
SnapManager® 7.2.2 for Microsoft® SQL Server®

Administration Guide

April 2017 | 215-12191_A0
doccomments@netapp.com

Contents

Product overview .. 6
Backing up and verifying your databases .. 8

SnapManager backup overview .. 8

Two ways that SnapManager performs full database backups 8

How SnapManager updates the SnapInfo directory .. 9

How SnapManager checks database integrity in backup sets 10

Prerequisites for VMDK verification or cloning on SnapMirror destination

volumes .. 12

Formatting requirements for the change list file ... 13

Replacing destination data store UUIDs for VMFS data stores 14

Defining a backup strategy .. 14

Backing up your databases for the first time ... 17

Verifying the initial backup set .. 18

Scheduling recurring backups ... 19

Scheduling recurring transaction log backups .. 20

Scheduling recurring backup set verifications .. 21

Managing backup retention ... 22

Maximum number of Snapshot copies per volume 22

Automatically deleting backups .. 22

Explicitly deleting backups ... 23

Considerations for configuring Availability Groups ... 24

Managing transaction log backups of Availability Group databases 25

Changing the backup management group of an existing backup set 26

What to do if a SnapManager backup operation fails ... 26

Restoring databases .. 30
How SnapManager a restore operation works .. 30

Types of SnapManager restore operations .. 31

Sources and destinations for a SnapManager restore 33

Transaction log backups from SQL Server Management Studio 34

Post-restore database recovery states .. 34

Requirements for restoring a database .. 35

Finding backup sets ... 35

Restoring a database from a local backup set ... 36

Addressing system database failure using Activity Monitor 38

Restoring a database from a backup set created on a different server 38

Restoring replicated, publisher, and subscriber databases .. 40

Reseeding a database on an Availability Group .. 41

Recovering databases using archived backup sets .. 41

Recovering databases using SnapMirror ... 42

Recovering databases on VMDKs using SnapMirror ... 44

Preparing the primary site for recovery ... 44

Table of Contents | 3

Preparing the secondary site for recovery ... 45

Recovering databases from the secondary site .. 45

Cloning databases ... 47
Cloning limitations for VMDKs ... 47

Prerequisites for VMDK verification or cloning on SnapMirror destination

volumes .. 47

Formatting requirements for the change list file ... 48

Replacing destination data store UUIDs for VMFS data stores 49

Cloning a database from a local backup or an archived backup 50

Cloning a database that is in production ... 51

Creating a clone replica of an AlwaysOn cluster .. 52

Cloning an already cloned database .. 52

Splitting a cloned database .. 54

Deleting cloned databases ... 55

Using SnapManager reports .. 56
Viewing SnapManager reports .. 56

Configuring monitoring and reporting settings ... 56

Changing the location of the SnapManager report directory 57

Modifying your database configuration on NetApp storage 59
Moving multiple SnapInfo directories to a single SnapInfo directory 59

Migrating SQL Server databases back to local disks .. 60

Setting up a SnapManager share for centralized backups of transaction logs 60

Importing or exporting database configurations using a control file 61

Sample XML schema for the control file settings ... 62

Configuring SnapManager application settings 73
Modifying backup settings .. 73

Modifying verification settings ... 74

Modifying restore settings ... 75

Modifying event notification settings .. 76

Setting defaults for preoperation and postoperation commands 76

SnapManager arguments for preoperation and postoperation commands 77

Enabling SnapManager to allow databases on any LUN or VMDK

configuration .. 81

Viewing fractional space reservation status .. 82

Configuring fractional space reservation policies ... 83

Advanced administration ... 85
Maximum configurations supported by SnapManager ... 85

Service account requirements for archiving backup sets with SnapVault (7-

Mode environments only) .. 85

SnapManager disk requirements in a Windows cluster using LUNs 86

Upgrading SnapManager .. 88
Upgrading SnapManager interactively .. 88

Upgrading SnapManager from a command line ... 88

Repairing, reinstalling, and uninstalling SnapManager 90
Repairing SnapManager .. 90

4 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Reinstalling SnapManager .. 90

Uninstalling SnapManager .. 91

SnapManager cmdlet guidelines ... 92
clone-backup ... 93

clone-database ... 98

clone-replica .. 106

delete-backup .. 114

delete-clone ... 115

export-config ... 117

get-backup ... 118

import-config ... 120

new-backup ... 122

reseed-backup .. 130

restore-backup ... 134

split-clone .. 141

verify-backup .. 142

Copyright information ... 148
Trademark information ... 149
How to send comments about documentation and receive update

notifications .. 150
Index ... 151

Table of Contents | 5

Product overview

SnapManager for Microsoft SQL Server is a host-side component of the NetApp integrated storage
solution for SQL Server, offering application-aware primary Snapshot copies of SQL databases. You
can use SnapManager with Data ONTAP SnapMirror technology to create mirror copies of backup
sets on another volume, and with Data ONTAP SnapVault technology to archive backups efficiently
to disk.

Together these tools offer a complete Snapshot-based data protection scheme that is as scalable,
reliable, and highly available as the underlying storage system. The following illustration shows the
components in a SnapManager deployment with clustered Data ONTAP:

SnapManager highlights

SnapManager features seamless integration with Microsoft products on the Windows host and with
NetApp Snapshot technology on the back end. It offers an easy-to-use, wizard-based administrative
interface.

• Integration with the Microsoft Volume Shadow Copy Service (VSS) ensures that write requests
are frozen and write caches are flushed before backups are taken. SnapManager supports
Windows Volume Manager, Windows Server Failover Clustering, Microsoft Multipath I/O
(MPIO), and SQL Server AlwaysOn Availability Groups.

• Fast, nondisruptive Snapshot technology using NetApp SnapDrive for Windows software enables
you back up databases in seconds and restore them in minutes without taking SQL Servers or
databases offline. Snapshot copies consume minimal storage space. You can store up to 255
copies per volume.

• Automated central administration offers hands-off, worry-free data management. You can
schedule routine SQL Server database backups, configure policy-based backup retention, set up
point-in-time and up-to-the-minute restore operations and proactively monitor your SQL Server
environment with periodic email alerts. PowerShell cmdlets are available for easy scripting of
backup and restore operations.

In addition to these major features, SnapManager offers the following:

• Integrated FlexClone software enables you to create space-efficient point-in-time copies of
production databases for testing or data extraction (FlexClone license required)

• Simplified migration of existing databases to NetApp storage with an easy-to-use Configuration
wizard

• Nondisruptive, automated backup verification

6

• Fast reseeding of databases in an AlwaysOn cluster

• Federated database backup of multiple SQL Server instances and databases

• Support for backup of LUNs, SMB shares, and VMDKs

• Support for physical and virtualized infrastructures

• Support for iSCSI, Fibre Channel, FCoE, RDM, and VMDK over NFS and VMFS

Product overview | 7

Backing up and verifying your databases

You should back up your databases as soon as they are available in NetApp storage. You can then
verify the initial backups and schedule recurring backups and recurring backup verifications.

Note: For information on how to install SnapManager on Windows hosts and how to set up
NetApp storage for SnapManager usage, see the SnapManager for Microsoft SQL Server
Installation and Setup Guide.

Related information

SnapManager 7.2 for Microsoft SQL Server Installation and Setup Guide For Data ONTAP
Operating in 7-Mode

SnapManager 7.2 for Microsoft SQL Server Installation and Setup Guide For Clustered Data
ONTAP

SnapManager backup overview
SnapManager uses NetApp Snapshot technology to create online, read-only copies of databases. It
uses an SQL Server utility to verify the integrity of the backups.

SnapManager backs up a database by creating Snapshot copies of the volumes in which the following
reside:

• Database data files

• Transaction logs

• SnapInfo directories

Together these Snapshot copies comprise a backup set. SnapManager uses a backup set to restore a
database.

After SnapManager backs up your databases, it can perform an integrity verification of the backup
sets. SnapManager uses the Database Consistency Checker (DBCC), a Microsoft SQL Server utility,
to verify the page-level integrity of databases. Verification ensures that you can use backup sets to
restore databases as needed.

Important: SnapManager cannot restore databases from Snapshot copies created by Data ONTAP
or SnapDrive. You should perform backups using SnapManager only.

Two ways that SnapManager performs full database backups

SnapManager uses two methods to back up your databases: a stream-based backup method and an
online Snapshot copy backup method. The differences in these back-up methods underscores why
you should not place system databases on the same volume as user databases.

Stream-based backup method

SnapManager uses the stream-based method to back up system databases. With this method,
SnapManager creates the full database backup by streaming the contents of the databases over the
network to the SnapInfo directory. SnapManager copies each system database individually.

Full database stream-based backup files are .fbk files named using the convention
date_time_databasename: for example, 050814_0330_xxx.fbk. This file is equivalent to the .bak
file directly created by SQL Server.

All other database backups use the online Snapshot copy backup method.

8

https://library.netapp.com/ecm/ecm_download_file/ECMP11658052
https://library.netapp.com/ecm/ecm_download_file/ECMP11658052
https://library.netapp.com/ecm/ecm_download_file/ECMP11658051
https://library.netapp.com/ecm/ecm_download_file/ECMP11658051

Online Snapshot copies backup method

SnapManager uses the online Snapshot copy backup method to backup user databases that reside on
LUNs, VMDKs, and SMB shares. With this method, SnapManager creates the backup by creating
Snapshot copies of the databases.

When you select a database for a full database backup, SnapManager automatically selects all other
databases that reside on the same storage system volume. You can clear databases that reside on a
different LUN, SMB share, or VMDK from the databases you selected, even if the LUN, SMB share,
or VMDK is on the same storage volume.

If the other LUN, SMB share, or VMDK stores only a single database, you can clear or reselect that
database individually. If the other LUN, SMB share, or VMDK houses multiple databases, you must
clear or reselect those databases as a group.

In a volume-wide backup, all the databases that reside on a single volume are backed up concurrently
using Snapshot copies. If the maximum number of concurrent backup databases is 35, then the total
number of Snapshot copies created equals the number of databases divided by 35.

Note: When a Snapshot copy is made for a SnapManager backup, the entire storage system
volume is captured in that Snapshot copy; however, that backup is valid only for the SQL host
server for which the backup was created.

If data from other SQL host servers resides on the same volume, that data is not restorable from
the Snapshot copy.

How SnapManager updates the SnapInfo directory

The SnapInfo directory stores information about the streaming-based backups of system databases,
copies of transaction log files, and a backup set's metadata. SnapManager updates the directory every
time that it creates a backup set.

Every time a SnapManager backup set is created, SnapManager creates a new backup set
subdirectory under the SnapInfo directory. SnapManager populates this subdirectory with the
transaction logs backed up as part of that backup set in addition to the recovery information for that
specific Snapshot copy. A complete backup set consists of this SnapInfo subdirectory and the
corresponding Snapshot copies of the LUNs, SMB shares, or VMDKs that store the SQL Server
databases.

SnapManager subdirectory names identify the configuration of the backed-up databases:

Configuration Format of the SnapInfo subdirectory name

Databases belonging
to the SQL Server
default instance

The SnapInfo directory name is SQL__ followed by the SQL Server
computer host name:

SQL__SqlServerName

For example, the subdirectory for databases belonging to the default
instance of the SQL Server on the Windows host system CLPUBS-
WINSRVR3 would be named as follows:

SQL__ CLPUBS-WINSRVR3

Databases belonging
to an SQL Server
named instance

The SnapInfo directory name is SQL__ followed by the name of the SQL
Server instance:

SQL__InstanceName

For example, the subdirectory for databases that belong to the SQL Server
instance INST2 on the Windows host system ENGR-WINSRVR7 would be
named as follows:

SQL__INST2

Backing up and verifying your databases | 9

How SnapManager checks database integrity in backup sets

SnapManager uses Database Consistency Checker (DBCC) to verify SQL Server databases. DBCC is
a Microsoft SQL Server utility that verifies the page-level integrity of databases.

Ways that SnapManager uses SQL Server DBCC

SnapManager uses the DBCC CHECKDB command to verify the integrity of live databases in addition
to databases in SnapManager backup sets.

Live databases can be verified as a part of database migration and also as a part of a full database
backup:

• Using the Configuration wizard, you can verify live databases before and after database
migration.

• Using SnapManager Backup, you can verify live databases before and after a full database
backup.

To perform live verification of databases residing on SMB shares, you must configure the verification
settings in the SnapManager console to use the TABLOCK option.

Databases in backup sets can be verified on creation, separately, or before a restore operation:

• Using SnapManager Backup, you can verify the databases in full database backup sets as they are
created or you can verify the databases in the most recent unverified backup sets.

• Using SnapManager Restore, if you select a backup set on which a consistency check has not
been run successfully, SnapManager prompts (but does not require) you to first verify the
databases in that backup set.

Requirements for running SQL Server DBCC against the databases in a backup set

When you verify the databases in a backup set (as opposed to live databases), Microsoft DBCC
requires that all the database files be mounted at the same time. At a more granular level, this means
that SnapManager, using SnapDrive commands, mounts all the LUNs or VMDKs that contain the
backup sets selected for database verification.

To run the DBCC CHECKDB command, the verification server (whether local or remote) must have a
sufficient number of drive letters available or a mount point to mount all the LUNs or VMDKs
storing the database backup sets that you are verifying.

• When you run database verification against backup sets that are stored on a single LUN or
VMDK, the SQL Server host that is used as the verification server must have at least one drive
letter available or a mount point so that the LUN or VMDK can be mounted during database
verification.

• When you run database verification against backup sets that contain multiple database files stored
on separate LUNs or VMDKs, SnapManager mounts all those LUNs or VMDKs at the same
time.

Consequently, the SQL Server that is used as the verification server must have enough drive
letters available so that SnapManager can mount each of the LUNs or VMDKs simultaneously.

For example, suppose you want to run database integrity verification against backup sets
containing five file groups using three transaction logs stored on eight separate LUNs or VMDKs.
In this case, the verification server would need to have a minimum of eight drive letters or a
mount point available.

Note: Available drive letters are not required if the databases reside on SMB shares.

10 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Ways to separate database verification from database backup

Running database verification on a production SQL Server is CPU-intensive for the host running the
verification and also involves a substantial amount of activity on the storage system. For this reason,
verification can degrade SQL Server response, particularly during peak usage.

By default, a SnapManager full database backup operation runs DBCC immediately after the backup
is complete. However, SnapManager provides two options that enable you to separate the process of
verification from the backup itself: deferred database verification and remote database verification.

Instead of allowing a full database backup to automatically verify the databases when the operation is
complete, you can disable that feature. You can then run a separate database verification operation
any time after the full database backup operation is complete.

To prevent database verification from affecting the performance of your production SQL Server
computer, you can run verification on another SQL Server computer.

Options for when to verify the databases in a backup set

You can verify the databases in your SnapManager backup sets at various times:

• Automatically verify full database backup sets on creation

By default, SnapManager verifies the databases in a backup set at the time the backup is created.
This is simple and ensures that each database in the backup set is verified. However, this method
significantly increases the time required to complete the backup.

• Explicitly start or schedule database verification only

With this method, a single operation can be initiated to verify the databases contained in one or
more backup sets that have already been created. You can start the verification immediately, or
you can schedule the verification to occur later, when it does not affect performance or delay later
backups.

• Defer verification until you restore from the backup set

If you attempt to restore from a backup set on which a database consistency check has not been
run successfully, SnapManager prompts (but does not require) you to first verify the databases in
that backup set.

Options for where to run SQL Server DBCC

Regardless of when you verify the databases in a backup set, the verification can be done on the
production SQL Server (the Windows host system running the SQL Server instance used to create the
databases) or on a remote verification system (another SQL Server).

In the simplest SnapManager configuration, verification is run from the production SQL Server.
However, because the Microsoft DBCC command used for the verification is CPU-intensive,
performing the verification on the production SQL Server host system during peak usage could affect
SQL Server performance.

Performing the verification on a remote system minimizes the impact of verification on SQL Server
system resources and backup schedule. The requirements for a remote verification server are
described in the SnapManager for Microsoft SQL Server Installation and Setup Guide.

Backing up and verifying your databases | 11

Prerequisites for VMDK verification or cloning on
SnapMirror destination volumes

You can verify backup sets on SnapMirror destination volumes and you can clone databases from
SnapMirror destination volumes. If the databases that you want to verify or clone are hosted on
VMDKs, you must meet several prerequisites before you can perform either of those operations.

You can verify and clone from destination volumes when the database hosted on the VMDK is
replicated to a site by SnapMirror and the configuration meets the following requirements:

• The virtual machine is installed on the ESX server on the secondary site.

• SQL Server, SnapDrive, and SnapManager are installed on the virtual machine.

• The ESX server is managed by another vCenter Server and the VSC server on the secondary site.

• SnapDrive is installed on the secondary virtual machine that is pointing to the VSC server on the
secondary site.

• On the primary site, you have selected the SQL Server on the secondary site as the remote
verification server.

• On both the primary and secondary VSC servers, you have created a Windows share on the VSC
repository folder where the backup metadata file resides.

• The SnapManager service account has read permission on the share at the primary site and write
and modify permissions at the share on the secondary site.

• The primary VSC server has discovered the destination storage system.

• For NFS datastores residing on clustered Data ONTAP, a datastore must exist on the SnapMirror
destination volume and the name of the destination datastore must be specified in the change list
file.

• On the primary virtual machine where the backup is initiated, the following registry settings and
values must be defined in HKEY_LOCAL_MACHINE\SOFTWARE\Network Appliance
\SnapManager for SQL Server\Server:

SMVITransformEnable

dword:00000001

SMVITransformScript

SMVI_Metadata_update.exe

SMVIDestinationServer

destination SMVI server name

SMVISourceBackupXmlUNC

\\source SMVI server name\SMVI repository share name\backups.xml

SMVIDestinationBackupXmlUNC

\\destination SMVI server name\SMVI repository share name

\backups.xml

SMVIChangeListFile

change list file name

12 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Formatting requirements for the change list file

The change list file is a text file that contains information about the source volume and the
destination volume of a datastore. The content of the file must be in a certain format based on the
Virtual Storage Console releases.

For releases prior to Virtual Storage Console 6.2, the contents of the change list file must be in the
following format, with fields separated by a space and each datastore beginning on a new line:

DatastoreType SourceDatastoreName DestinationDatastoreName
SourceVirtualMachineName DestinationVirtualMachineName
SourceVirtualMachineUUID DestinationVirtualMachineUUID
SourceVirtualMachineDirectoryName DestinationVirtualMachineDirectoryName
SourceStorageName DestinationStorageName SourceVolumeName
DestinationVolumeName [SourceDatastoreUUID
DestinationDatastoreUUID]

In this format, DatastoreType is either NFS or VMFS, and DatastoreUUID is not required for an
NFS volume.

Note: For NFS datastores residing on systems running ONTAP, SourceStorageName and
DestinationStorageName must be the IP addresses of the source NFS data LIF and the
destination NFS data LIF, respectively.

The following example shows the contents of an NFS change list file:

NFS
ds-nfs1 ds-nfs1-dest snapmgr-05-vm2 snapmgr-54-vm1 4211945a-124a-b7c9-
ae63-cacc07f3f4f8
420f010b-7e5a-e66e-7ed1-7bef6a357cca snapmgr-05-vm1 snapmgr-54-vm1
172.17.233.24
172.17.232.74 snapmgr05_vmw1 snapmgr05_vmw1_mir

Starting with Virtual Storage Console 6.2, the contents of the change list file must be in the following
format:

DatastoreType DatastoreName DR_DatastoreName VMName DR_VMName VMuuid
DR_VMuuid DirectoryName DR_DirectoryName StorageName DR_Storagename
VolumeName DR_VolumeName DatastoreMorefSrc DatastoreMorefDest

Note: This format change is relevant for SnapManager for Microsoft SQL Server 7.2.2P1 and later
releases.

In this format, DatastoreType is either NFS or VMFS.

The following example shows the contents of an NFS change list file:

NFS Datastore_nfs_source nfs_dest_datastore_yg
Server2016_Source_nfs_remote_clone Server_2016_Danish
5219658c-ce8c-cbd3-b713-af892218c008
5018cc7a-7392-9825-e143-8a889fde19d4
Server2016_Danish_forremoteclone Server_2016_Danish 10.225.12.53
10.225.12.134 vol_dk_source_nfs_vmdk vol_dk_source_nfs_vmdk_mirror
datastore-99 datastore-100

Backing up and verifying your databases | 13

Replacing destination data store UUIDs for VMFS data stores

You can replace the destination data store UUID for a VMFS datastore with new values to create
VMDK clones.

Steps

1. Break the SnapMirror relationship with the storage system.

2. Select the SnapMirror destination volume on which the data store is available, and then bring the
data store online.

3. On the secondary SMVI server, select Resignature the LUN to add the LUN to the destination
volume as the destination data store on the secondary ESX server.

4. Make a note of the data store name and UUID values.

5. Replace the destination data store name and the destination data store UUID with the new values
that you made a note of in the change list file.

Defining a backup strategy
Defining a backup strategy before you create your backup jobs helps ensure that you have the
backups that you need to successfully restore your databases. Your Service Level Agreement (SLA)
and Recovery Point Objective (RPO) largely determine your backup strategy.

Note: For SnapManager best practices, see or NetApp Technical Report 4232: Best Practice Guide
for Microsoft SQL Server and SnapManager 7.0 for SQL Server with Data ONTAP Operating in
7-Mode.

What type of SnapManager backup do you need?

SnapManager supports two types of backups:

Backup type Description

Full database
backup

Backs up database files and truncated transaction logs.

SQL Server truncates transaction logs by removing entries already
committed to the database. This is the most common backup type.

Transaction log
backup

Backs up truncated transaction logs, copying only transactions committed
since the most recent backup.

If you schedule transaction log backups to work with full database backups,
SnapManager can restore databases to a specific recovery point more
quickly. For example, you might schedule full database backups at the start
and end of the day and transaction log backups every hour.

For both types of backups, you can choose the copy-only option to specify that SQL Server not
truncate transaction logs. Use this option when you are backing up your databases with another
backup application. Keeping transaction logs intact ensures that any backup application can restore
the databases. You typically should not use copy-only in any other circumstance.

When should you back up your databases?

The most critical factor for determining a database backup schedule is the rate of change for the
database. You might back up a heavily used database every hour, while you might back up a rarely

14 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

http://www.netapp.com/us/media/tr-4232.pdf
http://www.netapp.com/us/media/tr-4232.pdf
http://www.netapp.com/us/media/tr-4232.pdf

used database once a day. Other factors include the importance of the database to your organization,
your Service Level Agreement (SLA), and your Recover Point Objective (RPO).

Even for a heavily used database, there is no requirement to run a full backup more than once or
twice a day. Regular transaction log backups are usually sufficient to ensure that you have the
backups you need.

Tip: The more often you back up your databases, the fewer transaction logs SnapManager has to
play forward at restore time, which can result in faster restore operations.

Important: SnapManager can perform one operation at a time. Do not schedule overlapping
SnapManager operations.

When should you verify backup copies?

Although SnapManager can verify backup sets immediately after it creates them, doing so can
significantly increase the time required to complete the backup job. It is almost always best to
schedule verification in a separate job at a later time. For example, if you back up a database at 5:00
p.m. every day, you might schedule verification to occur an hour later at 6:00 p.m.

For the same reason, it is usually not necessary to run backup set verification every time you perform
a backup. Performing verification at regular but less frequent intervals is usually sufficient to ensure
the integrity of the backup. A single verification job can verify multiple backup sets at the same time.

Important: SnapManager can perform one operation at a time. Do not schedule overlapping
SnapManager operations.

How many backup jobs do you need?

You can back up your databases using one backup job or several. The number of backup jobs that
you choose typically mirrors the number of volumes on which you placed your databases. For
example, if you placed a group of small databases on one volume and a large database on another
volume, you might create one backup job for the small databases and one backup job for the large
database.

Other factors that determine the number of backup jobs that you need include the size of the
database, its rate of change, and your Service Level Agreement (SLA).

Which backup naming convention do you want to use?

A backup naming convention adds a string to Snapshot copy names. The string helps you identify
when the copies were created. There are two naming conventions:

Naming convention Description

Unique Adds a time stamp to all Snapshot copy names. This is the default option.

Example:

Generic Adds the string “recent” to the name of the most recent Snapshot copy. All
other Snapshot copies include a time stamp.

Example:

The selected naming convention applies to all backups. You should use the unique naming
convention unless you have a script that requires the constant string “recent”.

Also, when the database resides on a VMDK, you must use the Unique naming convention when you
want to clone Snapshot copies.

Backing up and verifying your databases | 15

You can change the naming convention in the Backup Settings dialog box.

Which backup management group do you want to assign to the backup job?

You select a backup management group to apply a labeling convention to Snapshot copies. When you
back up a database, you can choose from three management groups:

Management
group

Description

Standard Does not include the name of the management group in Snapshot copy
names.

Example:

Daily Adds “Daily” to Snapshot copy names.

Example:

Weekly Adds “Weekly” to Snapshot copy names.

Example:

For example, if you schedule daily and weekly backups, you should assign the backups to the Daily
and Weekly management groups, respectively.

Note: Management groups do not enforce a backup schedule.

How long do you want to retain backup copies on the source storage system and the
SnapMirror destination?

You can choose either the number of days you want to retain backup copies, or specify the number of
backup copies you want to retain, up to 255. For example, your organization might require that you
retain 10 days worth of backup copies.

If you set up SnapMirror replication, the retention policy is mirrored on the destination volume.

Note: For long-term retention of backup copies, you should use SnapVault.

How long do you want to retain transaction log backups on the source storage
system?

SnapManager needs transaction log backups to perform up-to-the-minute restore operations, which
restore your database to a time between two full backups. For example, if SnapManager took a full
backup at 8:00 a.m. and another full backup at 5:00 p.m, it could use the latest transaction log backup
to restore the database to any time between 8:00 a.m. and 5:00 p.m. If transaction logs are not
available, SnapManager can perform point-in-time restore operations only, which restore a database
to the time that SnapManager completed a full backup.

Typically, you require up-to-the-minute restores for only a day or two, which means you would retain
transaction log backups for one or two days.

Do you want to verify backup copies using the source volume or destination volume?

If you use SnapMirror or SnapVault, you can verify backup copies using the Snapshot copy on the
SnapMirror or SnapVault destination volume, rather than the Snapshot copy on the primary storage
system. Verification using a destination volume reduces load on the primary storage system.

16 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

If you need to create backups using another tool, what backup type should you use?

If you need to create backups using another backup tool, create copy or differential backups only
with that tool. Normal (full) and incremental backups truncate transaction logs, effectively disabling
SnapManager up-to-the-minute restores.

Backing up your databases for the first time
After you migrate your databases to NetApp storage, you should back them up immediately. You can
schedule recurring backups after the initial backup and verification.

About this task

These steps show you how to quickly back up your databases using the Backup and Verify option.
You can use the Backup wizard if you prefer.

Steps

1. In the Console Root tree, expand the server on which the databases reside and click Backup.

2. In the Backup pane, select the databases that you want to backup.

3. In the Actions pane, click Backup and Verify.

4. In the Backup and Verification dialog box, keep Full database backup selected and define the
properties for the backup job:

For this field... Do this...

Copy-only backup If you back up your databases using another backup application, select
this field.

Run transaction log backup
after full database backup

Keep this field selected.

Backup management group Select a management group.

Delete full backups Specify a retention policy for backup copies on the source storage system
by defining the number of backup copies to retain or the number of days
to retain backup copies.

Backing up and verifying your databases | 17

For this field... Do this...

Up-to-minute Restore
Options

Click this field and then specify a retention policy for transaction logs.

Verify databases after backup Clear this field because it is best to verify databases in a separate
operation.

SnapMirror options If you set up a SnapMirror destination volume, select the option to
replicate the backup copy to the destination volume.

Backup archiving options If you set up a SnapVault destination volume, select the option to archive
the backup copy to the destination volume.

Run Command If you want to run a command before or after the backup operation, click
the ... button and specify details for the command: where to run the
command, the path to the program or script, the SnapManager variables
to execute, and the command arguments.

Federated Backup If you want to back up databases from different instances or different
servers, click this field and then add databases to a federated group.

Availability Group Backup If you have an Availability Group and you want to take backups on all
replicas, the primary replica, the secondary replica, or preferred replicas,
click this field and specify the replicas.

5. Click Backup Now.

6. In the Backup Status dialog box, click Start Now.

You can view details of the operation in the Backup Task List and Backup Report tabs.

Verifying the initial backup set
You should verify an initial backup set to confirm the integrity of the databases.

Steps

1. In the Backup pane, select the databases that you want to include in the backup verification
schedule.

2. In the Actions pane, click Backup and Verify.

3. In the Backup and Verification dialog box, select Verify most recent unverified snapshot
backups only and then define the properties for the backup verification:

For this field... Do this...

Number of snapshot backups
to verify

Keep the default. You should have only one backup set at this point.

Backup management group Select a management group.

SnapMirror options If you replicated the backup set to a SnapMirror destination volume and
you want to verify the backup set on the destination storage system to
reduce load on the primary storage system, click Verify on available
SnapMirror destination volumes.

Backup archiving options If you archived the backup set to a SnapVault destination volume and you
want to verify the backup set on the destination storage system to reduce
load on the primary storage system, click Verify archive backup on
secondary storage.

18 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

For this field... Do this...

Run Command If you want to run a command before or after the operation, click the ...
button and specify details for the command: where to run the command,
the path to the program or script, the SnapManager variables to execute,
and the command arguments.

Availability Group Backup If you are scheduling the verification from the primary server, you can
use this option to perform verification on databases whose backup was
taken on a secondary replica copy.

4. Click Verify Now.

5. In the Backup Status dialog box, click Start Now.

You can view details of the operation in the Backup Task List and Backup Report tabs.

Scheduling recurring backups
You can schedule recurring backup jobs using the SQL Server Agent or Windows Scheduled Tasks.

About this task

In a Windows Failover cluster, it is a best practice to schedule jobs using the SQL Server Agent.

Steps

1. In the Backup pane, select the databases that you want to include in the backup schedule.

2. In the Actions pane, click Backup and Verify.

3. In the Backup and Verification dialog box, keep Full database backup selected and define the
properties for the backup schedule, as described in Backing up your databases for the first time on
page 17.

4. Click Schedule.

5. In the Schedule Job dialog box, enter a job name, choose a schedule service (SQL Server Agent
or Windows Scheduled Tasks), and click OK.

6. Create the schedule using the service that you chose:

If you chose... Do this...

The SQL Server Agent
a. Click Yes.

SQL Server Management Studio opens.

b. Connect to the SQL instance.

c. In the Object Explorer pane, expand the instance.

d. Expand SQL Server Agent, expand Jobs, right-click the job and
then click Properties.

e. Click Schedules and then click New.

f. Fill out the New Job Schedule dialog box and click OK.

Backing up and verifying your databases | 19

If you chose... Do this...

Windows Scheduled Tasks
a. Click Schedule.

b. Specify the schedule.

c. Click OK.

d. Click Yes to save the job.

After you finish

You can view details about the backup job in the SnapManager Scheduled Jobs pane.

Scheduling recurring transaction log backups
You should schedule transaction log backups alongside full database backups at a frequency that
allows you to meet your Recovery Point Objective (RPO).

About this task

In a Windows Failover cluster, it is a best practice to schedule jobs using the SQL Server Agent.

Steps

1. In the Backup pane, select the databases that you want to include in the backup schedule.

2. In the Actions pane, click Backup and Verify.

3. In the Backup and Verification dialog box, select Transaction log backup and then define the
properties for the transaction log backup schedule:

For this field... Do this...

Copy-only log backup If you back up your databases using another backup application, select
this field.

Verify log backup upon
completion

Clear this field because it is best to verify backups in a separate
operation.

Delete log backups Specify a retention policy for backup copies on the source storage system
by defining the number of backup copies to retain or the number of days
to retain backup copies.

Update SnapMirror after
operation

If you set up a SnapMirror destination volume, select this field to
replicate the backup copy to the destination volume.

Federated Backup If you want to back up transaction logs from different instances or
different servers, click this field and then add databases to a federated
group.

Marking Transaction Options If you specified a federated backup group, choose the default mark name
and description or modify them. You use these marks to restore databases
to the same marked transaction across multiple databases for a
synchronous restoration.

Run Command If you want to run a command before or after the backup operation, click
the ... button and specify details for the command: where to run the
command, the path to the program or script, the SnapManager variables
to execute, and the command arguments.

20 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

For this field... Do this...

Availability Group Backup If you have an Availability Group and you want to take backups on all
replicas, the primary replica, the secondary replica, or preferred replicas,
click this field and specify the replicas.

4. Click Schedule.

5. In the Schedule Job dialog box, enter a job name, choose a schedule service (SQL Server Agent
or Windows Scheduled Tasks), and click OK.

6. Create the schedule using the service that you chose:

If you chose... Do this...

The SQL Server Agent
a. Click Yes.

SQL Server Management Studio opens.

b. Connect to the SQL instance.

c. In the Object Explorer pane, expand the instance.

d. Expand SQL Server Agent, expand Jobs, right-click the job and
then click Properties.

e. Click Schedules and then click New.

f. Fill out the New Job Schedule dialog box and click OK.

Windows Scheduled Tasks
a. Click Schedule.

b. Specify the schedule.

c. Click OK.

d. Click Yes to save the job.

Scheduling recurring backup set verifications
You can schedule recurring backup set-verification jobs using the SQL Server Agent or Windows
Scheduled Tasks.

About this task

In a Windows Failover cluster, it is a best practice to schedule jobs using the SQL Server Agent.

Steps

1. In the Backup pane, select the databases that you want to include in the backup verification
schedule.

2. In the Actions pane, click Backup and Verify.

3. In the Backup and Verification dialog box, select Verify most recent unverified snapshot
backups only and define the properties for the backup verification schedule as described in
Verifying the initial backup set on page 18.

You might need to modify the Number of snapshot backups to verify field, depending on the
number of backups SnapManager will take between scheduled verifications.

4. Click Schedule.

Backing up and verifying your databases | 21

5. In the Schedule Job dialog box, enter a job name, choose a schedule service (SQL Server Agent
or Windows Scheduled Tasks), and click OK.

6. Create the schedule using the service that you chose:

If you chose... Do this...

The SQL Server Agent
a. Click Yes.

SQL Server Management Studio opens.

b. Connect to the SQL instance.

c. In the Object Explorer pane, expand the instance.

d. Expand SQL Server Agent, expand Jobs, right-click the job and
then click Properties.

e. Click Schedules and then click New.

f. Fill out the New Job Schedule dialog box and click OK.

Windows Scheduled Tasks
a. Click Schedule.

b. Specify the schedule.

c. Click OK.

d. Click Yes to save the job.

After you finish

You can view details about the verification job in the SnapManager Scheduled Jobs pane.

Managing backup retention
Your backup retention strategy needs to balance storage efficiency with restore needs. You can
specify that SnapManager automatically delete older backups or transaction logs, or you can delete
these items explicitly.

Note: You should not use SnapDrive or storage system administration tools to delete Snapshot
copies created by SnapManager. Doing so leaves behind unwanted data that cannot be removed.

Maximum number of Snapshot copies per volume

The Data ONTAP software used with SnapManager supports a maximum of 255 Snapshot copies per
volume, including copies not created by SnapManager. Because each SnapManager backup operation
creates Snapshot copies, a SnapManager backup operation fails if the volume that contains the
database LUN exceeds the 255 Snapshot copy capacity.

Note: The total number of Snapshot copies on a volume might exceed the number of retained
backups. For example, if a single volume contains both the SnapInfo directory and the databases,
each backup operation generates two Snapshot copies on the volume.

Automatically deleting backups

When you start or schedule a full database backup, you can also specify the number of backup sets of
that database to be retained for that backup management group. After the backup is complete,

22 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

SnapManager will automatically delete the oldest backup sets for that database in the specified
backup management group, retaining only the number of backups you want to preserve.

SnapManager retention policy does not apply expiration days for individual backups, but instead
manages how many backups are retained at any given time.

Note: If a database is deleted, SnapManager for SQL Server stops actively managing the backups.
The backups remain until manually deleted.

Cases in which more backups are preserved

SnapManager does not count backups that failed verification when counting the number of stored
backups. More backups might be preserved than you specify in the Delete Oldest Backups In Excess
Of dialog box.

