Contents

Upgrading Data ONTAP clusters ... 7
 Cluster upgrade workflow .. 7
 Cluster upgrade checklist ... 8
 Types of cluster upgrades ... 21

Planning an upgrade to a Data ONTAP Edge storage system 23

Planning your upgrade with Upgrade Advisor .. 23

Planning your upgrade .. 24
 Reviewing pre-upgrade resources .. 26
 Reviewing cluster upgrade requirements ... 26
 Verifying cluster upgrade limits ... 34
 Planning the upgrade sequence for a batch upgrade 35
 Creating a performance baseline with Perfstat Converged 37

Preparing for a Data ONTAP cluster upgrade .. 38
 Verifying that the cluster is ready to be upgraded 38
 Preparing Data ONTAP features for the upgrade .. 53

Obtaining Data ONTAP software images ... 69
 Installing Data ONTAP software images for a major upgrade 70
 Disabling the 32-bit capability .. 74

Performing the software upgrade .. 77
 Upgrading a Data ONTAP cluster nondisruptively by using the rolling upgrade method ... 78
 Upgrading a Data ONTAP cluster nondisruptively by using the batch method .. 91
 Upgrading a Data ONTAP cluster nondisruptively by using the automated method (minor NDU only) ... 105
 Upgrading a Data ONTAP cluster disruptively ... 109

Completing post-upgrade tasks for cluster upgrades 111
 Verifying the cluster version ... 113
 Verifying cluster health ... 113
 Verifying storage health ... 115
 Verifying that IPv6 LIFs can connect to external servers 116
 Verifying networking and storage status for MetroCluster configurations . 117
Enabling and reverting LIFs to home ports ... 119
Relocating moved load-sharing mirror source volumes 121
Resuming SnapMirror operations ... 121
Reenabling automatic LIF rebalancing ... 122
Verifying the SAN configuration after an upgrade 123
Verifying NFS Kerberos configurations after upgrading 123
Verifying the networking configuration after a major upgrade 124
Enabling volume guarantees after the upgrade ... 125
Verifying the SAN configuration after an upgrade 126
When you need to update the Disk Qualification Package 127

Reverting clusters to an earlier Data ONTAP release family 129
When to revert and when to call technical support ... 129
Cluster revert workflow ... 130
Planning your reversion ... 130
Reviewing pre-reversion resources ... 131
Reviewing cluster reversion requirements ... 131
Preparing to revert Data ONTAP clusters ... 133
Verifying that the cluster is ready to be reverted .. 134
Preparing to revert production clusters ... 138
Obtaining Data ONTAP software images ... 145
Installing Data ONTAP software images for a reversion 145
Reverting a Data ONTAP cluster .. 147
Completing post-reversion tasks ... 150
Verifying cluster health ... 151
Verifying storage health .. 153
Enabling and reverting LIFs to home ports ... 154
Preparing Snapshot copies after reverting ... 155
Verifying client access (CIFS and NFS) .. 156
Deleting the system SVM for the Cluster IP space 156
Verifying IPv6 firewall entries .. 157
Considerations for whether to manually update the SP firmware 158
Considerations for dump backups ... 158
Creating namespace mirror constituents for reverted Infinite Volumes 159

Downgrading clusters to an earlier release in the same release family 164
When to downgrade and when to call technical support 164
Cluster downgrade workflow ... 165
Planning your downgrade .. 165
 Reviewing pre-downgrade resources .. 166
 Downgrade process considerations ... 166
Preparing for the Data ONTAP downgrade process 167
 Verifying that the cluster is ready to be downgraded 167
 Preparing Data ONTAP features for the downgrade 175
 Obtaining Data ONTAP software images .. 180
Performing the software downgrade ... 181
 Downgrading a Data ONTAP cluster nondisruptively 181
 Downgrading a Data ONTAP cluster disruptively 185
Completing post-downgrade tasks .. 187
 Verifying cluster health ... 188
 Verifying storage health ... 190
 Verifying networking and storage status for MetroCluster configurations . 191
 Enabling and reverting LIFs to home ports ... 193
 Verifying client access (CIFS and NFS) .. 195
 Resuming SnapMirror operations ... 195
 Considerations for whether to manually update the SP firmware 196
Optimal service availability during upgrades ... 197
 How upgrades impact service availability .. 197
Considerations for services and protocols during upgrades 197
 Considerations for stateless protocols .. 198
 Considerations for session-oriented protocols 198
How firmware is updated during the Data ONTAP upgrade 199
Understanding background disk firmware updates 200
Upgrading Data ONTAP Edge storage systems 201
 Upgrade process overview for Data ONTAP Edge storage systems 201
 Recommendations for Data ONTAP Edge systems upgrading to this release ... 202
Preparing for a Data ONTAP Edge system upgrade 202
Obtaining software images for Data ONTAP Edge systems 203
 Copying the software image to an HTTP or FTP server 204
 Copying the software image from the HTTP or FTP server to the storage system ... 204
Software image installation on Data ONTAP Edge systems 205
Upgrading Data ONTAP clusters

Upgrading a cluster to the current Data ONTAP release requires planning, preparation, the upgrade itself, and several post-upgrade procedures.

Note: It is a best practice to use Upgrade Advisor to plan your upgrade. Nonetheless, you might find useful detail and related information in this guide that complements your Upgrade Advisor plan.

If you are not able to use Upgrade Advisor, you should create your own upgrade plan manually by using guidelines provided in this guide.

The upgrade process includes the following phases:

- Planning for the upgrade
- Preparing for the upgrade
- Performing the upgrade
- Completing post-upgrade tasks

Unless otherwise indicated, the requirements and procedures in this guide apply to all supported:

- Data ONTAP 8.3.x platforms
- Upgrade paths to and within the Data ONTAP 8.3 release family
 The supported upgrade paths include upgrades to releases in the Data ONTAP 8.3 release family from any 8.2.1 or later release *(major upgrades)* and upgrades from 8.3.x to 8.3.z *(minor upgrades)*.

Cluster upgrade workflow

You can use the cluster upgrade workflow to plan the upgrade, prepare for the upgrade, perform the upgrade, and complete post-upgrade tasks.
Cluster upgrade checklist

You can use this checklist to record your progress as you plan and prepare for the upgrade, perform the upgrade, and complete post-upgrade tasks.

