the SyncMirror pool assignment. For more information about the command, see the man pages.

**Commands for creating and mirroring an array LUN aggregate**

You can either use a single command to create an array LUN aggregate and mirror it or use different commands to create the aggregate first and then mirror it.

**Important:** In a MetroCluster configuration, you must create a mirrored aggregate in a single step.

The commands for creating and mirroring array LUN aggregates are as follows:
To...
The command to use is...

Create an aggregate and mirror it in the same step

storage aggregate create
You can use the `–mirror` parameter and the `–diskcount` with this command to distribute the array LUNs into two plexes according to their count.
If you want to specify the array LUNs to include in the plexes, you can use the `–disklist` and the `–mirror-disklist` parameters.

Mirror an existing aggregate

storage aggregate mirror

Note: You cannot create an unmirrored aggregate for a MetroCluster configuration.

For more information about these commands, see the man pages.

**Common errors when setting up SyncMirror pools with array LUNs**

Your SyncMirror setup for array LUNs will not be successful if your local and remote pool assignments do not match the actual location of the array LUNs.

The following table shows the result of common errors in array LUN SyncMirror pool assignment:

<table>
<thead>
<tr>
<th>Error</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>You assign some array LUNs from the local storage array to the remote pool, or you assign some array LUNs from the remote storage array to the local pool.</td>
<td>You cannot create the mirror for the aggregate. The mirror creation process does not allow mixed pools within a plex.</td>
</tr>
<tr>
<td>You reverse the pool settings for each set of array LUNs. That is, you assign all the LUNs on the local storage array that you want to use for mirroring the aggregate to the remote pool <code>p1</code> and assign the set of LUNs on the remote storage array to the local pool <code>p0</code>.</td>
<td>Data ONTAP allows you to create the mirrored aggregate. If one storage array becomes unavailable, the wrong side of the plex is reported as unavailable. The data is still on the storage array that is available.</td>
</tr>
<tr>
<td>You plan to use two storage arrays for SyncMirror but you mistakenly create a mirrored aggregate with both pools from the same storage array.</td>
<td>Data is lost if the storage array fails.</td>
</tr>
</tbody>
</table>

**Related concepts**

*Requirements for setting up SyncMirror with array LUNs* on page 167
Troubleshooting errors with SyncMirror pool assignment for array LUNs

Troubleshooting errors with SyncMirror pool assignment for array LUNs

To troubleshoot SyncMirror pool assignment problems with array LUNs, you need to look at the back-end setup and Data ONTAP configuration. You need to determine whether the pool assignment in Data ONTAP matches the actual location of the LUNs.

If the plexes are on two different storage arrays, you need to know which of the two storage arrays a specific array LUN is located on. You must know how the storage array is cabled to the switch to be able to determine which array LUNs are from the local storage array and which array LUNs are from the remote storage array.

You can use a combination of the following methods to obtain information about where the LUNs are located with reference to the plexes:

- Look at switch zoning
- Look at the output of the following Data ONTAP command: `storage disk show -pool`

You can also correct the array LUN pool assignment errors as required.

Requirements when using mirrored aggregates

If you want to use mirrored aggregates to retain two copies of data, you can either create a new aggregate with two mirrored plexes, or, if you have an aggregate already, add a plex to the existing aggregate (a mirrored aggregate can have only two plexes).

The rules for the selection of disks or array LUNs for use as mirrored aggregates are as follows:

- Disks or array LUNs selected for each plex must be in different pools.
- The same number of disks or array LUNs must be in both plexes.
- Disks are selected first on the basis of equivalent bytes per sector (bps), and then on the basis of the size of the disk.
- If there is no equivalent-sized disk, Data ONTAP uses a larger-capacity disk and limits the size to make it identically sized.
- Data ONTAP names the plexes of the mirrored aggregate.

When creating an aggregate, Data ONTAP selects disks from the pool that has the most available disks. You can override this selection policy by specifying the disks to use.

Note: This is true only for clusters that are not MetroCluster clusters.

Related information

Clustered Data ONTAP 8.3 MetroCluster Management and Disaster Recovery Guide
# Commands for managing mirrored aggregates

There are specific Data ONTAP commands for managing mirrored aggregates.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a mirrored aggregate</td>
<td><code>storage aggregate create</code> with the -mirror parameter</td>
</tr>
<tr>
<td></td>
<td>You cannot use the -disklist or -mirror-disklist</td>
</tr>
<tr>
<td></td>
<td>parameters when using the -mirror parameter.</td>
</tr>
<tr>
<td>Convert an aggregate to a mirrored aggregate</td>
<td><code>storage aggregate mirror</code></td>
</tr>
<tr>
<td>Display status about a plex</td>
<td><code>storage aggregate plex show</code></td>
</tr>
<tr>
<td>Add disks to an aggregate</td>
<td><code>storage aggregate add-disks</code></td>
</tr>
<tr>
<td>Show resync status information for each plex</td>
<td><code>storage aggregate show-resync-status</code></td>
</tr>
<tr>
<td>Correct differences between plexes</td>
<td><code>storage aggregate verify</code> with the -action start and</td>
</tr>
<tr>
<td></td>
<td>-plex-to-fix parameters</td>
</tr>
<tr>
<td>Display the status of a plex comparison</td>
<td><code>storage aggregate verify</code> with the -action status</td>
</tr>
<tr>
<td>Start comparing plexes of a mirrored aggregate</td>
<td><code>storage aggregate verify</code> with the -action start</td>
</tr>
<tr>
<td>Stop comparing plexes</td>
<td><code>storage aggregate verify</code> with the -action stop</td>
</tr>
<tr>
<td>Resume comparing plexes</td>
<td><code>storage aggregate verify</code> with the -action resume</td>
</tr>
<tr>
<td>Temporarily suspend comparing plexes</td>
<td><code>storage aggregate verify</code> with the -action suspend</td>
</tr>
<tr>
<td>Bring a plex online</td>
<td><code>storage aggregate plex online</code></td>
</tr>
<tr>
<td>Take a plex offline</td>
<td><code>storage aggregate plex offline</code></td>
</tr>
<tr>
<td>Remove one of the plexes</td>
<td><code>storage aggregate plex delete</code></td>
</tr>
</tbody>
</table>