For example, suppose you are backing up databases A and B, which contain the following backup
sets:

SnapManager backup set Description

Database A

sqlsnap__orbit3_10-23-2013_16.21.07 Old backup- good

sqlsnap__orbit3__recent Recent backup- good

Database B

sqlsnap__orbit3_10-23-2013_16.21.07 Old backup- good

sqlsnap__orbit3__recent Recent backup- inconsistent

Also suppose you have set the Delete Oldest Backups in Excess Of dialog box to 1 to preserve only
one of each backup set, the most recent one.

In order to preserve one good backup for Database B, SnapManager does not delete the Snapshot
copy sqlsnap__orbit3_10-23-2013_16.21.07. Therefore, two backups for Database B remain
instead of one.

Option to retain up-to-the-minute restore ability

If you delete backups that are not the oldest backups in your backup list (as can happen when you are
deleting backups of a particular backup management group), the corresponding transaction logs are
also deleted. That means the older remaining backups are no longer available for an up-to-the-minute
restore because the transaction logs are no longer contiguous from the time when the older backup
was taken to the present time.

SnapManager for Microsoft SQL Server enables you to preserve the logs in this case, thereby
retaining the ability to use the older backups in an up-to-the-minute restore.

Explicitly deleting backups

You can automatically delete older backup sets by specifying the Delete full backups in excess of
option and the Delete full backups older than option in the SnapManager backup tools. You should
use this method for managing the number of backup sets stored. You can also explicitly select the
backup sets that you want to delete.

Steps

1. In the SnapManager Console Root, select a server.

2. In the Actions pane, select Delete Backup.

3. Choose a delete operation:

Backing up and verifying your databases | 23

If you want to delete... Then...

Backup sets created from a
backup operation

Keep Delete backups selected.

Snapshot copies created
during a previous restore
operation

Select Delete Snapshot of LUNs created during restore.

4. Specify the backups to delete based on the delete operation that you chose:

If you chose... Then...

Delete backups
a. Select one or more databases.

b. Specify the backup component that you want to delete:

• Backup data sets

• Log Snapshot copies only

• SnapInfo Snapshot copies only

c. Specify the management group of the backup copies that you want to
delete.

d. If you want to delete backups containing any one or more of the
selected databases, click Advanced and enable the option.

e. Specify the backups to delete:

• The number of backup copies that you want to delete

• Backup copies older than a specific number of days

• All backups in the specified management group

Delete Snapshot of LUNs
created during restore

Specify the backups to delete:

• The number of backup copies that you want to delete

• Backup copies older than a specific number of days

• All backups in the specified management group

5. You can delete the backup sets immediately or you can preview the operation:

If you want to... Then...

View the list of backup sets
that SnapManager will delete

Click Delete Preview.

The Delete backups dialog box appears. After a moment, the dialog box
displays a count and list of the backups identified for deletion. To view a
report, click Show Report. Based on the list displayed in the Delete
backups dialog box, you can either cancel the delete operation or proceed
with it.

Delete the backup sets Click Delete.

Considerations for configuring Availability Groups
You must be aware of some important considerations when configuring Availability Groups.

• User databases, including Availability Group databases, should not share the same LUN or
VMDK as system databases.

24 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

• To improve Availability Group backup performance, the preferred backup replica option with
variable weights for each replica must be used.

• At least one complete backup must be present on all of the participating AlwaysOn nodes.

Transaction log backups must be done regularly from the preferred replica or from SnapManager
for Microsoft SQL Server if it is the primary replica.

• The status of the Availability Group databases must be checked before launching the Availability
Group backup.

• By default, the secondary replicas are nonreadable in the SQL Server.

The Readable Secondary property of the Availability Group must be changed to yes, or the
replicas cannot take part in backups.

• Automatic failover of the Availability Group can have one primary replica and one out of the four
maximum participating secondary replicas.

Manual failover of the Availability Group must be performed if the automatic failover option is
not selected.

• The primary failover instance of each Availability Group must have its own SnapInfo LUN or
SnapInfo volume.

The secondary failover instance must also have its own SnapInfo LUN or SnapInfo volume.

• You should use a SnapManager for Microsoft SQL Server share to synchronize all transaction
logs from the backup.

A SnapManager for Microsoft SQL Server share can be used for various Availability Groups.

• The SQL Server instances for AlwaysOn Availability Groups must be installed as stand-alone
instances and not as clusters.

Each node must have dedicated disks and not clustered shared disks.

Managing transaction log backups of Availability Group
databases

You can manage the transaction log backups of Availability Group databases by using the Backup
Settings dialog box.

Before you begin

The SnapManager connection to the node in the Availability Group is already configured. The node
can be a primary node or a secondary node.

Note: SnapManager must be configured to connect to a node in the SQL Server cluster, not to the
Availability Group endpoint name itself.

Steps

1. In the Console Root tree, click the server on which the databases reside, and then select Backup .

2. Select Backup Settings in the Actions pane.

3. Click Repository Log backup Options, and then specify the options for copying transaction log
backups to shares.

4. Under Repository Log backup Options, specify the options for copying transaction log
backups to shares.

a. Click either Apply to all Databases or Apply to only Availability Group Databases.

Backing up and verifying your databases | 25

b. Optional: Click Delete Share Log backups, and then choose how the backups are selected for
deletion.

Note: The Copy transaction log backup to share option is enabled by default for Availability
Group databases.

Changing the backup management group of an existing
backup set

You can use the Change Backup Management Group dialog box to change the backup management
group to which the selected backup set belongs.

About this task

You cannot change the backup management group of the most recent backup sets that were created
using the generic naming convention.

Steps

1. In the SnapManager console root, click Restore.

2. In the Restore panel, locate the backup set whose management group you want to change:

• Database Snapshots (Standard group)

◦ sqlsnap__sqlserverhostname__date_time

◦ sqlsnap__sqlserverhostname__ recent

• Database Snapshots (Daily or Weekly group)

◦ sqlsnap__sqlserverhostname__date_time__backupmgmtgroup

◦ sqlsnap__sqlserverhostname__backupmgmtgroup__recent

3. Right-click the name of the backup set to open a context menu and then select Change
Management Group.

4. Review the backups listed in the Backups sharing this Snapshot list.

The backup management group for all these backups is changed if you complete this operation
because they share a common backup set.

5. In the New Management Group list, select the backup management group you want to change
to.

When you change a backup's backup management group, you also change that backup's name
because the name includes the backup management group.

6. Click OK.

The backup management group for this backup and all backups listed in the All Backups Sharing
This Snapshots list is changed.

The report for the backup management group change is in the Miscellaneous report
directory.

What to do if a SnapManager backup operation fails
If a SnapManager backup operation fails, you should check the backup report for details about what
SnapManager was trying to do when the failure occurred. SnapManager reports are described in

26 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

“Managing SnapManager operational reports.” You can also review common backup failures to
correct the issue.

Problem deleting backups due to busy Snapshot copy error

If you delete a backup copy of a LUN that was already backed up by another Snapshot copy, you get
an error message saying that the Snapshot copy is busy and cannot be deleted. In this case, you must
delete the most recent backup copy before the older backup copy can be deleted.

To avoid this situation, you must not create backup copies of LUNs that are already backed up by
Snapshot copies (for example, during a verification or while archiving from a LUN that is backed up
by a Snapshot copy).

SnapInfo directory being accessed

Because a SnapManager backup might include renaming a SnapInfo subdirectory and Windows does
not allow a directory name to be changed while the directory is being accessed, accessing the
SnapInfo directory with a tool such as Windows Explorer can cause the backup to fail. You should
verify that you do not hold any exclusive access to the SnapInfo directory on the SQL Server host
system while a backup is in progress.

SnapInfo directory out of space

If the SnapInfo directory is full, you should expand the LUN that contains the SnapInfo directory; in
the case of SMB shares, you should expand the volume.

Note: When you expand a LUN, you should verify that enough space remains in the volume for
backup set creation, so that SnapManager can continue to function correctly.

Data does not match

This error occurs if you made changes to your SQL Server database configuration after SnapManager
was started. You can refresh the SnapManager view in one of the following ways:

• Press F5 on your keyboard.

• From the SnapManager console root, click Action > Refresh.

• Restart SnapManager.

Backup set already exists

Either of the following circumstances might cause this error to occur:

• The system clock on the host running SnapManager might not be synchronized with the clock on
the storage system.

These two clocks must be synchronized for SnapDrive to function correctly. For more
information, see the Data ONTAP Software Setup Guide for your version of Data ONTAP.

• If a SnapMirror replication job is running when you attempt to begin a SnapManager backup, the
backup can fail.

You can avoid this issue by ensuring that SnapMirror replications have enough time to finish
before you begin another SnapManager backup.

SnapManager server initialization failed

To correct this issue, you should close the SnapManager for Microsoft SQL Server GUI. You should
restart the SnapManager service from within the services.msc console, and then reopen the
SnapManager GUI.

Backing up and verifying your databases | 27

Error processing backup job

SnapManager reports an error when scheduling a backup job using the SQL Server Agent:

An Error occurred while processing SQL Agent Job creation. The specified

@server_name (name)does not exist.

The SQL Server instance might be hidden, or the SQL Browser service might be down.

To unhide the instance or to start the SQL Browser service, you should close the SnapManager for
Microsoft SQL Server GUI, restart the SnapManager service from within the services.msc console,
and then reopen the SnapManager GUI.

VMDK backup fails when you specify a physical server as the verification server

The backup copy created on the VMDK cannot be verified on a physical server. To resolve this error,
you must select a verification server that is running on a virtual machine.

Database is not in valid configuration

A SnapManager backup operation might fail with the following message in the backup report:

WARNING: Database DatabaseName of ServerName is not in valid configuration,

and will not be included in this backup.

This message can appear if any of the following is true:

• The database is not in the online state.

For example, if autoshrink is enabled on the database, the database is not online during the shrink
operation. For information about autoshrink, see Microsoft article 315512.

• The database configuration is not supported by SnapManager.

To verify that your configuration is supported, see the SnapManager for Microsoft SQL Server
Installation and Setup Guide.

Backup operation might fail if the host system is running SQL Server 2005

If the SnapManager host system is running SQL Server 2005, a SnapManager backup operation
might fail with the following message in the backup report:

[Microsoft][ODBC SQL Server Driver][DBMSLPCN]ConnectionRead

(WrapperRead()).

To avoid this issue, you should install MDAC 2.8 SP1 on the Windows host.

Error when Readable secondary is set to No

If any of secondary replicas have the Readable Secondary option set to “No” and that replica is still
part of the Availability Group backup, SnapManager displays an error similar to this:

The target database, 'test1', is participating in an availability group and

is currently not accessible for queries. Either data movement is suspended

or the availability replica is not enabled for read access. To allow read-

only access to this and other databases in the availability group, enable

read access to one or more secondary availability replicas in the group.

For more information, see the ALTER AVAILABILITY GROUP statement in SQL

Server Books Online.

To correct this, you should change the Readable Secondary option to “Yes” for all of the replicas
participating in backups.

28 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

http://support.microsoft.com/kb/315512

Error when the Availability Group is “Cloned as Replica” and Availability Group
backup is taken for all replicas

SnapManager can clone an Availability Group to the selected replica with the Readable Secondary
backup option set to “No”, but afterwards, if the user tries to select the same Availability Group and
tries to take a backup across all replicas, the backup of the cloned Availability Group is omitted
because the databases are mounted as read-only.

This issue occurs because the requested database is not configured for backup. Instead, the database
is marked as “Database is on a LUN backed by snapshot.” The message is similar to
[02:14:38.145] [SQL2012HA3] Database requested has not been configured for

backup. This database is marked as: Database is on a LUN backed by

snapshot. Server: SQL2012HA2 Database:1ag-db1. This Database will be

skipped.

Availability Group database status

SnapManager omits the backup of an Availability Group if any of the replica databases are not in the
Synchronizing or Synchronized states.

Lack of available drive letters causes DBCC CHECKDB to fail

When you run database verification against backup sets that contain multiple database files stored on
separate LUNs or VMDKs, SnapManager mounts all of those LUNs or VMDKs simultaneously.
Consequently, the SQL Server that is used as the verification server must have enough drive letters
available so that SnapManager can mount each of the LUNs or VMDKs simultaneously.

If the verification server runs out of available drive letters while attempting to run DBCC CHECKDB
for a SnapManager operation, the SnapManager operation fails with the following message in the
report log:

[SnapDrive Error]: There are no remaining drive letters available on the
system. Please delete or disconnect a drive and retry.

Note: Available drive letters are not required if the databases reside on SMB shares.

Backing up and verifying your databases | 29

Restoring databases

You can use SnapManager to restore an SQL Server database without taking the server offline. You
can restore the database to a number of different destinations in addition to its original location.

How SnapManager a restore operation works
It is important to understand how a SnapManager restore operation works before performing one.

SnapManager restores the databases that you select to the active file system. The restore method used
by SnapManager depends on (1) the method that was used to create the backup set and (2) the
specific subset of databases you choose to restore from the backup set.

SnapManager uses the stream-based restore method if you are restoring from a stream-based backup
set. With this method, each of the databases is restored individually. Depending on the composition
of the backup set, a stream-based restore can require additional time and free space on the storage
system as compared to an online Snapshot copy restore.

SnapManager uses LUN, SMB share, and VMDK cloning if you are restoring from a backup set that
contains multiple databases that reside on the same LUN, SMB share, or VMDK.

SnapManager uses the copy-based restore method if any of the following conditions are true:

• The backup set contains only a subset of the databases that reside on the same LUN, SMB share,
or VMDK (not recommended).

• You select only a subset of the databases contained in the backup set.

• A new database was added to the same LUN, SMB share, or VMDK after the backup was
created.

In a volume-wide backup, all the databases that reside on a single volume are backed up concurrently
using Snapshot copies. Because the maximum number of databases supported per storage system
volume is 35, the total number of Snapshot copies created equals the number of databases divided by
35.

If the database has transaction log backups, SnapManager Restore can apply the transaction log
backups (if necessary).

Depending on the database restore option selected, SnapManager Restore performs a point-in-time
restore or an up-to-the-minute restore.

Restore Snapshot copies

Every time you perform a restore operation using SnapManager, SnapManager first creates a
Snapshot copy on each storage system volume that contains files for the databases you will be
restoring. That way, in the unlikely event that a catastrophic failure occurs during a restore operation,
you have recent Snapshot copies of the LUNs, SMB shares, or VMDKs that can be used to re-create
those databases as they existed prior to the start of the failed restore operation.

Each restore Snapshot copy is named using the following naming convention:

rstsnap__SqlServerName_date_time

The Snapshot copy name contains the name of the SQL Server instance to which the backup was
restored (indicated by the variable SqlServerName) and the Snapshot copy creation date and time
(indicated by the variable date_time).

30

After you verify that a restore was completed successfully and you are satisfied with the results, you
can delete the restored Snapshot copy.

SQL Server cluster group state during a restore

SnapManager can restore databases in a Windows cluster without taking the SQL Server cluster
group offline.

Cluster failure during a restore operation

If a cluster failure (a cluster group move operation) occurs during the restore operation (for example,
if the node that owns the resources goes down), you must reconnect to the SQL Server instance and
then restart the restore operation.

Transaction log restore operations

A SnapManager transaction log restore uses the SQL recovery process to play forward transactions
from the log backup into the restored database.

Importance of verifying databases to be restored

The database verification process protects you from restoring a backup that contains any physical-
level corruption. Physical-level database corruption can occur silently in SQL Server databases. The
only way to know whether a particular database backup incurred physical-level corruption is to run
database verification on that backup.

Before allowing a restore operation to proceed, SnapManager enables you to check that the selected
backup set was verified through the use of DBCC `CHECKDB.

Backup verification status

SnapManager Restore shows you a list of the backups that have been taken. For each backup, the
date and time of the backup is displayed, as well as an icon that indicates the backup verification
status.

Icon description Backup verification status

Circled check mark The databases in this backup have been verified.

Circled question mark The databases in this backup have not been verified.

If you select a database on which a consistency check has not been run successfully, SnapManager
prompts (but does not require) you to run DBCC before performing a restore. Running database
consistency checking as part of recovery increases the time the recovery takes.

Types of SnapManager restore operations

You can use SnapManager to perform a number of different types of restore operations.

• Up-to-the-minute restore operations

• Point-in-time restore operations

• Marked transaction restore operations

Up-to-the-minute restore operations

In an up-to-the-minute restore, databases are recovered up to the point of failure. SnapManager
accomplishes this by performing the following sequence:

• The last active transaction log is automatically backed up.

Restoring databases | 31

• The databases are restored from the full database sets you select.

All the transaction logs that were not committed to the databases, including transaction logs from the
backup sets, from the time the backup set was created up to the most current time, are played forward
and applied to the databases (if selected).

An up-to-the-minute restore requires a contiguous set of transaction logs. The up-to-the-minute
restore type is selected by default.

Because SnapManager cannot restore transaction logs from log-shipping backup files, you might not
be able to restore the database using an up-to-the-minute restore. For this reason, you should use
SnapManager only to back up your SQL Server database transaction log files.

If you do not need to retain up-to-the-minute restore capability for all backups, you can configure
your system's transaction log backup retention through Up-to-minute Restore Options, located in the
Backup and Verify window.

Example

You run SnapManager Backup every day at noon, and on Wednesday at 4:00 p.m. you need to restore
from a backup. For some reason, the backup set from Wednesday lunch time failed verification, so
you decide to restore from the Tuesday lunch time backup. If the After that backup is restored, all the
transaction logs are played forward and applied to the restored databases, starting with those that
were not committed when you created Tuesday's backup set and continuing through the latest
transaction log written on Wednesday at 4:00 p.m. (if the transaction logs were backed up).

Point-in-time restore operations

In a point-in-time restore, databases are restored only to a point-in-time from the past. A point-in-
time restore occurs in two restore scenarios:

• The database is restored to a given time in a backed up transaction log.

• The database is restored and only a subset of backed up transaction logs are applied to it.

Note: When you restore a database to a point in time, it results in a new recovery path.

The following image illustrates the potential problems when a point-in-time restore is performed:

In the image, Recovery path 1 consists of a full backup followed by the number of transaction log
backups. The database administrator restores the database to a point in time. New transaction log
backups are created after the point-in-time restores which results in Recovery path 2. The new
transaction log backups are created without creating a new full backup. Due to data corruption or
other problems, if you need to restore the current database, you will not be able to restore it because a

32 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

new full backup was not created. Also, it is not possible to apply the transaction logs created in
Recovery path 2 to the full backup belonging to Recovery path 1.

Note: You must ensure that you always create a full backup after restoring a database to a point in
time.

If you apply transaction log backup sets, you can also specify a particular date and time at which you
want to stop the application of backed up transactions. To do this, you specify a date and time within
the available range and SnapManager will roll back any transactions that were not committed prior to
that point in time. You can use this method to restore databases back to a point in time before a
corruption occurred, or to recover from an accidental database, or table deletion.

Example

Suppose you take full database backups once at midnight and a transaction log backup every hour.
The database crashes at 9:45 a.m., but you still back up the transaction logs of the failed database.
You can choose from among three point-in-time restore scenarios:

• Restore the full database backup taken at midnight and accept the loss of the database changes
made afterward.

• Restore the full database backup and apply all the transaction log backups until 9:45 a.m.

• Restore the full database backup and apply transaction log backup sets. Specifying the time you
want the transactions to restore from the last set of transaction log backups.

In this case, you would calculate the date and time where a certain error was reported. Any
transactions that were not committed prior to the date and time specified in the Restore command
are rolled back.

Marked transaction restore operations

Restore-to-marked transaction operations enable you to restore a database to a marked transaction.
Using the marks created on a federated full backup, you can restore a backup to a marked transaction
across multiple databases for a synchronous restoration.

Note: You can use either restore to mark or restore to point-in-time. They do not work
simultaneously.

These transaction marks are recorded in the transaction log and included in the logs of the affected
database.

Sources and destinations for a SnapManager restore

You can restore an SQL Server database from a backup set, from an offline archive of a backup set,
or from a database residing on multiple LUNs, SMB shares, or VMDKs. You can restore the database
to a number of different destinations in addition to its original location.

Sources for a restore operation

You can restore databases from various types of sources:

Source Description

SnapManager
backup set

You can restore databases from SnapManager backup sets created for the
same SQL Server instance or created for a different server instance. The
LUNs, SMB shares, or VMDKs containing the selected SQL Server's
databases are restored from the backup.

Unmanaged media You can also use SnapManager Restore to restore databases from offline
archives (unmanaged media) of backup sets.

Restoring databases | 33

Source Description

Database residing
on multiple LUNs,
SMB shares, or
VMDKs

You can restore databases that reside on multiple LUNs, SMB shares, or
VMDKs. The restore operation takes some time to complete because
SnapManager takes one database at a time, serially, for the complete restore
operation.

Destinations for a restore operation

You can restore databases to various types of destinations:

Destination Description

The original
location

By default, SnapManager restores to a database to the same location on the
same SQL Server instance.

A different location You can restore a database to a different location on the same SQL Server
instance.

A different location
as a database clone

You can use SnapManager Restore to restore an online database as a new
database on the same SQL Server instance.

However, you cannot restore an online database as a new database on a
different SQL Server instance. You must clone the database.

Original or different
location using
different database
names

You can restore to a different server instance on the same or different server
using different database names.

A different location,
but only temporarily
mounted

The database is mounted at a temporary alternate location, but the
transaction logs are not applied. Because the data is not current, you should
use this function to view only the layout of the data.

Transaction log backups from SQL Server Management Studio

SnapManager cannot automatically restore the transaction log backups taken using SQL Server
Management Studio. You need to modify the file extension before SnapManager can use the backups.

Transaction log backups created by SQL Server Management Studio have a default extension
of .TRN. If you want to restore the transaction log backups from SnapManager, you must rename
these .TRN files to .TRB and place them in the respective SnapInfo directory. After you place the
transaction log backups in the correct SnapInfo directory, you can use SnapManager to restore from
the logs.

Post-restore database recovery states

Post-restore database recovery states describe the condition of the database after a restore operation
and any further restore actions that you can take.

The following table describes the post-restore database recovery states:

Database state Description

Operational All of the following conditions apply:

• No more transaction logs can be restored.

• The database is ready to use.

This database state is selected by default.

Non-Operational More transaction logs can be restored.

34 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Database state Description

Read-Only All the following conditions apply:

• More transaction logs can be restored.

• The undo file is enabled.

If more transaction logs are restored, any changes can be rolled back
if the restore operation for the transaction log is unsuccessful.

Note: If you restore a database to a temporary, alternate location
using a writable Snapshot copy with this option enabled, the Detach
Database and Dismount Snapshot LUN(s) function is unavailable for
this database.

Requirements for restoring a database
Before you restore a database from a SnapManager backup set, you must ensure that several
requirements are met.

• The SQL Server must be online and running before you can restore a database. This applies to
both user database restore operations and system database restore operations.

• The target databases must be detached or in a suspect state.

• If you want to restore online databases, the online restore option must be enabled in the Restore
Settings dialog box.

• If you restore multiple databases to the same SQL Server instance, you must not assign the same
target database name for multiple databases.

• All Windows Explorer instances must be closed on the SQL Server computer running
SnapManager.

• SnapManager operations that are scheduled to run against the SQL Server data you are restoring
must be disabled, including any jobs scheduled on remote management or remote verification
servers.

• If the restore is from a database on a different SQL server, the source storage must have been
made available to the current SQL server.

• If system databases are not functional, you must first rebuild the system databases using an SQL
Server utility.

Finding backup sets
You can more easily find backup sets by using the Find Backups wizard. The wizard finds backups
created on a specific SQL Server or backups residing on unmanaged media.

Steps

1. In the Console Root tree, expand the server on which the databases reside and click Restore.

2. In the Actions pane, click Find Backups.

3. On the Start page, click Next.

Restoring databases | 35

4. On the SQL Server page, choose whether you want to find a backup set created on this SQL
Server, created on a different SQL Server, or a backup set residing on unmanaged media, and then
click Next.

5. If you chose to restore from a different SQL Server or unmanaged media, enter the SnapInfo
directory path for the backup set and click Next.

6. In the Find Finish page, click Finish.

The Restore pane refreshes and displays the backup copies that match your search criteria.

Restoring a database from a local backup set
You can restore a SQL Server database from a local backup set by using the SnapManager Restore
dialog box.

Steps

1. In the Console Root tree, expand the server on which the databases reside, and then click
Restore.

2. In the Restore pane, double-click the backup set from which you want to restore the database.

3. In the Actions pane, click Restore.

The SnapManager for SQL Server-Restore window appears.

Note: When SnapManager takes transaction logs on multiple nodes of a Windows Server
Failover Cluster, the Restore window displays multiple transaction logs that have the same
timestamp, but different indexes. For example: "04-25-2014_05.57.08 (1)" and
"04-25-2014_05.57.08 (2)"

4. Restore the database with a different name than that of the original database:

a. Click the tab marked ... next to Restore as Database.

b. The Individual Database Restore As... dialog box appears.

c. In the Restore as Database dialog box, enter the database name to which you want the backup
restored.

This database name must not already exist on the SQL Server instance to which you will be
restoring the database.

d. Click OK to apply your change and close the dialog box.

5. Click OK to apply your change and close the dialog box.

6. Select or enter the server name to which you want the database to be restored.

7. Choose the connection by selecting the Use Windows Authentication or Use SQL Server
Authentication radio button.

8. Click OK to apply your change and close the dialog box.

9. Specify the restore type:

36 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

If you want to... Then...

Restore to a point-in-time
backup

a. Click the tab marked ... next to Point-in-Time Restore.

The Point-in-Time dialog box opens.

b. In the Point-in-Time dialog box, specify the date and time after which
transaction logs are not applied to the restored database.

c. Click OK.

Note: A point-in-time restore operation halts the restoration of
transaction log entries that were recorded after the specified date and
time.

Restore to a marked
transaction

a. Click the tab marked ... next to Marked Transaction.

The Marked Transaction dialog box opens.

b. In the Marked Transaction dialog box, select the marked transaction
at which the restore operation should be stopped.

c. Click OK.

10. To run a command or script before performing the restore operation or after the restore operation
finishes, select the Run Command Settings option.

11. Restore the database to a different location:

a. Click the ... tab next to Restore to Other Location.

b. Edit the location by selecting and modifying the Restore To field for each row, or select the ...
tab, and then browse for the location.

Note the following requirements for the location:

• If you restore a database to a different path and that path is an SMB share, the SMB share
must be accessible from SnapDrive.

• If you choose to restore from unmanaged media, you must enter the location of the
mounted disk where the database files are available.

• If you choose to restore from unmanaged media, you must place the database files in the
restoring location.

• You cannot spread a database's files across SAN and NAS environments.

Note: If the alternate location does not have enough space, the restore will fail. If this
happens, you must delete the partially copied database files.

12. Click Restore to start the restore operation.

SnapManager begins to restore your databases from the backup that you selected. SnapManager
Restore completes each task and checks each task off the list shown in the Restore Task List view.

You can switch back and forth between the task check-off list and the progress report by using the
Switch buttons on either window.

If the restore operation is successful, the Task window shows the check-off list with the tasks
completed, and a dialog box reports that the restore operation was successful.

13. After all the restore tasks are finished, click OK.

Your restore operation is complete, and your SQL Server computer comes back online.

Restoring databases | 37

After you finish

You should perform a full backup and verification to confirm that your restored database is free of
physical-level corruption. Performing a full backup and verification is especially important if you
restored a database to a different path that is shared by existing databases.

Addressing system database failure using Activity Monitor

If there are active connections to the database created by the SQLSERVERAGENT service, the
restore operation of a system database MSDN might fail when using SMSQL. You can stop and
restore Microsoft System Database (MSDB) to overcome the system database failure.

Steps

1. Verify whether there are any active connections to MSDB by using Activity Monitor in the SQL
Server Management Studio.

If there are any active connections to MSDB, you should first stop the SQLSERVERAGENT
service and then restore the MSDB.

2. Open Activity Monitor in SQL Server Management Studio.

3. Click Tools > Options.

4. In the Options box, expand Environment, and then click General.

5. In the At startup box, click Open Object Explorer, and then click Activity Monitor.

6. Close and reopen SQL Server Management Studio to deactivate the connections available in the
Processes tab.

7. Restore the database from a local backup set.

Restoring a database from a backup set created on a
different server

You can restore an SQL Server database from a backup set created on a different server by using the
SnapManager Restore wizard.

Steps

1. If you have LUNs and the source LUNs for the failed databases are still online and mapped on the
primary storage, do the following:

a. Note the LUN drive letter assignments.

b. Unmap the LUNs using System Manager or the storage system console.

c. In Microsoft Failover cluster configurations, remove any cluster resource dependencies you
might have configured on these LUNs.

2. If you have LUNs, reconnect the restored LUN objects with the SnapDrive MMC interface using
the original drive letters.

Consult the SnapDrive documentation for details. Ensure that the LUNs are accessible on the
hosting SQL Server.

3. Use SQL Server Management Studio to attach the database located on the LUNs and SMB
shares.

If you cannot attach the database, you can reduce the loss of data by ensuring that the last active
transaction log of the database is automatically backed up by SnapManager Restore:

38 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

• See Microsoft KB article 253817, “HOW TO: Back up the Last Transaction Log When the
Master and the Database Files Are Damaged.”

This article describes how you can back up the currently active transaction log even if the
SQL Server database file is damaged, provided that the transaction log file is still accessible.

• Use this same Microsoft KB article as a general guide for gaining access to the last active
transaction log of the database.

While referring to the steps in that article, observe the following key points:

◦ When you create a similar database that contains the same number of data and transaction
log files as the original database, you are creating the database you will be restoring using
SnapManager.

◦ Instead of using the SQL Server Backup Log command to back up the transaction log (as
described in the Microsoft article), proceed to the next step.

4. Start the SnapManager for Microsoft SQL Server application.

5. Make sure that all other Windows Explorer windows are closed on the SQL Server computer
running SnapManager.

6. Disable any SnapManager operations that are scheduled to run against the SQL Server data you
are restoring including any jobs scheduled on remote management or remote verification servers.

7. In the SnapManager Console Root tree, expand the server on which the databases reside and
click Restore.

8. In the Actions pane, click Restore Wizard.

9. On the Welcome page, click Next.

10. On the SQL Server page, select Restore backup created on a different server and click Next.

11. On the Alternate SQL Server page, specify details about the alternate SQL Server:

a. Select the SQL Server whose backup sets you want to use to restore databases to this SQL
Server.

b. In the SnapInfo Directory Path dialog box, enter or browse to the name of the SnapInfo
directory for those backup sets.

c. Leave the Use this server's SnapInfo directory check box cleared.

d. Click Next.

12. In the Backup Set page, double-click to select the backup under the database you want to restore.
Click Next.

13. Use the Point-in-time option in the Transaction Logs screen to perform an up-to-the-minute
restore operation or a point-in-time restore operation:

• For an up-to-the-minute restore, backup the most recent transactions and select them for
restore by selecting Most recent backup selected.

• For a point-in-time restore operation, select the backup set, a combination of transaction log
backups to be restored, or both, and select Committed transactions at the specified time.

14. Follow the instructions in the Restore wizard as you proceed.

15. To restore the database to a different location, do the following:

a. Click the ... tab next to Restore to Other Location.

Restoring databases | 39

b. Edit the location by selecting and modifying the Restore To field for each row or select the ...
tab and browse for the location.

Note the following requirements for the location:

• If you restore a database to a different path and that path is an SMB share, the SMB share
must be accessible from SnapDrive.

• You cannot spread a database's files across SAN and NAS environments.

Note: If the alternate location does not have enough space, the restore fails. If this happens,
delete the partially copied database files.

16. After you verify that all the settings in the page are correct, click Finish.

The Restore wizard closes and the Restore Status dialog box appears and displays the Restore
Task List, which is used to show the progress of the restore operation after you start it.

17. Click Start Now to start the restore operation.

SnapManager begins to restore your databases from the backup you selected. SnapManager
Restore completes each task and checks it off on the list shown in the Restore Task List view.

You can switch back and forth between the task checklist and the progress report by using the
Switch buttons on either window.

If the restore is successful, the Task window shows the checklist with the tasks completed, and a
dialog box reports that the restore was successful.

Note: If Notification is enabled, email is sent to the specified address. All events are posted to
the Windows event log, even if notification is not enabled.

18. After the restore is complete, click OK to close the dialog box.

Your restore is now complete and your SQL Server computer comes back online.

19. After the restore operation is complete, you should perform a full backup and verification to
verify that your restored database is free of physical-level corruption. This step is especially
important if you restored a database to a different path that is shared by existing databases.

Restoring replicated, publisher, and subscriber databases
You can restore replicated, publisher, and subscriber databases.

Before you begin

• Before restoring replicated databases, you must have stopped the running SQL Agent.

• You must have taken publisher and subscriber database offline.

About this task

Restore the following databases strictly in the given order:

1. Distribution database

2. Publisher database

3. Subscriber database

Note: If you do not restore the distribution database first, the replication settings are not
maintained and you will have to restart the replication.

40 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Steps

1. In the Action pane, click Restore Setting.

2. Select the check box options Retain SQL database replication settings and Restore database
even if existing databases are online.

3. If you have multiple replication sets, restore the most recent distribution database to maintain the
replication settings for all the other replicated databases.

4. Reinitialize the restored publisher or subscriber databases because they are out of sync with the
latest distribution database.

Reseeding a database on an Availability Group
If a replica database is not synchronized with the primary database in an Availability Group, you can
reseed the replica database from an existing SnapManager backup.

Before you begin

• You must have a common SnapManager share for all of the replica nodes.

• You must have configured the share retention settings.

About this task

Using the reseed operation, any unhealthy secondary database can be recovered and resynchronized
with its primary database. The reseed operation is quicker than backing up the primary database and
restoring to the secondary replica, and this operation requires less network bandwidth.

You cannot use a stream-based backup to reseed a database; therefore ,stream-based backups are not
displayed by the Reseed Wizard .

Primary databases and non-Availability Group databases are omitted during the reseed operation.

Steps

1. From the management console, select the standalone server hosting the Availability Group
databases that you want to use to reseed.

Example

Console Root > SnapManager for SQL Server > AlwaysOn Cluster 1

2. Select Reseed Wizard in the Actions window.

The Reseed Wizard opens.

3. Follow the steps in the Reseed Wizard to start the reseed operation.

In the Reseed Wizard, you can select the database logs and an optional custom command before
verifying the reseed settings and starting the reseed operation.

Recovering databases using archived backup sets
You can restore SQL Server databases from archived backup sets.

Before you begin

• The storage system must be up and running and ready for data to be restored.

Restoring databases | 41

• The backup media must be available and ready to be used for restore.

• The database must be detached, using SQL Server Enterprise Manager or SQL Server
Management Studio.

• The LUNs must be disconnected from the Windows host machines.

• For LUNs and SMB shares, you must know the original drive letters used by LUNs and the
original names of the shares.

Steps

1. Run the Restore wizard and select the option Restore from unmanaged media.

2. Recover the archived LUNs and SMB shares containing the full backup dataset to the active file
system of the storage system.

3. Reconnect the LUNs to the original drive letters and give the hosts access to the shares.

Recovering databases using SnapMirror
If a storage system or volume on a storage system fails, you can recover SQL Server databases that
are mirrored using SnapMirror.

Before you begin

• You must have configured SnapMirror to replicate SQL Server database backups to mirrored
volumes.

• For each LUN on the SnapMirror source volume, you must have the drive letter mappings on the
SQL Server computer.

• For an SMB share, you must have the name of the original share.

Steps

1. If any LUNs from the failed source volume still appear to be connected, disconnect them.

2. Disable the mirror relationship:

If... Then...

You have LUNs Use SnapDrive to connect to the corresponding LUNs in the SnapMirror
destination volume. Use the same drive letters for connecting to the
mirrored LUNs that were used on the source volume.

For each mirrored volume, SnapDrive breaks the replica and restores the
LUN using the most recent Snapshot copy generated by SnapDrive or
SnapManager.

You have SMB shares
a. Manually disable the mirror relationship using the Data ONTAP CLI

or a management tool.

b. Create a new share that matches the name of the original share.

3. Restart SQL Server if it has been stopped.

4. Use SQL Server Management Studio to attach the database located on the associated LUNs or
SMB shares in the SnapMirror destination volume.