Steps for planning the upgrade
The planning phase is complete when all of the following steps have been completed:
<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review pre-upgrade resources.</td>
<td></td>
</tr>
<tr>
<td>You should review resources to understand issues you must resolve before upgrading, understand new system behavior in the target release, and confirm hardware support.</td>
<td></td>
</tr>
<tr>
<td>Review the cluster upgrade requirements.</td>
<td></td>
</tr>
<tr>
<td>There are release and configuration requirements that your cluster should meet before you perform an upgrade. Additionally, there are mixed version requirements that you should be aware of while you are performing the upgrade.</td>
<td></td>
</tr>
<tr>
<td>If you have a four-node cluster, understand how epsilon will affect the upgrade sequence. In a four-node cluster, you should plan to upgrade the node that holds epsilon last. This node should always be online to ensure that the cluster can remain in quorum and continue serving data even if one other node unexpectedly goes out of service during the upgrade.</td>
<td></td>
</tr>
<tr>
<td>Understand the estimated duration for the upgrade process.</td>
<td></td>
</tr>
<tr>
<td>You should plan for at least 30 minutes to complete preparatory steps, 60 minutes to upgrade each HA pair, and at least 30 minutes to complete post-upgrade steps. If you are performing a major NDU, you should plan for at least 30 minutes to install the image on the first node and verify SVM networking.</td>
<td></td>
</tr>
<tr>
<td>Understand the SVM networking requirements.</td>
<td></td>
</tr>
<tr>
<td>Before upgrading to Data ONTAP 8.3, you should be aware of important networking considerations that affect how SVMs communicate with external services. You should also be prepared to make configuration changes before upgrading to prevent potential disruptions to external servers during the upgrade.</td>
<td></td>
</tr>
<tr>
<td>Understand the requirements for 32-bit data.</td>
<td></td>
</tr>
<tr>
<td>32-bit aggregates, volumes, and Snapshot copies are not supported for Data ONTAP 8.3 and later releases. For this reason, you need to understand how the presence of 32-bit data affects the upgrade process and what you can do in advance to minimize the impact.</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Complete?</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Understand the support for root-data partitioning. The Data ONTAP 8.3 release family supports root-data partitioning for entry-level platforms. However, if you upgrade to the Data ONTAP 8.3 release family from a previous release, your system does not support root-data partitioning, even if your platform model supports this feature.</td>
<td></td>
</tr>
<tr>
<td>If you use SnapMirror, understand the upgrade requirements. Before upgrading a cluster that is running SnapMirror, SnapMirror operations must be suspended for each node that contains destination volumes, and each peered SVM must have a unique name across the clusters.</td>
<td></td>
</tr>
<tr>
<td>If you have configured an Infinite Volume, understand the upgrade requirements. When upgrading a cluster that is running Data ONTAP 8.2.1 or later and the cluster contains an Infinite Volume, you should upgrade the node with the namespace mirror constituent first and the node with the namespace constituent last to maintain the data protection mirror relationship between constituents.</td>
<td></td>
</tr>
<tr>
<td>If you have a MetroCluster configuration, understand the minor upgrade requirements. Data ONTAP 8.3 supports MetroCluster. If you have a MetroCluster configuration, you can upgrade Data ONTAP nondisruptively within the 8.3 release family. However, you should be aware of some important requirements.</td>
<td></td>
</tr>
<tr>
<td>Verify the cluster upgrade limits. Before performing an upgrade, you must verify that your cluster does not exceed the platform system limits. SAN and Hyper-V over SMB also have limits that you should verify in addition to the platform system limits.</td>
<td></td>
</tr>
<tr>
<td>If you intend to perform a batch upgrade, plan the upgrade sequence. If you intend to perform a nondisruptive batch upgrade, you should plan the upgrade sequence before you upgrade Data ONTAP. By following the required sequence, you can ensure that the cluster remains up and continues serving data while you perform the NDU.</td>
<td></td>
</tr>
</tbody>
</table>
Create a performance baseline with Perfstat Converged.
The Performance and Statistics Collector (Perfstat Converged) is a cluster diagnostics data collection tool, available on the NetApp Support Site, that enables you to establish a performance baseline for comparison after the upgrade. You should create a Perfstat report before upgrading.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a performance baseline with Perfstat Converged.</td>
<td></td>
</tr>
<tr>
<td>The Performance and Statistics Collector (Perfstat Converged) is a cluster diagnostics data collection tool, available on the NetApp Support Site, that enables you to establish a performance baseline for comparison after the upgrade. You should create a Perfstat report before upgrading.</td>
<td></td>
</tr>
</tbody>
</table>

Steps for preparing for a major upgrade
If you are upgrading from Data ONTAP 8.2, the preparation phase is complete when all of the following steps have been completed:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The HA pair configuration is verified.</td>
<td></td>
</tr>
<tr>
<td>You can go to the NetApp Support Site and download the Config Advisor tool to check for common configuration errors.</td>
<td></td>
</tr>
<tr>
<td>The HA status is verified.</td>
<td></td>
</tr>
<tr>
<td>Before performing a nondisruptive upgrade, you should verify that storage failover is enabled for each HA pair. If the cluster consists of only two nodes, you should also verify that cluster HA is enabled.</td>
<td></td>
</tr>
<tr>
<td>The cluster is healthy.</td>
<td></td>
</tr>
<tr>
<td>You should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.</td>
<td></td>
</tr>
<tr>
<td>The storage is healthy.</td>
<td></td>
</tr>
<tr>
<td>You should verify the status of your disks, aggregates, and volumes.</td>
<td></td>
</tr>
<tr>
<td>If you are operating in a SAN environment, every volume that contains LUNs must have adequate free space.</td>
<td></td>
</tr>
<tr>
<td>Before upgrading a cluster in a SAN environment, you must ensure that every volume containing LUNs has available at least 1 MB of free space. The space is needed to accommodate changes in the on-disk data structures used by the new version of Data ONTAP.</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Complete?</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>All deduplicated volumes and aggregates contain sufficient free space. Before upgrading Data ONTAP, you must verify that any deduplicated volumes and the aggregates that contain them have sufficient free space for the deduplication metadata. If there is insufficient free space, deduplication will be disabled when the Data ONTAP upgrade is completed.</td>
<td></td>
</tr>
</tbody>
</table>

| LIF failover groups are configured correctly. *Before you perform an upgrade, you must verify that the failover policies and failover groups are configured correctly.* | |

| If you are operating in a SAN environment, the hosts are configured correctly. *Upgrading in a SAN environment changes which paths are direct. Therefore, before performing an upgrade, you should verify that each host is configured with the correct number of direct and indirect paths, and that each host is connected to the correct LIFs.* | |

| The system time is correct. *You should verify that NTP is configured, and that the time is synchronized across the cluster.* | |

| No jobs are running. *You must verify the status of cluster jobs before upgrading to a different Data ONTAP release. If any aggregate, volume, NDMP (dump or restore), or Snapshot jobs (such as create, delete, move, modify, replicate, and mount jobs) are running or queued, allow the jobs to finish successfully or stop the queued entries.* | |

| Oversized local UNIX user and group names are removed. *Beginning with Data ONTAP 8.3, there is a limit of 64 characters for local UNIX user and group names. You can no longer create new user and group names with more than 64 characters, and you must remove existing user and group names with more than 64 characters before upgrading. Name mappings using oversized names will fail after upgrading.* | |

| The netgroup file is present on all nodes. *If you have loaded netgroups into SVMs, before you upgrade, you must verify that the netgroup file is present on each node. A missing netgroup file on a node can cause an upgrade to fail.* | |