Related information

*Clustered Data ONTAP 8.3 Commands: Manual Page Reference*
Creating a mirrored aggregate

You can protect data on a new aggregate by creating it as a mirrored aggregate.

About this task

When you create an aggregate, you can specify for it to use SyncMirror. This ensures that the aggregate is a mirrored one from the start.

Steps

1. Show all of the available disks by using the `storage disk show` command with the `-fields` parameter and the `disk`, `pool`, and `container-type` fields.

Example

```
cluster1::> storage disk show -fields disk,pool,container-type
<table>
<thead>
<tr>
<th>disk</th>
<th>container-type</th>
<th>pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.1</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.2</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.3</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.4</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.5</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.6</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.7</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.8</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.9</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.10</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.11</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.12</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.13</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.14</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.15</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.16</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.17</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.18</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.19</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.20</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.21</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.22</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.23</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.0</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.1</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.2</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.3</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.4</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.5</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.1.6</td>
<td>spare</td>
<td>Pool0</td>
</tr>
</tbody>
</table>
```
### Data mirroring using SyncMirror

2. Separate disk shelves on different loops configured as pool 0 and pool 1 by using the `storage assign` command.

**Example**

```bash
cluster1::> storage disk assign -disk 1.1.* -pool 1

cluster1::> storage disk> show -fields disk,pool,container-type
```

<table>
<thead>
<tr>
<th>disk</th>
<th>container-type</th>
<th>pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.1</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.2</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.3</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.4</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.5</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.6</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.7</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.8</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.9</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.10</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.11</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.12</td>
<td>aggregate</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.13</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.14</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.15</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.16</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.17</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.18</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.19</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.20</td>
<td>spare</td>
<td>Pool0</td>
</tr>
<tr>
<td>1.0.21</td>
<td>spare</td>
<td>Pool0</td>
</tr>
</tbody>
</table>
```
1.0.22 spare Pool0
1.0.23 spare Pool0
1.1.0 spare Pool1
1.1.1 spare Pool1
1.1.2 spare Pool1
1.1.3 spare Pool1
1.1.4 spare Pool1
1.1.5 spare Pool1
1.1.6 spare Pool1
1.1.7 spare Pool1
1.1.8 spare Pool1
1.1.9 spare Pool1

disk container-type pool
-------- -------------- -----
1.1.10 spare Pool1
1.1.11 spare Pool1
1.1.12 spare Pool1
1.1.13 spare Pool1
1.1.14 spare Pool1
1.1.15 spare Pool1
1.1.16 spare Pool1
1.1.17 spare Pool1
1.1.18 spare Pool1
1.1.19 spare Pool1
1.1.20 spare Pool1
1.1.21 spare Pool1
1.1.22 spare Pool1
1.1.23 spare Pool1

48 entries were displayed.

3. Create the mirrored aggregate by using the `storage aggregate create` command with the `-mirror` parameter.

Example

```
cluster1::> storage aggregate create aggr4 -mirror -diskcount 10
```

4. Confirm that the mirrored aggregate was created by using the `storage aggregate show` command.

Example