42 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

5. If you cannot attach the database on the SnapMirror destination volume and none of the
transaction log files were lost, you can reduce the loss of data by ensuring that the last active
transaction log of the database is automatically backed up by SnapManager:

• See Microsoft KB article 253817, "HOW TO: Back up the Last Transaction Log When the
Master and the Database Files Are Damaged."

This article describes how you can back up the currently active transaction log even if the
SQL Server database file is damaged, provided that the transaction log file is still accessible.

• Use this same Microsoft KB article as a general guide for gaining access to the last active
transaction log of the database on the SnapMirror destination volume.

While referring to the steps in that article, observe the following key points:

◦ When you create a similar database that contains the same number of data and transaction
log files as the original database on the SnapMirror destination volume, you are creating
the database you will restore using SnapManager.

◦ Instead of using the SQL Server Backup Log command to back up the transaction log (as
described in the Microsoft article), go to the next step.

If any of the transaction log files were lost, no workaround is possible and you cannot minimize
data loss.

6. If you attached the database on the SnapMirror destination volume, the steps for restoring the
database depend on whether the transaction log volume was lost:

If... Then...

You lost only the data files of
the database

Run SnapManager and use the newest full database backup copy to
perform either an up-to-the-minute restore or a point-in-time restore:

• For an up-to-the-minute restore, SnapManager automatically backs
up the last active transaction log before performing the restore
operation.

• For a point-in-time restore, select the backup set, a combination of
transaction log backups to be restored, or both.

Restoring databases | 43

If... Then...

If you lost the transaction
logs

a. Disable the option to back up the transaction log before performing
the restore operation:

i. From the SnapManager menu bar, select Options > Restore
Settings.

ii. In the Restore Settings dialog box, clear Create transaction log
backup before restore.

iii. Click OK.

The reason you must disable this restore option is that the active
transactions were lost due to the failure of the volume containing the
transaction log. If the transaction log files were lost, the active
transactions are lost and unrecoverable. Because the active
transactions are unavailable, you must use SnapManager to perform a
point-in-time restore and not an up-to-the minute restore.

If you fail to disable this transaction log backup, subsequent
SnapManager backup sets reside on a recovery path that is
inconsistent with that of the database. Such backup sets cannot be
applied to the database; attempts to restore the database from such
backup sets results in failure, with the following error message in the
restore log:
Failed with error code 0x800410df

b. Run SnapManager and use the newest full database backup copy to
perform a point-in-time restore.

Select the backup set, a combination of transaction log backups to be
restored, or both.

Recovering databases on VMDKs using SnapMirror
The disaster recovery of databases on VMDKs involves the disaster recovery of the virtual
infrastructure by Virtual Storage Console for VMware vSphere.

Preparing the primary site for recovery

Before creating a backup by SnapManager for SQL Server on the primary site, you must modify the
registry keys by completing a series of steps. This enables SnapManager for SQL Server to update
the metadata from the primary VSC for VMware vSphere server to the secondary VSC server.

Steps

1. On the primary server, navigate to the location of the registry keys at: HKEY_LOCAL_MACHINE
\SOFTWARE\NetworkAppliance\SnapManager for SQL Server\Server

2. Change the registry keys as follows:

• SMVIChangeListFile: The change list file path on the primary virtual machine (for example,
C:\DR\dr_info.txt).

• SMVIDestinationBackupXmIUNC: The path of the secondary SMVI server's backups.xml
path (for example, \\DestinationSMVIServer\repository\backups.xml).

• SMVIDestinationServer: The name or IP of the destination VSC server.

• SMVISourceBackupXmIUNC: The path of the primary SMVI server's backups.xml path
(for example, \\PrimarySMVIServer\repository\backups.xml).

44 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

• SMVITransformEnable: 1

Preparing the secondary site for recovery

You need to prepare the secondary site for recovery before performing a restore operation.

Steps

1. Install VSC for VMware vSphere.

2. Configure VSC to use the volumes on the destination side (secondary site) storage systems.

3. Enter the vCenter server and storage system IP addresses or names in the VSC Setup window.

4. Run the smvi servercredential set command from the CLI, if necessary.

5. Stop the VSC service in Windows.

6. Establish the SnapMirror relationship on the underlying volume from the primary site to
secondary site.

Volumes used for VSC on the destination side storage should be used as the SnapMirror
destination volumes.

7. Create a Windows share on the repository of both the primary and secondary VSC servers.

Ensure that the SnapManager service account has Read permission on the share at the primary
site and Write and Modify permissions at the share on the disaster recovery site.

8. Create a text file and save the following list information in the file:

datastore type datastore name of both sites virtual machine name
of both sites
virtual machine uuid of both sites virtual machine directory name
of both sites storage system name or IP address of both sites
volume name of both sites| datastore uuid of both sites in case
of VMFS type of datastore

Ensure that all of the above information is in one line per datastore. Each field is separated with a
space.

Note: The virtual machine name and its universal unique identifier (UUID) can be the same if
there is no preinstalled standby virtual machine on the disaster recovery site.

9. Save this file to any folder on the primary virtual machine or any other server that the
SnapManager service can access through Windows share.

Recovering databases from the secondary site

You need to use VSC to recover the virtual machine before performing the database restore operation
in SnapManager.

Steps

1. Break the SnapMirror relationship from the storage system.

2. Bring online the SnapMirror destination volumes on which the datastores reside.

3. Create an NFS export for the NFS storage on the storage system for the destination volume.

4. Add the new NFS export to each of the destination VSC servers on the ESX host.

Restoring databases | 45

5. Right click on the datastore and select Browse data store.

6. In the left pane, click the virtual machine's name.

7. In the right pane, right-click the virtual machine's VMX file and select the option Add to
Inventory.

8. Follow the steps in the wizard to add the virtual machine to the ESX server.

9. Power on the virtual machine.

10. Log in to the virtual machine.

11. From the command prompt, enter the following command:

sdcli smvi_config list

The command lists the primary VSC server.

12. Switch to the secondary VSC server by entering the following command:

sdcli smvi_config set -host IP_of_the_secondary_SMVI_Server

13. Restart the SnapDrive for Windows service by using the following commands:

net stop swsvc

net start swsvc

14. After the SnapDrive for Windows service starts successfully, check that all of the VMDKs are
available by entering the sdcli disk list command.

15. On the recovered virtual machine, run SnapManager for Microsoft SQL Server restore to recover
SQL databases.

46 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Cloning databases

Database cloning is the process of creating a point-in-time copy of a production database or its
backup set. You might clone databases during application development, to populate data warehouses,
or to recover data.

You can use database clones for several reasons:

• During application development cycles, for testing functionality that has to be implemented using
the current database structure and content

• For data extraction and manipulation tools when populating data warehouses

• For recovering data that was mistakenly deleted or changed

The database cloning feature enables you to clone specific databases or all databases simultaneously.
You can either rename a cloned database or accept the default name provided. You can select the
SQL Server instance either from a host on which the database resides or from a remote host
connected to the storage system.

Note: If a database resides on a virtual machine with a VMDK disk, SnapManager cannot clone
the database to a physical server.

A database cloning operation generates two reports: a backup report and a restore report.

Cloning limitations for VMDKs
Cloning databases that reside on VMDKs using a source volume is similar to cloning databases from
LUNs and SMB shares; however, you should be aware of several limitations.

• You cannot perform a database clone on a remote physical server when the database resides on a
VMDK.

• You cannot clone a database on a SnapVault secondary because there is no remote backup
available for clone operation.

• When the databases are hosted on the VMDKs that are replicated to a site by SnapMirror, you
cannot clone databases from a SnapMirror destination volume to the local SQL Server. However,
you can clone databases from destination volumes to an SQL Server running on a remote virtual
machine.

• SnapManager does not support cloning on SnapMirror destination volumes if the source and
destination volumes contain VMFS datastores.

Note: This limitation applies to clustered Data ONTAP only.

Prerequisites for VMDK verification or cloning on
SnapMirror destination volumes

You can verify backup sets on SnapMirror destination volumes and you can clone databases from
SnapMirror destination volumes. If the databases that you want to verify or clone are hosted on
VMDKs, you must meet several prerequisites before you can perform either of those operations.

You can verify and clone from destination volumes when the database hosted on the VMDK is
replicated to a site by SnapMirror and the configuration meets the following requirements:

• The virtual machine is installed on the ESX server on the secondary site.

47

• SQL Server, SnapDrive, and SnapManager are installed on the virtual machine.

• The ESX server is managed by another vCenter Server and the VSC server on the secondary site.

• SnapDrive is installed on the secondary virtual machine that is pointing to the VSC server on the
secondary site.

• On the primary site, you have selected the SQL Server on the secondary site as the remote
verification server.

• On both the primary and secondary VSC servers, you have created a Windows share on the VSC
repository folder where the backup metadata file resides.

• The SnapManager service account has read permission on the share at the primary site and write
and modify permissions at the share on the secondary site.

• The primary VSC server has discovered the destination storage system.

• For NFS datastores residing on clustered Data ONTAP, a datastore must exist on the SnapMirror
destination volume and the name of the destination datastore must be specified in the change list
file.

• On the primary virtual machine where the backup is initiated, the following registry settings and
values must be defined in HKEY_LOCAL_MACHINE\SOFTWARE\Network Appliance
\SnapManager for SQL Server\Server:

SMVITransformEnable

dword:00000001

SMVITransformScript

SMVI_Metadata_update.exe

SMVIDestinationServer

destination SMVI server name

SMVISourceBackupXmlUNC

\\source SMVI server name\SMVI repository share name\backups.xml

SMVIDestinationBackupXmlUNC

\\destination SMVI server name\SMVI repository share name

\backups.xml

SMVIChangeListFile

change list file name

Formatting requirements for the change list file

The change list file is a text file that contains information about the source volume and the
destination volume of a datastore. The content of the file must be in a certain format based on the
Virtual Storage Console releases.

For releases prior to Virtual Storage Console 6.2, the contents of the change list file must be in the
following format, with fields separated by a space and each datastore beginning on a new line:

DatastoreType SourceDatastoreName DestinationDatastoreName
SourceVirtualMachineName DestinationVirtualMachineName
SourceVirtualMachineUUID DestinationVirtualMachineUUID
SourceVirtualMachineDirectoryName DestinationVirtualMachineDirectoryName
SourceStorageName DestinationStorageName SourceVolumeName
DestinationVolumeName [SourceDatastoreUUID
DestinationDatastoreUUID]

48 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

In this format, DatastoreType is either NFS or VMFS, and DatastoreUUID is not required for an
NFS volume.

Note: For NFS datastores residing on systems running ONTAP, SourceStorageName and
DestinationStorageName must be the IP addresses of the source NFS data LIF and the
destination NFS data LIF, respectively.

The following example shows the contents of an NFS change list file:

NFS
ds-nfs1 ds-nfs1-dest snapmgr-05-vm2 snapmgr-54-vm1 4211945a-124a-b7c9-
ae63-cacc07f3f4f8
420f010b-7e5a-e66e-7ed1-7bef6a357cca snapmgr-05-vm1 snapmgr-54-vm1
172.17.233.24
172.17.232.74 snapmgr05_vmw1 snapmgr05_vmw1_mir

Starting with Virtual Storage Console 6.2, the contents of the change list file must be in the following
format:

DatastoreType DatastoreName DR_DatastoreName VMName DR_VMName VMuuid
DR_VMuuid DirectoryName DR_DirectoryName StorageName DR_Storagename
VolumeName DR_VolumeName DatastoreMorefSrc DatastoreMorefDest

Note: This format change is relevant for SnapManager for Microsoft SQL Server 7.2.2P1 and later
releases.

In this format, DatastoreType is either NFS or VMFS.

The following example shows the contents of an NFS change list file:

NFS Datastore_nfs_source nfs_dest_datastore_yg
Server2016_Source_nfs_remote_clone Server_2016_Danish
5219658c-ce8c-cbd3-b713-af892218c008
5018cc7a-7392-9825-e143-8a889fde19d4
Server2016_Danish_forremoteclone Server_2016_Danish 10.225.12.53
10.225.12.134 vol_dk_source_nfs_vmdk vol_dk_source_nfs_vmdk_mirror
datastore-99 datastore-100

Replacing destination data store UUIDs for VMFS data stores

You can replace the destination data store UUID for a VMFS datastore with new values to create
VMDK clones.

Steps

1. Break the SnapMirror relationship with the storage system.

2. Select the SnapMirror destination volume on which the data store is available, and then bring the
data store online.

3. On the secondary SMVI server, select Resignature the LUN to add the LUN to the destination
volume as the destination data store on the secondary ESX server.

4. Make a note of the data store name and UUID values.

5. Replace the destination data store name and the destination data store UUID with the new values
that you made a note of in the change list file.

Cloning databases | 49

Cloning a database from a local backup or an archived
backup

Cloning a database backup is probably the most commonly used cloning feature. The cloned database
can serve as a baseline for developing new applications, or to isolate application errors that occur in
the production environment. It can also be used for recovery from soft database errors.

Steps

1. In the SnapManager Console Root tree, select a server.

2. In the Actions pane, click Clone Wizard.

The SnapManager for SQL Server Clone wizard opens.

3. Click Next.

4. On the Clone Type page, select Clone Databases from existing Backup Set and click Next.

5. On the Backup Selection page, double-click the backup from which you want to create the clone
and then click Next.

Note: The first time you select a database that resides on an LUN, SnapManager automatically
selects all databases on the same storage. You can then deselect any databases that you do not
want to be cloned.

6. On the Restore Settings page, do the following and click Next:

• Select backups to restore.

• Choose where to apply point-in-time settings.

• Choose a point-in-time or marked transaction.

7. Click Next.

SnapManager displays the list of databases to be cloned. By default, SnapManager provides the
same name to the clone as the original database.

8. Rename the cloned database, and click Next.

9. On the Restore Settings page, specify the clone database name and click Next.

10. On the Clone to Server page, specify the clone server name, choose whether you will use a letter
drive or a mount point, and click Next.

If you specify a mount point, make sure the directory is empty. If there is a database in the
directory, the database will be in an invalid state after the mount.

11. On the Verification Settings page, you can do the following:

• Update SnapMirror after the clone operation completes.

• Archive the clone to a SnapVault backup.

• Clone from a SnapVault backup.

12. On the Restore Settings page, do any of the following and click Next:

• Click Clone Restore Settings to configure advanced settings.

50 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

• Choose whether you want to clone the database on an available SnapMirror destination
volume.

• Choose whether you want to change the clone database paths based on the new database
name.

13. On the Clone Life Cycle Management page, choose to resynchronize the clone and to
automatically delete the clone and define a schedule for each.

Cloned database resynchronization syncs the cloned database with the live database and
automates cloned database deletion. Automatically deleting clones improves resource and storage
efficiency by deleting unnecessary clones.

14. On the Restore Settings page, select the state of the database you want after the restore operation
and click Next.

If you select Leave the database in read-only mode and available for restoring additional
transaction logs, the Undo file directory option activates.

Note: The default path for the SnapInfo directory in the Undo file directory option is that of
the source host.

15. To run a command or script before performing the clone operation or after the clone operation
finishes, select the Run Command Settings option and click Next.

16. Click Finish.

17. Click Start Now to start cloning.

SnapManager checks off tasks in the Clone Task List as they complete. A message appears
indicating the successful completion of the cloning operation.

Cloning a database that is in production
You typically use the clone of a database that is in production when you need to test a new
application or function with the latest database content before taking the application into production.

About this task

Cloning a current database involves two steps. First you create the backup of the selected database,
then you restore the database from the just-created backup set.

Steps

1. In the SnapManager Console Root tree, select a server.

2. In the Actions pane, click Clone Wizard.

3. On the Start page, click Next.

4. On the Clone Type page, select Clone Active Production Databases and click Next.

Note: If you select Run Through Clone QuickStart Wizard, the wizard applies default options
for most of the settings.

5. On the Database Selection page, double-click the backup from which you want to create the
clone, and then click Next.

Note: The first time you select a database that resides on an LUN, SnapManager automatically
selects all other databases on the same storage. You can then deselect any databases that you do
not want to clone.

Cloning databases | 51

6. Continue with the next steps, as instructed in the wizard.

7. If you want to rename the new database clone's paths based on the name of the new database,
select the appropriate check box in the wizard.

Note: You cannot specify database paths for a clone.

8. To perform a clone on a SnapMirror destination volume, select the Clone on available
SnapMirror destination volumes check box.

9. To run a command or script before performing the clone operation or after the clone operation
finishes, select the Run Command Settings option.

10. The wizard takes you to the final option that displays the SnapManager clone task list. Click
Start Now to begin the specified tasks.

SnapManager checks off tasks in the Clone Task List as they complete. A message appears
indicating the successful completion of the cloning operation.

Creating a clone replica of an AlwaysOn cluster
If you need a failover copy of the databases in an AlwaysOn cluster, you can use the SnapManager
for SQL Server Availability Group Replica Wizard to create them. After the clone replica is
completed, you have a new replica created on the existing availability group as a normal secondary
replica.

About this task

The SnapManager for SQL Server Availability Group Replica Wizard uses Snapshot copies to
quickly clone the databases to a remote server and then join the clone databases to an Availability
Group as a new Availability Group database replica.

Note: A clone replica should be used in the same manner as a clone database, only for temporary
purposes.

Steps

1. In the SnapManager Console Root tree, select a server.

2. In the Actions pane, select Replica Wizard.

3. Follow the steps in the SnapManager for SQL Server Availability Group Replica Wizard to
specify the source, the settings for the replica, and the destination for the replica.

In the Quick Clone Replica page, you can click Run through Quick Availability Group Clone
Replica Wizard so that the wizard automatically sets the mandatory settings.

Cloning an already cloned database
You can create a clone of an already cloned database or a database that is in production by using the
Clone wizard. You can back up or restore the clone, or you can create a new clone from the already
backed-up database.

Steps

1. In the SnapManager Console Root tree, select a cloned database.

2. In the Actions pane, click Clone Wizard.

The Clone wizard launches and the Welcome window appears.

52 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

3. Click Next.

4. On the Clone Type page, select Clone Databases from existing Backup set or Clone Active
Production Databases and click Next.

Note: While choosing Clone Active Production Databases, you can see the Run Through Clone
QuickStart Wizard option, and the wizard applies default options for most of the settings.

5. On the Backup Selection page, double-click the backup copy (clone) from which you want to
create a clone and then click Next.

Note:

• You cannot select an SQL server database beyond the second level of the clone.

• When selecting an SQL server database that resides on VMDKs over VMFS, the clone of
clone continues to work beyond two levels.

• You cannot select an SQL server database beyond the second level of clone for backup and
restore operations with verification.

6. On the Restore Settings page, do the following and click Next:

• Select backups to restore.

• Choose where to apply point-in-time settings.

• Choose a point-in-time or marked transaction.

7. Click Next.

SnapManager displays the list of databases to be cloned. By default, SnapManager provides the
same name to the clone as the original database.

8. Rename the cloned database and click Next.

9. On the Restore Settings page, specify the clone database name and click Next.

10. On the Clone to Server page, specify the clone server name, choose whether to use a letter drive
or a mount point, and click Next.

If you specify a mount point, make sure that the directory is empty. If there is a database in the
directory, that database will be in an invalid state after the mount.

11. On the Verification Settings page, you can do the following:

• Update SnapMirror after the clone operation completes.

• Archive the clone to a SnapVault backup.

• Clone from a SnapVault backup.

12. On the Restore Settings page, do any of the following and click Next:

• Click Clone Restore Settings to configure advanced settings.

• Choose whether you want to clone the database on an available SnapMirror destination
volume.

• Choose whether you want to change the clone database paths based on the new database
name.

13. On the Clone Life Cycle Management page, choose to resynchronize the clone and to
automatically delete the clone and define a schedule for each.

Cloning databases | 53

Cloned database resynchronization synchronizes the cloned database with the live database and
automates cloned database deletion. Automatically deleting clones improves resource and storage
efficiency by deleting unnecessary clones.

14. On the Restore Settings page, select the state of the database you want after the restore operation
and click Next.

If you select Leave the database in read-only mode and available for restoring additional
transaction logs, the Undo file directory option activates.

Note: The default path for the SnapInfo directory in the Undo file directory option is that of
the source host.

15. To run a command or script before performing the clone operation or after the clone operation
finishes, select the Run Command Settings option and click Next.

16. Click Finish.

17. Click Start Now to start cloning.

SnapManager checks off tasks in the Clone Task List as they become complete. A message
appears, indicating the successful completion of the cloning operation.

Splitting a cloned database
The split clone feature enables you to split the cloned database from the parent database. After the
clone split is completed, the cloned database and parent database are independent of each other, and
have their own individual storage space.

Steps

1. In the SnapManager Console Root tree, select a cloned database.

2. In the Actions pane, click Clone Wizard.

The SnapManager for SQL Server Clone wizard opens.

3. Click Next.

4. On the Clone Type page, select Split Cloned Database and click Next.

5. Select the cloned database that you want to split.

Note: The split clone interface displays all of the clones for VMDK over VMFS, but these
clones cannot be split because they are cloned using FlexClone LUNs.

6. Click Finish.

Note: After splitting a cloned database that is cloned from the source database, the split
database cannot be migrated to the LUN where the source database is located.

SnapManager checks off tasks in the Clone Task List as they become complete. A message
appears, indicating the successful completion of the split operation.

54 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Deleting cloned databases
You can delete a cloned database that has outlived its purpose. Deleting the cloned database implies
that you are disconnecting the Snapshot copy.

About this task

You can also delete clones through Delete Clone in the Actions pane.

Steps

1. In the SnapManager Console Root tree, select a server.

2. In the Actions pane, click Clone Wizard.

The Clone wizard launches and the Welcome window appears.

3. Click Next.

SnapManager displays an option for selecting the operation that you want to perform.

4. Select the operation you want to perform, and click Next.

SnapManager displays the Database to clone window listing the available cloned databases.

5. Select the cloned databases that you want to delete.

6. In the Delete clone summary screen, verify the settings selected in the previous steps and click
Finish.

7. Click Start now to begin the specified tasks.

SnapManager checks off tasks in the Clone Task List as they complete. A message appears
indicating the successful completion of the delete cloning operation.

Cloning databases | 55

Using SnapManager reports

SnapManager reports list step-by-step details of every SnapManager operation that you perform,
their final statuses, and any error messages that you encounter during the operation.

Report Description

Backup Contains a log file for every backup set (full database backup or transaction log
backup) created by SnapManager

Config Contains a log file for each time SnapManager migrates a database

Debug Contains a debugging log in SnapManager when debug logging is enabled

Delete Backup
Set

Contains a log file for every delete backup operation

Miscellaneous Contains log files for all other operations

Monitor Contains a log file for SnapManager monitoring features

Restore Contains a log for every restore operation (whether it is a stream-based restore,
a copy-based restore, or an online Snapshot restore) performed on an SQL
Server that is configured using SnapManager

Viewing SnapManager reports
You can view SnapManager reports to troubleshoot errors with SnapManager operations.

Steps

1. In the SnapManager Console Root tree, expand a server and click Reports.

2. In the Reports pane, expand a folder and select the report you want to display.

3. Use the Actions pane to manage a report folder or a specific report.

For example, you can open a report in Notepad or find specific words in a report.

Configuring monitoring and reporting settings
You can enable SnapManager to send automatic, scheduled email notifications on the status of all
backup, verification, and clone operations.

About this task

Each email notification can include the following information:

• A summary of operations

• A summary of individual SQL Server instances, with the number of successful and failed
operations

• A list of all operations performed on individual SQL Server instances

• A summary of successful, failed, and “not run” operations on individual SQL Server instances

56

Note: For backup and verification operations, incomplete or “not run” operations are logged as
an error in the Windows event log, but are logged with an informational message for clone
operations.

• A list of all failed operations for individual SQL Server instance

Steps

1. Select a server in the SnapManager Console Root tree.

2. In the Actions pane, click Monitor Settings.

The Monitoring and Reporting Settings window opens.

3. Select Enable Monitoring and Reporting.

4. Choose the operations that you want SnapManager to monitor:

• For Backup

• For Verification

• For Clone Resync

Note: If you select For Backup and For Clone Resync, you receive email notifications on all
backup and clone operations, but not on verification operations.

5. In the Select Reporting Interval pane, specify how often you want to receive notifications.

Example

Select 1 in the days field to receive email notifications once per day.

6. In the Report operations starting at field, set the time at which the report operations should
start.

7. Click OK.

Changing the location of the SnapManager report directory
If you find that there is limited space in the current SnapManager report directory, you can change
the report directory to a different location that has more available disk space.

About this task

The reasons for changing the location of the SnapManager report directory include:

• You have limited space.

• You have a clustered environment.

If you are running SQL Server and SnapManager in a Windows cluster, storing the SnapManager
reports in the default location does not allow sharing of the report directory between the nodes in
the cluster.

By default, the SnapManager reports are stored in a subdirectory named Report under the directory in
which the SnapManager application is installed.

If you change the name or location of the SnapManager report directory, you cannot use the
SnapManager Reports option to view or print any reports that were created in that report directory.
However, if the previous report directory was not explicitly changed or removed, any reports created

Using SnapManager reports | 57

in that directory are still accessible. To view or print those older reports, you must change the report
directory back to its previous location.

Steps

1. From the Actions pane, select Report Directory Settings.

2. Specify the new location for the report directory.

Note the following about the location of the directory:

• The directory cannot be located on a CIFS share.

• Do not use a disk that contains SQL Server or SnapManager data for the report directory.

3. Click OK to apply your changes.

4. To refresh the information displayed in the Reports option, go the Actions pane and select
Refresh.

After you finish

If you changed the report directory for a node in a clustered environment, change the directory on all
other nodes in the cluster.

58 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Modifying your database configuration on NetApp
storage

After you migrate your databases to NetApp storage, you can modify your database configuration at
any time using the SnapManager Configuration wizard.

Moving multiple SnapInfo directories to a single SnapInfo
directory

If you previously configured multiple SnapInfo directories, you can rerun the Configuration wizard
to move them to a single SnapInfo directory.

About this task

The Configuration wizard enables you to create multiple SnapInfo directories in the following ways:

• A default SnapInfo directory for each SQL Server instance

• A separate SnapInfo directory for multiple databases on one or two LUNs, SMB shares, or
VMDKs

• A different (non-default) SnapInfo directory for a database in an SQL Server instance

If you currently have multiple SnapInfo directories, you can choose to combine them into a single
directory.

Steps

1. In the Actions pane, click Configuration Wizard.

2. Complete the following pages without specifying any configuration changes:

• Verification Settings

• Database Selection

3. On the SnapInfo Settings page, select the Single SnapInfo Directory option, and then click
Next.

The Specify a Single SnapInfo Directory screen appears. Note that, in the Current SnapInfo
Directory list, all the current SnapInfo directories are selected by default.

4. On the Available Disks page, select the LUN, SMB share, or VMDK to which you want to move
all the SnapInfo directories.

5. Click the move (<=>) button.

The Result SnapInfo Directory dialog box displays the path for the SnapInfo directory. Note that
the default directory name is SMSQL_SnapInfo.

6. If you want to specify a different location or name, modify the information in the Result
SnapInfo Directory dialog box.

Note: The Configuration wizard will allow you to create the SnapInfo directory only in valid
locations.

7. Complete the remaining pages of the Configuration wizard without specifying any further
configuration changes.

59

8. In the Finish page, verify the changes you specified, and then click Finish.

9. In the Configuration page, click Start Now.

10. When a message box is displayed and notifies you that the configuration changes were completed
successfully, click OK to close the message.

Migrating SQL Server databases back to local disks
If you choose not to use SnapManager as your data management tool, you can migrate your
databases back to local disks.

Steps

1. From the Actions pane, click Configuration Wizard Option Settings.

The Configuration Wizard Option Settings dialog box opens.

2. Select Enable databases to be migrated back to local disks, and click OK.

3. In the Actions pane, click Configuration Wizard.

4. On the Start page, click Next.

5. On the Verification Settings page, click Next.

6. On the Database Selection page, reassign the databases to a local disk:

a. In the Database Location Results pane, select the databases that you want to move back to a
local disk.

b. Click Reconfigure.

c. In the Database Selection pane, select the databases you just reconfigured.

Tip: In the database list, the Disk column displays Reconfig instead of the database
location.

d. In the Disk Selection pane, select a local drive, and then click the <=> button.

e. Click Next.

7. In the Select SnapInfo File page, click Next.

Note: Both SnapInfo directories must remain on the LUNs, SMB shares, or VMDKs on which
you placed them during the original migration. They cannot be moved to local disks.

8. Complete the remaining pages of the Configuration wizard without specifying any further
configuration changes.

9. On the Finish page, click Finish.

10. On the Configuration page, click Start Now to migrate your databases back to local disk.

Setting up a SnapManager share for centralized backups of
transaction logs

A centralized network share makes sure that copies of transaction logs are available to all replicas
within the Availability Group and non-Availability Group configurations, providing a centralized
backup of transaction logs. If the transaction log backups are created on more than one Availability

60 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Group replica, those transaction logs are still accessible and can be used for tasks such as up-to-the-
minute restores, database reseeding, and using a clone as a replica.

About this task

If you set up a SnapManager share, SnapManager copies any transaction log backups taken on
Availability Group databases to the share, including the log backups taken during secondary
Availability Group database migration. These log backups are required to perform an up-to-the-
minute restore on another node's Availability Group databases.

You can use the Configuration Wizard to set a network location as a centralized location for copies of
transaction logs. At the time logs are backed up, the backups are copied to this share. You can do this
either as a step in the initial configuration, or as a separate task.

Steps

1. Start the Configuration Wizard.

2. Click Next until you reach the Setup SnapManager Share window.

3. Check Enable SnapManager share and enter or browse to an accessible network share.

Importing or exporting database configurations using a
control file

You can use a control file to ease database configuration and modification of SnapManager settings.
The control file is an XML file that contains settings for SnapManager configuration. The
configuration data is represented in XML format that can be edited manually.

About this task

You can access the control file option from the SnapManager Configuration wizard. The control file
is an alternative to manually defining database and SnapManager configurations using the
Configuration wizard.

The control file is especially useful in the following scenarios:

• Disaster recovery

• Mass deployment

The configuration settings contained in the control file are grouped into the following sections:

• Storage Layout

• Notification settings

• Verification settings

• Report folder setting

• Backup settings

• Run Command Settings

• SnapMirror Volumes

• Scheduled Jobs

• Clone Scheduled Jobs

• Monitoring and Reporting Settings

Modifying your database configuration on NetApp storage | 61

Steps

1. On the Actions pane, click Configuration Wizard.

2. On the Start page, select Use Control File and click Next.

3. On the Import or Export page, define the settings for importing or exporting your configuration:

a. Select either the Import or the Export option.

b. If you are importing a configuration, select Review settings in configuration wizards if you
want to see a summary of the imported configuration settings and do not want to proceed
through the remaining pages of the wizard.

c. In the Use control file field, specify the location to import or export the control file.

d. Click Advanced.

e. In the Configuration Import/Export Advanced options window, specify the configuration
settings that you want to import or export and click OK.

f. Click Next to proceed.

If you chose export, the wizard closes and confirms that the file was exported.

4. If you chose import, follow the remaining pages in the wizard to import your configuration.

Sample XML schema for the control file settings
The SnapManager schema file is distributed with the installation package. The sample configuration
file provided in this topic shows the SnapManager control file settings.

Storage layout settings

The following schema depicts the storage layout settings section. You can edit the storage layout
settings using an XML editor.