<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>File-guaranteed volumes use the correct guarantee type.</td>
<td></td>
</tr>
<tr>
<td>If your system includes volumes with a guarantee of file that</td>
<td></td>
</tr>
<tr>
<td>contain space-reserved LUNs or files, and you need the reservations for</td>
<td></td>
</tr>
<tr>
<td>those LUNs or files to be honored immediately after the upgrade</td>
<td></td>
</tr>
<tr>
<td>completes, you should change the space guarantee type of those volumes</td>
<td></td>
</tr>
<tr>
<td>to volume before you upgrade.</td>
<td></td>
</tr>
<tr>
<td>All non-cluster LIFs use a firewall policy other than cluster.</td>
<td></td>
</tr>
<tr>
<td>In Data ONTAP 8.3, the cluster firewall policy blocks access to most</td>
<td></td>
</tr>
<tr>
<td>management services, such as SSH and DNS. Therefore, before performing</td>
<td></td>
</tr>
<tr>
<td>a major upgrade, you should ensure that all non-cluster LIFs use a</td>
<td></td>
</tr>
<tr>
<td>firewall policy other than cluster.</td>
<td></td>
</tr>
<tr>
<td>All LIFs are enabled and located on their home ports.</td>
<td></td>
</tr>
<tr>
<td>During a reboot, some LIFs might have been migrated to their assigned</td>
<td></td>
</tr>
<tr>
<td>failover ports. Before you upgrade, you must enable and revert any</td>
<td></td>
</tr>
<tr>
<td>LIFs that are not on their home ports.</td>
<td></td>
</tr>
<tr>
<td>The SVM networking is configured to reach all external servers.</td>
<td></td>
</tr>
<tr>
<td>Before performing a major upgrade from Data ONTAP 8.2, you must</td>
<td></td>
</tr>
<tr>
<td>configure a data LIF for each data SVM that can reach all external</td>
<td></td>
</tr>
<tr>
<td>servers. You must also ensure that failover groups and routes are</td>
<td></td>
</tr>
<tr>
<td>configured to enable these LIFs to reach all external servers</td>
<td></td>
</tr>
<tr>
<td>throughout the upgrade.</td>
<td></td>
</tr>
<tr>
<td>All FlexCache volumes are removed.</td>
<td></td>
</tr>
<tr>
<td>Before upgrading to Data ONTAP 8.3, you must identify and remove any</td>
<td></td>
</tr>
<tr>
<td>FlexCache volumes.</td>
<td></td>
</tr>
<tr>
<td>Any active CIFS sessions that should be terminated have been identified.</td>
<td></td>
</tr>
<tr>
<td>Before performing a nondisruptive upgrade, you should identify and</td>
<td></td>
</tr>
<tr>
<td>gracefully terminate any CIFS sessions that are not continuously</td>
<td></td>
</tr>
<tr>
<td>available.</td>
<td></td>
</tr>
<tr>
<td>All load-sharing mirror source volumes are located on the last node to</td>
<td></td>
</tr>
<tr>
<td>be upgraded.</td>
<td></td>
</tr>
<tr>
<td>Before performing a major upgrade from Data ONTAP 8.2, you should</td>
<td></td>
</tr>
<tr>
<td>move all of the load-sharing mirror source volumes to an aggregate on</td>
<td></td>
</tr>
<tr>
<td>the node that you will upgrade last. This ensures that load-sharing</td>
<td></td>
</tr>
<tr>
<td>mirror destination volumes are the same or later versions of Data ONTAP.</td>
<td></td>
</tr>
</tbody>
</table>
All SnapMirror operations are suspended. You must suspend SnapMirror operations before performing a nondisruptive upgrade of Data ONTAP.

The target Data ONTAP software image is obtained. You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

The target Data ONTAP software image is installed on each node. Before performing a major upgrade to Data ONTAP 8.3, you must install the software image on the first node to verify that each SVM will be able to reach its external servers during the upgrade. After the image installation succeeds, you install the software image on the remaining nodes.

The 32-bit capability is disabled. Before you can upgrade your cluster to Data ONTAP 8.3, you must remove all 32-bit data and disable the 32-bit capability. You must complete this task even if you have never created 32-bit aggregates on your cluster.

Steps for preparing for a minor upgrade
If you are upgrading within the Data ONTAP 8.3 release family, the preparation phase is complete when all of the following steps have been completed:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The HA pair configuration is verified. You can go to the NetApp Support Site and download the Config Advisor tool to check for common configuration errors.</td>
<td></td>
</tr>
<tr>
<td>The HA status is verified. Before performing a nondisruptive upgrade, you should verify that storage failover is enabled for each HA pair. If the cluster consists of only two nodes, you should also verify that cluster HA is enabled.</td>
<td></td>
</tr>
<tr>
<td>The cluster is healthy. You should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Complete?</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>The storage is healthy. You should verify the status of your disks, aggregates, and volumes.</td>
<td></td>
</tr>
<tr>
<td>If you are operating in a SAN environment, every volume that contains LUNs must have adequate free space. Before upgrading a cluster in a SAN environment, you must ensure that every volume containing LUNs has available at least 1 MB of free space. The space is needed to accommodate changes in the on-disk data structures used by the new version of Data ONTAP.</td>
<td></td>
</tr>
<tr>
<td>If you have a MetroCluster configuration, the networking and storage status is healthy and in the correct state. You should verify the status of the LIFs, aggregates, and volumes for each cluster.</td>
<td></td>
</tr>
<tr>
<td>All deduplicated volumes and aggregates contain sufficient free space. Before upgrading Data ONTAP, you must verify that any deduplicated volumes and the aggregates that contain them have sufficient free space for the deduplication metadata. If there is insufficient free space, deduplication will be disabled when the Data ONTAP upgrade is completed.</td>
<td></td>
</tr>
<tr>
<td>LIF failover groups are configured correctly. Before you perform an upgrade, you must verify that the failover policies and failover groups are configured correctly</td>
<td></td>
</tr>
<tr>
<td>If you are operating in a SAN environment, the hosts are configured correctly. Upgrading in a SAN environment changes which paths are direct. Therefore, before performing an upgrade, you should verify that each host is configured with the correct number of direct and indirect paths, and that each host is connected to the correct LIFs.</td>
<td></td>
</tr>
<tr>
<td>The system time is correct. You should verify that NTP is configured, and that the time is synchronized across the cluster.</td>
<td></td>
</tr>
</tbody>
</table>
Condition | Complete?
--- | ---
No jobs are running. You must verify the status of cluster jobs before upgrading to a different Data ONTAP release. If any aggregate, volume, NDMP (dump or restore), or Snapshot jobs (such as create, delete, move, modify, replicate, and mount jobs) are running or queued, allow the jobs to finish successfully or stop the queued entries. | No |
All LIFs are enabled and located on their home ports. During a reboot, some LIFs might have been migrated to their assigned failover ports. Before you upgrade, you must enable and revert any LIFs that are not on their home ports. | No |
If you are performing a batch upgrade, automatic LIF rebalancing must be disabled. By disabling automatic LIF rebalancing before performing a batch upgrade, you can ensure that the LIFs remain online during the entire upgrade procedure. | No |
Any active CIFS sessions that should be terminated have been identified. Before performing a nondisruptive upgrade, you should identify and gracefully terminate any CIFS sessions that are not continuously available. | No |
All SnapMirror operations are suspended. You must suspend SnapMirror operations before performing a nondisruptive upgrade of Data ONTAP. | No |
The target Data ONTAP software image is obtained. You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images. | No |
The target Data ONTAP software image is installed on each node. Before performing a major upgrade to Data ONTAP 8.3, you must install the software image on the first node to verify that each SVM will be able to reach its external servers during the upgrade. After the image installation succeeds, you install the software image on the remaining nodes. | No |

Steps for performing a rolling upgrade (major or minor NDU)

If you are performing a nondisruptive upgrade by using the rolling upgrade method, the upgrade is complete when all of the following steps have been completed:
<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the second HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the third HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the fourth HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the fifth HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the sixth HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the seventh HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the eighth HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the ninth HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
<tr>
<td>If needed, the tenth HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The first node in the HA pair is upgraded.</td>
<td></td>
</tr>
<tr>
<td>The node's partner is upgraded.</td>
<td></td>
</tr>
</tbody>
</table>
Condition | Complete?
--- | ---
If needed, the eleventh HA pair is upgraded. | The first node in the HA pair is upgraded.
The node's partner is upgraded.

If needed, the twelfth HA pair is upgraded. | The first node in the HA pair is upgraded.
The node's partner is upgraded.

Steps for performing a batch upgrade (minor NDU only)
If you are performing a nondisruptive upgrade by using the batch upgrade method, the upgrade is complete when all of the following steps have been completed:

Condition	Complete?
The cluster is divided into two batches. If the cluster has an even number of HA pairs, then each batch should contain half of the HA pairs. If the cluster has an odd number of HA pairs, then the first batch should contain one more HA pair than the second batch. |
The first batch is upgraded. | The first node in each HA pair is upgraded.
The nodes' partners are upgraded.

The second batch is upgraded. | The first node in each HA pair is upgraded.
The nodes' partners are upgraded.