```
cluster1::> storage aggregate show aggr4

Aggregate: aggr4
Checksum Style: block
Number Of Disks: 6
    Mirror: true
    Node: node1
Disks for First Plex: 1.0.9, 1.0.10, 1.0.11, 1.0.12, 1.0.13
Disks for Mirrored Plex: 1.1.12, 1.1.13, 1.1.14, 1.1.15, 1.1.16
```
1.1.15, 1.1.16

Partitions for First Plex: -
partitions for Mirrored Plex: -
Free Space Reallocation: on
HA Policy: sfo
Ignore Inconsistent: off
Space Reserved for Snapshot Copies: 5%
Aggregate Nearly Full Threshold Percent: 95%
Aggregate Full Threshold Percent: 98%
Block Checksum Protection: on
RAID Lost Write: on
Zoned Checksum Protection: -
Enable Thorough Scrub: off
Hybrid Enabled: false
Available Size: 696.0GB
Checksum Enabled: true
Checksum Status: active
Cluster: cluster1
Home Cluster ID: 74515f83-f398-11e2-bca8-123456789123
DR Home ID: -
DR Home Name: -
Has Mroot Volume: false
Has Partner Node Mroot Volume: false
Home ID: 2014941400
Home Name: node1
Total Hybrid Cache Size: 0B
Hybrid: false
Inconsistent: false
Is Aggregate Home: true
Max RAID Size: 16
Flash Pool SSD Tier Maximum RAID Group Size: -
Owner ID: 2014941400
Owner Name: node1
Used Percentage: 0%
Plexes: /aggr4/plex0,
/aggr4/plex1
RAID Groups: /aggr4/plex0/rg0 (block)
/aggr4/plex1/rg0 (block)
RAID Lost Write State: on
RAID Status: raid_dp, mirrored, normal
RAID Type: raid_dp
SyncMirror Resync Snapshot Frequency in Minutes: 60
Is Root: false
Space Used by Metadata for Volume Efficiency: 0B
Size: 698.0GB
State: online
Aggregate Type: aggr
Maximum Write Alloc Blocks: 0
Used Size: 2.02GB
Uses Shared Disks: false
UUID String: f9c49c6f-1821-4570-9d3f-b0178b180407
Number Of Volumes: 2
Is Flash Pool Caching: -
Is Eligible for the Balancer: false
State of the Aggregate Being Balanced: ineligible
Converting an aggregate to a mirrored aggregate

You can convert an existing aggregate to a mirrored aggregate to protect the data on the aggregate. You convert the aggregate to a mirrored aggregate by adding a plex to the aggregate.

Before you begin

The aggregate you are converting must have only one plex. This is because you add a plex to create a mirrored aggregate, and mirrored aggregates cannot have more than two plexes.

About this task

You can convert an aggregate to a mirrored aggregate in two ways:

- Manually determine which disks or array LUNs are available, and specify which ones to use. This method is best suited for when you know the disks or array LUNs to be used for the plex addition and want to specify those disks or array LUNs manually.

- Allow Data ONTAP to automatically use the disks or array LUNs that are available. This is the easiest method of adding a plex to an aggregate. If the aggregate that you want to mirror uses disks or array LUNs of different capacities, Data ONTAP can select disks or array LUNs that match the smallest capacity from a different pool. If there are not enough disks or array LUNs of that capacity in the pool, Data ONTAP selects higher-capacity disks or array LUNs and downsizes them.

Step

1. Add a plex to the aggregate:

<table>
<thead>
<tr>
<th>If you are using the...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual method</td>
<td>a. Use the <code>storage disk show</code> command to list the disks from which to choose.</td>
</tr>
<tr>
<td></td>
<td>b. Choose the correct number and size of disks or array LUNs in the list. The disks or array LUNs should be from a different pool than the pool that is already being used by the aggregate.</td>
</tr>
<tr>
<td></td>
<td>c. Use the <code>storage aggregate mirror</code> command with the <code>-mirror-disklist</code> parameter.</td>
</tr>
<tr>
<td></td>
<td>This step adds a plex to the aggregate, making it a mirrored aggregate.</td>
</tr>
<tr>
<td>Automatic method</td>
<td>Use the <code>storage aggregate mirror</code> command.</td>
</tr>
</tbody>
</table>
Example

The following command manually adds a plex to the aggregate aggrD with disks 7.1, 7.2, 7.3, 7.4, and 7.5 that you selected, which makes aggrD a mirrored aggregate:

```
storage aggregate mirror -aggregate aggrD -mirror-disklist 7.1, 7.2, 7.3, 7.4, 7.5
```

Example

The following command automatically adds a plex to the aggregate aggrE using disks that DataONTAP selected, which makes aggrE a mirrored aggregate:

```
storage aggregate mirror -aggregate aggrE
```

Related information

Clustered Data ONTAP 8.3 man page: storage disk show - Display a list of disk drives and array LUNs

Clustered Data ONTAP 8.3 man page: storage aggregate mirror - Mirror an existing aggregate

Clustered Data ONTAP 8.3 Physical Storage Management Guide

Converting a mirrored aggregate to an aggregate

You convert a mirrored aggregate to an (unmirrored) aggregate by removing a plex. You might do this if you want to stop mirroring the aggregate, or if there is a problem with the plex.

Steps

1. Take the selected plex offline by using the `storage aggregate plex offline` command.

2. Destroy the plex you took offline by using the `storage aggregate plex delete` command.

Result

After destroying the plex, Data ONTAP converts the disks or array LUNs used by the plex into hot spares.
Re-creating a mirrored aggregate after a plex failure

In case of a failure that causes a plex to fail, you can remove the plex from the mirrored aggregate, fix the problem, and then re-create it. You can also re-create the mirrored aggregate using a different set of disks or array LUNs, if the problem cannot be fixed.

Steps

1. Destroy the failed plex by using the `storage aggregate plex delete` command.

 Example

 The following command destroys `plex0` from the mirrored aggregate:

   ```
   cluster1:~> storage aggregate plex delete -aggregate aggr1 -plex plex0
   ```

2. Convert the aggregate to a mirrored aggregate by using the `storage aggregate mirror` command.

 Example

 The following command selects the disks and adds a plex to create mirrored aggregate `aggr1`:

   ```
   cluster1:~> storage aggregate mirror -aggregate aggr1
   ```

Related tasks

Converting an aggregate to a mirrored aggregate on page 178

Related information

Clustered Data ONTAP 8.3 man page: `storage aggregate plex offline` - Offline a plex
Clustered Data ONTAP 8.3 man page: `storage aggregate plex delete` - Delete a plex
Clustered Data ONTAP 8.3 man page: `storage aggregate mirror` - Mirror an existing aggregate

How disks are assigned to plexes

You need to understand how Data ONTAP assigns disks to plexes to configure your disk shelves and host adapters.

When a mirrored aggregate is created, Data ONTAP uses spare disks from two disk pools: pool0 and pool1.

When assigning a disk to a pool, Data ONTAP determines the shelf for the disk and ensures that the disks in pool0 are from different shelves than the disks in pool1. Disk pools must be physically separate to ensure high availability of the mirrored aggregate.
Disks from pool0 are used to create plex0, while disks from pool1 are used to create plex1.

Plexes local to the host node in an HA pair must be connected to the disk pool named pool0. pool0 consists of the storage attached to host adapters in slots 3 through 7.

Note: Pool rules for MetroCluster configurations that use switches are different.

Related information

NetApp Hardware Universe

The states of a plex

A plex can either be in an online state or in an offline state. In the online state, the plex is available for read or write access and the contents of the plex are current. In an offline state, the plex is not accessible for read or write.

An online plex can be in the following states.

- Active—The plex is available for use.
- Adding disks or array LUNs—Data ONTAP is adding disks or array LUNs to the RAID group or groups of the plex.
- Empty—The plex is part of an aggregate that is being created and Data ONTAP needs to zero out one or more of the disks or array LUNs targeted to the aggregate before adding the disks to the plex.
- Failed—One or more of the RAID groups in the plex failed.
- Inactive—The plex is not available for use.
- Normal—All RAID groups in the plex are functional.
- Out-of-date—The plex contents are out of date and the other plex of the aggregate has failed.
- Resyncing—The plex contents are being resynchronized with the contents of the other plex of the aggregate.

Addition of disks or array LUNs to a mirrored aggregate

You can add disks or array LUNs to a mirrored aggregate by using one of the following methods.

- Allow Data ONTAP to select the disks or array LUNs.
- Select the disks or array LUNs manually.
Preview the disks or array LUNs Data ONTAP has selected. You can use the same selection or modify the selection.

Rules for adding disks to a mirrored aggregate

You need to follow certain rules regarding the distribution and size of disks when adding disks to a mirrored aggregate.

- The number of disks must be even, and the disks must be equally divided between the two plexes.
- The disks for each plex must come from different disk pools.
- The disks that you add must have equivalent bytes per sector (bps) sizes.

When adding new disks to a RAID group, the utilization of the new disks depends on the RAID level used. If the storage capacity of the new disks is more than the disks already in the RAID group, the larger-capacity disks might be downsized to suit the RAID group.

- RAID-DP: Larger-capacity disks are downsized to size of parity disks.
- RAID-4: Larger-capacity disks can replace the parity disks.

Rules for adding array LUNs to a mirrored aggregate

When you add array LUNs to a mirrored aggregate, you need to ensure that the number and size of the array LUNs in the two plexes remain identical.

You must consider the following when adding array LUNs to a mirrored aggregate:

- You must add an even number of array LUNs to the mirrored aggregate.
- You must distribute the array LUNs equally between the two plexes.
- The array LUNs for each plex must belong to a different LUN group. Do not mix LUNs from the two LUN groups in the same plex.
- All array LUNs in the mirrored aggregate must be the same checksum type.

Related concepts

Requirements for setting up SyncMirror with array LUNs on page 167
Common errors when setting up SyncMirror pools with array LUNs on page 171

Increasing the size of an aggregate that uses physical drives

You can add disks or array LUNs to an aggregate so that it can provide more storage to its associated volumes.

Before you begin

You must understand the following concepts:
The requirement to add disks or array LUNs owned by the same system and pool

For aggregates composed of disks, you must understand the following:

- Benefits of keeping your RAID groups homogeneous for disk size and speed
- Which types of disks can be used together
- Checksum rules when disks of more than one checksum type are in use
- How to ensure that the correct disks are added to the aggregate (the disk addition operation cannot be undone)
- How to add disks to aggregates from heterogeneous storage
- Minimum number of disks to add for best performance
- Number of hot spares you need to provide for protection against disk failures
- Requirement to add storage to both plexes of a mirrored aggregate at the same time to ensure that the plexes are the same size and contain the same disk types
- If you are adding cache to a Flash Pool aggregate, the cache limit for your system model and how much cache you are adding towards the limit.

About this task

This procedure should not be used for aggregates composed of root or data partitions.

Following these best practices when you add storage to an aggregate optimizes aggregate performance:

- Add a complete RAID group at one time.
 The new RAID group does not have to be exactly the same size as the existing RAID groups, but it should not be less than one half the size of the existing RAID groups.

- If any small RAID groups exist already, you can bring them up to the size of the other RAID groups, as long as you add at least as many data drives as are already in the RAID group.

- Avoid adding a small number of drives to an existing RAID group.
 Doing so results in the added disks being the target for a disproportionate percentage of new data, causing the new disks to become a performance bottleneck.

Steps

1. Verify that appropriate spare disks or array LUNs are available for you to add:

   ```
   storage aggregate show-spare-disks -original-owner node_name
   ```

 For disks, make sure that enough of the spares listed are of the correct type, size, speed, and checksum type for the target RAID group in the aggregate to which you are adding the disks.
2. Add the disks or array LUNs:

```
storage aggregate add-disks -aggregate aggr_name [-raidgroup raid_group_name] disks
```

If you are adding disks with a different checksum than the aggregate, as when creating a Flash Pool aggregate, or if you are adding disks to a mixed checksum aggregate, you must use the `-checksumstyle` parameter.

If you are adding disks to a Flash Pool aggregate, you must use the `-disktype` parameter to specify the disk type.

If you specify the `-raidgroup` parameter, the storage is added to the RAID group you specify. `raid_group_name` is the name that Data ONTAP gave to the group—for example, rg0. If you are adding SSDs to the SSD cache of a Flash Pool aggregate, you do not need to specify the RAID group name; the SSD RAID group is selected by default based on the type of the disks you are adding.

`disks` specifies the disks to be added in one of the following ways:

- `-diskcount`, usually further qualified by disk type or checksum type
- `-disklist disk1 [disk2...]`

If possible, you should use the `diskcount` option. Doing so allows Data ONTAP to optimize the disk selection for your configuration.

If you are adding disks to a mirrored aggregate and you are specifying disk names, you must also use the `-mirror-disklist` parameter.
Copyright information

Copyright © 1994–2015 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).
Trademark information

Cisco and the Cisco logo are trademarks of Cisco in the U.S. and other countries. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.
How to send comments about documentation and receive update notification

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email to doccomments@netapp.com. To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.
• Telephone: +1 (408) 822-6000
• Fax: +1 (408) 822-4501
• Support telephone: +1 (888) 463-8277
Index

A

about
snapshot copy reserve 22
active file disk space
how Data ONTAP uses deleted 23
active file systems
access on destination volumes 27
guidelines for restoring from SnapVault backups 149
when available on destination volumes 27
advantages
of using SyncMirror 163
aggregates
adding physical drives or array LUNs to 182
advantages of using SyncMirror 163
commands for managing mirrored 173
converting mirrored aggregates to 179
converting unmirrored to mirrored 178
creating mirrored 174
increasing the size of with physical drives 182
mirrored, explained 164
mirrored, rules for adding array LUNs 182
re-creating mirrored, after a plex failure 180
aggregates, mirrored
requirements when using 172
applications
testing database 128
array LUNs
adding to aggregates 182
authentication
cluster peer relationships 61
automatic Snapshot copies
using prefixes to name 49
automatically deleting
Snapshot copies 19

guidelines for managing storage efficiency for SnapVault 159
guidelines for restoring active file system from SnapVault 149
how restore operations work from SnapVault 150
introduction to creating SnapVault, on FlexVol volumes 130
managing copied source volume, in SnapVault relationships 149
SnapVault, how they work 33
source-to-destination-to-tape, defined 38
baseline transfers
defined 30
benefits
of using SyncMirror 163

C

cascade configurations
networking requirements for cluster peering 66
cascades
considerations when breaking SnapMirror relationships in 118
creating SnapVault backup in mirror-SnapVault 136
managing SnapVault-mirror, when SnapVault backup is unavailable 156
mirror-SnapVault, how they work 40
SnapVault-SnapMirror, how they work 41
CIFS clients
destination volume not accessible 30
CIFS users
accessing Snapshot copies 14
cleaning up
a failed single file or LUN restore 155
client access
to active file systems on destination volumes 27
cluster administrators
mirror and SnapVault relationship management capabilities 55
cluster peer relationships
authentication of 61
commands for managing 59
requirements for 66
cluster peers
creating relationships between 76
definition of 62
supported data protection 36
destination volumes
 access to active file systems on 27
 CIFS clients cannot access 30
 components of a mirror relationship 25
 converting to SnapVault secondary 143
 matching source volume size 26
 reenabling storage efficiency on SnapVault 161
 supported number of SnapMirror relationship fanout 29
disaster recovery
 reestablishing the original data protection mirror relationship 119
 reestablishing the original version flexible SnapMirror relationship 123
 reversing the data protection mirror relationship 119
 reversing the version flexible SnapMirror relationship 123
disasters
 tools to protect against data-loss 11
disk consumption
 monitoring Snapshot copy 53
disk space
 recovery of 24
disks
 adding to aggregates 182
 how they are assigned to plexes 180
 monitoring Snapshot copy consumption 53
 physical, adding to aggregates 182
documentation
 how to receive automatic notification of changes to
 187
 how to send feedback about 187
DP mirror relationships
 where to find information about Infinite Volumes and 26

E
error messages
 correcting restricted volume 95
extended queries
 using to operate on many SnapMirror relationships 105

F
failed single file or LUN restore
 restarting 152
failed single file restore
 cleaning up 155
failed single LUN restore
 cleaning up 155
failures
 correcting SnapMirror initialization 95
fan-out configurations
 networking requirements for cluster peering 66
fanout support
 SnapMirror relationship 29
 fanouts
 multiple-mirrors, how they work 43
feedback
 how to send comments about documentation 187
file restore
 single, how it works 154
file system
 recovery of disk space for use by the 24
file systems
 guidelines for restoring active, from SnapVault backups 149
files
 cleaning up a failed single file restore 155
 consideration of size in volume when using version-flexible SnapMirror relationships 99
 restoring a single file 152
 restoring from Snapshot copies of FlexVol volumes 50
 types not restored during single file or LUN restore 155
firewalls
 intercluster SnapMirror relationship requirements 38
 requirements for cluster peering 66
FlexVol volumes
 commands for managing SnapMirror relationships of 102