<?xml version="1.0" ?>
- <SMSQLCONFIG xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<HOST_NAME>SNAPMGR-19</HOST_NAME>
- <STORAGE_LAYOUT>
<MAX_DB_JOB>255</MAX_DB_JOB>
- <SQL_INSTANCES>
- <SQL_INSTANCE>
<SQL_INSTANCE_NAME>SNAPMGR-19</SQL_INSTANCE_NAME>
<SQL_INSTANCE_SNAPINFO_PATH>K:\SMSQL_SnapInfo</
SQL_INSTANCE_SNAPINFO_PATH>
<ADD_MSISIC_DEPENDENCY>false</ADD_MSISIC_DEPENDENCY>
- <DATABASES>
- <DATABASE>
<DATABASE_NAME>master</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>master</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\master.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>

62 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>mastlog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\mastlog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>tempdb</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>tempdev</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
empdb.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>templog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
emplog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>model</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>modeldev</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\model.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>modellog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\modellog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>msdb</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>MSDBData</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\MSDBData.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>MSDBLog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\MSDBLog.ldf</FILE_PATH>

Modifying your database configuration on NetApp storage | 63

</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>DB1</DATABASE_NAME>
<SNAPINFO_PATH>K:\SMSQL_SnapInfo</SNAPINFO_PATH>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>DB1</FILE_NAME>
<FILE_PATH>K:\MP\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB1.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>DB1_log</FILE_NAME>
<FILE_PATH>K:\MP2\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB1_log.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
- <DB_VOLUMES>
- <DB_VOLUME>
<FILER_NAME>rhine</FILER_NAME>
<VOLUME_NAME>grace2</VOLUME_NAME>
</DB_VOLUME>
</DB_VOLUMES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>DB3</DATABASE_NAME>
<SNAPINFO_PATH>K:\SMSQL_SnapInfo</SNAPINFO_PATH>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>DB3</FILE_NAME>
<FILE_PATH>I:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB3.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>DB3_log</FILE_NAME>
<FILE_PATH>I:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB3_log.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
- <DB_VOLUMES>
- <DB_VOLUME>
<FILER_NAME>rhine</FILER_NAME>
<VOLUME_NAME>grace1</VOLUME_NAME>
</DB_VOLUME>
</DB_VOLUMES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>DB2</DATABASE_NAME>
<SNAPINFO_PATH>K:\SMSQL_SnapInfo</SNAPINFO_PATH>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>DB2</FILE_NAME>
<FILE_PATH>K:\MP2\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA

64 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

\DB2.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>DB2_log</FILE_NAME>
<FILE_PATH>K:\MP\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB2_log.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
- <DB_VOLUMES>
- <DB_VOLUME>
<FILER_NAME>rhine</FILER_NAME>
<VOLUME_NAME>grace2</VOLUME_NAME>
</DB_VOLUME>
</DB_VOLUMES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>DB4</DATABASE_NAME>
<SNAPINFO_PATH>K:\SMSQL_SnapInfo</SNAPINFO_PATH>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>DB4</FILE_NAME>
<FILE_PATH>I:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB4.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>DB4_log</FILE_NAME>
<FILE_PATH>I:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB4_log.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
- <DB_VOLUMES>
- <DB_VOLUME>
<FILER_NAME>rhine</FILER_NAME>
<VOLUME_NAME>grace1</VOLUME_NAME>
</DB_VOLUME>
</DB_VOLUMES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>DB5</DATABASE_NAME>
<SNAPINFO_PATH>K:\SMSQL_SnapInfo</SNAPINFO_PATH>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>DB5</FILE_NAME>
<FILE_PATH>I:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB5.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>DB5_log</FILE_NAME>
<FILE_PATH>I:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA
\DB5_log.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
- <DB_VOLUMES>

Modifying your database configuration on NetApp storage | 65

- <DB_VOLUME>
<FILER_NAME>rhine</FILER_NAME>
<VOLUME_NAME>grace1</VOLUME_NAME>
</DB_VOLUME>
</DB_VOLUMES>
</DATABASE>
</DATABASES>
</SQL_INSTANCE>
- <SQL_INSTANCE>
<SQL_INSTANCE_NAME>SNAPMGR-19\MARS</SQL_INSTANCE_NAME>
<SQL_INSTANCE_SNAPINFO_PATH>K:\SMSQL_SnapInfo</
SQL_INSTANCE_SNAPINFO_PATH>
<ADD_MSISIC_DEPENDENCY>false</ADD_MSISIC_DEPENDENCY>
- <DATABASES>
- <DATABASE>
<DATABASE_NAME>master</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>master</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
\master.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>mastlog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
\mastlog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>tempdb</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>tempdev</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
empdb.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>templog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
emplog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>model</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>modeldev</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
\model.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>

66 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>modellog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
\modellog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
- <DATABASE>
<DATABASE_NAME>msdb</DATABASE_NAME>
- <FILE_GROUPS>
- <FILE_GROUP>
<GROUP_NAME>PRIMARY</GROUP_NAME>
- <DATABASE_FILES>
- <DATABASE_FILE>
<FILE_NAME>MSDBData</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
\MSDBData.mdf</FILE_PATH>
</DATABASE_FILE>
</DATABASE_FILES>
</FILE_GROUP>
</FILE_GROUPS>
- <LOG_FILES>
- <LOG_FILE>
<FILE_NAME>MSDBLog</FILE_NAME>
<FILE_PATH>C:\Program Files\Microsoft SQL Server\MSSQL.2\MSSQL\DATA
\MSDBLog.ldf</FILE_PATH>
</LOG_FILE>
</LOG_FILES>
</DATABASE>
</DATABASES>
</SQL_INSTANCE>
</SQL_INSTANCES>
</STORAGE_LAYOUT>

Notification settings

The following schema depicts the notification settings section:

-<COMMON_SETTINGS>
-<NOTIFICATION>
-<SEND_EMAIL_NOTIFICATION>
<SMTP_SERVER>SNAPMGR-19</SMTP_SERVER>
<FROM>SMSQLAutoSender</FROM>
<TO>autosupport@netapp.com</TO>
<SUBJECT>SnapManager for SQL Server</SUBJECT>
<NOTIFY_AUTO>true</NOTIFY_AUTO>
<LONG_MSG>false</LONG_MSG>
<AS_ATTACHMENT>false</AS_ATTACHMENT>
<SEND_ON_FAILURE>true</SEND_ON_FAILURE>
</SEND_EMAIL_NOTIFICATION>
<EMS_ENABLED>true</EMS_ENABLED>
<ASUP_ENABLED>true</ASUP_ENABLED>
<ASUP_ON_FAIL>true</ASUP_ON_FAIL>
</NOTIFICATION>

Verification settings

The following schema depicts the verification settings section:

-<VERIFICATION>
-<VERIFICATION_CLIENT_SETTING>
<VERIFICATION_SERVER>SNAPMGR-19</VERIFICATION_SERVER>
<VER_SERVER_NTAUTH>true</VER_SERVER_NTAUTH>

Modifying your database configuration on NetApp storage | 67

<VER_DBCC_NOINDEX>false</VER_DBCC_NOINDEX>
<VER_DBCC_ALL_ERROR_MSG>false</VER_DBCC_ALL_ERROR_MSG>
<VER_DBCC_NO_INFO_MSGS>false</VER_DBCC_NO_INFO_MSGS>
<VER_DBCC_TABLOCK>false</VER_DBCC_TABLOCK>
<VER_DBCC_PHYSICAL_ONLY>false</VER_DBCC_PHYSICAL_ONLY>
<VER_DBCC_ATTACH_DB>false</VER_DBCC_ATTACH_DB>
<VER_DBCC_BEFORE_MIGRATION>true</VER_DBCC_BEFORE_MIGRATION>
<VER_DBCC_AFTER_MIGRATION>false</VER_DBCC_AFTER_MIGRATION>
<VER_DELETE_DB_FILE_ORIG>true</VER_DELETE_DB_FILE_ORIG>
<VER_RUN_UPDATE_STATISTICS>true</VER_RUN_UPDATE_STATISTICS>
</VERIFICATION_CLIENT_SETTING>
-<VERIFICATION_SERVER_SETTING>
<AUTO_DRIVELETTER>true</AUTO_DRIVELETTER>
<MP_DIR>C:\Program Files\NetApp\SnapManager for SQL Server
\SnapMgrMountPoint</MP_DIR>
</VERIFICATION_SERVER_SETTING>
</VERIFICATION>

Monitoring directory settings

The following schema depicts the monitoring directory settings:

- <MONITORING.>
<REPORT_BACKUP> true</REPORT_BACKUP>
<REPORT_CLONE>false</REPORT_CLONE>
<INTERVAL_HOURS>1</INTERVAl_HOURS>
<REPORT_CLOCK>23:15:00</REPORT_CLOCK>
</MONITORING>

Report directory settings

The following schema depicts the report directory settings section:

<REPORT_DIRECTORY>C:\Program Files\NetApp\SnapManager for SQL Server
\Report</REPORT_DIRECTORY>

Backup settings

The following schema depicts the backup settings section:

-<BACKUP>
-<BACKUP_CLIENT_SETTING>
<NAMING_CONVENTION>0</NAMING_CONVENTION>
<BACKUP_SET_TO_KEEP>3</BACKUP_SET_TO_KEEP>
<BACKUP_SET_TO_KEEP_IN_DAYS>0</BACKUP_SET_TO_KEEP_IN_DAYS>
<LOG_BACKUP_SET_TO_KEEP>7</
LOG_BACKUP_SET_TO_KEEP><LOG_BACKUP_SET_TO_KEEP_IN_DAYS>0</
LOG_BACKUP_SET_TO_KEEP_IN_DAYS><DELETE_BACKUPS_OPTION>0</
DELETE_BACKUPS_OPTION>
<DELETE_LOG_BACKUPS_OPTION>0</
DELETE_LOG_BACKUPS_OPTION><BACKUP_SET_TO_VERIFY>0</BACKUP_SET_TO_VERIFY>
<BACKUP_SET_TO_KEEP_UTM>8</BACKUP_SET_TO_KEEP_UTM>
<BACKUP_SET_TO_KEEP_IN_DAYS_UTM/>
<DELETE_BACKUPS_OPTION_UTM>0</DELETE_BACKUPS_OPTION_UTM></
BACKUP_CLIENT_SETTING>
-<BACKUP_SERVER_SETTING>
<RUN_CMD_HOST>SNAPMGR-19</RUN_CMD_HOST> <RUN_CMD_PATH>notepad.exe</
RUN_CMD_PATH>
<RUN_CMD_ARGUMENT>$SqlSnapshot $InfoSnapshot</RUN_CMD_ARGUMENT>
</BACKUP_SERVER_SETTING>
</BACKUP>

68 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

SnapMirror volumes settings

The following schema depicts the SnapMirror relationship settings section:

-<VERIFICATION_ON_DESTINATION>
-<SELECTED_DESTINATIONS>
-<SELECTED_DESTINATION>
<SOURCE_FILER>rhine</SOURCE_FILER>
<SOURCE_VOLUME>grace2</SOURCE_VOLUME>
<DESTINATION_FILER>rhine</DESTINATION_FILER>
<DESTINATION_VOLUME>grace2_mir</DESTINATION_VOLUME>
</SELECTED_DESTINATION>
-<SELECTED_DESTINATION>
<SOURCE_FILER>rhine</SOURCE_FILER>
<SOURCE_VOLUME>grace2</SOURCE_VOLUME>
<DESTINATION_FILER>rhine</DESTINATION_FILER>
<DESTINATION_VOLUME>grace2_mir</DESTINATION_VOLUME>
</SELECTED_DESTINATION>
</SELECTED_DESTINATIONS>
</VERIFICATION_ON_DESTINATION>

Schedule job settings

The following schema depicts the schedule job settings section:

-<VERIFICATION_ON_DESTINATION>
-<SELECTED_DESTINATIONS>
-<SELECTED_DESTINATION>
<SOURCE_FILER>rhine</SOURCE_FILER>
<SOURCE_VOLUME>grace2</SOURCE_VOLUME>
<DESTINATION_FILER>rhine</DESTINATION_FILER>
<DESTINATION_VOLUME>grace2_mir</DESTINATION_VOLUME>
</SELECTED_DESTINATION>
-<SELECTED_DESTINATION>
<SOURCE_FILER>rhine</SOURCE_FILER>
<SOURCE_VOLUME>grace2</SOURCE_VOLUME>
<DESTINATION_FILER>rhine</DESTINATION_FILER>
<DESTINATION_VOLUME>grace2_mir</DESTINATION_VOLUME>
</SELECTED_DESTINATION>
</SELECTED_DESTINATIONS>
</VERIFICATION_ON_DESTINATION>
-<SCHEDULE_JOBS>
-<JOB>
<SCHEDULER>Windows Task Scheduler</SCHEDULER>
<JOB_NAME>bkup1</JOB_NAME>
<HOST_NAME>snapmgr-19</HOST_NAME>
<START_DIR>C:\Program Files\NetApp\SnapManager for SQL Server\</
START_DIR> <APPLICATION_NAME>C:\Program Files\NetApp\SnapManager for SQL
Server\SMSQLJobLauncher.exe</APPLICATION_NAME>

<COMMAND>new-backup ñsvr 'SNAPMGR-19' -db 'SNAPMGR-19', '8', 'DB1',
'DB2', 'DB3', 'DB4', 'DB5', 'master', 'model', 'msdb',
'SNAPMGR-19\MARS', '3', 'master', 'model', 'msdb' -ver ñversvr
'SNAPMGR-19' -del -rtbkups 2 -lgbkafbk -noutm -uniq ñmgmt standard</
COMMAND>
<START_TIME>11/6/2007 1:32:00 PM</START_TIME>
-<SCHEDULES>
-<WEEKLY_TRIGGERS>
-<WEEKLY_TRIGGER>
-<TASK_TRIGGER>
<TriggerSize>48</TriggerSize>
<Reserved1>0</Reserved1>
<BeginYear>2007</BeginYear>
<BeginMonth>10</BeginMonth>
<BeginDay>27</BeginDay>
<EndYear>0</EndYear>
<EndMonth>0</EndMonth>

Modifying your database configuration on NetApp storage | 69

<EndDay>0</EndDay>
<StartHour>13</StartHour>
<StartMinute>32</StartMinute>
<MinutesDuration>0</MinutesDuration>
<MinutesInterval>0</MinutesInterval>
<Flags>0</Flags>
<Type>TIME_TRIGGER_WEEKLY</Type>
-<Data>
-<daily>
<DaysInterval>1</DaysInterval>
</daily>
-<weekly>
<WeeksInterval>1</WeeksInterval>
<DaysOfTheWeek>4</DaysOfTheWeek>
</weekly>
-<monthlyDate>
<Days>262145</Days>
<Months>0</Months>
</monthlyDate>
-<monthlyDOW>
<WhichWeek>1</WhichWeek>
<DaysOfTheWeek>4</DaysOfTheWeek>
<Months>0</Months>
</monthlyDOW>
</Data>
<Reserved2>0</Reserved2>
<RandomMinutesInterval>0</RandomMinutesInterval>
</TASK_TRIGGER>
</WEEKLY_TRIGGER>
</WEEKLY_TRIGGERS>
</SCHEDULES>
</JOB>
-<JOB>
<SCHEDULER>SQL Server Agent</SCHEDULER>
<JOB_NAME>bkupSqlAgt</JOB_NAME>
<HOST_NAME>SNAPMGR-19</HOST_NAME>
<START_DIR>C:\Program Files\NetApp\SnapManager for SQL Server\</
START_DIR> <APPLICATION_NAME>C:\Program Files\NetApp\SnapManager for SQL
Server\SMSQLJobLauncher.exe</APPLICATION_NAME>
<COMMAND>ackup ñsvr 'SNAPMGR-19' -db 'SNAPMGR-19', '8', 'DB1', 'DB2',
'DB3', 'DB4', 'DB5', 'master', 'model', 'msdb', 'SNAPMGR-19\MARS', '3',
'master', 'model', 'msdb' -ver ñversvr 'SNAPMGR-19' -del -rtbkups 2 -
lgbkafbk -noutm -uniq ñmgmt standard</COMMAND>
<START_TIME>11/7/2007 1:00:00 AM</START_TIME>
-<SQLAGENTSCHEDULES>
<START_DATE_TIME>11/5/2007 12:00:00 AM</START_DATE_TIME>
<START_TIME_OF_DAY>01:00:00</START_TIME_OF_DAY>
<END_DATE_TIME>12/31/9999 12:00:00 AM</END_DATE_TIME>
<END_TIME_OF_DAY>23:59:59</END_TIME_OF_DAY>
<FREQUENCY_TYPE>Daily</FREQUENCY_TYPE>
<FREQUENCY_INTERVAL>1</FREQUENCY_INTERVAL>
<FREQUENCY_SUBDAY_TYPE>Once</FREQUENCY_SUBDAY_TYPE>
<FREQUENCY_SUBDAY_INTERVAL>0</FREQUENCY_SUBDAY_INTERVAL>
<FREQUENCY_RELATIVE_INTERVAL>First</FREQUENCY_RELATIVE_INTERVAL>
<FREQUENCY_RECURRENCE_FACTOR>0</FREQUENCY_RECURRENCE_FACTOR>
</SQLAGENTSCHEDULES>
</JOB>
-<JOB>
<SCHEDULER>SQL Server Agent</SCHEDULER>
<JOB_NAME>bkupSqlAgtMars</JOB_NAME>
<HOST_NAME>SNAPMGR-19\MARS</HOST_NAME>
<START_DIR>C:\Program Files\NetApp\SnapManager for SQL Server\</
START_DIR> <APPLICATION_NAME>C:\Program Files\NetApp\SnapManager for SQL
Server\SMSQLJobLauncher.exe</APPLICATION_NAME>
<COMMAND>backup ñsvr 'SNAPMGR-19' -db 'SNAPMGR-19', '8', 'DB1', 'DB2',
'DB3', 'DB4', 'DB5', 'master', 'model', 'msdb', 'SNAPMGR-19\MARS', '3',
'master', 'model', 'msdb' -ver ñversvr 'SNAPMGR-19' -del -rtbkups 2 -
lgbkafbk -noutm -uniq ñmgmt standard</COMMAND>
<START_TIME>11/11/2007 2:00:00 AM</START_TIME>
-<SQLAGENTSCHEDULES>
<START_DATE_TIME>11/5/2007 12:00:00 AM</START_DATE_TIME>

70 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

<START_TIME_OF_DAY>02:00:00</START_TIME_OF_DAY>
<END_DATE_TIME>12/31/9999 12:00:00 AM</END_DATE_TIME>
<END_TIME_OF_DAY>23:59:59</END_TIME_OF_DAY>
<FREQUENCY_TYPE>Weekly</FREQUENCY_TYPE>
<FREQUENCY_INTERVAL>1</FREQUENCY_INTERVAL>
<FREQUENCY_SUBDAY_TYPE>Once</FREQUENCY_SUBDAY_TYPE>
<FREQUENCY_SUBDAY_INTERVAL>0</FREQUENCY_SUBDAY_INTERVAL>
<FREQUENCY_RELATIVE_INTERVAL>First</FREQUENCY_RELATIVE_INTERVAL>
<FREQUENCY_RECURRENCE_FACTOR>1</FREQUENCY_RECURRENCE_FACTOR>
</SQLAGENTSCHEDULES>
</JOB>
</SCHEDULE_JOBS>
</COMMON_SETTINGS>
</SMSQLCONFIG>

Clone job settings

The following schema depicts the clone job settings section:

<?xml version="1.0"?>
<SMSQLCONFIG xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <HOST_NAME>W2K8R2SP1X64</HOST_NAME>
 <COMMON_SETTINGS>
 <SCHEDULE_JOBS>
 <JOB>
 <SCHEDULER>SQL Server Agent</SCHEDULER>
 <JOB_NAME>CloneAutoDel__abc__09-17-2012_21-38-44</JOB_NAME>
 <HOST_NAME>W2K8R2SP1X64</HOST_NAME>
 <START_DIR>"C:\Program Files\NetApp\SnapManager for SQL Server\
 </START_DIR>
 <APPLICATION_NAME>
 "C:\Program Files\NetApp\SnapManager for SQL Server
 \SmsqlJobLauncher.exe
 </APPLICATION_NAME>
 <COMMAND>delete-clone –svr 'W2K8R2SP1X64' -inst 'W2K8R2SP1X64'
 -d 'abc__Clone' -JobInstance 'W2K8R2SP1X64'
 -ResyncCloneJob
 'CloneResync__abc__09-17-2012_21-38-44'</COMMAND>
 <START_TIME>9/18/2012 9:38:37 PM</START_TIME>
 <SQLAGENTSCHEDULES>
 <START_DATE_TIME>20120918</START_DATE_TIME>
 <START_TIME_OF_DAY>213837</START_TIME_OF_DAY>
 <END_DATE_TIME>99991231</END_DATE_TIME>
 <END_TIME_OF_DAY>235959</END_TIME_OF_DAY>
 <FREQUENCY_TYPE>OneTime</FREQUENCY_TYPE>
 <FREQUENCY_INTERVAL>0</FREQUENCY_INTERVAL>
 <FREQUENCY_SUBDAY_TYPE>Unknown</FREQUENCY_SUBDAY_TYPE>
 <FREQUENCY_SUBDAY_INTERVAL>0</FREQUENCY_SUBDAY_INTERVAL>
 <FREQUENCY_RELATIVE_INTERVAL>First</
FREQUENCY_RELATIVE_INTERVAL>
 <FREQUENCY_RECURRENCE_FACTOR>0</FREQUENCY_RECURRENCE_FACTOR>
 </SQLAGENTSCHEDULES>
 </JOB>
 <JOB>
 <SCHEDULER>SQL Server Agent</SCHEDULER>
 <JOB_NAME>CloneResync__abc__09-17-2012_21-38-44</JOB_NAME>
 <HOST_NAME>W2K8R2SP1X64</HOST_NAME>
 <START_DIR>
 "C:\Program Files\NetApp\SnapManager for SQL Server\
 </START_DIR>

<APPLICATION_NAME>"C:\Program Files\NetApp\SnapManager for
 SQL Server\SmsqlJobLauncher.exe</APPLICATION_NAME>
 <COMMAND>clone-database –svr
 'W2K8R2SP1X64' –inst 'W2K8R2SP1X64' -d 'abc'
 -tgInst 'W2K8R2SP1X64' -tgDb 'abc__Clone'
 -tgmpdir 'C:\Program Files\NetApp
 \SnapManager for SQL

Modifying your database configuration on NetApp storage | 71

 Server\SnapMgrMountPoint' -Resynchronize
 -ForceTerminateConnection -ver
 –verInst 'W2K8R2SP1X64' -mp
 –mpdir 'C:\Program Files\NetApp
 \SnapManager for SQL
 Server\SnapMgrMountPoint' -RetainShareBackups 7
 –mgmt standard </COMMAND>
 <START_TIME>9/18/2012 9:38:37 PM</START_TIME>
 <SQLAGENTSCHEDULES>
 <START_DATE_TIME>20120917</START_DATE_TIME>
 <START_TIME_OF_DAY>213837</START_TIME_OF_DAY>
 <END_DATE_TIME>99991231</END_DATE_TIME>
 <END_TIME_OF_DAY>235959</END_TIME_OF_DAY>
 <FREQUENCY_TYPE>Daily</FREQUENCY_TYPE>
 <FREQUENCY_INTERVAL>1</FREQUENCY_INTERVAL>
 <FREQUENCY_SUBDAY_TYPE>Hour</FREQUENCY_SUBDAY_TYPE>
 <FREQUENCY_SUBDAY_INTERVAL>12</FREQUENCY_SUBDAY_INTERVAL>
 <FREQUENCY_RELATIVE_INTERVAL>First</
FREQUENCY_RELATIVE_INTERVAL>
 <FREQUENCY_RECURRENCE_FACTOR>0</FREQUENCY_RECURRENCE_FACTOR>
 </SQLAGENTSCHEDULES>
 </JOB>
 </SCHEDULE_JOBS>
 </COMMON_SETTINGS>
</SMSQLCONFIG>

72 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Configuring SnapManager application settings

You can configure or change SnapManager application settings at any time after you install
SnapManager as long as you run SnapManager from the system console and not from a Terminal
Services client.

Modifying backup settings
You can modify the settings that SnapManager uses to perform backup operations. The settings
include how SnapManager names Snapshot copies, when it verifies database backups, and how
SnapManager backs up transaction logs.

Steps

1. In the Actions pane, click Backup Settings.

2. In the Full Database Backup tab, specify settings for full database backups:

a. Choose a backup naming convention:

Convention Description

Generic Adds the string “recent” to the name of the most recent Snapshot
copy. All other Snapshot copies include a timestamp.

If you enable the enhanced Snapshot copy naming convention by
clicking Advanced, the most recent backup copy per management
group (daily, weekly, standard) has the suffix “__recent”. For
example, after enhanced Snapshot copy naming is enabled, backup
copies have the following names:

• sqlsnap__SqlServerName__Daily__recent

• sqlsnap__SqlServerName__Weekly__recent

• sqlsnap__SqlServerName__recent

Note: You cannot disable the Snapshot copy naming convention
after you enable it.

Unique Adds a timestamp to all Snapshot copy names. This is the default
option and is almost always the best choice.

The naming convention you select applies to all backups. You should use the Unique naming
convention unless you have a script that requires the constant string “recent”. Also, when the
database resides on a VMDK, you must use the Unique naming convention when you want to
clone Snapshot copies.

b. Keep both of the Run DBCC physical integrity verification... options unselected.

It is best to verify databases in an operation separately from the database backup operation.

3. In the Transaction Log Backup tab, specify settings for transaction log backups, including how
long you want to retain SnapInfo Snapshot copies, whether you want to copy transaction log
backup copies to a share, and how long you want to retain the backup copies on the share.

4. In the Backup Concurrency tab, keep the default setting or enter a smaller number, if needed for
performance reasons.

73

Microsoft recommends setting a maximum of 35 databases per backup Snapshot copy if SQL
Server thread resources are strained.

Note: During backup, SnapManager might use a different number of maximum databases per
Snapshot copy than what is configured in the Backup Settings dialog box. This happens
because SnapManager tries to use the smallest number of Snapshot copies as possible. For
example, if the maximum databases per Snapshot copy setting is 35 and there are 45 databases
to back up, SnapManager might back up all 45 databases in the same Snapshot copy operation.

Modifying verification settings
You can use the Verification Settings dialog box to specify the verification server and configure
database verification options.

About this task

When you change the database verification server, the change does not affect any database
verification jobs that are already scheduled.

Steps

1. In the Actions pane, click Backup Verification Settings.

2. In the Verification Settings tab, define how SnapManager should verify backup copies:

For this field... Do this...

Verification Server For optimal performance, choose a remote verification server, which
offloads work from the SQL production server.

SQL Server Connection Choose an authentication method for SnapManager to connect to the
SQL Server on the verification server during backup verification:

Use Windows authentication

SnapManager connects to the SQL Server using
the Windows account under which SnapManager
runs (the SnapManager service account). This is
the most common method.

Use SQL Server authentication

SnapManager connects to the SQL Server using an
account defined on the SQL Server. The account
must have sysadmin server role privileges on the
SQL Server instance.

Access a mounted LUN in
snapshot

Keep the default option for mounting Snapshot copies to an empty NTFS
directory. SnapManager mounts Snapshot copies to the verification server
when it verifies backup copies. Using an empty NTFS directory is
typically better than assigning drive letters because the verification server
can run out of drive letters if there are more backup copies than available
drive letters.

For a Windows Failover Cluster, the mount point directory must be a
shared disk.

3. In the SnapMirror and SnapVault Options tab, click Verification on Destination Volumes and
choose the volumes.

4. In the DBCC options tab, specify the DBCC options that SnapManager uses to verify backup
sets.

For more information about DBCC options, see your Microsoft SQL Server documentation.

74 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Note: PHYSICAL_ONLY and NO_INFOMGS are selected by default.

Modifying restore settings
You can use the Restore Settings dialog box to configure default settings for SnapManager restore
operations.

Steps

1. In the Actions pane, select Restore Setting.

The Restore Settings dialog box appears. Only the Create transaction log backup before
restore check box is selected by default.

2. Select any combination of the restore options you want to use:

Option Description

Recover database
without restoring at
the end of restore
operation if needed

If the database is not fully operational and you want to leave it
operational after restore, SnapManager skips the restore operation and
performs the recover operation.

Restore databases
even if existing
databases are online

If an existing database is online at the time of the restore operation,
SnapManager proceeds with the restore operation and overwrites the
existing database.

Retain SQL database
replication settings

If you restore databases for an SQL Server instance that is acting as a
Publisher or as a Subscriber in a replication topology, the replication
relationship is retained after the SnapManager restore operation
finishes.

Create transaction
log backup before
restore operation

If this option is not selected, SnapManager does not create a transaction
log backup before the restore operation is performed, thereby
decreasing overall restore time.

Clear this option under the following circumstances:

• You are recovering from a mirrored backup for which the
transaction log files were lost. Disabling this option avoids
subsequent creation of SnapManager backup sets on a recovery path
that is inconsistent with that of the database.

• You are restoring a log-shipped database.

Abort database
restore operation if
transaction log
backup before
restore fails

If the transaction log backup fails, SnapManager aborts the database
restore operations.

Ignore log backups
from SMSQL
Repository Share

Log backups on the repository share are not used in the restore.

3. Click OK.

The new settings will be applied to all subsequent database restore operations.

Configuring SnapManager application settings | 75

Modifying event notification settings
You can use the Notification Settings dialog box to enable and configure the SnapManager event
notification services.

Steps

1. In the Actions pane, click Notification Settings.

2. In the Notification Settings dialog box, configure the settings for email notifications, event
logging, and AutoSupport notifications.

Most fields in this dialog box are self-explanatory. The following table describes fields for which
you might need guidance:

Field Description

Send e-mail notification Enables email notifications to the specified address about the success or
failure of SnapManager operations.

If you enable this field, click Advanced to tune the notification settings
—for example, to receive notifications only when operations fail.

Log SnapManager events to
storage system syslog

Posts SnapManager events to the storage system's event log, if
AutoSupport is enabled on the storage system.

Technical support can use this information to troubleshoot issues.

Send AutoSupport
notification

Enables email notifications to technical support about SnapManager
events or storage system problems that might occur, if AutoSupport is
enabled on the storage system.

On failure only Limits the SnapManager events that are posted to the storage system
event log and sent through AutoSupport to failure events only.

3. Click OK.

Setting defaults for preoperation and postoperation
commands

When starting a SnapManager backup, database verification, restore, or clone operation, you can
instruct the system to automatically run a command or script either before the operation starts or after
it is complete. You can set defaults for the commands.

Steps

1. In the Actions pane, click Run Command Settings.

SnapManager displays the Configure Default Run Commands dialog box with the current default
settings.

2. Select the operation (for example, backup, verify, restore, or clone) for which you want these
default settings to apply.

3. Select Pre-Operation Command or Post-Operation Command, depending on whether you
want to run the command before or after the operation.

4. If you want the SnapManager for SQL Server operation to stop when an error occurs in the
custom user command, select Treat pre command errors as fatal by stopping the remaining
SnapManager operation.

76 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

5. In the Specify a computer where... box, enter or browse to the name of the host on which your
program or script resides.

6. In the Specify the full path... box, select your program or script.

7. Enter the command input string in the Command Arguments box.

You can do this using any combination of the following methods:

• To enter text directly into the Command Arguments box, click the box and type the desired
text.

• To enter a SnapManager variable into the Command Arguments box, do the following:

a. If necessary, click in the Command Arguments box to position the cursor.

b. In the SnapManager Variables list, select the variable you want to enter.

c. Click Select.

Note: Several parameters, like the $SnapInfoPath and $LogBackupFile variables, are
enclosed within double quotes by default so that the actual path name can contain spaces
without affecting the script invocation on the Windows command line. If you do not want
the double quotes to appear in your command line, remove them from the Command
Arguments field in the Run Commands dialog box.

8. Click Save to apply your changes and then click Close.

Your changes are saved as the default.

SnapManager arguments for preoperation and postoperation commands

You can use several arguments for commands that you want to run before or after a SnapManager
operation.

Precommand arguments

The following precommand arguments apply to backup, verify, restore, and clone operations:

Variable Description

$Database Specifies the logical name of the database processes.

To prevent PowerShell from interpreting the value of this parameter, be
sure to enclose the entire parameter value with single quotes: -
PreCmdArg '$Database $ServerInstance'.

Example:

DatabaseAccounting

If you want to have more than one database expanded, repeat the
parameter as many times as you want.

Example:

AccountingDB1 AcmeServer1/SqlInst1 FinanceDB2
AcmeServer1/SqlInst2

Configuring SnapManager application settings | 77

Variable Description

$ServerInstance Specifies the name of the SQL server instance that is actually processed.

Example:

ACMESERVER1\SQLINSTANCE1

Postcommand arguments

The following postcommand arguments apply to backup, verify, restore, and clone operations.

Note: To prevent PowerShell from interpreting the value of a parameter, be sure to enclose the
entire parameter value within single quotes: -PostCmdArg ‘$Database $ServerInstance
$SqlSnapshot'

Variable Description

$InfoSnapshot Expands to the name of a SnapInfo directory Snapshot copy.

Examples:

sqlinfo__winsrvr2__01-31-2014_15.03.09

sqlinfo__winsrvr2__recent

$LogBackupFile Expands to the full path name of the transaction log backup file.

Example:

I:\SMSQL_SnapInfo\SQL__WINSRVR2\DB__Northwind

\LogBackup\ 11-01-2004_13.34.59__Northwind.TRB

$OperationStatus Provides the status of the SMSQL operation.

Example:

5234

$PreCommandStatus Provides the precommand status to the postcommand if the
postcommand is executed based on the status of the earlier
precommand.

Example:

5234

$SnapInfoName Expands to the name of the SnapInfo directory.

Examples:

WINSRVR2__recent

WINSRVR2_11-23-2013_16.21.07__Daily

If you use this variable, you must also provide the correct path
to the directory.

78 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Variable Description

$SnapInfoPath Expands to the name of the SnapInfo subdirectory. This
argument is used in backup and verification operations.

Example:

I:\SMSQL_SnapInfo\SQL__WINSRVR2\DB__Northwind

For restore and clone operations, this argument specifies the
path to the Snapshot copy information metadata that is being
used for the database restore.

Example:

U:\SMSQL_SnapInfo\VDISK__E\FG__

\05-14-2010_15.33.41\SnapInfo__05-14-2010_15.33

.41.sml

$SqlSnapshot Expands to the name of an SQL Server database Snapshot copy.
This argument is used for backup and verification operations.

Examples:

sqlsnap__winsrvr2__01-31-2014_15.03.09

sqlsnap__winsrvr2__recent

The number of database Snapshot copies in a SnapManager
backup set depends on the number of volumes used to store the
databases included in the backup.

For restore and clone operations, this argument specifies the
name of the Snapshot copy to be restored.

Example:

sqlsnap__winsrvr2__01-31-2014_15.03.09
sqlsnap__winsrvr2__recent

Several parameters, like the $SnapInfoPath and $LogBackupFile variables, are enclosed within
double quotes by default so that the actual path name can contain spaces without affecting the script
invocation on the Windows command line. If you do not want the double quotation marks to appear
in your command line, remove them from the Command Arguments field in the Run Commands
dialog box.

The following postcommand arguments apply only to restore and clone operations:

Configuring SnapManager application settings | 79

Variable Description

$StandbyFile This is the full file system path of the SQL standby file used on
a restore. This file path is calculated during the restore-clone
operation as a temporary file when incomplete transactions are
removed from the database and stored in the file for later use.
The user requests to generate a standby (or undo) file in a
certain directory, but the full file name path actually used is not
known until the restore or clone operation is launched. This
happens when several databases are restored at the same time
to the same LUNs. By default, this is created in the snap-
info directory.

Example:

U:\SMSQL_SnapInfo\VDISK__E
\UNDO_SECLOCSYS_db5.dat

$TargetDatabase Specifies the destination name of the database to restore.

Example:

DatabaseAccountingRestoredCopy

$TargetServerInstance Specifies the destination SQL Server instance to be used.

Example:

ACMESERVER2\SQLINSTANCECOPY

$TargetDatabaseFile Specifies the target file system database path to be used.

Example:

Z:\MNT\NETAPP1\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\Data

\DatabaseAccounting.mdf

Command arguments that are operation-specific

Each SnapManager operation that supports the Run Commands feature parses only the variables that
apply to the operation as you have specified it.

The following table shows which of the command variables are available to the Run Commands
feature, depending on which SnapManager operation is used to invoke the feature, and in what
context those variables are parsed:

Variable SnapManager operation used to invoke the Run Commands feature

Full backup Transaction
log backup

Verification
of full backup

Restore Clone

$Database Parsed Parsed Parsed Parsed Parsed

$InfoSnapshot Parsed Parsed Not parsed Not parsed Not
parsed

$LogBackupFile Parsed Parsed Not parsed Not parsed Not
parsed

80 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Variable SnapManager operation used to invoke the Run Commands feature

Full backup Transaction
log backup

Verification
of full backup

Restore Clone

$ServerInstance Parsed Parsed Parsed Parsed Parsed

$OperationStatus Parsed Parsed Parsed Parsed Parsed

$PreCommandStatus Parsed Parsed Parsed Parsed Parsed

$SnapInfoName Parsed Parsed Parsed Not parsed Not
parsed

$SnapInfoPath Parsed Parsed Parsed Not parsed Not
parsed

$SqlSnapshot Parsed Not parsed Parsed Parsed Parsed

$StandbyFile Not parsed Not parsed Not parsed Parsed Parsed

$TargetDatabase Not parsed Not parsed Not parsed Parsed Parsed

$TargetDatabaseFi

le

Not parsed Not parsed Not parsed Parsed Parsed

$TargetServerInst

ance

Not parsed Not parsed Not parsed Parsed Parsed

Enabling SnapManager to allow databases on any LUN or
VMDK configuration

By default, you can store files belonging to an individual database across two or more LUNs or
VMDKs only if those LUNs or VMDKs are not used for storing database files that belong to other
databases. If necessary for your configuration, you can remove this restriction by enabling the
unrestricted database layout option.

About this task

The unrestricted database layout option removes layout restrictions imposed during configuration,
enabling you to place your databases in any LUN or VMDK configuration. For example, you can
spread a database's files across two or more LUNs or VMDKs, even if those LUNs or VMDKs are
used for storing database files that belong to other databases.

You cannot disable the unrestricted database layout option after you enable it.

Note the following about enabling this option when you have existing LUN or VMDK
configurations:

• If you enable the unrestricted database layout option and then move databases to a new
configuration, you should take a full backup of all databases before taking any log backups.

Taking a full backup ensures that you can perform up-to-the-minute restore operations.

• If you enable the unrestricted database layout option and you have an existing LUN that contains
multiple databases, you can continue to restore and clone the entire LUN, as long as the LUN
contains the entire contents of multiple databases.

For example, you can no longer restore or clone at the LUN level if you add a database to the
existing LUN by spreading its files across the existing LUN and other LUNs. The entire database
must reside on the LUN.

Configuring SnapManager application settings | 81

Steps

1. From the Actions pane, click Configuration Wizard Option Settings.

2. Select Enable unrestricted database layout.

3. Click OK to close the dialog box.

Viewing fractional space reservation status
Viewing the fractional space reservation status shows you the current space consumption in storage
system volumes containing LUNs that store SQL Server data or SnapInfo directories.

Steps

1. In the Actions pane, click Fractional Space Reservation Settings.

2. Note the space consumption for each LUN that stores SQL Server data or SnapInfo directories.

The following columns display SnapManager configuration information:

Drive Letter or MountPoint

A SnapManager configuration setting for the LUN. The drive letter or NTFS mount point
on which the LUN is mounted.

Fractional Overwrite Reserve (%)

The percent of space reserved for overwrites on the storage system volume that contains
this LUN. Expressed as a percentage of the total size of all space-reserved LUNs in the
volume. If Fractional Overwrite Reserve (%) is 100, the LUN is contained in a fully
space-reserved volume rather than a fractionally space-reserved volume.

Backup AutoDelete Trigger (%)

A SnapManager fractional space reservation policy setting for the storage system volume
that contains the LUN. The percentage of overwrite reserve utilization that triggers
automatic deletion of SQL Server backup sets.

Disable Database Trigger (%)

A SnapManager fractional space reservation policy setting for the storage system volume
that contains the LUN. The percentage of overwrite reserve utilization that triggers
automatic disabling of SQL Server databases.

The following columns display the fractional overwrite reserve settings and status:

Storage System Snapshot AutoDelete

For the storage system volume that contains this LUN, the state of the Data ONTAP
Snapshot copy automatic deletion feature: enabled or disabled. If this LUN stores SQL
Server data files and is contained in a storage system volume for which the Data ONTAP
Snapshot copy automatic deletion feature is enabled, disable this feature on that volume or
ensure that it is configured so that it does not delete SnapManager backup set components.

Used Overwrite Reserve

For the storage system volume that contains this LUN, the amount of overwrite reserve in
use. Expressed in two ways: as a percentage of the total size of all space-reserved LUNs in
the volume and in megabytes.