Steps for after performing a major upgrade
The post-upgrade phase is complete when all of the following steps have been completed:

Condition | Complete?
The cluster version is correct. After all of the HA pairs have been upgraded, you must use the `version` command to verify that all of the nodes are running the target release. |
The cluster is healthy. You should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.
The storage is healthy. You should verify the status of your disks, aggregates, and volumes.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any IPv6 SVM management LIFs can connect to external servers.</td>
<td></td>
</tr>
<tr>
<td>Data ONTAP 8.2.2 and earlier can only verify that each SVM can connect to its external servers through IPv4 addresses. Therefore, after upgrading to Data ONTAP 8.3, you should verify that each SVM can connect to an external server using an IPv6 address.</td>
<td></td>
</tr>
<tr>
<td>All LIFs are enabled and located on their home ports.</td>
<td></td>
</tr>
<tr>
<td>During a reboot, some LIFs might have been migrated to their assigned failover ports. After you upgrade, you must enable and revert any LIFs that are not on their home ports.</td>
<td></td>
</tr>
<tr>
<td>All load-sharing mirror source volumes are relocated to the correct nodes.</td>
<td></td>
</tr>
<tr>
<td>After successfully completing a nondisruptive upgrade, you can move load-sharing mirror source volumes back to the locations they were in originally before the upgrade.</td>
<td></td>
</tr>
<tr>
<td>SnapMirror operations are resumed.</td>
<td></td>
</tr>
<tr>
<td>After completing a nondisruptive upgrade, you must resume any SnapMirror relationships that were suspended.</td>
<td></td>
</tr>
<tr>
<td>If you are operating in a SAN environment, all hosts have reconnected to their LIFs.</td>
<td></td>
</tr>
<tr>
<td>If you are upgrading in a SAN environment, then after the upgrade, you should verify that each initiator that was connected to a LIF before the upgrade has successfully reconnected to the LIF.</td>
<td></td>
</tr>
<tr>
<td>The Kerberos configuration is verified.</td>
<td></td>
</tr>
<tr>
<td>Beginning with Data ONTAP 8.3, Data ONTAP restricts the use of identical service principal names (SPNs) for NFS Kerberos configurations when used across multiple SVMs and deletes NFS Kerberos configurations that are no longer permitted. To avoid NFS client Kerberos authentication problems after upgrading, you must check whether your system is affected by this change and reconfigure accordingly.</td>
<td></td>
</tr>
<tr>
<td>The networking configuration is verified.</td>
<td></td>
</tr>
<tr>
<td>After completing a major upgrade to Data ONTAP 8.3, you should verify that the SVM management LIFs, failover groups, and broadcast domains are configured correctly for your environment.</td>
<td></td>
</tr>
</tbody>
</table>
Condition

<table>
<thead>
<tr>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
</tr>
</tbody>
</table>

If necessary, volume guarantees are enabled.
If your cluster included FlexVol volumes with a guarantee of file before the upgrade, and those volumes contained space-reserved LUNs or files, the volumes have a disabled guarantee after the upgrade. To provide the same guarantee to those files and LUNs, you must enable the guarantee for those volumes.

LDAP clients are configured to use TLS for highest security.
If you had previously configured LDAP clients to use LDAP over SSL/TLS for secure communications with LDAP servers, the LDAP client was able to use the less secure SSLv2 protocol. After upgrading to this release, if your environment supports it, you should disallow the use of SSLv2 to force the use of TLS for the highest level of security.

If necessary, the Disk Qualification Package (DQP) is updated.
The DQP adds full support for newly qualified drives. Before you update drive firmware or add new drive types or sizes to a cluster, you must update the DQP. A best practice is to also update the DQP regularly; for example, every quarter or semi-annually.

Steps for after performing a minor upgrade

The post-upgrade phase is complete when all of the following steps have been completed:

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
</tr>
</tbody>
</table>

The cluster version is correct.
After all of the HA pairs have been upgraded, you must use the `version` command to verify that all of the nodes are running the target release.

The cluster is healthy.
You should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

The storage is healthy.
You should verify the status of your disks, aggregates, and volumes.

If you have a MetroCluster configuration, the networking and storage status is healthy and in the correct state.
You should verify the status of the LIFs, aggregates, and volumes for each cluster.
Condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Complete?</th>
</tr>
</thead>
</table>
| All LIFs are enabled and located on their home ports.
During a reboot, some LIFs might have been migrated to their assigned failover ports. After you upgrade, you must enable and revert any LIFs that are not on their home ports. | |
| SnapMirror operations are resumed.
After completing a nondisruptive upgrade, you must resume any SnapMirror relationships that were suspended. | |
| LIF rebalancing is reenabled if it was previously disabled.
If you previously disabled automatic LIF rebalancing to perform a batch upgrade, you should reenable it after completing the upgrade. | |
| If you are operating in a SAN environment, all hosts have reconnected to their LIFs.
If you are upgrading in a SAN environment, then after the upgrade, you should verify that each initiator that was connected to a LIF before the upgrade has successfully reconnected to the LIF. | |
| If necessary, the Disk Qualification Package (DQP) is updated.
The DQP adds full support for newly qualified drives. Before you update drive firmware or add new drive types or sizes to a cluster, you must update the DQP. A best practice is to also update the DQP regularly; for example, every quarter or semi-annually. | |

Types of cluster upgrades

Based on your requirements, you can upgrade a cluster to a new Data ONTAP release by performing a nondisruptive upgrade or a disruptive upgrade.

Nondisruptive upgrades

In a nondisruptive upgrade (NDU), the cluster remains online and continues to serve data during the upgrade. The following table describes the three NDU methods:
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Release requirements</th>
<th>Cluster size requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling upgrade</td>
<td>A node is taken offline and upgraded while its partner takes over its storage. When the node upgrade is complete, the partner node gives control back to the original owning node and the process is repeated, this time on the partner node. Each additional HA pair is upgraded in sequence until all HA pairs are running the target release.</td>
<td>This method is required for major NDUs.</td>
<td>The cluster must consist of two or more nodes.</td>
</tr>
<tr>
<td>Batch upgrade</td>
<td>The cluster is separated into two batches, each of which contains multiple HA pairs. In the first batch, one node in each HA pair is taken offline and upgraded while their partner nodes take over their storage. When the upgrade is completed for the first half of all of the HA pairs, the partner nodes give control back to the original owning nodes, and the process is repeated, this time on the partner nodes. The process is then repeated on the second batch.</td>
<td>Minor NDU only.</td>
<td>The cluster must consist of eight or more nodes.</td>
</tr>
<tr>
<td>Automated upgrade</td>
<td>Data ONTAP automatically installs the target Data ONTAP image on each node, validates the cluster components to ensure that the cluster can be upgraded nondisruptively, and then, based on the number of nodes in the cluster, executes either a rolling or batch upgrade in the background.</td>
<td>Minor NDU only. This method is recommended for all upgrades within the Data ONTAP 8.3 release family.</td>
<td>The cluster must consist of two or more nodes.</td>
</tr>
</tbody>
</table>

Disruptive upgrades

In a *disruptive upgrade*, storage failover is disabled for each HA pair, and then each node is rebooted one at a time. Disruptive upgrades can be performed more quickly than nondisruptive upgrades, and require fewer steps to complete. However, you should not perform a disruptive upgrade unless you can take the cluster offline for the duration of the upgrade. If you are operating in a SAN environment, you should be prepared to shut down or suspend all SAN clients before performing a disruptive upgrade.

If the cluster is a single-node cluster, you can upgrade it only by performing a disruptive upgrade.
Related tasks

Planning the upgrade sequence for a batch upgrade on page 35
If you intend to perform a nondisruptive batch upgrade, you should plan the upgrade sequence before you upgrade Data ONTAP. By following the required sequence, you can ensure that the cluster remains up and continues serving data while you perform the NDU.

Planning an upgrade to a Data ONTAP Edge storage system

Data ONTAP Edge systems run standard Data ONTAP software and are upgraded in the same manner as other platforms. However, you should verify the versions of the hypervisor and related software before performing an upgrade.

For complete instructions, refer to the section for upgrading Data ONTAP Edge storage systems and to the Data ONTAP-v Administration Tool Installation Guide.