 creating SnapVault backup in prepopulated 139
 creating SnapVault backups in empty 133
 creating version-flexible SnapMirror relationships to destination 95
 guidelines for creating SnapVault relationships on 130
 introduction to creating SnapVault backups on 130
 mirror relationships for 25
 restoring part of a file from a Snapshot copy of 51
 SnapVault backup limitations 34
 which data gets backed up and restored from 32
 which data is not backed up to SnapVault backups 32
full-mesh connectivity
 description 66
I

increasing
aggregate size using physical drives 182
incremental transfers
defined 30
Infinite Volumes
commands for managing SnapMirror relationships of 102
data protection mirror relationships for, where to find information 26
how Snapshot policies are associated with 46
maximum number of Snapshot copies for 16
Snapshot copies of, where to find information 17
updating data protection mirror copies manually 116
information
how to send feedback about improving documentation 187
initialization failures
correcting SnapMirror 95
intercluster LIFs
configuring to share data ports 69
configuring to use dedicated intercluster ports 72
considerations when sharing with data ports 68
intercluster networking
definition of cluster peer 62
intercluster networks
configuring intercluster LIFs for 69, 72
considerations when sharing data and intercluster ports 68
firewall requirements for SnapMirror relationships 38
supported topologies 63
intercluster ports
configuring intercluster LIFs to use dedicated 72
considerations when using dedicated 69
IP addresses
requirements for cluster peering 66
IPspaces
requirements for cluster peering 66

L

language settings
requirement between SVMs 27
LIFs
configuring to use dedicated intercluster ports 72
LIFs, intercluster
configuring to share data ports 69
limitations

Mirror relationship 29
SnapVault backup 34
load-sharing mirrors
modifying relationship schedules 115
low bandwidth connection
initializing destination volume 106
LUN restore
how it works 154
LUNs
cleaning up a failed single LUN restore 155
guidelines for restoring in SAN environments 150
protecting data 12
restoring a single LUN 152
LUNs (array)
array LUN aggregates
creating and mirroring 170
commands for 170
creating and mirroring aggregates 170
how it works 166
planning pools 169
requirements 167
rules for adding to mirrored aggregate 182
troubleshooting 171, 172
with SyncMirror 166, 167, 169, 171, 172

M

methods
overview of data protection 9
MetroCluster configurations
array LUNs
SyncMirror requirements 167
mirror copies
manually updating data protection, on volumes 116
mirror policies
commands for managing 54
description of 12
mirror relationships
components of 25
differences between cluster administrator and SVM
administrator policy management privileges 55
guidelines for creating mirror or SnapVault, between clusters or SVMs 27
limitations 29
mirror-mirror cascades
how they work 39
mirror-SnapVault cascades
creating SnapVault backup for 136
how they work 40
preserving Snapshot copies on primary source volume of 138

mirrored aggregates
 commands for managing 173
 converting to aggregates 179
 converting unmirrored aggregates to 178
 creating 174
 explained 164
 re-creating after a plex failure 180
 requirements when using 172
 rules for adding array LUNs 182
 what you can do with 163

mirrors
 creating data protection 93
 deleting 117
 deleting Snapshot copies automatically 29
 listing the state of a scheduled transfer 114
 making a destination volume writable 128
 modifying load-sharing relationship schedules 115
 reestablishing the relationship after disaster 119
 reestablishing the version flexible SnapMirror relationship after disaster 123
 reversing the relationship after disaster 119
 reversing the version flexible SnapMirror relationship after disaster 123
 scheduling when SnapMirror transfers occur 115
 Snapshot copy limit 30
 using to test database applications 128

modifying
 SVM peer relationships 87
 multiple-mirrors fanout deployments
 how they work 43

N

namespaces
 data protection for SVM 34

naming guidelines
 SnapMirror and SnapVault policy 56
 naming guidelines for SnapMirror 56

network
 full-mesh connectivity described 66
 requirements for cluster peering 66

network compression
 SnapMirror and SnapVault 54

NFS users
 accessing Snapshot copies 14

NVFAIL
 introduction to monitoring and protecting database validity by using 10

O

older-than-base Snapshot copies
 backing up from 144

out-of-order Snapshot copies
 how they work 144

P

pair-wise full-mesh connectivity
 supported cluster peer network topologies 63

passphrase
 cluster peer authentication using a 61

path names
 abbreviating 26
 pattern matching of 26
 wildcard use for 26

pattern matching
 path names 26

peer relationships
 authentication of cluster 61
 commands for managing cluster 59
 creating between SVMs 81
 creating cluster 76
 creating intracluster SVM 83
 deleting cluster 78
 deleting SVM 88
 for SVMs, described 80
 intercluster, creating on SVMs 82
 managing SVM 79
 modifying SVM 87
 requirements for clusters 66
 states of SVMs in 80

plexes
 how disks are assigned to 180
 mirrored aggregate, explained 164
 re-creating mirrored aggregate after failed 180
 removing from a mirrored aggregate to convert to aggregate 179

policies

commands for managing mirror and SnapVault 54
commands for managing Snapshot copy 47

differences between cluster administrator and SVM administrator management privileges 55
example of creating tiered backup 57
flexibility of version-flexible SnapMirror 99
introduction to managing data protection using SnapMirror 54
introduction to managing Snapshot 46
naming guidelines for SnapVault 56
SnapMirror, how they work with clusters and SVMs

55

Snapshot copy schedule and retention planning

guidelines for SnapVault backups 35
types of data protection 12

port usage

intercluster SnapMirror relationship firewall
requirements 38

ports

configuring intercluster LIFs to use dedicated
intercluster 72
considerations when sharing data and intercluster
roles on 68
considerations when using dedicated intercluster 69
requirements for cluster peering 66