Available Reserve (MB)

For the storage system volume that contains this LUN, the amount of overwrite reserve
available.

3. If “Enabled” appears in the Storage System Snapshot AutoDelete column, investigate the cause
and take preventive action, if necessary.

82 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Attention: If AutoDelete is enabled, the LUN is contained in a FlexVol volume that has
overwrite reserve set to less than 100 percent and that also has the Data ONTAP automatic
Snapshot copy deletion feature enabled and configured to trigger when the overwrite reserve is
nearly full. If SQL Server data or SnapManager SnapInfo directories are stored on LUNs
contained in a volume with these characteristics, the Data ONTAP Snapshot copy automatic
deletion policy might delete SQL Server backup set components.

Take one of the following actions on the volume:

• Disable the Data ONTAP Snapshot copy automatic delete feature.

• Ensure that the Data ONTAP Snapshot copy automatic delete feature is configured in such a
way that it does not delete SQL Server backup set components.

The SnapManager fractional space reservation policy includes a separate, SQL Server-aware
automatic deletion feature. The SnapManager automatic deletion feature can be used in place of
or in conjunction with the Data ONTAP automatic deletion feature; you can also select to disable
the SnapManager automatic deletion feature.

Configuring fractional space reservation policies
In the Fractional Space Reservation Settings dialog box, you can use the Policy Settings tab to view
or customize the default policy and to configure custom policies for individual fractional space-
reserved LUNs.

About this task

SnapManager automatically applies the default policy to every storage system volume containing
fractional space-reserved LUNs that store SQL Server database files or SnapInfo directories. This
policy ensures that your storage is protected from an out-of-space condition, without requiring you to
explicitly enable or configure any fractional space reservation policies.

Steps

1. Select Fractional Space Reservation Settings in the SnapManager Actions pane.

The Fractional Space Reservation Settings window is displayed.

2. Click Policy Settings.

3. In the left navigation tree, select the scope of the policy you want to view or change in the main
panel on the right side of the tab:

If you want to view or
change...

Then do this...

The default policy In the navigation tree, select Default Policy.

A volume-specific policy In the navigation tree, select the storage system, and then select the
volume.

4. Enable or disable fractional space reservation monitoring.

5. Disable or configure automatic deletion of SQL Server backup Snapshot copies.

Use the Automatic deletion of backups panel to disable, enable, or configure automatic deletion
of SQL Server backup Snapshot copies in fractional space-reserved LUNs on the volume.

Although automatic deletion of SQL Server backup Snapshot copies does not necessarily prevent
an out-of-space condition on the volume, it is a best practice to enable this feature for every
volume that contains fractional space-reserved LUNs that store SQL Server data.

Configuring SnapManager application settings | 83

6. In the “Trigger point for overwrite reserve utilization” field, enter the level of overwrite reserve
utilization (in percentage of total reserve) that you want to trigger deletion of SQL Server backup
Snapshot copies.

Note: The value must be a non-negative integer that is less than the “Trigger point for
overwrite reserve utilization” value in the Automatic dismount of databases panel.

7. In the Number of most recent backups to retain field, enter the number of backups to be
retained if automatic backup set deletion is triggered.

Note: The value must be an integer from 1 through 255 and should be based on the backup
creation and verification schedule.

8. Use the Automatically dismount databases panel to configure automatic dismounting of SQL
Server databases in fractional space-reserved LUNs on the volume.

Because automatic deletion of SQL Server backup Snapshot copies does not necessarily prevent
an out-of-space condition on the volume, SnapManager does not allow you to disable the
dismounting of databases for any fractional space reservation policy.

In the Trigger point for overwrite reserve utilization field, enter the level of overwrite reserve
utilization (in percentage of total reserve) that you want to trigger dismounting of SQL Server
databases. The value must be an integer from 0 through 99.

If Snapshot copy automatic deletion is enabled, SnapManager requires that this threshold be set to
a higher level than the threshold that triggers automatic Snapshot copy deletion. This ensures that
Snapshot copy automatic deletion is triggered first.

9. Click OK to apply the changes to the default or volume-specific policy.

84 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Advanced administration

For very large implementations, you need to be aware of SnapManager's configuration limits. You
also should be aware of requirements for advanced configurations.

Maximum configurations supported by SnapManager
SnapManager supports a maximum number of SQL Server instances, LUNs and VMDKs per host,
databases, file groups, and storage system volumes. You should review these limits to ensure you
have a supported configuration.

Configuration type Maximum

SQL Server instances per Windows cluster or SQL Server host:

• Windows cluster

• Stand-alone Windows host
25

50

LUNs per SQL Server host 165

VMDKs per SQL Server host 56

Databases per LUN or VMDK 500

Databases per storage system volume 500

Databases across all SQL Server instances in a stand-alone SQL
Server 5000

Databases across all SQL Server Failover Cluster Instances in a
Windows Server Failover Cluster 2500

File groups per database 5000

Storage system volumes that can be used to store the following:

• A single database

• LUNs connected to an individual SQL Server computer

• VMDKs connected to an individual SQL Server computer

30

165

56

Service account requirements for archiving backup sets
with SnapVault (7-Mode environments only)

To archive backup sets with SnapVault on Data ONTAP systems operating in 7-Mode, the
SnapManager service account should be the same account you used to configure SnapDrive access to
the DataFabric Manager server. If you cannot use the same account, the SnapManager service
account needs specific permissions on the server.

On the DataFabric Manager server, you can assign permissions to the SnapManager service account
using one of the following methods:

85

If you want to... Then...

Assign specific
permissions

Assign the SnapManager service account a role on the DataFabric
Manager server with the following capabilities:

• DFM.DataBase.Read Global

• DFM.DataSet.Write Global

• DFM.Policy.Read Global

• DFM.BackupManager.Backup Global

• DFM.BackupManager.Read Global

• DFM.BackupManager.Restore Global

You can use the dfm role create, dfm role add, and dfm user
add commands to create the role, add the capabilities, and create the
user.

Assign full-control
permissions

Assign the SnapManager service account full-control rights on the
DataFabric Manager server as shown in the following examples:

• On Windows:

dfm user add -r GlobalFullControl MyDomain\snapuser

• On UNIX:

dfm user add -r GlobalFullControl MyDomain\\snapuser

SnapManager disk requirements in a Windows cluster using
LUNs

In a Windows clustered environment, SnapManager disk requirements vary, depending on the cluster
configuration.

SnapManager supports multiple-instance clusters if the following additional system requirements are
met:

• Each instance must have its own LUNs that cannot be used by other instances.

• Each instance must be created in its own cluster group.

• All LUNs assigned to a specified instance must be in the cluster group for that instance and in the
SQL Server list of dependencies.

Single-instance cluster example

In an active/passive two-node configuration, there are two clustered nodes and one SQL Server
instance. If the active node (the node running SQL Server) fails, the cluster transfers the SQL Server
instance to the other (previously passive) node, which then becomes the active node and takes over
the LUNs.

For a single-instance SQL Server cluster, if your SQL Server data is on a shared resource, your disk
requirements are the same as for a stand-alone SQL Server system. A LUN is added for the quorum
disk. A minimum of three LUNs are required:

• One LUN for the databases

86 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

• One LUN for the SnapInfo directory

• One LUN if a shared quorum disk is used

Multiple-instance cluster example

In an active/active two-node configuration, there are two clustered nodes and an SQL Server instance
running on each node. If one node fails, the other node takes over the SQL Server instance running
on the failed node. Because both nodes must be able to run an active SQL Server instance, each node
requires its own disks, as if it were a self-contained, stand-alone system.

In addition, one extra LUN is needed for the quorum disk, if a shared quorum disk is used. Whether
you use a hard disk or a LUN as the quorum disk, each configuration requires a minimum of five
disks used for the following purposes:

• For node 1

◦ One LUN to store the SQL Server databases

◦ One LUN to store the SnapInfo directory

• For node 2

◦ One LUN to store the SQL Server databases

◦ One LUN to store the SnapInfo directory

◦ One LUN or hard disk to be used as the quorum disk

Each node must be able to own all clustered disk resources in a cluster at any time.

Advanced administration | 87

Upgrading SnapManager

When a new version of SnapManager becomes available, you can upgrade your existing installation
using either an interactive wizard or a command.

Before you begin

• Your host and storage systems must meet the minimum requirements for the version of
SnapManager to which you are upgrading.

• You should have backed up your SQL databases using SnapManager.

About this task

You do not need to stop SQL Server instances before or during the upgrade process.

Upgrading SnapManager interactively
You can use the SnapManager installation wizard to interactively upgrade SnapManager.

Steps

1. Download the software from the NetApp Support Site.

NetApp Downloads: Software

2. Exit SnapManager, if you have not already done so.

3. Double-click the downloaded .exe file.

4. Complete the pages in the SnapManager installation wizard to upgrade SnapManager.

Upgrading SnapManager from a command line
You can quickly run the SnapManager upgrade program unattended, in silent mode, from the
Windows command line.

Steps

1. Download the software from the NetApp Support Site.

NetApp Downloads: Software

2. Exit SnapManager, if you have not already done so.

3. From a Windows command prompt, change to the location where you downloaded the product
installer.

4. Enter the following command at the command prompt:

installer.exe /s /v”/qn REINSTALLMODE=vomus REINSTALL=ALL SILENT_MODE=1
SVCUSERNAME=Domain\UserName SVCUSERPASSWORD=Password
SVCCONFIRMUSERPASSWORD=Password [/L*V DirPath\LogFileName]”

Enter the following for each variable:

88

http://mysupport.netapp.com/NOW/cgi-bin/software
http://mysupport.netapp.com/NOW/cgi-bin/software

Variable Description

installer The name of the .exe file.

Domain\UserName The user account that Windows uses to run SnapManager. This
SnapManager service account must have specific permissions on the
Windows host and the SQL Server. For details, see the Installation and
Setup Guide.

Password The password for the specified user account. Leave the password blank if
you entered a group Managed Service Account in the Account field.

DirPath\LogFileName The location and name of a log file, which is useful for troubleshooting.
The asterisk (*) specifies that all installation information (such as status
messages, non-fatal warnings, and error messages) should be logged.

Example

"SMSQL7.2_x64.exe" /s /v"/qn REINSTALLMODE=vomus
REINSTALL=ALL SILENT_MODE=1 SVCUSERNAME=MKTG2\Administrator
SVCUSERPASSWORD=password SVCCONFIRMUSERPASSWORD=password /L*V C:
\SMSQL_upgrade.log"

Upgrading SnapManager | 89

Repairing, reinstalling, and uninstalling
SnapManager

You can repair, reinstall, or uninstall SnapManager as needed.

Repairing SnapManager
In many cases, you can correct stability issues with SnapManager by repairing the software.
Repairing the software fixes missing or corrupt files, shortcuts, and registry entries.

Steps

1. In Control Panel, navigate to your installed programs.

2. Select SnapManager for Microsoft SQL Server.

3. Click Repair.

Result

Windows configures SnapManager for Microsoft SQL Server.

Reinstalling SnapManager
You might reinstall SnapManager if you want to install an older version of it or if you ran a repair
operation that did not resolve a stability issue within the software.

About this task

You do not need to stop SQL Server instances before or during the SnapManager software
reinstallation process.

Steps

1. Record the locations of existing SnapInfo directories.

2. Uninstall SnapManager.

3. Reinstall SnapManager.

4. Configure SnapManager with the same SnapInfo directory locations that were used by
SnapManager before the reinstallation.

If you configure SnapManager with different SnapInfo directory locations than were used
previously, then SnapManager no longer has records of any backups taken before you reinstalled
it.

90

Uninstalling SnapManager
You can uninstall SnapManager if you no longer require the software or if you need to troubleshoot
issues.

About this task

In a cluster configuration, you must uninstall SnapManager from all of the nodes in the cluster.

Steps

1. Stop SnapManager if it is running.

2. Uninstall SnapManager by performing an interactive uninstall or silent uninstall:

If you want to use... Do this...

An interactive uninstall Use the Control Panel, and select SnapManager for Microsoft SQL
Server.

A silent uninstall Enter the following command either directly at a command line or
through a script:

file_name /v”REMOVE=ALL [REMOVEREPORTFOLDER=1]
[/L*V DirPath\LogFileName] /qn”

• REMOVEREPORTFOLDER=1 removes the SnapManager Report
folder.

• /L*V DirPath\LogFileName writes detailed information about
the uninstallation to the specified directory and log file.

Example:

C:\NetApp\downloads\SMSQL7.1_x64.exe /
v"REMOVE=ALL
REMOVEREPORTFOLDER=1 /qn”

Repairing, reinstalling, and uninstalling SnapManager | 91

SnapManager cmdlet guidelines

SnapManager includes a set of Windows PowerShell cmdlets that you can use to run scripts instead
of using the SnapManager console. You should review a few guidelines before you use the cmdlets.

Location of the SnapManager PowerShell

A shortcut titled SnapManager for SQL Server PowerShell is available from the Windows Start
menu.

If the execution policies in your system are restricted, you might be unable to load the PowerShell
snap-in. To check and reset the execution policies on your system, follow these steps:

1. Enter the get-executionpolicy command in PowerShell.

2. If the policy displayed is “Allsigned” or “Restricted,” enter any of the following commands:
set-executionpolicy unrestricted or set-executionpolicy remotesigned

Tips for using the cmdlets

• All parameters and options are not case-sensitive.
For example, if you use the option -Daily, it achieves the same results if you enter -daily.

• Some of the options must be invoked in a particular order.
For best results, use the order specified in the syntax for all options.

• When a parameter value string contains spaces, enclose it in double quotes.
For example, you should use First Backup Set rather than First Backup Set.

• Press Ctrl-D to cancel a running operation.
Closing the PowerShell window does not cancel the running operation.

PowerShell syntax for backup operations performed in the GUI

When you use the SnapManager GUI to back up a database, SnapManager logs the PowerShell
syntax to the Backup report. You might use this information to create scripts or troubleshoot issues.

Common parameters

The following parameters are common to each cmdlet:

Debug (-db)

Displays the debug information for the cmdlet used.

ErrorAction Action Preference (-ea)

Determines what to do in case of an error. Scripting blocks use this parameter. The
following examples explain the use of this parameter:

• SilentlyContinue: Continues without printing.

• Continue: Prints and then continue.

This is the default setting.

• Stop: Halts the command or script.

• Inquire: Asks the user what to do.

ErrorVariable (-ev)

Displays the error data in the specified variable.

92

OutVariable (-ov)

Displays the output data string.

OutBuffer (-ob)

Displays the output buffer.

Whatif

Provides a preview of an operation.

Confirm

Prompts you for confirmation before the actual deletion operation starts.

Verbose (-vb)

Displays the report content for backup, restore, configuration, and verification options.

clone-backup

Name

clone-backup

Synopsis

Use this cmdlet to clone databases from an existing backup or archive using the SnapManager SQL
Server PowerShell command-line interface. You can also use this cmdlet to add (by cloning) a
database to an Availability Group.

Syntax

clone-backup [-Server <String>] [-UserName <String>] [-Password <String>]

[-ServerInstance <String[]>] -Database <String[]> [-Backup <String>] [-

RestoreLastBackup <Int32>] [-TransLogsToApply <Int32[]>] [-ForceRestore

[<Boolean>]] [-ClusterAware] [-TargetDatabase <String[]>] [-

TargetServerInstance <String[]>] [-TargetServerMountPointDir <String>] [-

PointInTime <String[]>] [-SnapInfoDirectory <String>] [-MarkName

<String[]>] [-MarkTime <String[]>] [-RestoreBeforeMark [<Boolean>]] [-

RecoverDatabase <Boolean[]>] [-StandbyPath <String>] [-apicontext] [-

RestoreArchivedBackup] [-SnapVaultSecondary] [-CloneOnMirrorDestination] [-

ChangeClonePath] [-CloneMirrorDestVolumes <String[]>] [-PreCommand] [-

PreCommandPath <String>] [-PreCommandArguments <String>] [-PreCommandHost

<String>] [-PreCommandErrors <EnumHandleCmdError[]>] [-PostCommand] [-

PostCommandPath <String>] [-PostCommandArguments <String>] [-

PostCommandHost <String>] [-PostCommandErrors <EnumHandleCmdError[]>] [-

AvailabilityGroup] [-IgnoreRepLogs] [-WhatIf] [-Confirm]

[<CommonParameters>]

Description

You can use this cmdlet to clone a live database or a database that is already backed up in a backup
set. This cmdlet restores the database from the existing backup set, to clone the database to an
alternate temporary writable LUN location, or to an Availability Group for further use.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

SnapManager cmdlet guidelines | 93

This parameter denotes the name of the host SQL server on which the SQL server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-UserName <String> - Short Form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short Form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-ServerInstance <String[]> - Short Form: -inst

This parameter specifies the SQL Server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

If multiple databases reside on the same LUN but are owned by different SQL server instances when
you backed them up originally, use the following format:

-Inst "SQLServerInstance1","SQLServerInstance2"

The first database specified in the -Database parameter refers the first server instance in the -
ServerInstance parameter, the second database in the -Database parameter refers to the second server
instance in the -ServerInstance parameter and so on.

-Database <String[]> - Short Form: -d

Use this option to specify the databases that need to be cloned. Use a comma-separated list of strings:

-d Database 1, Database 2, Database 3, Database 4,....

Multiple database names should be specified only if those databases share a single LUN or multiple
LUNs together. For a multiple database restore, all the selected databases should be present in the
selected Snapshot copy.

You cannot restore a database with a new name if you specify multiple databases. If you want to
restore with a new name, restore those databases one by one. In case of restore to alternate location,
specify only one database name.

-Backup <String> - Short Form: -bkup

Use this option to specify the name of the backup set. This is a mandatory parameter. The following
example illustrates the usage:

-bkup sqlsnap__SYMNASQLDEV170_04-11-2007_15.22.27

-RestoreLastBackup <Int32> - Short Form: -lastBkup

Use this parameter to restore backups without specifying the name. If you try to use the Backup and
RestoreLastBackup parameters together, SnapManager ignores the RestoreLastBackup
parameter and uses the Backup parameter during restore operation. A typical usage example of the
restorelastbackup parameter is as follows:

restore-backup -restorelastbackup 1 -backup <backup name>

Note: If the value for RestoreLastBackup parameter is 0, SnapManager restores the latest backup.
If the value is 1, SnapManager restores second-to-latest backup and so on.

-TransLogsToApply <Int32[]> - Short Form: -translogs

94 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

This parameter specifies the list of transactions logs that need to be applied. SnapManager applies all
transaction logs of the databases specified in the -Database parameter by default. You can specify the
number of transaction logs to be applied for every database mentioned in the -Database parameter.
The list of number of transaction logs that have to applied has to be listed in the same sequence as the
databases listed in the -Database parameter. For example,

restore-backup -svr MACHINE1\INST1 -database db1,db2 -TransLogsToApply 3,7

-ForceRestore [<Boolean>] - Short Form: -force

Use this parameter to force the restore of a database based on its state. SnapManager sets its value to
"true" by default.

-ClusterAware - Short Form: -cl

Use this parameter to specify that the cmdlet runs solely on the active node in a cluster environment.

-TargetDatabase <String[]> - Short Form: -tgDb

Use this parameter to restore a database with a new name. The following example illustrates the
usage:

-tgDb "NewDatabaseName1"," NewDatabaseName2"," NewDatabaseName3"

The parameter defines the new database name to which the original database is restored. The old
database name is defined at the same position in the -Database parameter.

If no new database name is given, the database is restored to the original database name the database
had during backup. If this original name already exists, the name is modified to:
originalDbName__clone, or originalDbName__mount.

-TargetServerInstance <String[]> - Short Form: -tgInst

This parameter specifies the name of the new SQL server if you want to restore the database to a new
SQL Server. SnapManager takes the source SQL server instance as the default.

-TargetServerMountPointDir <String> - Short Form: -tgmpdir

Use this parameter to specify the mount point path or directory of the target server instance in which
the backups are cloned or mounted.

-PointInTime <String[]> - Short Form: -pit

Use this switch to restore databases until a specific point in time. The format for the point-in-time
string is yyyy-mm-ddThh:mm:ss, with time specified in a 24-hour format.

In case of multiple databases you should specify the point-in-time values for every database
separated by a comma. The number of values after the parameter name should equal the number of
databases selected. The first value will be applied to the first database specified after the -Database
parameter, the second value to the second database, and so on. The following example illustrates the
usage:

-pit 2008-10-22T11:50:00, 2008-11-25T22:50:00

Note: The parameter correspondence is one-to-one, that is, the first point-in-time parameter value
specified after the parameter -pit is applied to the first database specified in the parameter -
Database and the second point-in-time parameter value to second database and so on. The values
should conform to the required PointInTime regular expression.

-SnapInfoDirectory <String> - Short Form: -snapinfo

Use this parameter to specify the SnapInfo directory path of the archived backup set.

-MarkName <String[]> - Short Form: -mark

This parameter indicates the marked transaction at which to stop the transaction log recovery.

-MarkTime <String[]> - Short Form: -mktm

SnapManager cmdlet guidelines | 95

This parameter specifies a unique timestamp to guarantee the uniqueness of the input restored mark.

-RestoreBeforeMark [<Boolean>] - Short Form: -beforemk

This true or false value indicates whether the specified marked transaction log should be included in
the restore.

-RecoverDatabase <Boolean[]> - Short Form: -recoverdb

This parameter indicates whether the database fully recovered or left in a partially recovered state
after the cmdlet finishes, to facilitate future SQL transaction log restores. This is an array of
booleans, so it must match the same number of elements of the -database array. If the it does not
match the number of elements of the -database array, an error is given. This defaults to $true for all
databases unless the -standbyPath is given, in which case it defaults to $false for all databases.

-StandbyPath <String> - Short Form: -standby

This parameter indicates the path to the standby recovery file where incomplete transactions are
stored after restoring a full database and its transaction logs. There is no default if you specify this
parameter. The path must be to the standby directory if more than one database shares a LUN. If the
database is on a dedicated LUN, then it must be a specific file. If the -standbypath parameter is given,
the -RecoveryDatabase given must be -RecoverDatabase $False, otherwise it defaults to $false for all
databases if no _RecoverDatabase parameter is specified.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-RestoreArchivedBackup - Short Form: -rstarchbkup

Use this parameter to specify using remote backup to clone the database.

-SnapVaultSecondary - Short Form: -vaultsec

This optional parameter identifies the backup vault from which you want to clone a database. If you
do not specify this parameter, SnapManager chooses one of the backup vaults. You use this parameter
in conjunction with the -RestoreArchivedBackup parameter. If you specify this parameter with
the -AvailabilityGroup parameter, then the Availability Group databases must be spread across
the same volumes. Otherwise, do not specify this parameter and SnapManager will choose one of the
backup vaults. This parameter applies to clustered Data ONTAP only.

The syntax for this parameter is as follows:

-SnapVaultSecondary n, Vserver:volume

Where n is the number of Storage Virtual Machine (SVM, formerly known as Vserver):volume pairs.

Example: -SnapVaultSecondary 3, Vserver1:volume1, Vserver2:volume2,
Vserver3:volume3

-CloneOnMirrorDestination - Short Form: -cloneonmir

This parameter indicates to clone a database based on the Snapshot copy on the SnapMirror
destination volume. Ensure that the SnapMirror relationship exists and SnapMirror was updated
when using this option.

-ChangeClonePath (Boolean Parameter) - Short Form: -chgpath

Use this parameter to change clone database paths based on the new database clone name.

-CloneMirrorDestVolumes <String[]> - Short Form: -clonemir

Use this parameter to specify cloning using the Snapshot copy on the SnapMirror destination volume.

-PreCommand <String> - Short Form: -precmd

This parameter indicates to run a command before the current operation.

96 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Note: You cannot have more than one space between items that may be parsed in this parameter's
value.

-PreCommandPath <String> - Short Form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short Form: -precmdargs

This parameter contains a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script. The default is to pass no parameters to the
script. If the parameter contains white spaces (tabs or spaces) you need to enclose it in double quotes.
This parameter is processed only if the parameters -PreCommand and -PreCommandPath are
specified.

-PreCommandHost <String> - Short Form: -precmdhost

This parameter specifies the host machine name on which the command is run before the operation
starts. The default is to run on the current machine. This parameter is considered only if the
parameters -PreCommand and -PreCommandPath are specified.

-PreCommandErrors <EnumHandleCmdError[]> - Short Form: -precmnderrors

This parameter specifies how to handle errors on the pre-command. The ContinueOnError value (the
default) indicates that the SnapManager operation executes even if an error is detected during the pre-
command launch. The StopOnPreCmdError value indicates that if a pre-command script gets an
error, the remaining SMSQL operation is not attempted. This parameter is considered only if the
parameters -PreCommand and -PreCommandPath are specified.

-PostCommand - Short Form: -postcmd

This parameter indicates to run a command after the current operation is complete.

Note: You cannot have more than one space between items that may be parsed in this parameter's
value.

-PostCommandPath <String> - Short Form: -postcmdpath

Use this parameter to specify the operating system path to the command to be run after the
SnapManager operation starts.

-PostCommandArguments <String> - Short Form: -postcmdargs

This parameter contains a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script. The default is to pass no parameters to the
script. If the parameter contains white spaces (tabs or spaces) you enclose it in double quotes. This
parameter is processed only if the parameters -PostCommand and -PostCommandPath are specified.

-PostCommandHost <String> - Short Form: -postcmdhost

This parameter specifies the host machine name on which the command is run after the operation is
complete. The default is to run on the current machine. This parameter is considered only if the
parameters -PostCommand and -PostCommandPath are specified.

-PostCommandErrors <EnumHandleCmdError[]> - Short Form: -postcmderrors

This parameter specifies how to handle SMSQL operation errors on the post-command run. The
ContinueOnError value (the default) indicates that the SMSQL operation executes even if an error is
detected during the post-command launch. The StopOnPostCmdError value indicates that if a post-
command script gets an error, the remaining SMSQL operation is not attempted. This parameter is
considered only if the parameters -PostCommand and -PostCommandPath are specified.

-AvailabilityGroup <String> - Short Form: -ag

Use this parameter to reseed databases belonging to the given Availability group.

SnapManager cmdlet guidelines | 97

-IgnoreRepLogs: - Short Form: -nosharelogs

Use this parameter to ignore the transaction logbackups from SnapManager Repository Share.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: clone-backup -Server win-225-165 -Database DB2 -Inst win-225-165
-Backup sqlsnap__win-225-165_09-06-2008_13.44.51

This command creates a clone of the specified backup.

Example 2: clone-backup -Server win-225-165 -Database DB2 -Inst win-225-165 -
RestoreLastBackup 0

This command restores the most recent clone that was created.

Example 3: clone-backup -Server win-225-165 -Inst win-225-165 -
AvailabilityGroup Ag1 -RestoreLastBackup 0

This command restores the most recent clone of the Availability Group that was created.

Example 4: clone-backup -svr win-225-165 -Database DB2 -Inst win-225-165 -
Backup sqlsnap__win-225-165_09-06-2008_13.44.51 -RestoreArchivedBackup -

vaultsec 2,vserver1:volume1,vserver2:volume2

This command creates a clone of database DB2 from the specified SnapVault secondary volume.

clone-database

Name

clone-database

Synopsis

This cmdlet enables you to clone a live database or a database that is already backed up in a backup
set using the SnapManager SQL Server PowerShell command-line interface.

Syntax

clone-database [-Server <String>] [-UserName <String>] [-Password <String>]

[-LogBkup] [-Verify] [-VerifyServerInstance <String>] [-VerSvrLogin

<String>] [-VerSvrPassword <String>] [-VerDestVolume] [-VerifyOnDestVolumes

<String[]>] [-DBCCOption <EnumDbccOption[]>] [-CloneOnMirrorDestination] [-

ChangeClonePath] [-Resynchronize] [-ForceTerminateConnection] [-

ClusterAware] [-CloneMirrorDestVolumes <String[]>] [-VerifyDisable] [-

UseMountPoint] [-MountPointDir <String>] [-UseDriveAvailable] [-

RetainBackups <Int32>] [-RetainBackupDays <Single>] [-AttachDB] [-

98 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

UpdateMirror] [-NoRetainUTM] [-ManagementGroup <String>] [-LogBkupOnly] [-

BkupSIF] [-RetainSnapofSnapInfo <Int32>] [-RetainSnapofSnapInfoDays

<Single>] [-TruncateSqlLog [<Boolean>]] [-TruncateLogs] [-PreCommand] [-

PreCommandPath <String>] [-PreCommandArguments <String>] [-PreCommandHost

<String>] [-PreCommandErrors <EnumHandleCmdError[]>] [-PostCommand] [-

PostCommandPath <String>] [-PostCommandArguments <String>] [-

PostCommandHost <String>] [-PostCommandErrors <EnumHandleCmdError[]>] [-

RunDBCCAfter] [-RunDBCCBefore] [-GenericNaming] [-ArchiveBackup] [-

VerifyArchiveBackup] [-ArchivedBackupRetention <String>] [-ServerInstance

<String[]>] -Database <String[]> [-TransLogsToApply <Int32[]>] [-

ForceRestore [<Boolean>]] [-TargetDatabase <String[]>] [-

TargetServerInstance <String[]>] [-TargetServerMountPointDir <String>] [-

MarkName <String[]>] [-MarkTime <String[]>] [-RestoreBeforeMark

[<Boolean>]] [-RecoverDatabase <Boolean[]>] [-StandbyPath <String>] [-

apicontext] [-RestoreArchivedBackup] [-RetainShareBackups] [-

RetainShareBackupDays] [-AvailabilityGroup] [-IgnoreRepLogs] [-WhatIf] [-

Confirm] [<CommonParameters>]

Description

This cmdlet enables you to clone a live database or a database that is already backed up in a backup
set. It creates a backup set of the database and uses the backup set to clone the database. This cmdlet
provides you various verification options, DBCC, recovery after restore, retaining backups,
management groups and many other options.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-Username <String> - Short form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-Logbkup - Short form: -lb

Use this option to specify that the transaction logs also need to be backed up after a full backup.

-Verify - Short form: -ver

Use this parameter if you wish to verify the backed up databases and logs.

-VerifyServerInstance <String> - Short form: -verInst

This parameter specifies the separate SQL server that is used to run the Database Consistency Check
(DBCC) utility. If you have not specified the -verify parameter, SnapManager ignores this parameter.

SnapManager cmdlet guidelines | 99

The following example illustrates the usage:

-verInst win-225-161

Here the SQL server instance is the local or remote SQL server instance to verify on. SnapManager
takes the configured SQL server instance that is used for verify in client configuration (registry) as
the default SQL server instance.

-VerSvrLogin <String> - Short form: -verlogin

This parameter specifies that SQL Server authentication is used. If not specified, the default Windows
NT Authentication mechanism is used.

-VerSvrPassword <String> - Short form: -verpwd

This parameter is used to input the verification server password. SnapManager ignores this parameter
if the parameter -VerSvrLogin is not specified.

-VerDestVolume - Short form: -verdest

Use this parameter to verify the database on the SnapMirror destination volume. SnapManager sets it
to "false" by default.

-VerifyOnDestVolumes <String[]> - Short form: -vermirror

Specify this parameter in order to override the default SnapMirror relationships. Enter the source and
destination storage systems and volumes as a comma-separated list. SnapManager sets it to "false" by
default.

-DBCCOption <EnumDbccOption[]> - Short form: -dbccopt

This parameter specifies options to the DBCC SQL command that are used to validate and verify the
database that is being processed. When you use this parameter, you are explicitly requesting DBCC
options, and the system does read the registry to determine the default DBCC options. The security
access issues for the registry are bypassed when you use this cmdlet option. The parameter uses the
following values:

NOOPTION

NOINDEX

ALL_ERRORMSGS

NO_INFOMSGS (default)

TABLOCK

PHYSICAL_ONLY (default)

For more information about these options, see your Microsoft SQL Server documentation.

-CloneOnMirrorDestination - Short form: -cloneonmir

Use this parameter to clone a database based on the Snapshot copy on the SnapMirror destination
volume. Ensure that the SnapMirror relationship exists and SnapMirror was updated when using this
option.

-ChangeClonePath - Short form: -chgpath

Use this parameter to change clone database paths based on the new database clone name.

-Resynchronize - Short form: -resync

Use this parameter to specify that the existing clone is refreshed with the live database.

-ForceTerminateConnection - Short form: -ftc

Use this parameter to specify that all the connections to the existing clone are terminated during
clone resynchronize.

100 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

-ClusterAware - Short form: -cl

Use this parameter to specify that the cmdlet runs solely on the active node in a cluster environment.

-CloneMirrorDestVolumes <String[]> - Short form: -clonemir

Use this parameter to specify cloning using the Snapshot copy on the SnapMirror destination volume.

-VerifyDisable - Short form: -verDis

This parameter overrides verification and can disable verification even if the database was not
verified after backup.

-UseMountPoint - Short form: -mp

This parameter specifies that the Snapshot copy must be mounted to an NTFS directory.

During a SnapManager verification operation, Snapshot copies are mounted to the default NTFS
directory for database verification. The option is effective when there are no available drive letters to
mount the Snapshot copies. It overrides pre-configured SnapManager verification settings.

-MountPointDir <String> - Short form: -mpdir

Use this parameter to specify the mount point directory on which a backup set will be mounted
during database verification. Use this parameter with the parameter -UseMountPoint.

-UseDriveAvailable - Short form: -drvavail

Use this parameter to indicate that you should use available drive letter as mount point on which a
backup set is mounted during database verification.

-RetainBackups <Int32> - Short form: -tgInst

Use this parameter to specify the number of backups to be retained after the delete operation.

-RetainBackupDays <Single> - Short form: -rtdays

Use this parameter to specify the number of days you want to retain the backups for. SnapManager
deletes backups older than the specified number of days. The parameters RetainBackups and
RetainBackupDays are mutually exclusive and cannot be specified together.

-AttachDB - Short form: -attdb

If the operation includes a database or transaction log verification, use this option when you want to
specify that the databases are to be attached after the verification operation completes.

-UpdateMirror - Short form: -updmir

Use this option to update the SnapMirror destination after a backup or verification operation ends, if
the operation uses backups that reside on volumes configured as SnapMirror sources.

-NoRetainUTM - Short form: -noutm

Use this option if you do not want to retain up-to-the-minute restore ability for older backups in other
management groups.

-ManagementGroup <String> - Short form: -mgmt

This parameter denotes the backup or verify operation that SnapManager performs on daily, or
weekly, or standard basis. The default management group is standard.

-LogBkupOnly - Short form: -lgbkonly

Use this option to back up your SQL Server transaction log files only. No full snapshot backup will
be done.

-BkupSIF - Short form: -bksif

Use this option to create a Snapshot copy of the SnapInfo directory after the backup of the
transaction log completes. The backup type should be a transaction log backup only.

SnapManager cmdlet guidelines | 101

-RetainSnapofSnapInfo <Int32> - Short form: -rtsifsnap

Use this option if you want to delete the oldest Snapshot copies in the SnapInfo directory, specified
that the backup type is a transaction log backup only. It has an integer value. The following example
illustrates the usage of this parameter: -rtsifsnap Number of SnapInfo Snapshots to keep

Note: This option is valid only if you specify the parameter - BkupSIF.

-RetainSnapofSnapInfoDays <Single> - Short form: -rtsifsnapdays

Use this parameter to delete SnapInfo Snapshot copies older than the specified number of days. This
parameter is mutually exclusive with the parameter RetainSnapofSnapinfo and they cannot be
specified together in the same cmdlet.

-TruncateSqlLog [<Boolean>] - Short form: -truncLog

This parameter specifies whether to truncate the SQL transaction logs. SQL transaction logs are
truncated by default. Valid values are $true or $false. This parameter only works if -LogBkup or -
LogBkupOnly are true.

-TruncateLogs - Short form: -trlog

This obsolete parameter (now replaced by TruncateSqlLog) specifies whether to truncate the SQL
transaction logs. SQL transaction logs are not truncated by default. This parameter only works if -
LogBkup or -LogBkupOnly are true. In SMSQL 5.2 and later, if neither -TruncateLogs or -
TruncateSqlLog is specified, the default behavior is to truncate the logs.

-PreCommand <String> - Short form: -precmd

This parameter indicates to run a command before the current operation.

Note: You cannot have more than one space between items that may be parsed in this parameter's
value.