Related concepts

Upgrading Data ONTAP Edge storage systems on page 201

Planning your upgrade with Upgrade Advisor

You should use the Upgrade Advisor tool (if it is available in your environment) to ensure that you have met the requirements for upgrading to the current release and to generate an upgrade plan.

Before you begin

To use the Upgrade Advisor tool, your cluster must meet the following requirements:

• It must have a valid support contract.
• It must be enabled to send AutoSupport messages to NetApp.

Attention: If your cluster does not meet these requirements, you should consult the Release Notes and Upgrade Guide for this Data ONTAP release to prepare a detailed upgrade plan.

About this task

Upgrade Advisor is an online tool, available on the NetApp Support Site, that simplifies the process of planning Data ONTAP upgrades. When you submit your system identification and target release to Upgrade Advisor, the tool compares AutoSupport data about your cluster to known requirements and limitations of the target release. Upgrade Advisor then generates an upgrade plan (and optionally a back-out plan) with recommended preparation and execution procedures.

To generate an upgrade plan, you must have identifying information for your cluster (host name, system ID, or serial number) and you must have selected a target upgrade release. You can also select other options, including the following:
• Create a plan for a cluster.
• Create a back-out plan.
• Compare upgrade scenarios.

For more information about Upgrade Advisor, see the Upgrade Advisor Help screens.

Steps

1. Locate and record the system host name, system ID, or serial number of your cluster:
 `system node run -node nodename sysconfig`
 The system identification information is near the top of the display.

2. From a web browser, log in to the My AutoSupport home page on the NetApp Support Site.
 NetApp AutoSupport

3. Click the Launch My AutoSupport link.

4. Enter the host name, system ID, or serial number of your cluster when prompted.

5. Select the cluster that you want to upgrade from those listed.

6. Select the latest AutoSupport record from the ASUPs row.

7. Click the Upgrade Advisor tab.

8. Select the Data ONTAP release to which you want to upgrade from the Upgrade To menu.

9. Select the upgrade method and the level of detail you want included in your upgrade plan.

10. Click Generate to generate your upgrade plan.

After you finish

It is not necessary to follow further instructions in this Upgrade Guide after you generate and execute an upgrade plan by using Upgrade Advisor. Nonetheless, you might want to consult this guide for details and background information.

Planning your upgrade

Because new features are introduced in each release of Data ONTAP, you must understand these features and their associated upgrade requirements to evaluate how they might impact your current
configuration. You are more likely to encounter issues if you are upgrading from a release earlier than the immediately previous version of Data ONTAP.

Note: It is a best practice to use Upgrade Advisor to plan your upgrade. Nonetheless, you might find useful detail and related information in this guide that complements your Upgrade Advisor plan.

If you are not able to use Upgrade Advisor, you should create your own upgrade plan manually by using guidelines provided in this guide.

Unless otherwise indicated, the requirements and procedures in this guide apply to all supported Data ONTAP 8.3.x platforms.

Steps

1. **Reviewing pre-upgrade resources** on page 26
 Before upgrading Data ONTAP, you should review resources to understand issues you must resolve before upgrading, understand new system behavior in the target release, and confirm hardware support.

2. **Reviewing cluster upgrade requirements** on page 26
 Before upgrading Data ONTAP, you must verify that your cluster meets the general upgrade requirements. Some configurations and features also have requirements that you should understand.

3. **Verifying cluster upgrade limits** on page 34
 Before performing an upgrade, you must verify that your cluster does not exceed the platform system limits. SAN and Hyper-V over SMB also have limits that you should verify in addition to the platform system limits.

4. **Planning the upgrade sequence for a batch upgrade** on page 35
 If you intend to perform a nondisruptive batch upgrade, you should plan the upgrade sequence before you upgrade Data ONTAP. By following the required sequence, you can ensure that the cluster remains up and continues serving data while you perform the NDU.

5. **Creating a performance baseline with Perfstat Converged** on page 37
 The Performance and Statistics Collector (Perfstat Converged) is a cluster diagnostics data collection tool, available on the NetApp Support Site, that enables you to establish a performance baseline for comparison after the upgrade. You should create a Perfstat report before upgrading.

Related concepts

- *Downgrading clusters to an earlier release in the same release family* on page 164
- *Reverting clusters to an earlier Data ONTAP release family* on page 129
Reviewing pre-upgrade resources

Before upgrading Data ONTAP, you should review resources to understand issues you must resolve before upgrading, understand new system behavior in the target release, and confirm hardware support.

Steps

 "Find the Release Notes for your version of Data ONTAP 8"

 The “Important cautions” section describes potential issues that you should be aware of before upgrading to the new release. The “New and changed features” and “Known problems and limitations” sections describe new system behavior after upgrading to the new release.

2. Confirm that your hardware platform is supported in the target release.

 "NetApp Hardware Universe"

3. Confirm that your cluster and management switches are supported in the target release.

 You must verify that the NX-OS (cluster network switches), IOS (management network switches), and reference configuration file (RCF) software versions are compatible with the version of Data ONTAP to which you are upgrading. If your switches do not have the minimum software versions for the target Data ONTAP release, then you must upgrade the switch software before you can upgrade Data ONTAP.

 "NetApp Downloads: Cisco Ethernet Switch"

4. If your cluster is configured for SAN, confirm that the SAN configuration is fully supported.

 All SAN components—including target Data ONTAP software version, host OS and patches, required Host Utilities software, and adapter drivers and firmware—should be supported.

 "NetApp Interoperability Matrix Tool"

Reviewing cluster upgrade requirements

Before upgrading Data ONTAP, you must verify that your cluster meets the general upgrade requirements. Some configurations and features also have requirements that you should understand.
Cluster upgrade requirements

There are release and configuration requirements that your cluster should meet before you perform an upgrade. Additionally, there are mixed version requirements that you should be aware of while you are performing the upgrade.

Release requirements

You can upgrade clusters to the Data ONTAP 8.3 release family from any 8.2.1 or later release. Minor upgrades within the Data ONTAP 8.3 release family are supported from all previous 8.3 releases. You can determine the current version of Data ONTAP running on each node by using the `system image show` command.

Note: If you are running Data ONTAP GX 10.x, do not attempt to upgrade clusters to the Data ONTAP 8.3 release family on your own; doing so is an unsupported operation. Contact your NetApp representative for assistance.

If you want to upgrade to a Data ONTAP 8.3 release from a release earlier than 8.2.1, you must perform an intermediate upgrade (also known as a multi-hop upgrade) to Data ONTAP 8.2.1 or later before upgrading to the target Data ONTAP 8.3 release.

Find the Upgrade and Revert/Downgrade Guide for your version of Data ONTAP 8

Configuration requirements

The cluster must meet the following configuration requirements before you upgrade it:

- Because failed disk drives prevent giveback operations and can introduce loop instability throughout the cluster, you must remove or replace all failed disk drives before beginning the upgrade process.
 For more information about identifying and removing failed disks, see the Clustered Data ONTAP Physical Storage Management Guide.

- If your cluster serves NFS clients, you must use hard mounts.
 You should not use soft mounts when there is a possibility of frequent NFS timeouts, which can lead to disruptions during the upgrade process and possible data corruption.

- If your cluster serves CIFS clients, nondisruptive upgrades are supported for Hyper-V over SMB solutions.
 Hyper-V over SMB solutions enable Hyper-V and the contained virtual machines to remain online and to provide continuous availability during the Data ONTAP upgrade. For more information and configuration limits and requirements, see the Clustered Data ONTAP File Access Management Guide for CIFS.
 For all other CIFS configurations, client sessions are terminated. You should direct users to end their sessions before you upgrade to prevent data loss.

- If the cluster serves SAN clients, you can use the batch upgrade method only if you are upgrading within the Data ONTAP 8.3 release family.
If you are upgrading from Data ONTAP 8.2, do not use the batch upgrade method. You should perform a rolling upgrade instead.