ports, data

configuring intercluster LIFs to share 69
prefixes

using to name automatic Snapshot copies 49
primary volumes

defined 30
protect data

creating mirrored aggregates to 174

protection deployments

See deployment configurations

protection policies

types of data 12

R

recovery tasks

Snapshot copy 15

relationships

authentication of cluster peer 61
commands for managing cluster peer 59
commands for managing SnapMirror 102
components of mirror 25
considerations when breaking SnapMirror 118
creating cluster peer 76
creating intercluster SVM peer 82
creating intracluster SVM peer 83
creating SnapVault backup, in a prepopulated
FlexVol volume 139
creating SnapVault backup, in empty FlexVol
volumes 133
creating SVM peer 81
creating version-flexible SnapMirror 95
deleting cluster peer 78
deleting SVM peer 88
guidelines for creating mirror or SnapVault, between
clusters or SVMs 27
guidelines for creating SnapVault, on FlexVol
volumes 130
peering SVMs, described 80
prepopulated SnapVault secondary scenarios 132
replicating and retaining 100
SnapVault, creating baseline from tape 141
transition (TDP) 9
requirements

cluster naming when peering 66
firewall for cluster peering 66
IP addresses for cluster peering 66
IPspaces for cluster peering 66
network for cluster peering 66
ports for cluster peering 66
subnets for cluster peering 66
SVM language setting 27
reserve

eexample of what happens when exceeding Snapshot
copy 24
restarting

a failed single file or LUN restore operation 152
restore

cleaning up a failed file or LUN 155
how single file or LUN restore works 154
restore operations

guidelines for LUNs in SAN environments 150
guidelines for restoring active file system from
SnapVault backups 149
how they work from a SnapVault backup 150
restoring volumes from SnapVault backups 151
restoring Snapshot copies

Shadow Copy Client tools 52
restricted volume errors

correcting 95
root information

data protection for SVM 34

S

SAN (storage area network)

data protection of volumes containing LUNs 12
SAN environments

guidelines for restoring LUNs in 150
which LUN data is backed up to SnapVault backups
32
which LUN data is not backed up to SnapVault
backups 32
schedules
commands for managing Snapshot copy 47
creating a Snapshot copy 18
for default Snapshot copies 17
frequency consideration for version-flexible
SnapMirror relationships 99
guidelines for planning Snapshot copy 35
strategies for creating Snapshot copy policies 48
secondary volumes
defined 30
enabling storage efficiency on SnapVault 161
single file or LUN restore
types of files not restored 155
single file restore
cleaning up a failed 155
how it works 154
restarting a failed 152
single files
restoring 152
single LUN restore
cleaning up a failed 155
how it works 154
restarting a failed 152
SMtape
performing tape seeding 106
SMTape backup and restore sessions
scalability limits for 114
SnapMirror
considerations when breaking relationships 118
considerations when using version-flexible 99
correcting an initialization failure 95
creating a data protection 93
creating version-flexible relationships 95
deleting a mirror relationship 117
firewall requirements for intercluster relationships 38
how destination volumes match source volume size 26
listing the state of a scheduled transfer 114
modifying relationship schedules 115
network compression for 54
reestablishing the version flexible relationship after
disaster 123
reversing the version flexible relationship after
disaster 123
scheduling when transfers occur 115
source and destination port requirements on
intercluster relationships 38
using extended queries 105
SnapMirror commands
for managing mirror and SnapVault policies 54
SnapMirror labels
defined 30
SnapMirror policies
how they work with clusters and SVMs 55
introduction to managing data protection using 54
retention flexibility of version-flexible SnapMirror
relationships 99
SnapMirror policy
altering to preserve Snapshot copies after reaching
retention limit 56
SnapMirror relationships
commands for managing 102
considerations when breaking 118
converting SnapVault relationships to version-
flexible 141
converting to version-flexible SnapMirror 100
supported number of fanout volumes 29
Snapshot copies
backing up FlexVol volumes with over 251 148
backing up from older than base 144
backup and recovery tasks you can perform with 15
commands for managing 45
commands for managing policies and schedules 47
creating a schedule 18
default schedule 17
defined 30
defining 14
deleting automatically 19
example of what happens when the reserve is
exceeded 24
how out-of-order transfers work 144
limit on source volume 30
maximum number 16
monitoring disk consumption of 53
preserving after reaching retention limit 56
preserving on primary source volume in mirror-
SnapVault cascades 138
protecting data, about 45
restoring a single file from 50
restoring part of a file from 51
restoring volume contents 51
retention flexibility using version-flexible
SnapMirror relationships 99
types of user-specified schedules 17
user access to 14
using prefixes to name automatic 49
using version-flexible SnapMirror for better resource
utilization 100
viewing automatic deletion settings for 20
where to find information about Infinite Volumes and 17
Snapshot copy
 creating 18
Snapshot copy reserve
 how deleted active file disk space consumes 23
Snapshot policies
 description of 12
 how volumes inherit from SVMs 46
 introduction to managing 46
 strategies for creating 48
SnapVault
 backing up FlexVol volumes with over 255 Snapshot copies 148
 backing up from older-than-base Snapshot copy 144
 converting data protection destination to secondary 143
 creating a baseline from tape 141
 creating backup, in a prepopulated FlexVol volume 139
 differences between cluster administrator and SVM administrator policy management privileges 55
 network compression for 54
 which data is backed up and restored from FlexVol volume 32
 which data is not backed up to 32
SnapVault backups
 creating in empty FlexVol volumes 133
 creating in mirror-SnapVault cascades 136
 data protection for SVM namespace and root information 34