-PreCommandPath <String> - Short form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short form: -precmdargs

This parameter contains a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script. The default is to pass no parameters to the
script. If the parameter contains white spaces (tabs or spaces) you need to enclose it in double quotes.
This parameter is processed only if the parameters -PreCommand and -PreCommandPath are
specified.

-PreCommandHost <String> - Short form: -precmdhost

This parameter specifies the host machine name on which the command is run before the operation
starts. The default is to run on the current machine. This parameter is considered only if the
parameters -PreCommand and -PreCommandPath are specified.

-PreCommandErrors <EnumHandleCmdError[]> - Short form: -precmnderrors

This parameter specifies how to handle errors on the pre-command. The ContinueOnError value (the
default) indicates that the SMSQL operation executes even if an error is detected during the pre-
command launch. The StopOnPreCmdError value indicates that if a pre-command script gets an
error, the remaining SMSQL operation is not attempted. This parameter is considered only if the
parameters -PreCommand and -PreCommandPath are specified.

-PostCommand - Short form: -postcmd

This parameter indicates to run a command after the current operation is complete.

Note: You cannot have more than one space between items that may be parsed in this parameter's
value.

102 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

-PostCommandPath <String> - Short form: -postcmdpath

This parameter specifies the operation system path for the command to be run after the SMSQL
operation is complete.

-PostCommandArguments <String> - Short form: -postcmdargs

This parameter contains a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script. The default is to pass no parameters to the
script. If the parameter contains white spaces (tabs or spaces) you enclose it in double quotes. This
parameter is processed only if the parameters -PostCommand and -PostCommandPath are specified.

-PostCommandHost <String> - Short form: -postcmdhost

This parameter specifies the host machine name on which the command is run after the operation is
complete. The default is to run on the current machine. This parameter is considered only if the
parameters -PostCommand and -PostCommandPath are specified.

-PostCommandErrors <EnumHandleCmdError[]> - Short form: -postcmderrors

This parameter specifies how to handle SMSQL operation errors on the post-command run. The
ContinueOnError value (the default) indicates that the SMSQL operation executes even if an error is
detected during the post-command launch. The StopOnPostCmdError value indicates that if a post-
command script gets an error, the remaining SMSQL operation is not attempted. This parameter is
considered only if the parameters -PostCommand and -PostCommandPath are specified.

-RunDBCCAfter - Short form: -dbccaf

If the operation includes a database backup, use this parameter if you want to verify the live database
after the backups are performed.

-RunDBCCBefore - Short form: -dbccbf

If the operation includes a database backup, use this parameter if you want to verify the live database
before the backups are performed.

-GenericNaming - Short form: -gen

This parameter specifies that the backups must follow the Generic backup naming convention.

-ArchiveBackup - Short form: -arch

Use this parameter to archive database to a secondary storage system during the backup phase of the
operation.

-VerifyArchiveBackup - Short form: -verarch

Use this parameter to verify database archived at the secondary storage system.

-ArchivedBackupRetention <String> - Short form: -archret

Use this parameter to specify whether you want to retain backups at the archived location on a daily,
hourly, weekly, monthly or unlimited basis.

-ServerInstance <String[]> - Short form: -inst

This parameter specifies the SQL server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

You can specify multiple server instance names here as a comma-separated list. If multiple databases
reside on the same LUN but are owned by different SQL server instances when you backed them up
originally, use the following format:

-Inst "SQLServerInstance1","SQLServerInstance2"

The first database specified in the -Database parameter refers the first server instance in the -
ServerInstance parameter, the second database in the -Database parameter refers to the second server
instance in the -ServerInstance parameter and so on.

SnapManager cmdlet guidelines | 103

-Database <String[]> - Short form: -d

Use this option to specify the databases that need to be cloned. Use a comma-separated list of strings:

-d Database 1, Database 2, Database 3, Database 4,....

Multiple database names should be specified only if those databases share a single LUN or multiple
LUNs together. For a multiple database restore, all the selected databases should be present in the
selected Snapshot copy.

You cannot restore a database with a new name if you specify multiple databases. If you want to
restore with a new name, restore those databases one by one. In case of restore to alternate location,
specify only one database name.

-TransLogsToApply <Int32[]> - Short form: -translogs

This parameter specifies the count of transactions logs that need to be applied to each database
restored. If the TransLogsToApply parameter is not given, then all transaction logs that apply to the
full backup restored are applied by default (just as the GUI does). You can specify the number of
transaction logs to be applied for every database mentioned in the -Database parameter. The list of
number of transaction logs that are applied must be listed in the same sequence as the databases listed
in the -Database parameter. For example:

-Database db1,db2

might correspond to:

-TransLogsToApply 1,8

which means 1 transaction log backup will be applied to db1, and 8 will be applied to db2.

-ForceRestore [<Boolean>] - Short form: -force

Use this parameter to force the restore of a database based on its state. SnapManager sets it's value to
"true" by default.

-TargetDatabase <String[]> - Short form: -tgDb

Use this parameter to restore a database with a new name. The following example illustrates the
usage:

-tgDb "NewDatabaseName1"," NewDatabaseName2"," NewDatabaseName3"

The parameter defines the new database name to which the original database is restored. The old
database name is defined at the same position in the -Database parameter.

If no new database name is given, the database is restored to the original database name the database
had during backup. If this original name already exists, the name is modified to:
originalDbName__clone, or originalDbName__mount.

-TargetServerInstance <String[]> - Short form: -tgInst

This parameter specifies the name of the new SQL server if you want to restore the database to a new
SQL server. SnapManager takes the source SQL server instance as the default.

-TargetServerMountPointDir <String> - Short form: -tgmpdir

Use this parameter to specify the mount point path or directory of the target server instance in which
the databases are to be cloned or mounted.

-MarkName <String[]> - Short form: -mark

This parameter indicates the marked transaction at which to stop the transaction log recovery.

-MarkTime <String[]> - Short form: -mktm

This parameter specifies a unique timestamp to guarantee the uniqueness of the input restored mark.

-RestoreBeforeMark [<Boolean>] - Short form: -beforemk

104 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

This true or false value indicates whether the specified marked transaction log should be included in
the restore.

-RecoverDatabase <Boolean[]> - Short form: -recoverdb

This parameter indicates whether the database fully recovered or left in a partially recovered state
after the cmdlet finishes, to facilitate future SQL transaction log restores. This is an array of
booleans, so it must match the same number of elements of the -database array. If the it does not
match the number of elements of the -database array, an error is given. This defaults to $true for all
databases unless the -standbyPath is given, in which case it defaults to $false for all databases.

-StandbyPath <String> - Short form: -standby

This parameter indicates the path to the standby recovery file where incomplete transactions are
stored after restoring a full database and its transaction logs. There is no default if you specify this
parameter. The path must be to the standby directory if more than one database shares a LUN. If the
database is on a dedicated LUN, then it must be a specific file. If the -standbypath parameter is given,
the -RecoveryDatabase given must be -RecoverDatabase $False, otherwise it defaults to $false for all
databases if no -RecoverDatabase parameter is specified.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-RestoreArchivedBackup - Short form: -rstarchbkup

Use this parameter to specify using remote backup to perform the clone operation.

-RetainShareBackups <Integer> - Short form: -rtsharebackups

Use this parameter to specify the number of log backups retained in the SnapManager for SQL
repository share.

-RetainShareBackupDays <Integer> - Short form: -rtsharedays

Use this parameter to specify for how many days log backups are retained in the SnapManager
Repository Share.

-AvailabilityGroup <String> - Short form: -ag

Use this parameter to reseed databases belonging to the given Availability group.

-IgnoreRepLogs: - Short form: -nosharelogs

Use this parameter to ignore the transaction logbackups from SnapManager Repository Share.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: clone-database -svr sql1 -Database "Db1"

This command clones database Db1 located on SQL Server sql1.

Example 2: clone-database -svr win-225-166 -Inst win-225-166 -Database
dbtest1 -Verify -verinst win-225-166 -RecoverDatabase

SnapManager cmdlet guidelines | 105

This example enables database cloning with a default name for a default instance.

Example 3: clone-database -svr win-225-166 -Inst win-225-166 -Database
dbtest1 -Verify -verinst win-225-166 -TargetDatabase dbtest1_Clone -

RecoverDatabase

This example enables database cloning with a new name for a default instance.

Example 4: clone-database -svr win-225-166 -Inst win-225-166\Named -Database
dbtest2 -Verify -verinst win-225-166 -RecoverDatabase

This example enables database cloning with a default name for a named instance.

Example 5: clone-database -svr win-225-166 -Inst win-225-166\Named -Database
dbtest2 -Verify -verinst win-225-166 -TargetDatabase dbtest2_Clone -

RecoverDatabase

This example enables database cloning with a new name for a named instance.

Example 6: clone-database -svr 'SNAPMGR-19' -inst 'SNAPMGR-19',
'SNAPMGR-19', 'SNAPMGR-19' -d 'DB3', 'DB4', 'DB5' -tgInst 'SNAPMGR-19' -

tgDb 'DB3__Clone', 'DB4__Clone', 'DB5__Clone' -tgmpdir 'E:\Program Files

\NetApp\SnapManager for SQL Server\SnapMgrMountPoint' -ClusterAware -

Resynchronize -ForceTerminateConnection -RetainBackups 3 -lb -mgmt standard

This example creates a new backup on database "DB3," "DB4," and "DB5" and refreshes the cloned
databases on the active node.

Example 7: clone-database -svr 'venudhar-2k8vm2' -inst
'venudhar-2k8vm2\heitz' -ag 'testag'

This command clones all the databases belonging to the specified Availability group.

clone-replica

Name

clone-replica

Synopsis

Use this cmdlet to create an Availability Group replica by cloning existing Availability Group
databases to a specified server, which then becomes a secondary.

Syntax

clone-replica [-Server <String>] [-UserName <String>] [-Password <String>]

[-LogBkup] [-Verify] [-VerifyServerInstance <String>] [-VerSvrLogin

<String>] [-VerSvrPassword <String>] [-VerDestVolume] [-VerifyOnDestVolumes

<String[]>] [-DBCCOption <EnumDbccOption[]>] [-CloneOnMirrorDestination] [-

ChangeClonePath] [-Resynchronize] [-ForceTerminateConnection] [-

ClusterAware] [-CloneMirrorDestVolumes <String[]>] [-VerifyDisable] [-

UseMountPoint] [-MountPointDir <String>] [-UseDriveAvailable] [-

RetainBackups <Int32>] [-RetainBackupDays <Single>] [-AttachDB] [-

UpdateMirror] [-NoRetainUTM] [-ManagementGroup <String>] [-LogBkupOnly] [-

BkupSIF] [-RetainSnapofSnapInfo <Int32>] [-RetainSnapofSnapInfoDays

<Single>] [-TruncateSqlLog [<Boolean>]] [-TruncateLogs] [-PreCommand] [-

PreCommandPath <String>] [-PreCommandArguments <String>] [-PreCommandHost

<String>] [-PreCommandErrors <EnumHandleCmdError[]>] [-PostCommand] [-

PostCommandPath <String>] [-PostCommandArguments <String>] [-

106 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

PostCommandHost <String>] [-PostCommandErrors <EnumHandleCmdError[]>] [-

RunDBCCAfter] [-RunDBCCBefore] [-GenericNaming] [-ArchiveBackup] [-

VerifyArchiveBackup] [-ArchivedBackupRetention <String>] [-ServerInstance

<String[]>] -Database <String[]> [-TransLogsToApply <Int32[]>] [-

ForceRestore [<Boolean>]] [-TargetDatabase <String[]>] [-

TargetServerInstance <String[]>] [-TargetServerMountPointDir <String>] [-

MarkName <String[]>] [-MarkTime <String[]>] [-RestoreBeforeMark

[<Boolean>]] [-RecoverDatabase <Boolean[]>] [-StandbyPath <String>] [-

apicontext] [-RestoreArchivedBackup] [-WhatIf] [-Confirm] -

AvailabilityGroup [-SynchronousCommit] [-FailoverMode] [-ReadableSecondary]

[<CommonParameters>]

Description

The cmdlet uses Snapshot technology to quickly replicate databases to a remote cluster SQL
instance, and then groups them in an Availability Group. The replicated databases are associated with
instances in the same cluster so that Availability Group failover can take place when required or
requested.

An Availability Group supports up to three synchronous commit replicas and up to two automatic
failover replicas.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-Username <String> - Short form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-Logbkup - Short form: -lb

Use this option to specify that the transaction logs also need to be backed up after a full backup.

-Verify - Short form: -ver

Use this parameter if you wish to verify the backed up databases and logs.

-VerifyServerInstance <String> - Short form: -verInst

This parameter specifies the separate SQL server that is used to run the Database Consistency Check
(DBCC) utility. If you have not specified the -verify parameter, SnapManager ignores this parameter.

The following example illustrates the usage:

-verInst win-225-161

SnapManager cmdlet guidelines | 107

Here the SQL server instance is the local or remote SQL server instance to verify on. SnapManager
takes the configured SQL server instance that is used for verify in client configuration (registry) as
the default SQL server instance.

-VerSvrLogin <String> - Short form: -verlogin

This parameter specifies that SQL Server authentication is used. If not specified, the default Windows
NT Authentication mechanism is used.

-VerSvrPassword <String> - Short form: -verpwd

This parameter is used to input the verification server password. SnapManager ignores this parameter
if the parameter -VerSvrLogin is not specified.

-VerDestVolume - Short form: -verdest

Use this parameter to verify the database on the SnapMirror destination volume. SnapManager sets it
to "false" by default.

-VerifyOnDestVolumes <String[]> - Short form: -vermirror

Specify this parameter in order to override the default SnapMirror relationships. Enter the source and
destination storage systems and volumes as a comma-separated list. SnapManager sets it to "false" by
default.

-DBCCOption <EnumDbccOption[]> - Short form: -dbccopt

This parameter specifies options to the DBCC SQL command that are used to validate and verify the
database that is being processed. When you use this parameter, you are explicitly requesting DBCC
options, and the system does read the registry to determine the default DBCC options. The security
access issues for the registry are bypassed when you use this cmdlet option. The parameter uses the
following values:

NOOPTION

NOINDEX

ALL_ERRORMSGS

NO_INFOMSGS (default)

TABLOCK

PHYSICAL_ONLY (default)

For more information about these options, see your Microsoft SQL Server documentation.

-CloneOnMirrorDestination - Short form: -cloneonmir

Use this parameter to clone a database based on the Snapshot copy on the SnapMirror destination
volume. Ensure that the SnapMirror relationship exists and SnapMirror was updated when using this
option.

-ChangeClonePath - Short form: -chgpath

Use this parameter to change clone database paths based on the new database clone name.

-Resynchronize - Short form: -resync

Use this parameter to specify that the existing clone is refreshed with the live database.

-ForceTerminateConnection - Short form: -ftc

Use this parameter to specify that all the connections to the existing clone are terminated during
clone resynchronize.

-ClusterAware - Short form: -cl

Use this parameter to specify that the cmdlet runs solely on the active node in a cluster environment.

108 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

-CloneMirrorDestVolumes <String[]> - Short form: -clonemir

Use this parameter to specify cloning using the Snapshot copy on the SnapMirror destination volume.

-VerifyDisable - Short form: -verDis

This parameter overrides verification and can disable verification even if the database was not
verified after backup.

-UseMountPoint - Short form: -mp

This parameter specifies that the Snapshot copy must be mounted to an NTFS directory.

During a SnapManager verification operation, Snapshot copies are mounted to the default NTFS
directory for database verification. The option is effective when there are no available drive letters to
mount the Snapshot copies. It overrides pre-configured SnapManager verification settings.

-MountPointDir <String> - Short form: -mpdir

Use this parameter to specify the mount point directory on which a backup set will be mounted
during database verification. Use this parameter with the parameter -UseMountPoint.

-UseDriveAvailable - Short form: -drvavail

Use this parameter to indicate that you should use available drive letter as mount point on which a
backup set is mounted during database verification.

-RetainBackups <Int32> - Short form: -tgInst

Use this parameter to specify the number of backups to be retained after the delete operation.

-RetainBackupDays <Single> - Short form: -rtdays

Use this parameter to specify the number of days you want to retain the backups for. SnapManager
deletes backups older than the specified number of days. The parameters RetainBackups and
RetainBackupDays are mutually exclusive and cannot be specified together.

-AttachDB - Short form: -attdb

If the operation includes a database or transaction log verification, use this option when you want to
specify that the databases are to be attached after the verification operation completes.

-UpdateMirror - Short form: -updmir

Use this option to update the SnapMirror destination after a backup or verification operation ends, if
the operation uses backups that reside on volumes configured as SnapMirror sources.

-NoRetainUTM - Short form: -noutm

Use this option if you do not want to retain up-to-the-minute restore ability for older backups in other
management groups.

-ManagementGroup <String> - Short form: -mgmt

This parameter denotes the backup or verify operation that SnapManager performs on daily, or
weekly, or standard basis. The default management group is standard.

-LogBkupOnly - Short form: -lgbkonly

Use this option to back up your SQL Server transaction log files only. No full snapshot backup will
be done.

-BkupSIF - Short form: -bksif

Use this option to create a Snapshot copy of the SnapInfo directory after the backup of the
transaction log completes. The backup type should be a transaction log backup only.

-RetainSnapofSnapInfo <Int32> - Short form: -rtsifsnap

SnapManager cmdlet guidelines | 109

Use this option if you want to delete the oldest Snapshot copies in the SnapInfo directory, specified
that the backup type is a transaction log backup only. It has an integer value. The following example
illustrates the usage of this parameter: -rtsifsnap Number of SnapInfo Snapshots to keep

Note: This option is valid only if you specify the parameter - BkupSIF.

-RetainSnapofSnapInfoDays <Single> - Short form: -rtsifsnapdays

Use this parameter to delete SnapInfo Snapshot copies older than the specified number of days. This
parameter is mutually exclusive with the parameter RetainSnapofSnapinfo and they cannot be
specified together in the same cmdlet.

-TruncateSqlLog [<Boolean>] - Short form: -truncLog

This parameter specifies whether to truncate the SQL transaction logs. SQL transaction logs are
truncated by default. Valid values are $true or $false. This parameter only works if -LogBkup or -
LogBkupOnly are true.

-TruncateLogs - Short form: -trlog

This obsolete parameter (now replaced by TruncateSqlLog) specifies whether to truncate the SQL
transaction logs. SQL transaction logs are not truncated by default. This parameter only works if -
LogBkup or -LogBkupOnly are true. In SMSQL 5.2 and later, if neither -TruncateLogs or -
TruncateSqlLog is specified, the default behavior is to truncate the logs.

-PreCommand <String> - Short form: -precmd

This parameter indicates to run a command before the current operation.

Note: You cannot have more than one space between items that may be parsed in this parameter's
value.

-PreCommandPath <String> - Short form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short form: -precmdargs

This parameter contains a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script. The default is to pass no parameters to the
script. If the parameter contains white spaces (tabs or spaces) you need to enclose it in double quotes.
This parameter is processed only if the parameters -PreCommand and -PreCommandPath are
specified.

-PreCommandHost <String> - Short form: -precmdhost

This parameter specifies the host machine name on which the command is run before the operation
starts. The default is to run on the current machine. This parameter is considered only if the
parameters -PreCommand and -PreCommandPath are specified.

-PreCommandErrors <EnumHandleCmdError[]> - Short form: -precmnderrors

This parameter specifies how to handle errors on the pre-command. The ContinueOnError value (the
default) indicates that the SMSQL operation executes even if an error is detected during the pre-
command launch. The StopOnPreCmdError value indicates that if a pre-command script gets an
error, the remaining SMSQL operation is not attempted. This parameter is considered only if the
parameters -PreCommand and -PreCommandPath are specified.

-PostCommand - Short form: -postcmd

This parameter indicates to run a command after the current operation is complete.

Note: You cannot have more than one space between items that may be parsed in this parameter's
value.

-PostCommandPath <String> - Short form: -postcmdpath

110 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

This parameter specifies the operation system path for the command to be run after the SMSQL
operation is complete.

-PostCommandArguments <String> - Short form: -postcmdargs

This parameter contains a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script. The default is to pass no parameters to the
script. If the parameter contains white spaces (tabs or spaces) you enclose it in double quotes. This
parameter is processed only if the parameters -PostCommand and -PostCommandPath are specified.

-PostCommandHost <String> - Short form: -postcmdhost

This parameter specifies the host machine name on which the command is run after the operation is
complete. The default is to run on the current machine. This parameter is considered only if the
parameters -PostCommand and -PostCommandPath are specified.

-PostCommandErrors <EnumHandleCmdError[]> - Short form: -postcmderrors

This parameter specifies how to handle SnapManager operation errors on the post-command run. The
ContinueOnError value (the default) indicates that the SMSQL operation executes even if an error is
detected during the post-command launch. The StopOnPostCmdError value indicates that if a post-
command script gets an error, the remaining SMSQL operation is not attempted. This parameter is
considered only if the parameters -PostCommand and -PostCommandPath are specified.

-RunDBCCAfter - Short form: -dbccaf

If the operation includes a database backup, use this parameter if you want to verify the live database
after the backups are performed.

-RunDBCCBefore - Short form: -dbccbf

If the operation includes a database backup, use this parameter if you want to verify the live database
before the backups are performed.

-GenericNaming - Short form: -gen

This parameter specifies that the backups must follow the Generic backup naming convention.

-ArchiveBackup - Short form: -arch

Use this parameter to archive database to a secondary storage system during the backup phase of the
operation.

-VerifyArchiveBackup - Short form: -verarch

Use this parameter to verify database archived at the secondary storage system.

-ArchivedBackupRetention <String> - Short form: -archret

Use this parameter to specify whether you want to retain backups at the archived location on a daily,
hourly, weekly, monthly or unlimited basis.

-ServerInstance <String[]> - Short form: -inst

This parameter specifies the SQL server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

You can specify multiple server instance names here as a comma-separated list. If multiple databases
reside on the same LUN but are owned by different SQL server instances when you backed them up
originally, use the following format:

-Inst "SQLServerInstance1","SQLServerInstance2"

The first database specified in the -Database parameter refers the first server instance in the -
ServerInstance parameter, the second database in the -Database parameter refers to the second server
instance in the -ServerInstance parameter and so on.

-Database <String[]> - Short form: -d

SnapManager cmdlet guidelines | 111

Use this option to specify the databases that need to be cloned. Use a comma-separated list of strings:

-d Database 1, Database 2, Database 3, Database 4,....

Multiple database names should be specified only if those databases share a single LUN or multiple
LUNs together. For a multiple database restore, all the selected databases should be present in the
selected Snapshot copy.

You cannot restore a database with a new name if you specify multiple databases. If you want to
restore with a new name, restore those databases one by one. In case of restore to alternate location,
specify only one database name.

-TransLogsToApply <Int32[]> - Short form: -translogs

This parameter specifies the count of transactions logs that need to be applied to each database
restored. If the TransLogsToApply parameter is not given, then all transaction logs that apply to the
full backup restored are applied by default (just as the GUI does). You can specify the number of
transaction logs to be applied for every database mentioned in the -Database parameter. The list of
number of transaction logs that are applied must be listed in the same sequence as the databases listed
in the -Database parameter. For example:

-Database db1,db2

might correspond to:

-TransLogsToApply 1,8

which means 1 transaction log backup will be applied to db1, and 8 will be applied to db2.

-ForceRestore [<Boolean>] - Short form: -force

Use this parameter to force the restore of a database based on its state. SnapManager sets it's value to
"true" by default.

-TargetDatabase <String[]> - Short form: -tgDb

Use this parameter to restore a database with a new name. The following example illustrates the
usage:

-tgDb "NewDatabaseName1"," NewDatabaseName2"," NewDatabaseName3"

The parameter defines the new database name to which the original database is restored. The old
database name is defined at the same position in the -Database parameter.

If no new database name is given, the database is restored to the original database name the database
had during backup. If this original name already exists, the name is modified to:
originalDbName__clone, or originalDbName__mount.

-TargetServerInstance <String[]> - Short form: -tgInst

This parameter specifies the name of the new SQL server if you want to restore the database to a new
SQL server. SnapManager takes the source SQL server instance as the default.

-TargetServerMountPointDir <String> - Short form: -tgmpdir

Use this parameter to specify the mount point path or directory of the target server instance in which
the databases are to be cloned or mounted.

-MarkName <String[]> - Short form: -mark

This parameter indicates the marked transaction at which to stop the transaction log recovery.

-MarkTime <String[]> - Short form: -mktm

This parameter specifies a unique timestamp to guarantee the uniqueness of the input restored mark.

-RestoreBeforeMark [<Boolean>] - Short form: -beforemk

112 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

This true or false value indicates whether the specified marked transaction log should be included in
the restore.

-RecoverDatabase <Boolean[]> - Short form: -recoverdb

This parameter indicates whether the database will be fully recovered or left in a partially recovered
state after the cmdlet finishes to facilitate future SQL transaction log restores. This is an array of
booleans, so it must match the same number of elements of the -database array. If the it does not
match the number of elements of the -database array, an error is given. This defaults to $true for all
databases unless the -standbyPath is given, in which case it defaults to $false for all databases.

-StandbyPath <String> - Short form: -standby

This parameter indicates the path to the standby recover file where incomplete transactions are stored
after restoring a full database and its transaction logs. There is no default if you specify this
parameter. The path must be to the standby directory if more than one database shares a LUN. If the
database is on a dedicated LUN, then it must be a specific file. If the -standbypath parameter is given,
the -RecoveryDatabase given must be -RecoverDatabase $False, otherwise it defaults to $false for all
databases if no -RecoverDatabase parameter is specified.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-RestoreArchivedBackup - Short form: -rstarchbkup

Use this parameter to specify using remote backup to perform the clone operation.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

-AvailabilityGroup <String> - Short form: -ag

This parameter specifies the name of the source Availability Group.

-SynchronousCommit - Short form: -syncCommit

This parameter specifies that replica databases are synchronized to their primary. If not specified,
false is assumed.

-FailoverMode - Short form: -flMd

This parameter specifies that failover occur to the preferred replica, if the primary replica becomes
unavailable. If not specified, false is assumed.

-ReadableSecondary - Short form: -readsec

This parameter specifies read-only access for all of the new secondary databases. If not specified,
false is assumed.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: clone-replica -svr 'SQL2012HA2' -inst 'SQL2012HA2\INST2' -ag
'snapmgr2012 ' -tgInst 'SQL2012HA1\INST1'

SnapManager cmdlet guidelines | 113

This command creates a secondary replica for the Availability Group "snapmgr2012" on the
secondary "SQL2012HA1\INST1". Values for -SynchronousCommit, FailoverMode, and
ReadableSecondary are not specified, so the default, false, is used.

Example 2: clone-replica -svr 'SQL2012HA2' -inst 'SQL2012HA2\INST2' -ag
'snapmgr2012 ' -tgInst 'SQL2012HA1\INST1' -SychronousCommit -FailoverMode -

ReadableSecondary

This command creates a secondary replica for the Availability Group "snapmgr2012" on the
secondary "SQL2012HA1\INST1". The replica is created with the properties synchronous commit,
failover mode, and readable secondary set to true.

delete-backup

Name

delete-backup

Synopsis

This cmdlet enables you to delete the SnapManager backup sets using the SnapManager SQL Server
PowerShell command-line interface.

Syntax

delete-backup [-Server <String>] [-UserName <String>] [-Password <String>]

[-ServerInstance <String>] -Database <String> -Backup <String> [-

apicontext] [-ArchiveBackup] [-SnapVaultSecondary] [-WhatIf] [-Confirm]

[<CommonParameters>]

Description

This cmdlet enables you to delete a database depending on the input criteria specified in the
command-line interface. It deletes the specified backup set if it contains the specified database name.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name. In case of a clustered
configuration, the virtual server name is the default server name.

Using this parameter, you can also specify a particular SQL Server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-UserName <String> - Short Form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short Form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

114 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

-ServerInstance <String> - Short Form: -inst

This parameter specifies the SQL Server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

-Database <String> - Short Form: -d

This is a mandatory parameter that specifies a database.

-Backup <String> - Short Form: -bkup

Use this parameter to specify the backup set that needs to be deleted. It is a mandatory parameter.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-ArchiveBackup - Short Form: -arcbk

Use this parameter to specify the archived backup set that needs to be deleted.

Note: This parameter is mandatory if you delete archived backup sets.

-SnapVaultSecondary - Short Form: -vaultsec

This optional parameter identifies the backup vault from which you want to delete the Snapshot copy.
If you do not specify this parameter, all backups are deleted from the related backup vaults. You use
this parameter in conjunction with the -ArchiveBackup parameter. This parameter applies to
clustered Data ONTAP only. The syntax for this parameter is as follows:

-SnapVaultSecondary n, Vserver:volume

Where n is the number of Storage Virtual Machine (SVM, formerly known as Vserver):volume pairs.

Example: -SnapVaultSecondary 3, Vserver1:volume1, Vserver2:volume2,
Vserver3:volume3

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual deletion operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://technet.microsoft.com/library/hh847884.aspx).

Examples

Example 1: delete-backup -d "Db1" -bk "Db1bkup"

This command deletes the backup set Db1bkup where DB1 is the cloned database.

Example 2: delete-backup -d "Db1" -bk "Db1bkup" -ArchiveBackup -vaultsec
2,sn_vserver_dev:test_volume_sec,sn_vserver_dev:test_volume_sec2

This command deletes the backup set Db1bkup from the specified SnapVault secondary volume.

delete-clone

Name

delete-clone

SnapManager cmdlet guidelines | 115

Synopsis

This cmdlet enables you to delete a cloned database.

Syntax

delete-clone [-Server <String>] [-UserName <String>] [-Password <String>]

[-ServerInstance <String>] -Database <String[]> [-JobInstance <String>] [-

ResyncCloneJob <String>] [-ClusterAware] [-TerminateConnection] [-

apicontext] [-WhatIf] [-Confirm] [<CommonParameters>]

Description

This cmdlet helps you delete a cloned database using the SnapManager PowerShell command-line
interface. Before deleting a clone, make sure all connections to the cloned database are disconnected.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-UserName <String> - Short Form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short Form: -pwd

This parameter is the SQL server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-ServerInstance <String> - Short Form: -inst

This parameter specifies the SQL server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

-Database <String[]> - Short Form: -d

This is a mandatory parameter that specifies the list of cloned databases to be deleted. Enter the
cloned database names in a comma separated list.

-JobInstance <String> - Short Form: -jobinst

This parameter is followed by the name of the SQL Server instance on which the clone resync job is
created.

-ResyncCloneJob <String> - Short Form: -rcjob

This parameter is followed by the name of the clone resync job for the specified cloned database.

-ClusterAware - Short Form: -cl

Use this parameter to specify that the cmdlet runs solely on the active node in a cluster environment.

-TerminateConnection - Short form: -terminate

Use this parameter to terminate open database connections.

116 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual deletion operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: delete-clone -svr sql1 -d "Db1"

This command deletes the clone Db1 on Server sql1.

Example 2: delete-clone -svr 'SNAPMGR-25' -inst 'SNAPMGR-25' -d
'DB1__Clone', 'DB2__Clone' -ClusterAware -ResyncCloneJob

"CloneResync_VDISK_W_07-08-2011_13-02-29" -JobInstance "SNAPMGR-19\MARS"

This example deletes the clone of database "DB1" and "DB2" from SQL Server "SNAPMGR-25"
and the corresponding clone refresh job "CloneResync_VDISK_W_07-08-2011_13-02-29" from
SQL agent instance "SNAPMGR-19\MARS".

export-config

Name

export-config

Synopsis

This cmdlet enables you to export the existing configuration information of an SQL server to a
control-file using SnapManager PowerShell command-line interface.

Syntax

export-config [-Server <String>] [-ControlFilePath <String>] [-Section

<String[]>] [-apicontext] [-exportobject] [-WhatIf] [-Confirm]

[<CommonParameters>]

Description

This cmdlet enables you to export the existing configuration information of an SQL server to a
control-file using SnapManager PowerShell command-line interface.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL server on which the SQL server instances reside.
SnapManager takes the local computer name as the default server name.

SnapManager cmdlet guidelines | 117

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-ControlFilePath <String> - Short Form: -config

This parameter specifies the name of the control-file and its path. SnapManager takes the current
directory as the control-file path by default.

-Section <String[]> - Short Form: -sect

This parameter lists section names that are to be imported (separated by commas). If you do not
specify any particular section, the default value of all sections is applied. The valid section names that
can be applied are as follows: storage, notification, verification, report, backup, scheduledjob,
runcommand, snapmirrorvolume, monitor, and clonejob.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-exportobject - Short form: none

Use this parameter is to publish the configuration information as objects either shown on the output
screen or to be piped to another cmdlet. This facilitates easy communication with SMSPS. Without
this parameter, the default behavior is to export configuration information as an .xml file.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1 export-config -Server win-225-166 -ControlFilePath "C:\Program
Files\NetApp\SnapManager for SQL Server\SMSQLConfig_16July_test4.xml" -

Section storage,notification

This cmdlet exports all sections of the existing configuration and settings to the specified control-file.

get-backup

Name

get-backup

Synopsis

This cmdlet allows you to list the backup sets made by SnapManager for Microsoft SQL Server.

118 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Syntax

get-backup [-Server <String>] [-BackupServer <String>] [-UserName <String>]

[-Password <String>] [-ServerInstance <String>] [-Database <String>] [-

SnapInfoDirectory <String>] [-apicontext] [-WhatIf] [-Confirm]

[<CommonParameters>]

Description

This cmdlet enables you to list the backup sets of a particular database by specifying an SQL Server,
an SQL Server instance, or a database set. You can also implement these options with the
SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL Server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

For virtual server instances, specify the virtual server name. For example:

get-backup -server <virtual_server> -ServerInstance <virtual_instance> -d

aa1

-BackupServer <String> - Short Form: -bksvr

Use this parameter to specify where the backup was originally created. Use the host name or cluster
name where the SQL Server instance resides. This parameter cannot be an SQL Server instance
name. This parameter is optional, and is mainly used for a restore backup created from a different
server. For example, this parameter can be used for DR using SnapMirror. By default, the backup
server is the server currently connected, specified by -Server parameter. For example:

-Server win2k8-248-137 -backupserver 'SQL2K8VI1' -inst 'SQL2K8VI1\DE1' -

TargetServerInstance win2k8-248-137

The server is connected to a new server where the restore will be performed. But the backup was
originally created on 'SQL2K8VI1', and the instance was 'DE1'.

-Username <String> - Short Form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short Form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-ServerInstance <String> - Short Form: -inst

This parameter specifies the SQL Server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance. For named SQL Server
instances, enter the instance in the following format: HostName\InstanceName

-Database <String> - Short Form: -d

SnapManager cmdlet guidelines | 119

This is a mandatory parameter that specifies the database. If you do not specify the database
parameter, the cmdlet backs up all of the SQL Server instances that are peer instances of the SQL
server in the -Server parameter.

-SnapInfoDirectory <String> - Short Form: -sif

This parameter enables you to list the system and user databases on a remote server.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1 get-backup -svr 'VM-VS-1' -inst vm-vs-1 -d 'ds_test7'

This example retrieves the backed up database on a server instance of the specified server.

Example 2 get-backup -svr snapmgr-62 -inst snapmgr-63\FEDERATED -snapinfo \
\172.17.233.163\ G$\SMSQL_SnapInf

This example shows all the server and user databases on the remote server.

import-config

Name

import-config

Synopsis

This cmdlet enables you to import the configuration information from a SnapManager for SQL
control-file using SnapManager PowerShell command-line interface.

Syntax

import-config [-Server <String>] [-ControlFilePath <String>] [-Section

<String[]>] [-ValidateAndApply] [-AllowLocal] [-UserName <String>] [-

Password <String>] [-ClusterAware] [-DBCCBefore [<Boolean>]] [-DBCCAfter

[<Boolean>]] [-DeleteOriginalDBFile [<Boolean>]] [-UpdateStatisticsTable

[<Boolean>]] [-apicontext] [-WhatIf] [-Confirm] [<CommonParameters>]

Description

This cmdlet enables you to import the configuration information from a SnapManager for SQL
control-file using SnapManager PowerShell command-line interface. You can import sections like
storage, notification, verification, report, backup, scheduled job, snapmirror volume and so on. You
can also control DBCC integrity verification and update statistics table using this cmdlet.