- Upgrades might be disruptive if the cluster is actively serving Network Data Management Protocol (NDMP) clients that cannot be postponed. Because this protocol is session-oriented, current sessions must finish, and the service must be disabled to use nondisruptive upgrades.

Mixed version requirements

Data ONTAP clusters can operate for a limited time in a *mixed version* state, in which nodes in a cluster are running Data ONTAP versions from different release families. However, the upgrade is not complete until all nodes are running the new target release.

When the cluster is in a mixed version state, you should not enter any commands that alter the cluster operation or configuration except as necessary to satisfy upgrade requirements. You should complete the upgrade as quickly as possible; do not allow the cluster to remain in a mixed version state longer than necessary.

How epsilon affects the upgrade sequence for four-node clusters

In a four-node cluster, you should plan to upgrade the node that holds epsilon last. This node should always be online to ensure that the cluster can remain in quorum and continue serving data even if one other node unexpectedly goes out of service during the upgrade.

After the first three nodes have been upgraded, you can transfer epsilon to a node in the first HA pair, and then upgrade the last node.

If you are upgrading a cluster of any other size, you do not need to consider epsilon during the upgrade. Two-node clusters do not use epsilon, and clusters with more than four nodes remain in quorum even if a node unexpectedly goes out of service while the node holding epsilon is being upgraded.

Related information

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

Guidelines for estimating the duration of the upgrade process

You should plan for at least 30 minutes to complete preparatory steps, 60 minutes to upgrade each HA pair, and at least 30 minutes to complete post-upgrade steps. If you are performing a major NDU, you should plan for at least 30 minutes to install the image on the first node and verify SVM networking.

The batch method for performing a nondisruptive upgrade enables you to upgrade all of the HA pairs in a batch concurrently. Accordingly, if you perform a batch upgrade, the total amount of time required to upgrade the cluster should be similar to the amount of time required to upgrade two HA pairs regardless of the size of the cluster.
The upgrade duration guidelines are based on typical configurations and workloads. You can use these guidelines to estimate the time it will take to perform a nondisruptive upgrade in your environment. However, the actual duration of your upgrade process will depend on your individual environment.

SVM networking considerations for major upgrades

Before upgrading to Data ONTAP 8.3, you should be aware of important networking considerations that affect how Storage Virtual Machines (SVMs) communicate with external services. You should also be prepared to make configuration changes before upgrading to prevent potential disruptions to external servers during the upgrade.

Starting in Data ONTAP 8.3, an SVM can only communicate with the following external services by using one of its own LIFs:

- DNS, NIS, and LDAP servers
- Active Directory servers
- Kerberos servers
- Domain Controllers
- iSNS server
- Policy server (if you are using FPolicy)

After you upgrade a node to Data ONTAP 8.3, SVMs can no longer initiate connections to external servers through the node's node management LIF. Instead, each SVM must use one of its own LIFs, which must be hosted on a node running the 8.3 release.

As part of the upgrade preparation, you should be prepared to configure your network so that it meets the following requirements:

- Each SVM must be able to reach each of its external servers through a data LIF.

 As part of the upgrade preparation, you either configure existing data LIFs or create SVM management LIFs (dedicated LIFs with no data protocol configured) that can reach each external server. You also ensure that failover groups and routes are configured to enable these LIFs to reach all external servers throughout the upgrade.

 Note: If you plan to create any SVM management LIFs, you must have a permanent IP address available for each LIF.

- The data LIFs that each SVM uses to connect to external servers must be located on the first node to be upgraded.

 After the first node is upgraded and running Data ONTAP 8.3, SVMs can no longer initiate connections to external servers through the node's node management LIF. Therefore, by placing the data LIFs that are configured to connect to external servers on the first node, you ensure that all SVMs will be able to reach their external servers throughout the upgrade.
• The second node to be upgraded must be capable of hosting all of the first node's SVM management LIFs.

• The first node to be upgraded must not exceed 128 data LIFs.
 If your cluster contains a large number of SVMs or LIFs, the first node might not be able to host its own data LIFs in addition to the SVM LIFs used to communicate with external servers.

• If you are upgrading from Data ONTAP 8.2.2 or earlier, the cluster must not use IPv6 addresses to reach external services.
 If you upgrade from Data ONTAP 8.2.2 or earlier, Data ONTAP cannot verify that external servers are reachable from IPv6 addresses before the upgrade (although you can verify connectivity after the upgrade is complete by using the `vserver check lif-multitenancy run` command).

• If you are upgrading from Data ONTAP 8.2.1, the cluster must not have separate management and data networks.
 If the external servers are only accessible from node management LIFs, a nondisruptive upgrade is only possible if you do one of the following:
 ◦ Upgrade to Data ONTAP 8.2.2 GA or later so that you can configure the data LIFs needed for external connectivity on node management ports.
 ◦ Wire a data port from each node in the first HA pair to a network that can reach the external servers.

Related tasks

Preparing SVM networking for a major upgrade on page 59

Installing Data ONTAP software images for a major upgrade on page 70

Before performing a major upgrade to Data ONTAP 8.3, you must install the software image on the first node to verify that each SVM will be able to reach its external servers during the upgrade. After the image installation succeeds, you install the software image on the remaining nodes.

Upgrade considerations regarding 32-bit data

32-bit aggregates, volumes and Snapshot copies are not supported for Data ONTAP 8.3 and later releases. For this reason, you need to understand how the presence of 32-bit data affects the upgrade process and what you can do in advance to minimize the impact.

32-bit data can be present even if you have expanded all of your aggregates to the 64-bit format, and it could take several weeks or more to remove all of it, depending on the method you use.

You disable the 32-bit capability as part of upgrade preparation. This step cannot be completed unless all 32-bit data has been removed, and cannot be done in advance. However, to ensure that you can disable the 32-bit capability quickly and easily later, you can check for and remove any 32-bit data that you find now. The `storage aggregate 64bit-upgrade 32bit-disable` command with
the `--check` parameter enables you to determine which aggregates have 32-bit data without actually disabling the capability.

Attention: You cannot disable the 32-bit capability now.

Related tasks

Disabling the 32-bit capability on page 74

Before you can upgrade your cluster to Data ONTAP 8.3, you must remove all 32-bit data and disable the 32-bit capability. You must complete this task even if you have never created 32-bit aggregates on your cluster.

Upgrade considerations for root-data partitioning

The Data ONTAP 8.3 release supports root-data partitioning for entry-level and All-Flash FAS (AFF) platforms. Root-data partitioning is enabled during system initialization; it cannot be applied to existing aggregates. When a node is upgraded to Data ONTAP 8.3 from a previous release, the root aggregate remains configured on physical (unpartitioned) disks.

For information about migrating your data to a node that is configured for root-data partitioning, contact your account team or partner organization.

Related information

Clustered Data ONTAP 8.3 Physical Storage Management Guide

Upgrade requirements for SnapMirror

Before upgrading a cluster that is running SnapMirror, SnapMirror operations must be suspended for each node that contains destination volumes, and each peered SVM must have a unique name across the clusters.