 guidelines for managing storage efficiency for 159
 guidelines for planning Snapshot copy schedule and retention for 35
 guidelines for restoring active file system from 149
 guidelines for restoring LUNs in SAN environments 150
 how restore operations work from 150
 how they work 33
 how they work with data compression 34
 introduction to creating on FlexVol volumes 130
 introduction to protecting FlexVol volume date using 130
 limitations for FlexVol volume backup 34
 managing SnapVault-mirror cascade when unavailable 156
 preserving Snapshot copies on primary source volume in mirror-SnapVault cascades 138
 restoring volumes from 151
SnapVault destination volumes
 reenabling storage efficiency 161
SnapVault policies
 commands for managing 54
 description of 12
 how out-of-order Snapshot copy transfers work with 144
SnapVault relationship
 configuring policy rules to preserve Snapshot copies 56
SnapVault relationships
 converting to version-flexible SnapMirror relationships 141
 defined 30
 example of creating tiered backup policy for 57
 guidelines for creating mirror or SnapVault, between clusters or SVMs 27
 guidelines for creating on FlexVol volumes 130
 managing backup of copied source volumes in 149
 prepopulated secondary scenarios 132
SnapVault secondary volumes
 enabling storage efficiency on 161
 introduction to managing storage efficiency for 159
SnapVault updates
 no space on destination aggregate failure 132
SnapVault-mirror cascades
 managing when SnapVault backup is unavailable 156
SnapVault-SnapMirror cascades
 how they work 41
 source volumes
 components of a mirror relationship 25
 managing SnapVault backup of copied 149
 storage efficiency
 enabling on SnapVault secondary volume 161
 guidelines for managing, for SnapVault backups 159
 how SnapVault backups work with data compression 34
 introduction to managing, for SnapVault secondary volumes 159
 reenabling on SnapVault destination volumes 161
 strategies
 planning data protection 14
 subnets
 requirements for cluster peering 66
 suggestions
 how to send feedback about documentation 187
SVM administrators
 mirror and SnapVault relationship management capabilities 55
SVMs
accepting peer relationship 84
creating intercluster peer relationships 82
creating intracluster peer relationships 83
creating peer relationships 81
data protection for namespace information 34
data protection for root information 34
default Snapshot policies associated with 46
deleting peer relationship 86
deleting peer relationships 88
displaying peer relationship 91
guidelines for creating mirror or SnapVault relationships between 27
how SnapMirror policies work with 55
managing peer relationships 79
mirror language setting requirement 27
modifying the peer relationship 87
peer relationship described 80
rejecting peer relationship 86
resuming peer relationships 90
states of peer relationships 80
suspending peer relationship 89

SyncMirror
advantages 163
converting unmirrored aggregate to mirrored 178
creating mirrored aggregates 174
disks
requirements for using SyncMirror with 166
how it works 166
planning pools 169
requirements
for using SyncMirror with disks 166
requirements for creating mirrored aggregates 172
requirements for using with disks 166
rules for adding array LUNs to mirrored aggregate 182
troubleshooting 171, 172
what you can do with 163
with array LUNs 166, 167, 169, 171
with third-party storage 172

data protection for namespace information 34
data protection for root information 34
default Snapshot policies associated with 46
deleting peer relationship 86
deleting peer relationships 88
displaying peer relationship 91
guidelines for creating mirror or SnapVault relationships between 27
how SnapMirror policies work with 55
managing peer relationships 79
mirror language setting requirement 27
modifying the peer relationship 87
peer relationship described 80
rejecting peer relationship 86
resuming peer relationships 90
states of peer relationships 80
suspending peer relationship 89

SyncMirror
advantages 163
converting unmirrored aggregate to mirrored 178
creating mirrored aggregates 174
disks
requirements for using SyncMirror with 166
how it works 166
planning pools 169
requirements
for using SyncMirror with disks 166
requirements for creating mirrored aggregates 172
requirements for using with disks 166
rules for adding array LUNs to mirrored aggregate 182
troubleshooting 171, 172
what you can do with 163
with array LUNs 166, 167, 169, 171
with third-party storage 172

Tape seeding
performing 106
tiered backup policies
example of creating 57
tools
for data-loss protection 11
topologies
supported cluster peer network 63

T

tape seeding
performing 106
tiered backup policies
example of creating 57
tools
for data-loss protection 11
topologies
supported cluster peer network 63

transfers
scheduling SnapMirror 115
twitter
how to receive automatic notification of documentation changes 187

U

unmirrored aggregates
converting to mirrored aggregates 178
See also aggregates

V

volume is restricted errors
correcting 95
volume snapshot commands
for managing Snapshot copies 45
volume snapshot policy commands
for managing Snapshot copy policies and schedules 47

volumes
commands for managing SnapMirror relationships of FlexVol and Infinite 102
components of a mirror relationship 25
converting data protection destination to SnapVault secondary 143
creating SnapVault backup in prepopulated FlexVol 139
creating SnapVault backups in empty FlexVol 133
creating version-flexible SnapMirror relationships to FlexVol destination 95
enabling storage efficiency on SnapVault secondary 161
firewall requirements for intercluster SnapMirror relationships 38
guidelines for creating SnapVault relationships on FlexVol 130
how Snapshot policies are associated with 46
introduction to creating SnapVault backups on FlexVol 130
manually updating data protection mirror copies on 116
maximum number of Snapshot copies for 16
reenabling storage efficiency on SnapVault destination 161
restoring from SnapVault backup 151
SnapVault backup limitations for FlexVol 34
which data gets backed up and restored from FlexVol 32
Vservers
	See SVMs

W

wildcards