120 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL server on which the SQL server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-ControlFilePath <String> - Short Form: -config

This parameter specifies the name of the control-file and its path. SnapManager takes the current
directory as the control-file path by default.

-Section <String[]> - Short Form: -sect

This parameter lists section names that are to be imported (separated by commas). If you do not
specify any particular section, the default value of all sections is applied. The valid section names that
can be applied are as follows: storage, notification, verification, report, backup, scheduledjob,
runcommand, snapmirrorvolume, monitor, and clonejob.

-ValidateAndApply - Short Form: -apply

This parameter applies the imported storage and notification settings data to the current system after
validation. If you specify this parameter and validation is successful the imported data will be
applied. If you do not specify this parameter only validation occurs.

-AllowLocal - Short Form: -tolocal

This parameter specifies that the migration of databases to the local disk is permitted. Its value is set
to "false" by default.

-UserName <String> - Short Form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication. This parameter is mandatory if you import a
scheduled job.

-Password <String> - Short Form: -pwd

This parameter is the SQL server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified. This parameter is mandatory if you import a scheduled job.

-DBCCBefore [<Boolean>] - Short Form: -dbcc

This parameter runs the DBCC physical integrity verification before migration. Its value is set to
"true" by default.

-DBCCAfter [<Boolean>] - Short Form: -dbcc2

This parameter runs the DBCC physical integrity verification after migration. Its value is set to
"false" by default.

-DeleteOriginalDBFile [<Boolean>] - Short Form: -deletedbfile

This parameter deletes the copy of the migrated database at original location. Its value is set to "true"
by default.

-UpdateStatisticsTable [<Boolean>] - Short Form: -updatestatistics

This parameter runs "Update statistics" on tables before detaching the databases. Its value is set to
"true" by default.

SnapManager cmdlet guidelines | 121

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: import-config -server "sql1" -ControlFilePath "C:\Program Files
\NetApp\SnapManager for SQL\SMSQLConfig_01_23_2007_23.10.20.xml" -Section

backup

This cmdlet validates the backup settings in the control-file. It does not apply the settings to the SQL
server.

Example 2 import-config -Server win-225-166 -Section storage,notification -
ControlFilePath "C:\Program Files\NetApp\SnapManager for SQL Server

\SMSQLConfig_16July_test4.xml" -ValidateAndApply -AllowLocal

This cmdlet validates the imported storage and notification settings from control-file and applies it to
the system.

new-backup

Name

new-backup

Synopsis

This cmdlet enables you to back up the SQL server databases in the SnapManager PowerShell
command-line interface.

Syntax

new-backup [-Server <String>] [-UserName <String>] [-Password <String>] [-

Database <String[]>] [-FederatedGroups <String[]>] [-Mark <String>] [-

MarkDesc <String>] [-LogBkup] [-Verify] [-VerifyServerInstance <String>] [-

VerSvrLogin <String>] [-VerSvrPassword <String>] [-RetainBackups <Int32>]

[-RetainBackupDays <Single>] [-RetainUtmBackups <Int32>] [-RetainUtmDays

<Single>] [-UseMountPoint] [-MountPointDir <String>] [-UseDriveAvailable]

[-AttachDB] [-UpdateMirror] [-NoRetainUTM] [-VerDestVolume] [-

ManagementGroup <String>] [-LogBkupOnly] [-BkupSIF] [-RetainSnapofSnapInfo

<Int32>] [-RetainSnapofSnapInfoDays <Single>] [-TruncateSqlLog [<Boolean>]]

[-TruncateLogs] [-Command] [-RunCommand <String>] [-CommandArguments

<String>] [-CommandServer <String>] [-PreCommand] [-PreCommandPath

<String>] [-PreCommandArguments <String>] [-PreCommandHost <String>] [-

PreCommandErrors <EnumHandleCmdError[]>] [-PostCommand] [-PostCommandPath

122 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

<String>] [-PostCommandArguments <String>] [-PostCommandHost <String>] [-

PostCommandErrors <EnumHandleCmdError[]>] [-RunDBCCAfter] [-RunDBCCBefore]

[-DBCCOption <EnumDbccOption[]>] [-GenericNaming] [-GenericNamingAdvanced]

[-VerifyOnDestVolumes <String[]>] [-apicontext] [-ArchiveBackup] [-

VerifyArchiveBackup] [-ArchivedBackupRetention <String>] [-ClusterAware] [-

WhatIf] [-Confirm] [-AvailabilityGroup] [-BackupPriority] [-Primary] [-

Secondary] [-CopyOnly] [-PreferredBackupReplica] [-CopyOnlyLogBackup] [-

CopyLogBackupToShare] [-RetainShareBackups] [-RetainShareBackupDays]

[<CommonParameters>]

Description

This cmdlet enables you to begin the backup-only and backup-with-verify operations. SnapManager
provides a separate cmdlet for verification. You can also implement these options with the
SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL server instances reside.
SnapManager takes the local computer name as the default server name. If no default host exists,
SnapManager attempts to use the following as the default:

• The VerifyServerInstance specified by the user

• The configured verification server for the current machine (in the registry) done in the
configuration wizard, or backup verification settings

• The VerificationServerInstance from the SQL Server being backed up as the verification
server

• The current machine

Using this parameter, you can also specify a particular SQL Server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

To back up all instances on a server that has a default instance, specify the following:

-server <server_name>

To back up all instances on a server that does not have a default instance, specify one of the named
instances on the server in the following format:

-server <host\instance>

To back up all databases on specified instances, use the following format:

-server <SQL_server_name or host\instance> -d <host\instance>, 0

For example:

–server 'sql1' -d 'sql1\instance1', '0', 'sql1\instance2', '0'

-Username <String> - Short Form: -usr

This parameter denotes the SQL Server account name. If the login name is not specified,
SnapManager uses Windows NT Authentication.

-Password <String> - Short Form: -pwd

SnapManager cmdlet guidelines | 123

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-Database <String[]> - Short Form: -d

Use this parameter to specify the original database that you want to back up. You can also specify
multiple database names, but only if the databases share a single LUN or multiple LUNs. In this case,
list the databases followed by -Database in following format:

-database sql-server-instance, count-of-databases, "database1"," database2"

If you do not specify the database parameter explicitly, the cmdlet backs up all the databases from all
the SQL Server instances in the host. If storage other than NetApp storage exists on your system, the
cmdlet omits databases located on that storage. Databases incompletely configured or databases in
incompatible states are omitted when not explicitly provided with this parameter.

-FederatedGroups <String[]> - Short Form: -g

This parameter specifies the original federated groups to back up. If you specify multiple federated
groups, the items in the list are separated by commas. If you do not specify the FederatedGroups
parameter, the cmdlet backs up only the databases specified in the Database parameter. If neither
parameter is specified, the cmdlet backs up all SQL server instances that are peer instances of the
SQL server in the -Server parameter.

-Mark <String> - Short Form: -m

Use this parameter to specify a mark name when backing up transaction logs. If you do not specify a
name, the default mark name “snapmgr_sqlbackup_[timestamp]” is used.

-MarkDesc <String> - Short Form: -md

Use this parameter to specify a mark description when backing up transaction logs. If you do not
specify a name, the default mark description “snapmanager sql backup mark generated at
[timestamp]” is used.

-Logbkup - Short form: -lb

Use this option to specify that the transaction logs also need to be backed up after a full backup.

-Verify - Short form: -ver

Use this parameter to verify the backed up databases and logs.

-VerifyServerInstance <String> - Short form: -verInst

This parameter specifies the separate SQL server that is used to run the Database Consistency Check
(DBCC) utility. If you have not specified the -verify parameter, SnapManager ignores this
parameter.

The following example illustrates the usage:

-verInst win-225-161

In this example, the SQL server instance is the local or remote SQL server instance to verify on.
SnapManager takes the configured SQL server instance that is used for verify in client configuration
(registry) as the default SQL server instance.

-VerSvrLogin <String> - Short form: -verlogin

This parameter specifies that SQL Server authentication is used. If not specified, the default Windows
NT Authentication mechanism is used.

-VerSvrPassword <String> - Short form: -verpwd

This parameter is used to input the verification server password. SnapManager ignores this parameter
if the parameter -VerSvrLogin is not specified.

-RetainBackups <Int32> - Short Form: -rtbackups

124 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Use this parameter to specify the number of backups to be retained after the delete operation.

-RetainBackupDays <Single> - Short Form: -rtdays

Use this parameter to specify the number of days you want to retain the backups. SnapManager
deletes backups older than the specified number of days. The parameters RetainBackups and
RetainBackupDays are mutually exclusive.

-RetainUTMBackups <Single> - Short Form: -rubackups

Specifies the number of the most recent backup copies to retain up-to-the-minute restore ability after
a SnapManager backup operation.

-RetainUTMDays <Single> - Short Form: -rudays

Specifies the number of days that the backups created within the time period retain up-to-the-minute
restore ability. The backups older than the specified number of days lose up-to-the-minute restore
ability and are for point-in-time restore only. Use this option in conjunction with
RetainUtmBackups. Absence of this option denotes a up-to-the-minute restore ability retain policy
based on backup count.

-UseMountPoint - Short Form: -mp

This parameter is a switch that specifies that the Snapshot copy must be mounted to an NTFS
directory. During a SnapManager verification operation, Snapshot copies are mounted to the default
NTFS directory for database verification. The option is effective when there are no available drive
letters to mount the Snapshot copies. It overrides preconfigured SnapManager verification settings.

-MountPointDir <String> - Short Form: -mpdir

Use this parameter to specify the mount point directory on which a backup set is mounted during
database verification. This parameter should be used along with the parameter -UseMountPoint.

Note: This option is valid only if you specify the parameter -BkupSIF.

-UseDriveAvailable - Short Form: -drvavail

Use this parameter to specify the mount point with available drive on which a backup set is to be
mounted during database verification.

-AttachDB - Short Form: -attdb

If the operation includes a database or transaction log verification, use this option when you want to
specify that the databases are to be attached after the verification operation completes.

-UpdateMirror - Short Form: -updmir

Use this option to update the SnapMirror destination after the backup or verification operations are
complete, if you are using backups that reside on volumes configured as SnapMirror sources.

-NoRetainUTM - Short Form: -noutm

Use this option if you do not want to retain up-to-the-minute restore ability for older backups in other
management groups.

-VerDestVolume - Short Form: -verdest

Use this parameter to verify the database on the SnapMirror destination volume. SnapManager sets it
to “false” by default.

-ManagementGroup <String> - Short form: -mgmt

This parameter denotes the backup or verify operation that SnapManager performs on a daily,
weekly, or standard basis. The default management group is standard.

-LogBkupOnly - Short form: -lgbkonly

Use this option to back up your SQL Server transaction log files only. No full Snapshot copy is made.

SnapManager cmdlet guidelines | 125

-BkupSIF - Short form: -bksif

Use this option to create a Snapshot copy of the SnapInfo directory after the backup of the
transaction log finishes. The backup type should be a transaction log backup only.

-RetainSnapofSnapInfo <Int32> - Short form: -rtsifsnap

Use this option if you want to delete the oldest Snapshot copies in the SnapInfo directory, specified
that the backup type is a transaction log backup only. It has an integer value. The following example
illustrates the use of this parameter: -rtsifsnap Number of SnapInfo Snapshots to keep

Note: This option is valid only if you specify the parameter - BkupSIF.

-RetainSnapofSnapInfoDays <Single> - Short form: -rtsifsnapdays

Use this parameter to delete SnapInfo Snapshot copies older than the specified number of days. This
parameter is mutually exclusive with the parameter RetainSnapofSnapinfo.

-TruncateSqlLog [<Boolean>] - Short form: -truncLog

This parameter specifies whether to truncate the SQL transaction logs. SQL transaction logs are
truncated by default. Valid values are $true or $false. This parameter is valid only if -LogBkup or -
LogBkupOnly are true.

-TruncateLogs - Short form: -trlog

This obsolete parameter (now replaced by TruncateSqlLog) specifies whether to truncate the SQL
transaction logs. SQL transaction logs are not truncated by default. This parameter is valid only if -
LogBkup or -LogBkupOnly are true. In SMSQL 5.2 and later, if neither -TruncateLogs or -
TruncateSqlLog is specified, the default behavior is to truncate the logs.

-Command - Short form: -cmd

This switch parameter runs a command after the backup or verify operation.

-RunCommand - Short form: -runcmd

This parameter runs the specified command after the SnapManager backup or verification operation
is complete. It defines the complete path for the command to be run after the backup or verify
operation is complete. There is no default.

-CommandArguments <String> - Short form: -cmdargs

This option contains the string of SnapManager operation-specific information to be passed to your
program or script. It is considered only if Command and RunCommand are specified. There is no
default.

-CommandServer <String> - Short form: -cmdsvr

This obsolete parameter (now replaced by PostCommandHost) was used to indicate the machine
where the desired command should run after the operation is complete. The default was to run on the
current machine. This was only considered if -command and -RunCommand were specified.

-PreCommand <String> - Short form: -precmd

This parameter indicates to run a command before the current operation.

-PreCommandPath <String> - Short form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short form: -precmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script.

-PreCommandHost <String> - Short form: -precmdhost

126 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Use this parameter to specify the host machine name on which the command is to be run before the
operation starts.

-PreCommandErrors <EnumHandleCmdError[]> - Short form: -precmnderrors

Use this parameter to specify how to handle errors on the precommand and the following SMSQL
operation. The ContinueOnError value indicates that the following SMSQL operation is to be
executed anyway. The StopOnPreCmdError value indicates that if a precommand script results in
an error, the remaining SMSQL operation is not attempted.

-PostCommand - Short form: -postcmd

Use this parameter to run a command after the current operation.

-PostCommandPath <String> - Short form: -postcmdpath

Use this parameter to specify the operating system path to the command to be run after the SMSQL
operation starts.

-PostCommandArguments <String> - Short form: -postcmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user
defined arguments to be passed to the program or script.

-PostCommandHost <String> - Short form: -postcmdhost

Use this parameter to specify the host name on which the command is to be run after the operation is
complete.

-PostCommandErrors <EnumHandleCmdError[]> - Short form: -postcmderrors

Use this parameter to specify how to handle errors on the next postcommand run. The
ContinueOnError value indicates that the following SMSQL operation is to be executed anyway.
The StopOnPostCmdError value indicates that if a postcommand script results in an error, the
remaining SMSQL operation is not attempted.

-RunDBCCAfter - Short form: -dbccaf

If the operation includes a database backup, use this parameter if you want to verify the live database
after the backups are performed.

-RunDBCCBefore - Short form: -dbccbf

If the operation includes a database backup, use this parameter if you want to verify the live database
before the backups are performed.

-DBCCOption <EnumDbccOption[]> - Short form: -dbccopt

This parameter specifies options to the DBCC SQL command that are used to validate and verify the
database that is being processed. When you use this parameter, you are explicitly requesting DBCC
options, and the system reads the registry to determine the default DBCC options. The security
access issues for the registry are bypassed when you use this cmdlet option. The parameter uses the
following values:

NOOPTION

NOINDEX

ALL_ERRORMSGS

NO_INFOMSGS (default)

TABLOCK

PHYSICAL_ONLY (default)

For more information about these options, see your Microsoft SQL Server documentation.

-GenericNaming - Short Form: -gen

SnapManager cmdlet guidelines | 127

This parameter sets the naming convention for new backups as generic.

-GenericNamingAdvanced - Short Form: -genadv

This parameter sets the naming convention for new backups as enhanced.

After you use or enable the enhanced naming convention, it is permanent. You should continue to use
-genadv and not revert to using only -gen.

-VerifyOnDestVolumes <String[]> - Short form: -vermirror

Specify this parameter to override the default SnapMirror relationships. Enter a comma-separated list
of the source storage system, the source volume, the destination storage system, and the destination
volume.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-ArchiveBackup - Short Form: -arch

Use this parameter to archive the database to a secondary storage system.

-VerifyArchiveBackup - Short Form: -verarch

Use this parameter to verify the database archived at the secondary storage system.

-ArchivedBackupRetention <String> - Short Form: -archret

Use this parameter to specify whether you want to retain backups at the archived location on a daily,
hourly, weekly, monthly, or unlimited basis.

-ClusterAware - Short form: cl

Use this parameter to specify that the cmdlet runs solely on the active node in a cluster environment.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual operation starts.

-AvailabilityGroup <String> - Short Form: -ag

Use this parameter to specify one or more names of Availability Groups to which this backup applies.

-BackupPriority <Integer,Integer> - Short Form: -bp

Use this parameter to specify a set of secondary Availability Groups on a cluster by specifying a
range of backup priorities. The operation applies to all replicas with backup priorities in that range.
The maximum priority must be in the range of 1 to 100. The minimum backup priority must be less
than or equal to the maximum priority.

-Primary - Short form: -prm

If this parameter is defined, then the backup is only made on the primary replica. If
BackupPriority is also defined, then the primary replica must also satisfy the BackupPriority
values.

-Secondary - Short form: -sec

If this parameter is defined, then the backup is made on all secondary replicas. If BackupPriority
is also defined, then the secondary replicas must also satisfy the BackupPriority values.

-CopyOnly - Short form: -cpyonly

If this parameter is defined, a full backup is made as a copy-only full backup.

-PreferredBackupReplica - Short form: -preferbkreplica

128 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Use this parameter to specify that only the preferred backup replica is backed up. The preferred
backup replica is set from the Availability Group properties in the SQL Server 2012 Management
Studio.

-CopyOnlyLogBackup - Short form: -cpyonlylgBk

Use this parameter to specify that transaction log backups are made as copy-only log backups.

-CopyLogBackupToShare <EnumBackupToShareType[]> - Short Form: -cpylgbkshare

Use this parameter to specify which transaction log backups are copied to the predefined repository
share. The possible values are one of NOTHING_TOSHARE, COPYLOG_TOSHARE, or
COPYLOG_TOSHARE_AGONLY. The repository share is set by the SnapManager for SQL
repository share option.

-RetainShareBackups <Integer> - Short Form: -rtsharebackups

Use this parameter to specify the number of log backups retained in the SnapManager for SQL
repository share.

-RetainShareBackupDays <Integer> - Short Form: -rtsharedays

Use this parameter to specify for how many days log backups are retained in the SnapManager
Repository Share.

If you specify -PreferredBackupReplica along with -Primary, -Secondary, or -
BackupPriority, the -PreferredBackupReplica value is used, and the others are ignored.

<CommonParameters>

This cmdlet supports the common parameters Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: new-backup -Server 'DBServer1' -Verify - VerifyServerInstance
'Snapmgr-50'

This command creates a backup of all databases on the host DBServer1 and verifies the backups
using the remote server Snapmgr-50.

Example 2: new-backup -svr 'VM-VS-1' -d 'VM-VS-1', '4', 'ds_test1',
'ds_test2', 'ds_test6', 'ds_test7' -ver -verInst 'ZEUS-VM1\VERSERVER' -

rtbackups 7 -lb -bksif -rtsifsnap 8 -trlog -noutm -mgmt standard -

ArchiveBackup -VerifyArchiveBackup -ArchivedBackupRetention daily

This example illustrates the creation of a new backup with verification of local backups and archive
backups.

Example 3: new-backup -svr 'VM-VS-1' -d 'VM-VS-1', '2', 'model', 'sm_test' -
ver -verInst 'ZEUS-VM1\VERSERVER' -rtbackups 7 -lb -bksif -rtsifsnap 8 -

trlog -noutm -gen -mgmt standard

This example creates a new backup with the generic naming convention.

Example 4: new-backup -svr 'VM-VS-1' -d 'VM-VS-1', '2', 'model', 'sm_test' -
ver -verInst 'ZEUS-VM1\VERSERVER' -rtbackups 7 -lb -bksif -rtsifsnap 8 -

trlog -noutm -mgmt standard

This example creates a new backup with the unique naming convention.

Example 5: new-backup -Server 'SNAPMGR-63' -Database
'SNAPMGR-63\SQL63INSTANCE1', '2', 'master', 'testdb2',

SnapManager cmdlet guidelines | 129

'SNAPMGR-63\SQL63INSTANCE2', '1', 'testdb1', 'SNAPMGR-19\SQLINSTANCE', '3',

'testdb1', 'testdb2', 'testdb3'

This example creates a new backup with the federated backup feature.

Example 6: new-backup -Server 'SNAPMGR-63' -Database
'SNAPMGR-63\SQL63INSTANCE1', '2', 'testdb4', 'testdb5'-FederatedGroups 2,

'SNAPMGR-63\SQL63INSTANCE1', '1', 'testdb1', 'SNAPMGR-19\SQLINSTANCE', '1',

'testdb2', 3, 'SNAPMGR-63\SQL63INSTANCE1', '2', 'testdb2', testdb3',

'SNAPMGR-63\SQL63INSTANCE2', '1', 'testdb1', 'SNAPMGR-19\SQLINSTANCE', '2',

'testdb1', 'testdb3',1, 'SNAPMGR-63\SQL63INSTANCE3', 0

This example creates backups on all replicas.

Example 7: new-backup -svr 'SQL2012HA2' -ag snapmgr2012 -prm -sec -mgmt
standard

This example creates backups on all replicas, because the default is all replicas.

Example 8: new-backup -svr 'SQL2012HA2' -ag snapmgr2012 -mgmt standard

This example creates backups on all replicas with backup priorities within the range of 50 to 70,
because the default is all replicas.

Example 9: new-backup -svr 'SQL2012HA2' -ag snapmgr2012 -prm -sec -bp 50,70
-mgmt standard

This example creates a backup of the preferred replica.

Example 10: new-backup -svr 'SQL2012HA2' -ag snapmgr2012 -
PreferredBackupReplica -mgmt standard

reseed-backup

Name

reseed-backup

Synopsis

This command enables you to reseed databases from SnapManager backups.

Syntax

reseed-backup [-Server <String>] [-UserName <String>] [-Password <String>]

[-ServerInstance <String[]>] -Database <String[]> [-Backup <String>] [-

RestoreLastBackup <Int32>] [-VerifyServerInstance <String>] [-VerSvrLogin

<String>] [-VerSvrPassword <String>] [-VerifyDisable] [-DBCCOption

<EnumDbccOption[]>] [-apicontext] [-PreCommand] [-PreCommandPath <String>]

[-PreCommandArguments <String>] [-PreCommandHost <String>] [-

PreCommandErrors <EnumHandleCmdError[]>] [-PostCommand] [-PostCommandPath

<String>] [-PostCommandArguments <String>] [-PostCommandHost <String>] [-

PostCommandErrors <EnumHandleCmdError[]>] [-AvailabilityGroup] [-

RestoreArchivedBackup] [-SnapVaultSecondary] [-IgnoreRepLogs] [-WhatIf] [-

Confirm] [<CommonParameters>]

Description

This cmdlet enables you to reseed a secondary database or a secondary Availability group replica. It
has many other options. You can also implement these options with the SnapManager user interface.

130 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-Username <String> - Short Form: -usr

UserName is the SQL Server account name. It is specified if the SQL Server computer is accessed
using a different account from that used to access the production SQL Server. If not specified, the
Windows NT Authentication user name is used.

-Password <String> - Short Form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-ServerInstance <String[]> - Short Form: -inst

This parameter specifies the SQL Server instance on which the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

You can specify multiple server instance names in one list, separated by commas. If multiple
databases reside on the same LUN but are owned by different SQL Server instances when you
backed them up originally, use the following format:

-Inst "SQLServerInstance1","SQLServerInstance2"

The first database specified in the -Database parameter refers the first server instance in the -
ServerInstance parameter, the second database in the -Database parameter refers to the second
server instance in the -ServerInstance parameter, and so on.

-Database <String[]> - Short Form: -d

Use this parameter to specify the original database that you want to reseed. You can specify multiple
database names using this option if the databases share a single LUN or multiple LUNs; also, the
backups for multiple databases must all have the same name. Use the following format:

-Database "DatabaseName1"," DatabaseName2"

Note: All the databases selected should be present in the selected Snapshot copy.

-Backup <String> Short Form: -bkup

Use this option to specify the name of the backup set. The following example illustrates the usage:

-bkup sqlsnap__SYMNASQLDEV170_04-11-2007_15.22.27

-RestoreLastBackup <Int32> - Short Form: -lastBkup

Use this parameter to restore backups without specifying the name. If you try to use the Backup and
RestoreLastBackup parameters together, SnapManager ignores the RestoreLastBackup
parameter and uses the Backup parameter during restore operation. A typical usage example of the
restorelastbackup parameter is as follows:

restore-backup -restorelastbackup 1

Note: If the value for RestoreLastBackup parameter is 0, SnapManager reseeds the latest
backup. If the value is 1, SnapManager reseed the second-to-latest backup, and so on.

SnapManager cmdlet guidelines | 131

-VerifyServerInstance <String> - Short Form: -verInst

This parameter specifies the separate SQL Server that is used to run the Database Consistency Check
(DBCC) utility. If you have not specified the -verify parameter, SnapManager ignores this
parameter.

The following example illustrates the usage:

-verInst win-225-161

In this example, the SQL Server instance is the local or remote SQL Server instance to verify on.
SnapManager takes the configured SQL Server instance that is used for verify in client configuration
(registry) as the default SQL Server instance.

-VerSvrLogin <String> - Short Form: -verlogin

This parameter specifies that SQL Server authentication is used. If not specified, the default Windows
NT Authentication mechanism is used.

-VerSvrPassword <String> - Short Form: -verpwd

SnapManager ignores this parameter if the parameter -VerSvrLogin is not specified.

-VerifyDisable - Short Form: -verDis

This parameter overrides verification and can disable verification even if the database was not
verified after backup.

-DBCCOption <EnumDbccOption[]> - Short form: -dbccopt

This parameter specifies options to the DBCC SQL command that are used to validate and verify the
database that is being processed. When you use this parameter, you are explicitly requesting DBCC
options, and the system does read the registry to determine the default DBCC options. The security
access issues for the registry are bypassed when you use this cmdlet option. The parameter uses the
following values:

NOOPTION

NOINDEX

ALL_ERRORMSGS

NO_INFOMSGS (default)

TABLOCK

PHYSICAL_ONLY (default)

For more information about these options, see your Microsoft SQL Server documentation.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-PreCommand <String> - Short form: -precmd

This parameter indicates to run a command before the current operation.

-PreCommandPath <String> - Short form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short form: -precmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user
defined arguments to be passed to the program or script.

-PreCommandHost <String> - Short form: -precmdhost

132 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Use this parameter to specify the host machine name on which the command is to be run before the
operation starts.

-PreCommandErrors <EnumHandleCmdError[]> - Short form: -precmnderrors

Use this parameter to specify how to handle errors on the precommand and the following SMSQL
operation. The ContinueOnError value indicates that the following SMSQL operation are to be
executed anyway. The StopOnPreCmdError value indicates that if a precommand script get an
error, the remaining SMSQL operation is not attempted.

-PostCommand - Short form: -postcmd

Use this parameter to run a command after the current operation.

-PostCommandPath <String> - Short form: -postcmdpath

Use this parameter to specify the operating system path to the command to be run after the SMSQL
operation starts.

-PostCommandArguments <String> - Short form: -postcmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user-
defined arguments to be passed to the program or script.

-PostCommandHost <String> - Short form: -postcmdhost

Use this parameter to specify the name of the host on which the command is to be run after the
operation is complete.

-PostCommandErrors <EnumHandleCmdError[]> - Short form: -postcmderrors

Use this parameter to specify how to handle errors on the next postcommand run. The
ContinueOnError value indicates that the following SMSQL operation is executed anyway.
StopOnPostCmdError value indicates that if a postcommand script results in an error, the remaining
SMSQL operation is not attempted.

-AvailabilityGroup <String> - Short form: -ag

This parameter specifies the name of the Availability Group to which the databases belong.

-RestoreArchivedBackup - Short Form: -rstarchbkup

Use this parameter to specify using a remote backup to reseed the database.

-SnapVaultSecondary - Short Form: -vaultsec

This optional parameter identifies the backup vault from which you want to reseed a database. If you
do not specify this parameter, SnapManager chooses one of the backup vaults. You use this parameter
in conjunction with the -RestoreArchivedBackup parameter. If you specify this parameter with
the -AvailabilityGroup parameter, then the Availability Group databases must be spread across
the same volumes. Otherwise, do not specify this parameter and SnapManager chooses one of the
backup vaults. This parameter applies to clustered Data ONTAP only.

The syntax for this parameter is as follows, where n is the number of Vserver:volume pairs:

-SnapVaultSecondary n, Vserver:volume

Example: -SnapVaultSecondary 3, Vserver1:volume1, Vserver2:volume2,
Vserver3:volume3

-IgnoreRepLogs - Short form: -nosharelogs

This parameter specifies that the log backups from the SnapManager Repository Share should be
ignored.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

SnapManager cmdlet guidelines | 133

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual deletion operation starts.

<CommonParameters>

This cmdlet supports the common parameters Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer, and OutVariable. For more information, see
about_CommonParameters (http://technet.microsoft.com/library/hh847884.aspx).

Examples

Example 1: reseed-backup -svr venudhar-2k8vm2 -inst venudhar-2k8vm2 -ag
tstag1 -backup sqlsnap__VENUDHAR-2K8VM2_08-26-2012_20.46.42

This command reseeds Availability Group tstag1. Note that only unhealthy databases or databases
that are already dropped in the given Availability Group are reseeded.

Example 2: reseed-backup -svr venudhar-2k8vm2 -inst venudhar-2k8vm2 -d
db1,db2,db3 -backup sqlsnap__VENUDHAR-2K8VM2_08-26-2012_20.46.42

This example reseeds the specific databases db1, db2, and db3.

Example 3: reseed-backup -svr 'venudhar-2k8vm2' -inst 'venudhar-2k8vm2\heitz'
-ag 'testag' -restorelastbackup 0

This example reseeds all databases that belong to the Availability Group.

Example 4: reseed-backup -svr 'venudhar-2k8vm2' -inst 'venudhar-2k8vm2' -ag
'testag1' -backup 'sqlsnap__VENUDHAR-2K8VM2_08-26-2012_20.46.42' -

RestoreArchivedBackup

This example reseeds databases that belong to the specified Availability Group from a SnapVault
secondary volume chosen by SnapManager. The command does not specify a SnapVault secondary
volume because the Availability Group databases are not spread across the same volumes.

restore-backup

Name

restore-backup

Synopsis

This cmdlet enables you to restore databases from SnapManager backups.

Syntax

restore-backup [-Server <String>] [-BackupServer <String>] [-UserName

<String>] [-Password <String>] [-ServerInstance <String[]>] -Database

<String[]> [-Backup <String>] [-RestoreLastBackup <Int32>] [-

TransLogsToApply <Int32[]>] [-ForceRestore [<Boolean>]] [-

VerifyServerInstance <String>] [-VerSvrLogin <String>] [-VerSvrPassword

<String>] [-VerDestVolume] [-VerifyOnDestVolumes <String[]>] [-

VerifyDisable] [-DBCCOption <EnumDbccOption[]>] [-TargetDatabase

<String[]>] [-TargetLocation] <String[]>] [-TargetServerInstance

<String[]>] [-PointInTime <String[]>] [-RestoreArchive] [-

RestoreFromUnmanagedMedia] [-SnapInfoDirectory <String>] [-MarkName

<String[]>] [-MarkTime <String[]>] [-RestoreBeforeMark [<Boolean>]] [-

RecoverDatabase <Boolean[]>] [-StandbyPath <String>] [-apicontext] [-

134 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

RestoreArchivedBackup] [-SnapVaultSecondary] [-NoAccessToRemoteBackup] [-

ProxyServer <String>] [-PreCommand] [-PreCommandPath <String>] [-

PreCommandArguments <String>] [-PreCommandHost <String>] [-PreCommandErrors

<EnumHandleCmdError[]>] [-PostCommand] [-PostCommandPath <String>] [-

PostCommandArguments <String>] [-PostCommandHost <String>] [-

PostCommandErrors <EnumHandleCmdError[]>] [-AvailabilityGroup] [-

IgnoreRepLogs] [-WhatIf] [-Confirm] [<CommonParameters>]

Description

This cmdlet enables you to restore a database. It also gives point-in-time restore, verification, force
restore and many other options.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-BackupServer <String> - Short Form: -bkupsvr

Use this parameter to specify where the backup was originally created. Use the host name or cluster
name where the SQL Server instance resides. This parameter cannot be an SQL Server instance
name. This parameter is optional, and is mainly used for a restore backup created from a different
server. For example, this parameter can be used for DR using SnapMirror. By default, the backup
server is the server currently connected, specified by -Server parameter. For example:

-Server win2k8-248-137 -backupserver 'SQL2K8VI1' -inst 'SQL2K8VI1\DE1' -

TargetServerInstance win2k8-248-137 -SnapInfoDirectory 'H:\SMSQL_SnapInfo'

The server is connected to a new server where the restore will be performed. But the backup was
originally created on 'SQL2K8VI1', and the instance was 'DE1'. The -SnapInfoDirectory
parameter is required when you specify this parameter.

-Username <String> - Short Form: -usr

UserName is the SQL Server account name. It is specified if the SQL Server computer is accessed
using a different account from that used to access the production SQL Server. If not specified the
Windows NT Authentication username will be taken.

-Password <String> - Short Form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-ServerInstance <String[]> - Short Form: -inst

This parameter specifies the SQL Server instance where the database is backed up originally.
SnapManager takes the local computer name as the default server instance.

You can specify multiple server instance names here as a comma-separated list. If multiple databases
reside on the same LUN but are owned by different SQL Server instances when you backed them up
originally, use the following format:

-Inst "SQLServerInstance1","SQLServerInstance2"

The first database specified in the -Database parameter refers the first server instance in the -
ServerInstance parameter, the second database in the -Database parameter refers to the second server
instance in the -ServerInstance parameter and so on.

SnapManager cmdlet guidelines | 135

-Database <String[]> - Short Form: -d

Use this parameter to specify the original database that you want to restore. You can also specify
multiple database names only if the databases share a single LUN or multiple LUNs together. In this
case, list the databases followed by -Database in the following format:

-Database "DatabaseName1"," DatabaseName2"

Note: All the databases selected should be present in the selected Snapshot copy. This is a required
parameter.

-Backup <String> - Short Form: -bkup

Use this option to specify the name of the backup set. The following example illustrates the usage:

-bkup sqlsnap__SYMNASQLDEV170_04-11-2007_15.22.27

-RestoreLastBackup <Int32> - Short Form: -lastBkup

Use this parameter to restore backups without specifying the name. If you try to use the Backup and
RestoreLastBackup parameters together, SnapManager ignores the RestoreLastBackup parameter and
uses the Backup parameter during restore operation. A typical usage example of the
restorelastbackup parameter is as follows:

restore-backup -restorelastbackup 1 -backup (backup name)

Note: If the value for RestoreLastBackup parameter is 0, SnapManager restores the latest backup.
If the value is 1, SnapManager restores the second-to-latest backup and so on.

-TransLogsToApply <Int32[]> - Short Form: -translogs

This parameter specifies the list of transactions logs that need to be applied. SnapManager applies all
transaction logs of the databases specified in the -Database parameter by default. You can specify the
number of transaction logs to be applied for every database mentioned in the -Database parameter.
The list of number of transaction logs that have to applied has to be listed in the same sequence as the
databases listed in the -Database parameter. For example:

restore-backup -svr MACHINE1\INST1 -database db1,db2 -transLogsToApply 3,7

-ForceRestore [<Boolean>] - Short Form: -force

Use this parameter to force the restore of a database based on its state. SnapManager sets its value to
"true" by default.

-VerifyServerInstance <String> - Short Form: -verInst

This parameter specifies the separate SQL Server that is used to run the Database Consistency Check
(DBCC) utility. If you have not specified the -verify parameter, SnapManager ignores this parameter.

The following example illustrates the usage:

-verInst win-225-161

Here the SQL Server instance is the local or remote SQL Server instance to verify on. SnapManager
takes the configured SQL Server instance that is used for verify in client configuration (registry) as
the default SQL Server instance.

-VerSvrLogin <String> - Short Form: -verlogin

This parameter specifies that SQL Server authentication is used. If not specified, the default Windows
NT Authentication mechanism is used.

-VerSvrPassword <String> - Short Form: -verpwd

This parameter is used to input the verification server password. SnapManager ignores this parameter
if the parameter -VerSvrLogin is not specified.

-VerDestVolume - Short Form: -verdest

136 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

Use this parameter to verify the database on the SnapMirror destination volume. SnapManager sets it
to "false" by default.