For SnapMirror volume replication, the destination node must use a Data ONTAP version that is equal to or later than that of the SnapMirror source node. To prevent SnapMirror transfers from failing, you must suspend SnapMirror operations and, in some cases, upgrade destination nodes before upgrading source nodes. The following table describes the two options for suspending SnapMirror operations.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Upgrade destination nodes before source nodes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspend SnapMirror operations for the duration of the NDU (nondisruptive upgrade).</td>
<td>The simplest method for upgrading in a SnapMirror environment is to suspend all SnapMirror operations, perform the upgrade, and then resume the SnapMirror operations. However, no SnapMirror transfers will occur during the entire NDU. You must use this method if you are performing a batch upgrade or if your cluster contains nodes that are mirroring volumes to each other.</td>
<td>No, the nodes can be upgraded in any order.</td>
</tr>
<tr>
<td>Suspend SnapMirror operations one destination volume at a time.</td>
<td>You can suspend SnapMirror transfers for a particular destination volume, upgrade the node (or HA pair) that contains the destination volume, upgrade the node (or HA pair) that contains the source volume, and then resume the SnapMirror transfers for the destination volume. By using this method, SnapMirror transfers for all other destination volumes can continue while the nodes that contain the original destination and source volumes are upgraded. This option requires you to perform a rolling upgrade; batch upgrades are not permitted.</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

SVM peering requires SVM names to be unique across clusters. You should name SVMs with a unique fully qualified domain name (FQDN), for example, “dataVerser.HQ” or “mirrorVserver.Offsite”. Using the FQDN naming style makes it much easier to make sure of uniqueness.

Related information

Clustered Data ONTAP 8.3 Data Protection Guide

Upgrade considerations for an Infinite Volume

When upgrading a cluster that is running Data ONTAP 8.2.1 or later, and the cluster contains an Infinite Volume, you should upgrade the node with the namespace *mirror* constituent first and the
node with the namespace constituent last to maintain the data protection mirror relationship between constituents.

For an Infinite Volume with SnapDiff enabled to support incremental tape backup, each node with a data constituent also includes either the namespace constituent or a namespace mirror constituent. In this case, you should upgrade all nodes with a namespace mirror constituent before you upgrade the node with the namespace constituent. Incremental tape backup and restore operations are unavailable until you finish upgrading all nodes that the Infinite Volume spans.

If you upgrade the node with the namespace constituent before you upgrade the node or nodes with the namespace mirror constituents, the data protection mirror relationship will not be updated until all nodes in the cluster are upgraded. As a result, the namespace mirror constituent is not updated until all nodes in the cluster are upgraded.

Note: The recommended order for upgrading nodes applies only when upgrading a cluster that contains an Infinite Volume from Data ONTAP 8.2.1 or later to Data ONTAP 8.3.0. When upgrading a cluster that contains an Infinite Volume from Data ONTAP 8.3.0 to Data ONTAP 8.3.x, you can upgrade the nodes in any order.

Upgrade requirements for MetroCluster configurations

Data ONTAP 8.3 supports MetroCluster. If you have a MetroCluster configuration, you can upgrade Data ONTAP nondisruptively within the 8.3 release family. However, you should be aware of some important requirements.

General requirements

- The MetroCluster configuration must be in either normal or switchover mode.
- You can upgrade both clusters at the same time, or upgrade one cluster before the other. The upgrade is nondisruptive regardless of which cluster you upgrade first.
- The aggregates in both clusters must not be in resyncing RAID status. During MetroCluster healing, the mirrored aggregates are resynchronized. You can verify if the MetroCluster configuration is in this state by using the `storage aggregate plex show -in-progress true` command. If any aggregates are in progress, you should not perform an upgrade until the aggregate resynchronization is complete.

Configuration requirements for normal operation

- The source SVM LIFs must be up and located on their home nodes. Data LIFs for the destination SVMs are not required to be up or to be on their home nodes.
- All aggregates at the local site must be online.
- All root and data volumes owned by the local cluster's SVMs must be online.
Configuration requirements for switchover

- All LIFs must be up and located on their home nodes.
- All aggregates must be online, except for the root aggregates at the DR site. Root aggregates at the DR site are offline during certain phases of switchover.
- All volumes must be online.

Related tasks

Verifying networking and storage status for MetroCluster configurations on page 43

Verifying cluster upgrade limits

Before performing an upgrade, you must verify that your cluster does not exceed the platform system limits. SAN and Hyper-V over SMB also have limits that you should verify in addition to the platform system limits.

Steps

1. Verify that the cluster does not exceed the system limits for your platform.

 NetApp Hardware Universe

2. If your cluster is configured for SAN, verify that it does not exceed the configuration limits for FC, FCoE, and iSCSI.

 Clustered Data ONTAP 8.3 SAN Configuration Guide

3. Verify the following limits for each node:

 a. At the advanced privilege level, determine the number of Snapshot copies:

      ```
      volume snapshot show -node node_name
      ```

 The node must not contain more than 20,000 Snapshot copies. If your cluster is configured for Hyper-V over SMB, the node must not contain more than 2,000 Snapshot copies.

 b. Determine the CPU and disk utilization:

      ```
      node run -node node_name -command sysstat -c 10 -x 3
      ```

 You should monitor CPU and disk utilization for 30 seconds. The values in the CPU and Disk Util columns should not exceed 50% for all 10 measurements reported. No additional load should be added to the cluster until the upgrade is complete.

 c. Optional: If the cluster is configured for Hyper-V over SMB, determine the number of volumes hosted by the node:

      ```
      volume show -node node_name
      ```

 The node must not host more than 200 volumes.
d. Optional: If the cluster is configured for both Hyper-V over SMB and SAN, determine the number of LUNs hosted by the node:

```
lun show -node node_name
```

The node must not host more than 400 LUNs.

Planning the upgrade sequence for a batch upgrade

If you intend to perform a nondisruptive batch upgrade, you should plan the upgrade sequence before you upgrade Data ONTAP. By following the required sequence, you can ensure that the cluster remains up and continues serving data while you perform the NDU.

About this task

Batch upgrades are only supported for minor upgrades within the Data ONTAP 8.3 release family. If you are upgrading from Data ONTAP 8.2, you must perform a rolling upgrade.

Steps

1. Divide the cluster into two batches:

<table>
<thead>
<tr>
<th>If the cluster contains an...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even number of HA pairs</td>
<td>Place half of the HA pairs in the first batch, and the other half of the HA pairs in the second batch.</td>
</tr>
<tr>
<td>Odd number of HA pairs</td>
<td>Place the larger number of HA pairs in the first batch, and the smaller number of HA pairs in the second batch.</td>
</tr>
</tbody>
</table>

Example

In this example, the cluster contains six HA pairs. Three HA pairs are placed in each batch.

![Batch 1 and Batch 2 diagram](image)

Example

In this example, the cluster contains seven HA pairs. Four HA pairs are placed in the first batch, and three HA pairs are placed in the second batch.
2. Determine the upgrade sequence for each batch.
 In a batch, a node from each HA pair is upgraded concurrently while their respective partners take over their storage. Then the partners are upgraded concurrently while the original nodes take over their storage.

Example

In this 12-node cluster, the nodes would be upgraded in the following sequence:

- In the first batch, upgrade nodes A, C, and E concurrently.
- In the first batch, upgrade nodes B, D, and F concurrently.
- In the second batch, upgrade nodes G, I, and K concurrently.
- In the second batch, upgrade nodes H, J, and L concurrently.

Example

In this 14-node cluster, the nodes would be upgraded in the following sequence:
a. In the first batch, upgrade nodes A, C, E, and G concurrently.

b. In the first batch, upgrade nodes B, D, F, and H concurrently.

c. In the second batch, upgrade nodes I, K, and M concurrently.

d. In the second batch, upgrade nodes J, L, and N concurrently.

Related concepts

Types of cluster upgrades on page 21

Related tasks

Upgrading a Data ONTAP cluster nondisruptively by using the batch method on page 91

Creating a performance baseline with Perfstat Converged

The Performance and Statistics Collector (Perfstat Converged) is a cluster diagnostics data collection tool, available on the NetApp Support Site, that enables you to establish a performance baseline for comparison after the upgrade. You should create a Perfstat report before upgrading.

Before you begin

The diag user account must be unlocked.

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

About this task

You should create a Perfstat report during a typical usage time; this takes about 30 minutes.