-VerifyOnDestVolumes <String[]> - Sort form: -verMirror

Specify this parameter to override the default SnapMirror relationships. Enter a comma-separated list
of the source storage system, the source volume, the destination storage system, and the destination
volume.

-VerifyDisable - Short Form: -verDis

This parameter overrides verification and can disable verification even if the database was not
verified after backup.

-DBCCOption <EnumDbccOption[]> - Short form: -dbccopt

This parameter specifies options to the DBCC SQL command that are used to validate and verify the
database that is being processed. When you use this parameter, you are explicitly requesting DBCC
options, and the system does read the registry to determine the default DBCC options. The security
access issues for the registry are bypassed when you use this cmdlet option. The parameter uses the
following values:

NOOPTION

NOINDEX

ALL_ERRORMSGS

NO_INFOMSGS (default)

TABLOCK

PHYSICAL_ONLY (default)

For more information about these options, see your Microsoft SQL Server documentation.

-TargetDatabase <String[]> - Short Form: -tgDb

When you want to restore the database with a new name, use this parameter

-TargetLocation - Shot Form: -tgloc

This parameter defines the location to which you want to restore a database.

Syntax: -TargetLocation Source_Database_Name, n, Logical_FileName_1,
Desination_FilePath_1,....,Logical_FileName_n, Desination_FilePath_n

Where, Source_Database_Name represents the source database, n represents the number of
database files, Logical_File_1 to Logical_File_n represents the database logical file names,
Destination_File_1 to Destination_File_n represents the corresponding destination file
names for the logical file name, if you want to change the database file name at the target location.

For example, restore-backup -Database db -TargetDatabase newDB -TargetLocation
db,2, DB_FileName, K:\NewDB\NewDB.mdf, LOG_FileName, K:\NewDB\NewDB.ldf

-TargetServerInstance <String[]> - Short Form: -tgInst

This parameter specifies the name of the new SQL server if you want to restore the database to a new
SQL server. SnapManager takes the source SQL server instance as the default.

-PointInTime <String[]> - Short Form: -pit

Use this switch to restore databases until a specific point in time. The format for the point-in-time
string is yyyy-mm-ddThh:mm:ss, with time specified in a 24-hour format.

In case of multiple databases you should specify the point-in-time values for every database
separated by a comma. The number of values after the parameter name should equal the number of
databases selected. The first value will be applied to the first database specified after the -Database

SnapManager cmdlet guidelines | 137

parameter, the second value to the second database, and so on. The following example illustrates the
usage:

-pit 2008-10-22T11:50:00, 2008-11-25T22:50:00

Note: The parameter correspondence is one-to-one, that is, the first point-in-time parameter value
specified after the parameter -pit is applied to the first database specified in the parameter -
Database and the second point-in-time parameter value to second database and so on. The values
should conform to the required PointInTime regular expression.

-RestoreArchive - Short Form: -rstarch

Use this parameter to restore a database from an archived backup.

-RestoreFromUnmanagedMedia - Short Form: -rstumm

Use this parameter if you are restoring databases from archived SnapManager backup sets.

-SnapInfoDirectory <String> - Short Form: -snapinfo

Use this parameter to specify the SnapInfo directory path of the archived backup set. Use the
parameter only along with the -RestoreFromUnmanagedMedia parameter. This parameter is required
when you specify the "-BackupServer" parameter.

-MarkName <String[]> - Short form: -mark

This parameter indicates the marked transaction at which to stop the transaction log recovery.

-MarkTime <String[]> - Short form: -mktm

This parameter specifies a unique timestamp to guarantee the uniqueness of the input restored mark.

-RestoreBeforeMark [<Boolean>] - Short form: -beforemk

This true or false value indicates whether the specified marked transaction log should be included in
the restore.

-RecoverDatabase <Boolean[]> - Short Form: -recoverdb

This parameter indicates whether the database fully recovered or left in a partially recovered state
after the cmdlet finishes, to facilitate future SQL transaction log restores. This is an array of
booleans, so it must match the same number of elements of the -database array. If the it does not
match the number of elements of the -database array, an error is given. This defaults to $true for all
databases unless the -standbyPath is given, in which case it defaults to $false for all databases.

-StandbyPath <String> - Short Form: -standby

This parameter indicates the path to the standby recovery file where incomplete transactions are
stored after restoring a full database and its transaction logs. There is no default if you specify this
parameter. The path must be to the standby directory if more than one database shares a LUN. If the
database is on a dedicated LUN, then it must be a specific file. If the -standbypath parameter is given,
the -RecoveryDatabase given must be -RecoverDatabase $False, otherwise it defaults to $false for all
databases if no _RecoverDatabase parameter is specified.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-RestoreArchivedBackup - Short Form: -rstarchbkup

Use this parameter to restore database from an archived backup.

-SnapVaultSecondary - Short Form: -vaultsec

This optional parameter identifies the backup vault from which you want to restore a database. If you
do not specify this parameter, SnapManager chooses one of the backup vaults. You use this parameter
in conjunction with the -RestoreArchivedBackup parameter. If you specify this parameter with
the -AvailabilityGroup parameter, then the Availability Group databases must be spread across

138 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

the same volumes. Otherwise, do not specify this parameter and SnapManager will choose one of the
backup vaults. This parameter applies to clustered Data ONTAP only.

The syntax for this parameter is as follows:

-SnapVaultSecondary n, Vserver:volume

Where n is the number of Storage Virtual Machine (SVM, formerly known as Vserver):volume pairs.

Example: -SnapVaultSecondary 3, Vserver1:volume1, Vserver2:volume2,
Vserver3:volume3

-NoAccessToRemoteBackup - Short Form: -noaccessarchivebkup

This parameter specifies that there is no direct access to the secondary storage system. SnapManager
uses the proxy server to access the secondary storage system.

-ProxyServer <String> - Short Form: -pxy

This parameter defines the name of the proxy server. Use it along with the parameter
NoAccessToRemoteBackup.

-PreCommand <String> - Short form: -precmd

This parameter indicates to run a command before the current operation.

-PreCommandPath <String> - Short form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short form: -precmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user
defined arguments to be passed to the program or script.

-PreCommandHost <String> - Short form: -precmdhost

Use this parameter to specify the host machine name on which the command is to be run before the
operation starts.

-PreCommandErrors <EnumHandleCmdError[]> - Short form: -precmnderrors

Use this parameter to specify how to handle errors on the pre-command and the following SMSQL
operation. ContinueOnError value indicates that the following SMSQL operation will be executed
anyway. StopOnPreCmdError value indicates that if a pre-command script get an error, the remaining
SMSQL operation will not be attempted.

-PostCommand - Short form: -postcmd

Use this parameter to indicate to run a command after the current operation.

-PostCommandPath <String> - Short form: -postcmdpath

Use this parameter to specify the operating system path to the command to be run after the SMSQL
operation starts.

-PostCommandArguments <String> - Short form: -postcmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user
defined arguments to be passed to the program or script.

-PostCommandHost <String> - Short form: -postcmdhost

Use this parameter to specify the host name on which the command is to be run after the operation is
complete.

-PostCommandErrors <EnumHandleCmdError[]> - Short form: -postcmderrors

SnapManager cmdlet guidelines | 139

Use this parameter to specify how to handle errors on the following post-command run.
ContinueOnError value indicates that the following SMSQL operation will be executed anyway.
StopOnPostCmdError value indicates that if a post-command script get an error, the remaining
SMSQL operation will not be attempted.

-AvailabilityGroup <String> - Short Form: -ag

Use this parameter to specify one or more names of Availability Groups for which this backup
applies.

-IgnoreRepLogs - Short form: -nosharelogs

Use this parameter to ignore the transaction logbackups from SnapManager Repository Share.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual deletion operation starts.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: restore-backup -Server sql1 -Database "Db1"

This command restores the backup of database Db1 on SQL Server sql1.

Example 2: restore-backup -svr 'VM-VS-1' -inst vm-vs-1 -d 'ds_test7' -backup
sqlsnap__VM-VS-1_07-18-2008_03.19.14__Daily

This example restores the specified backup on the given server instance.

Example 3: restore-backup -inst 'SNAPMGR-65' -Database 'dbDef_1' -
restorelastbackup 0 - standbypath u:\temp\standby -recoverdatabase $false

This example specifies the path where incomplete transactions are stored after restoring a full
database and its transaction logs.

Example 4: restore-backup -Server snapmgr-62 -FederatedGroups 1,
snapmgr-62\SQLEXPRESS62, 1, TestData -Mark mypsmark -MarkDesc "mymark

description" -Logbkup

This example restores the log to a marked transaction.

Example 5: restore-backup -svr 'venudhar-2k8vm2' -inst
'venudhar-2k8vm2\heitz' -ag 'testag' -restorelastbackup 0

This command restores all the databases belonging to the specified Availability group.

Example 6: restore-backup -svr 'VM-VS-1' -inst vm-vs-1 -d 'ds_test7' -backup
sqlsnap__VM-VS-1_07-18-2008_03.19.14__Daily -RestoreArchivedBackup -

vaultsec 2,vserver1:volume1,vserver2:volume2

This example restores the database ds_test7 from the specified SnapVault secondary volume on the
specified server instance.

140 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

split-clone

Name

split-clone

Synopsis

This cmdlet enables you to split the cloned database from the parent database.

Syntax

split-clone -Database <string> [] Database_name [-Server <string> Server_name] [-
UserName <string> User_name] [-Password <string> Password] [-ServerInstance
<string>] [-GetStatus] [-ClusterAware] [-apicontext] [-WhatIf] [-Confirm]
[<CommonParameters>]

Parameters

-Database <String[]> - Short Form: -d

Specifies the databases that you wanted to split. Use a comma-separated list of strings:

-d Database 1, Database 2, Database 3, Database 4,....

Multiple database names should be specified only if those databases share a single LUN or multiple
LUNs together. For a multiple database restore, all the selected databases should be present in the
selected Snapshot copy.

-Server <String> - Short Form: -svr

Denotes the name of the host SQL server on which the SQL server instances reside. SnapManager
takes the local computer name as the default server name.

Using this parameter, you can also specify a particular SQL server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-UserName <string> - Short Form: -usr

Denotes the SQL Server account name. If the login name is not specified, SnapManager uses
Windows NT Authentication.

-Password <string> - Short Form: -pwd

Specifies the SQL Server account password. SnapManager ignores this parameter if the parameter -
UserName is not specified.

-ServerInstance <string> - Short Form: -inst

Specifies the SQL Server instance where the database is backed up originally. SnapManager takes the
local computer name as the default server instance. If multiple databases reside on the same LUN but
are owned by different SQL server instances when you backed them up originally, you should use the
following format:

-Inst "SQLServerInstance1","SQLServerInstance2"

SnapManager cmdlet guidelines | 141

The first database specified in the -Database parameter refers the first server instance in the -
ServerInstance parameter, the second database in the -Database parameter refers to the second
server instance in the -ServerInstance parameter and so on.

-GetStatus - Short Form: -gtst

Enables you to view the status of the split job. The split process might take time based on the size and
load on the volume that is being split. You can check the status by using the -GetStatus option in
the cmdlet. This provides you with the status of each of the volumes being split. Each mount point
that has unique volumes is shown in the status; other mount points or disks from the same volume are
ignored, because the split occurs at the volume level.

Note: You are not able to see the status of the split operation through the graphical user interface
(GUI).

-ClusterAware - Short Form: -cl

Specifies that the cmdlet runs solely on the active node in a cluster environment.

-apicontext - Short Form: none

Calls the cmdlet as an API call.

-WhatIf - Short Form: -wi

Provides you with a preview of an operation.

-Confirm - Short Form: -cf

Prompts you for confirmation before the actual operation starts.

<CommonParameters>

Supports the common parameters:Verbose, Debug, ErrorAction, ErrorVariable, WarningAction,
WarningVariable, OutBuffer, and OutVariable. For more information, see about_CommonParameters
(http://go.microsoft.com/fwlink/?LinkID=113216).

Example

split-clone -Server snapmgr-63 -Database 'DB1' -getstatus

verify-backup

Name

verify-backup

Synopsis

This cmdlet enables you to verify the SQL Server databases in SnapManager PowerShell command-
line interface.

Syntax

verify-backup [-Server <String>] [-UserName <String>] [-Password <String>]

[-Database <String[]>] [-VerifyServerInstance <String>] [-VerSvrLogin

<String>] [-AttachDB] [-VerSvrPassword <String>] [-UpdateMirror] [-

VerDestVolume] [-VerifyOnDestVolumes <String[]>] [-ManagementGroup

<String>] [-BackupNo <Int32>] [-MountPointDir <String>] [-UseMountPoint] [-

UseDriveAvailable] [-Command] [-RunCommand <String>] [-CommandArguments

<String>] [-CommandServer <String>] [-PreCommand] [-PreCommandPath

<String>] [-PreCommandArguments <String>] [-PreCommandHost <String>] [-

142 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

PreCommandErrors <EnumHandleCmdError[]>] [-PostCommand] [-PostCommandPath

<String>] [-PostCommandArguments <String>] [-PostCommandHost <String>] [-

PostCommandErrors <EnumHandleCmdError[]>] [-DBCCOption <EnumDbccOption[]>]

[-apicontext] [-ArchiveBackup] [-VerifyArchiveBackup] [-

ArchivedBackupRetention <String>] [-ClusterAware] [-WhatIf] [-Confirm] [-

AvailabilityGroup] [-BackupPriority] [-Primary] [-Secondary] [-

PreferredBackupReplica] [<CommonParameters>]

Description

This cmdlet enables you to perform verification operations. You can mount the Snapshot copies,
manage SnapMirror relationships and destinations, assign management groups for verification and so
on.

You can also implement these options with the SnapManager user interface.

Parameters

-Server <String> - Short Form: -svr

This parameter denotes the name of the host SQL Server on which the SQL Server instances reside.
SnapManager takes the local computer name as the default server name. If no default host exists,
SnapManager attempts to use the following as the default:

• The VerifyServerInstance specified by the user

• The configured verification server for the current machine (in the registry) done in the
configuration wizard, or backup verification settings

• The VerificationServerInstance from the SQL Server being backed up as the verification server

• The current machine

Using this parameter, you can also specify a particular SQL Server instance. The following examples
illustrate the usage:

-svr win-225-161

-svr sql1

-Username <String> - Short Form: -usr

UserName is the SQL Server account name. It is specified if the SQL Server computer is accessed
using a different account from that used to access the production SQL Server. If not specified the
Windows NT Authentication username will be taken.

-Password <String> - Short Form: -pwd

This parameter is the SQL Server account password. SnapManager ignores this parameter if the
parameter -UserName is not specified.

-Database <String[]> - Short Form: -d

Short Form: -d This parameter specifies the original databases to backup. If you specify multiple
database names, the list is separated by commas. If you do not specify the database parameter, the
cmdlet backs up all SQL server instances that are peer instances of the SQL server in the -Server
parameter.

-VerifyServerInstance <String> - Short Form: -verInst

This parameter specifies the separate SQL Server that is used to run the Database Consistency Check
(DBCC) utility. If you have not specified the -verify parameter, SnapManager ignores this parameter.

The following example illustrates the usage:

SnapManager cmdlet guidelines | 143

-verInst win-225-161

Here the SQL Server instance is the local or remote SQL Server instance to verify on. SnapManager
takes the configured SQL Server instance that is used for verify in client configuration (registry) as
the default SQL Server instance.

-VerSvrLogin <String> - Short Form: -verlogin

This parameter specifies that SQL Server authentication is used. If not specified, the default Windows
NT Authentication mechanism is used.

-AttachDB - Short Form: -attdb

If the operation includes a database or transaction log verification, use this option when you want to
specify that the databases are to be attached after the verification operation completes.

-VerSvrPassword <String> - Short Form: -verpwd

This parameter is used to input the verification server password. SnapManager ignores this parameter
if the parameter -VerSvrLogin is not specified.

-UpdateMirror - Short Form: -updmir

Use this option to update the SnapMirror destination after the backup or verification operations are
complete, if you are using backups that reside on volumes configured as SnapMirror sources.

-VerDestVolume - Short Form: -verdest

Use this parameter to verify the database on the SnapMirror destination volume. SnapManager sets it
to false by default.

-VerifyOnDestVolumes <String[]> - Short form: -vermirror

Specify this parameter to override the default SnapMirror relationships. Enter a comma-separated list
of the source storage system, the source volume, the destination storage system, and the destination
volume.

-ManagementGroup <String> - Short form: -mgmt

This parameter denotes the backup or verify operation that SnapManager performs on daily, or
weekly, or standard basis. The default management group is standard.

-BackupNo <Int32> - Short Form: -bkno

This option specifies the number of most recent unverified backups to verify. It is an integer with a
default value of 1.

-MountPointDir <String> - Short Form: -mpdir

Use this parameter to specify the mount point directory on which a backup set is mounted during
database verification. This parameter should be used along with the parameter -UseMountPoint.

Note: This option is valid only if you specify the parameter -BkupSIF.

-UseMountPoint - Short Form: -mp

This parameter specifies that the Snapshot copy must be mounted to an NTFS directory. During a
SnapManager verification operation, Snapshot copies are mounted to the default NTFS directory for
database verification. The option is effective when there are no available drive letters to mount the
Snapshot copies. It overrides preconfigured SnapManager verification settings.

-UseDriveAvailable - Short Form: -drvavail

Use this parameter to specify the mount point with available drive on which a backup set will be
mounted during database verification.

-Command - Short form: -cmd

This switch parameter that runs a command after the backup or verify operation.

144 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

-RunCommand - Short form: -runcmd

This parameter runs the specified command after the SnapManager backup or verification operation
is complete. It defines the complete path for the command to be run after the backup or verify
operation is complete. There is no default.

-CommandArguments <String> - Short form: -cmdargs

This option contains the string of SnapManager operation-specific information to be passed to your
program or script. It is considered only if Command and RunCommand are specified. There is no
default.

-CommandServer <String> - Short form: -cmdsvr

This obsolete parameter (now replaced by PostCommandHost) was used to indicate the machine
where the desired command should run after the operation is complete. The default was to run on the
current machine. This was only considered if -command and -RunCommand were specified.

-PreCommand <String> - Short form: -precmd

This parameter indicates to run a command before the current operation.

-PreCommandPath <String> - Short form: -precmdpath

This parameter specifies the operating system path to the command to be run before the
SnapManager operation starts.

-PreCommandArguments <String> - Short form: -precmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user
defined arguments to be passed to the program or script.

-PreCommandHost <String> - Short form: -precmdhost

Use this parameter to specify the host machine name on which the command is to be run before the
operation starts.

-PreCommandErrors <EnumHandleCmdError[]> - Short form: -precmnderrors

Use this parameter to specify how to handle errors on the pre-command and the following SMSQL
operation. ContinueOnError value indicates that the following SMSQL operation will be executed
anyway. StopOnPreCmdError value indicates that if a pre-command script get an error, the remaining
SMSQL operation will not be attempted.

-PostCommand - Short form: -postcmd

Use this parameter to indicate to run a command after the current operation.

-PostCommandPath <String> - Short form: -postcmdpath

Use this parameter to specify the operating system path to the command to be run after the SMSQL
operation starts.

-PostCommandArguments <String> - Short form: -postcmdargs

Use this parameter to specify a list of strings of SnapManager operation-specific information or user
defined arguments to be passed to the program or script.

-PostCommandHost <String> - Short form: -postcmdhost

Use this parameter to specify the host name on which the command is to be run after the operation is
complete.

-PostCommandErrors <EnumHandleCmdError[]> - Short form: -postcmderrors

Use this parameter to specify how to handle errors on the following post-command run.
ContinueOnError value indicates that the following SMSQL operation will be executed anyway.
StopOnPostCmdError value indicates that if a post-command script get an error, the remaining
SMSQL operation will not be attempted.

SnapManager cmdlet guidelines | 145

-DBCCOption <EnumDbccOption[]> - Short form: -dbccopt

This parameter specifies options to the DBCC SQL command that are used to validate and verify the
database that is being processed. When you use this parameter, you are explicitly requesting DBCC
options, and the system does read the registry to determine the default DBCC options. The security
access issues for the registry are bypassed when you use this cmdlet option. The parameter uses the
following values:

NOOPTION

NOINDEX

ALL_ERRORMSGS

NO_INFOMSGS (default)

TABLOCK

PHYSICAL_ONLY (default)

For more information about these options, see your Microsoft SQL Server documentation.

-apicontext - Short form: none

Use this parameter when calling the cmdlet as an API call.

-ArchiveBackup - Short form: -arch

Use this parameter to archive database to a secondary storage system.

-VerifyArchiveBackup - Short form: -verarch

Use this parameter to verify database archived at the secondary storage system.

-ArchivedBackupRetention <String> - Short form: -archret

Use this parameter to specify whether you want to retain backups at the archived location on a daily,
hourly, weekly, monthly, or unlimited basis.

-ClusterAware - Short form: cl

Use this parameter to specify that the cmdlet runs solely on the active node in a cluster environment.

-WhatIf - Short form: -wi

This parameter gives you a preview of an operation.

-Confirm - Short form: -cf

This parameter prompts you for confirmation before the actual deletion operation starts.

-AvailabilityGroup <String> - Short Form: -ag

Use this parameter to specify one or more names of Availability Groups for which this backup
applies.

-BackupPriority <Integer,Integer> - Short Form: -bp

Use this parameter to specify a set of secondary Availability Groups on a cluster by specifying a
range of backup priorities. The operation applies to all replicas with backup priorities in that range.
The maximum priority must be in the range of 1 to 100. The minimum backup priority must be less
than or equal to the maximum priority.

-Primary - Short form: -prm

If this parameter is defined, then the backup is only taken on the primary replica. If BackupPriority is
also defined, then the primary replica must also satisfiy the BackupPriority values.

-Secondary - Short form: -sec

146 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

If this parameter is defined, then the backup is taken on all secondary replicas. If BackupPriority is
also defined, then the secondary replicas must also satisfiy the BackupPriority values.

-PreferredBackupReplica - Short form: -preferbkreplica

Use this parameter to specify that only the preferred backup replica is verified. The preferred backup
replica is set from the Availability Group properties in the SQL Server 2012 Management Studio.

<CommonParameters>

This cmdlet supports the common parameters: Verbose, Debug, ErrorAction, ErrorVariable,
WarningAction, WarningVariable, OutBuffer and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

Examples

Example 1: verify-backup -svr 'VM-VS-1' -d 'VM-VS-1', '2', 'ds_test6',
'ds_test7' -verInst 'ZEUS-VM1\VERSERVER' -bkno 1 -mgmt standard -

ArchiveBackup -VerifyArchiveBackup -ArchivedBackupRetention Daily

This command initiates deferred verification for the specified database at the specified server, with
one unverified most recent backup. The management groups are standard.

SnapManager cmdlet guidelines | 147

Copyright information

Copyright © 1994–2017 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—
graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an
electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and
disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein,
except as expressly agreed to in writing by NetApp. The use or purchase of this product does not
convey a license under any patent rights, trademark rights, or any other intellectual property rights of
NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents,
or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

148

Trademark information

Active IQ, AltaVault, Arch Design, ASUP, AutoSupport, Campaign Express, Clustered Data ONTAP,
Customer Fitness, Data ONTAP, DataMotion, Element, Fitness, Flash Accel, Flash Cache, Flash
Pool, FlexArray, FlexCache, FlexClone, FlexPod, FlexScale, FlexShare, FlexVol, FPolicy, Fueled by
SolidFire, GetSuccessful, Helix Design, LockVault, Manage ONTAP, MetroCluster, MultiStore,
NetApp, NetApp Insight, OnCommand, ONTAP, ONTAPI, RAID DP, RAID-TEC, SANscreen,
SANshare, SANtricity, SecureShare, Simplicity, Simulate ONTAP, Snap Creator, SnapCenter,
SnapCopy, SnapDrive, SnapIntegrator, SnapLock, SnapManager, SnapMirror, SnapMover,
SnapProtect, SnapRestore, Snapshot, SnapValidator, SnapVault, SolidFire, SolidFire Helix,
StorageGRID, SyncMirror, Tech OnTap, Unbound Cloud, and WAFL and other names are
trademarks or registered trademarks of NetApp, Inc., in the United States, and/or other countries. All
other brands or products are trademarks or registered trademarks of their respective holders and
should be treated as such. A current list of NetApp trademarks is available on the web.

http://www.netapp.com/us/legal/netapptmlist.aspx

149

http://www.netapp.com/us/legal/netapptmlist.aspx

How to send comments about documentation and
receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can
receive automatic notification when production-level (GA/FCS) documentation is initially released or
important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name,
version, and operating system.

If you want to be notified automatically when production-level documentation is released or
important changes are made to existing production-level documents, follow Twitter account
@NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.

• Telephone: +1 (408) 822-6000

• Fax: +1 (408) 822-4501

• Support telephone: +1 (888) 463-8277

150

mailto:doccomments@netapp.com

Index

.TRN files
changing to .TRB 34

A

Activity Monitor
addressing system database failures using 38

addressing
system database failures using Activity Monitor 38

application
settings 73

application settings
restriction for configuring

restriction for changing 73
archived backup

cloning databases from 50
AutoSupport

enabling 76
Availability Group

creating a clone replica 52
Availability Group transaction log backup

managing 25
Availability Groups

considerations for configuring 24

B

backing up databases
for the first time 17
using a schedule 19

backup
cloning databases from 50

backup deletion
automatic setting for 22

backup management group
changing 26

backup operations
defining settings for 73

backup set
changing backup management group 26

backup sets
deleting using SnapManager 23
how SnapManager deletes them 22
prerequisites and requirements for verifying VMDK,
on SnapMirror destination volumes 12, 47
verifying the initial set 18
verifying with a schedule 21

backup types
overview of 14

backups
how SnapManager backs up

stream-based method
online Snapshot copy method 8

using the Find Backups wizard 35
benefits and features

overview of 6
busy Snapshot copy

avoiding during a SnapManager operation 26

deleting 26

C

centralized transaction log backups
setting up a network location 60
using SnapManager share 60

change list files
formatting requirements 13, 48

clone replica
creating 52

cloned databases
cloning 52
deleting 55
splitting 54

cloning databases
limitations for VMDKs 47
overview of 47

cmdlets
accessing 92
common parameters 92
guidelines 92
new-backup 122
split-clone 141

commands
arguments for preoperation and postoperation 77
reseed-backup 130
setting defaults for preoperation and postoperation
76

comments
how to send feedback about documentation 150

Configuration wizard
moving multiple SnapInfo directories to a single
directory 59

configuring
Availability Groups, considerations for 24
email notifications

configuring 56
fractional space reservation policies 83

considerations
for configuring Availability Groups 24

control file
exporting 61
importing 61
sample XML schema 62

custom policies
configuring for fractional space-reserved LUNs 83

D

database cloning
prerequisites and requirements for VMDK, on
SnapMirror destination volumes 12, 47

database reseeding
on an Availability Group 41

database states
non-operational 34
operational 34

Index | 151

read-only 34
database verification

modifying settings for 74
databases

backing up for the first time 17
backing up with a schedule 19
cloning already cloned database 52
cloning from local backup 50, 52
cloning from production database 51
cloning, overview of 47
configuring restore settings 75
deleting clones 55
destinations for a restore operation 33
exporting to a control file 61
how restoring works 30
how SnapManager backs them up 8
importing using a control file 61
maximum number of 85
migrating back to local disks 60
modifying backup settings 73
overview of backing up 8
post-restore states 34
removing layout restrictions 81
requirements for restoring 35
restoring from a remote backup set 38
sources for a restore operation 33
splitting cloned database 54
strategy for backing up 14
types of restore operations 31
verifying the initial backup set 18
verifying with a schedule 21

DBCC
as used by SnapManager Backup 10
verifying a backup, drive letters required for 10

DBCC options
choosing for database verification 74

destination datastore UUIDs
replacing for VMFS datastores 14, 49

disk requirements
in a Windows clustered environment 86

documentation
how to receive automatic notification of changes to
150
how to send feedback about 150

E

email notifications
enabling 76

F

features and benefits
overview of 6

feedback
how to send comments about documentation 150

file groups
maximum number of 85

Find Backups wizard
restoring backups 35

formatting requirements
for change list files 13, 48

fractional space reservation
viewing status of 82

fractional space-reserved LUNs
configuring policies for 83

full database backup
what to do if the backup fails 26

I

information
how to send feedback about improving
documentation 150

L

local backup sets
restoring SQL Server databases from 36

local disks
migrating databases back to 60

logging
enabling 76

LUNs
maximum number of 85
removing layout restrictions for 81

M

management groups
overview of 14

managing
transaction log backups of Availability Group
databases 25

migration
migrating databases back to local disks 60
moving multiple SnapInfo directories to a single
directory 59

modifying
registry keys on the primary server 44

multiple instance cluster
disk requirements 86

N

naming conventions
overview of 14

new-backup cmdlet
syntax and description 122

P

postoperation commands
arguments for 77
setting defaults for 76

PowerShell cmdlets
accessing 92
common parameters

guidelines 92
preoperation commands

arguments for 77
setting defaults for 76

preparing secondary site before 45

152 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

primary server
modifying for primary server 44

primary site
preparing for recovery 44

product overview
features and benefits 6

production databases
cloning 51

R

recovering databases
from secondary site 45

recovering databases on VMDKs
using SnapMirror 44

Recovery Point Objective
meeting 20

registry keys
modifying on primary server 44

reinstalling
SnapManager 90

remote verification server
DBCC, drive letters required for 10

repairing
SnapManager 90

replacing destination datastore UUIDs
for VMFS datastores 14, 49

report directory
changing location of 57

reports
default location of 57
deleting 56
overview 56
viewing 56

reseed-backup command
syntax and description 130

reseeding
a database on an Availability Group 41

restore operation 45
restoring

replicated, publisher, and subscriber databases using
SnapManager 40

restoring databases
configuring default settings 75
destinations for a restore operation 33
from a remote backup set 38
how it works 30
post-restore states 34
requirements 35
sources for a restore operation 33
using SnapMirror 42
using the Restore wizard 38

restoring operations
types of restore operations 31

restoring SQL Server databases
from a local backup set 36
using SnapManager for SQL 41

restoring using SnapMirror 42

S

secondary site

preparing for recovery 45
service accounts

requirements for 7-Mode SnapVault 85
single-instance cluster

disk requirements 86
SnapInfo directories

moving to a single directory 59
SnapInfo directory

how SnapManager updates it 9
what it contains 9
what the subdirectories contain 9

SnapManager
user interface

command-line interface (CLI)
clone-backup 93

SnapManager for Microsoft SQL Server
backup overview 8
backup strategy 14
features and benefits 6
reinstalling 90
repairing 90
reports 56
supported configurations 85
uninstalling 91
upgrading

interactively 88
prerequisites 88

upgrading silently 88
SnapManager PowerShell

accessing 92
common parameters 92

SnapMirror
using to restore databases 42

SnapMirror destination volume
choosing for database verification 74

SnapMirror destination volumes
prerequisites and requirements for VMDK backup
set verification or database cloning on 12, 47

Snapshot copies per volume 22
SnapVault

service account requirements for 7-Mode 85
SnapVault destination volume

choosing for database verification 74
space consumptionvolumes

viewing available space 82
viewing status of 82

split-clone cmdlet
description and parameters 141

SQL Server database
Auto Shrink option 26

SQL Server databases
restoring from a local backup set 36
restoring using archives 41

SQL Server instances
maximum number of 85

SQL Server Management Studio
restoring transaction logs from 34

storage layouts
allowing on any LUN or VMDK configuration 81

suggestions
how to send feedback about documentation 150

system database failures
addressing using Activity Monitor 38

Index | 153

T

transaction log backup
what to do if the backup fails 26

transaction log backups
centralizing 60
managing 25
using a schedule 20
using SnapManager 60

transaction logs
backing up with a schedule 20
restoring from SQL Server Management Studio
backups 34

troubleshooting
reinstalling SnapManager 90
repairing SnapManager 90

Twitter
how to receive automatic notification of
documentation changes 150

U

uninstalling
SnapManager for Microsoft SQL Server 91

upgrading SnapManager
interactively 88
prerequisites 88
silently 88

V

verification

modifying settings for 74
verification server

choosing 74
VMDKs

cloning limitations of 47
maximum number of 85
prerequisites and requirements for backup set
verification or database cloning on SnapMirror
destination volumes 12, 47
removing layout restrictions for 81

VMFS datastores
replacing destination datastore UUIDs for 14, 49

volumes
maximum number of 85

Vservers
See SVMs

W

Windows clustered environment
disk requirements 86

Windows host system requirements
DBCC, drive letters required for 10

X

XML scheme
sample of 62

154 | SnapManager 7.2.2 for Microsoft SQL Server Administration Guide

	Contents
	Product overview
	Backing up and verifying your databases
	SnapManager backup overview
	Two ways that SnapManager performs full database backups
	How SnapManager updates the SnapInfo directory
	How SnapManager checks database integrity in backup sets

	Prerequisites for VMDK verification or cloning on SnapMirror destination volumes
	Formatting requirements for the change list file
	Replacing destination data store UUIDs for VMFS data stores

	Defining a backup strategy
	Backing up your databases for the first time
	Verifying the initial backup set
	Scheduling recurring backups
	Scheduling recurring transaction log backups
	Scheduling recurring backup set verifications
	Managing backup retention
	Maximum number of Snapshot copies per volume
	Automatically deleting backups
	Explicitly deleting backups

	Considerations for configuring Availability Groups
	Managing transaction log backups of Availability Group databases
	Changing the backup management group of an existing backup set
	What to do if a SnapManager backup operation fails

	Restoring databases
	How SnapManager a restore operation works
	Types of SnapManager restore operations
	Sources and destinations for a SnapManager restore
	Transaction log backups from SQL Server Management Studio
	Post-restore database recovery states

	Requirements for restoring a database
	Finding backup sets
	Restoring a database from a local backup set
	Addressing system database failure using Activity Monitor

	Restoring a database from a backup set created on a different server
	Restoring replicated, publisher, and subscriber databases
	Reseeding a database on an Availability Group
	Recovering databases using archived backup sets
	Recovering databases using SnapMirror
	Recovering databases on VMDKs using SnapMirror
	Preparing the primary site for recovery
	Preparing the secondary site for recovery
	Recovering databases from the secondary site

	Cloning databases
	Cloning limitations for VMDKs
	Prerequisites for VMDK verification or cloning on SnapMirror destination volumes
	Formatting requirements for the change list file
	Replacing destination data store UUIDs for VMFS data stores

	Cloning a database from a local backup or an archived backup
	Cloning a database that is in production
	Creating a clone replica of an AlwaysOn cluster
	Cloning an already cloned database
	Splitting a cloned database
	Deleting cloned databases

	Using SnapManager reports
	Viewing SnapManager reports
	Configuring monitoring and reporting settings
	Changing the location of the SnapManager report directory

	Modifying your database configuration on NetApp storage
	Moving multiple SnapInfo directories to a single SnapInfo directory
	Migrating SQL Server databases back to local disks
	Setting up a SnapManager share for centralized backups of transaction logs
	Importing or exporting database configurations using a control file
	Sample XML schema for the control file settings

	Configuring SnapManager application settings
	Modifying backup settings
	Modifying verification settings
	Modifying restore settings
	Modifying event notification settings
	Setting defaults for preoperation and postoperation commands
	SnapManager arguments for preoperation and postoperation commands

	Enabling SnapManager to allow databases on any LUN or VMDK configuration
	Viewing fractional space reservation status
	Configuring fractional space reservation policies

	Advanced administration
	Maximum configurations supported by SnapManager
	Service account requirements for archiving backup sets with SnapVault (7-Mode environments only)
	SnapManager disk requirements in a Windows cluster using LUNs

	Upgrading SnapManager
	Upgrading SnapManager interactively
	Upgrading SnapManager from a command line

	Repairing, reinstalling, and uninstalling SnapManager
	Repairing SnapManager
	Reinstalling SnapManager
	Uninstalling SnapManager

	SnapManager cmdlet guidelines
	clone-backup
	clone-database
	clone-replica
	delete-backup
	delete-clone
	export-config
	get-backup
	import-config
	new-backup
	reseed-backup
	restore-backup
	split-clone
	verify-backup

	Copyright information
	Trademark information
	How to send comments about documentation and receive update notifications
	Index