Steps

1. Download Perfstat Converged from the NetApp Support Site.

 NetApp Downloads: Performance and Statistics Collector (Perfstat)

2. Enter the following command during a typical usage period:

 `perfstat8 cluster_management_IP_address -m c -t 4 -i 5 -z`

After you finish

You should retain the output file for several weeks after the Data ONTAP upgrade is complete.
Preparing for a Data ONTAP cluster upgrade

Before performing an upgrade, you must verify that the cluster is ready to be upgraded, make any required configuration changes, obtain and install the target Data ONTAP images, and if necessary, disable the 32-bit capability.

Steps

1. Verifying that the cluster is ready to be upgraded on page 38
 Before you perform the upgrade, you should verify that your cluster configuration is healthy.

2. Preparing Data ONTAP features for the upgrade on page 53
 Some Data ONTAP features have configuration requirements that must be completed before the cluster can be upgraded.

3. Obtaining Data ONTAP software images on page 69
 You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

4. Installing Data ONTAP software images for a major upgrade on page 70
 Before performing a major upgrade to Data ONTAP 8.3, you must install the software image on the first node to verify that each SVM will be able to reach its external servers during the upgrade. After the image installation succeeds, you install the software image on the remaining nodes.

5. Disabling the 32-bit capability on page 74
 Before you can upgrade your cluster to Data ONTAP 8.3, you must remove all 32-bit data and disable the 32-bit capability. You must complete this task even if you have never created 32-bit aggregates on your cluster.

Verifying that the cluster is ready to be upgraded

Before you perform the upgrade, you should verify that your cluster configuration is healthy.

Verifying the HA pair configuration

You can go to the NetApp Support Site and download the Config Advisor tool to check for common configuration errors.

About this task

Config Advisor is a configuration validation and health check tool for NetApp systems. It can be deployed at both secure sites and non-secure sites for data collection and system analysis.

Note: Support for Config Advisor is limited and available only online.
Steps

1. Log in to the NetApp Support Site at mysupport.netapp.com and go to Downloads > Software > ToolChest.

2. Click Config Advisor.

3. Follow the directions on the web page for downloading, installing, and running the utility.

4. After running Config Advisor, review the tool’s output and follow the recommendations provided to address any issues discovered.

Verifying HA status

Before performing a nondisruptive upgrade, you should verify that storage failover is enabled for each HA pair. If the cluster consists of only two nodes, you should also verify that cluster HA is enabled.

About this task

You do not need to verify the HA status if you plan to perform a disruptive upgrade, because this upgrade method does not require storage failover.

Steps

1. Verify that storage failover is enabled and possible for each HA pair:

 \texttt{storage failover show}

 \textbf{Example}

 This example shows that storage failover is enabled and possible on node0 and node1:

 \begin{verbatim}
 cluster1::> storage failover show
 Node Partner Takeover Possible State
 ✔️------------- -------- ------ ------------------------
 node0 node1 true Connected to node1
 node1 node0 true Connected to node0
 2 entries were displayed.
 \end{verbatim}

 If necessary, you can enable storage failover by using the \texttt{storage failover modify} command.

2. If the cluster consists of only two nodes (a single HA pair), verify that cluster HA is configured:

 \texttt{cluster ha show}

 \textbf{Example}

 This example shows that cluster HA is configured:
If necessary, you can enable cluster HA by using the `cluster ha modify` command.

Verifying cluster health

Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

Steps

1. Verify that the nodes in the cluster are online and are eligible to participate in the cluster:

 `cluster show`

 Example

   ```
   node0: node0
   node1: node1
   ```

 If any node is unhealthy or ineligible, check EMS logs for errors and take corrective action.

2. Set the privilege level to advanced:

 `set -privilege advanced`

 Enter `y` to continue.

3. Verify the configuration details for each RDB process.

 You should verify the following configuration details:

 - The relational database epoch and database epochs should match for each node.
 - The per-ring quorum master should be the same for all nodes.

 Note that each ring might have a different quorum master.

 To display this RDB process...

 Enter this command...

<table>
<thead>
<tr>
<th>Management application</th>
<th><code>cluster ring show -unitname mgmt</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume location database</td>
<td><code>cluster ring show -unitname vldb</code></td>
</tr>
<tr>
<td>Virtual-Interface manager</td>
<td><code>cluster ring show -unitname vifmgr</code></td>
</tr>
<tr>
<td>SAN management daemon</td>
<td><code>cluster ring show -unitname bcomd</code></td>
</tr>
</tbody>
</table>
Example

This example shows the volume location database process:

```
cluster1::*> cluster ring show -unitname vldb
```

<table>
<thead>
<tr>
<th>Node</th>
<th>UnitName</th>
<th>Epoch</th>
<th>DB Epoch</th>
<th>DB Trnxs</th>
<th>Master</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>master</td>
</tr>
<tr>
<td>node1</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
<tr>
<td>node2</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
<tr>
<td>node3</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
</tbody>
</table>

4 entries were displayed.

4. If you are operating in a SAN environment, verify that each node is in a SAN quorum:

```
event log show -messagename scsiblade.*
```

The most recent `scsiblade` event message for each node should indicate that the scsi-blade is in quorum.

Example

```
cluster1::*> event log show -messagename scsiblade.*
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Node</th>
<th>Severity</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node0</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node1</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
</tbody>
</table>

5. Return to the admin privilege level:

```
set -privilege admin
```

Related information

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

Verifying storage health

Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

Steps

1. If you are preparing to upgrade, revert, or downgrade, verify disk status:

<table>
<thead>
<tr>
<th>To check for...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken disks</td>
<td>a. Display any broken disks:</td>
</tr>
<tr>
<td></td>
<td>storage disk show -state broken</td>
</tr>
<tr>
<td></td>
<td>b. Remove or replace any broken disks.</td>
</tr>
</tbody>
</table>
To check for... | Do this...
--- | ---
Disks undergoing maintenance or reconstruction | a. Display any disks in maintenance, pending, or reconstructing states:
   ```bash
   storage disk show -state maintenance|pending|reconstructing
   ```
b. Wait for the maintenance or reconstruction operation to finish before proceeding.

2. Verify that all aggregates are online by displaying the state of physical and logical storage, including storage aggregates:
   ```bash
   storage aggregate show -state !online
   ```
 This command displays the aggregates that are not online. All aggregates must be online before and after performing a major upgrade or reversion.
 Example
   ```bash
   cluster1::> storage aggregate show -state !online
   There are no entries matching your query.
   ```

3. Verify that all volumes are online by displaying any volumes that are not online:
   ```bash
   volume show -state !online
   ```
 All volumes must be online before and after performing a major upgrade or reversion.
 Example
   ```bash
   cluster1::> volume show -state !online
   There are no entries matching your query.
   ```

Related information

Clustered Data ONTAP 8.3 Logical Storage Management Guide
Clustered Data ONTAP 8.3 Physical Storage Management Guide

Verifying that there is adequate free space in every volume containing LUNs

Before upgrading a cluster in a SAN environment, you must ensure that every volume containing LUNs has available at least 1 MB of free space. The space is needed to accommodate changes in the on-disk data structures used by the new version of Data ONTAP.

About this task

“LUNs” in this context refers to the LUNs that Data ONTAP serves to clients, not to the array LUNs used for storage on a storage array.
Steps

1. Determine which volumes contain LUNs:

   ```
lun show -fields volume
   ```

 Example

   ```
   cluster1::> lun show -fields volume
   vserver path                                      volume
   ------- ------------------------------------------ -----------------
   vs1     /vol/vol1/lunA                             vol1
   vs1     /vol/vol1/lunB                             vol1
   vs1     /vol/vol1/lunC                             vol1
   vs1     /vol/vol2/lunD                             vol2
   vs1     /vol/vol2/lunE                             vol2
   ```

2. For each volume that contains a LUN, check the free space in the volume:

   ```
df -volume volume_name
   ```

 Example

   ```
   cluster1::> df -volume vol1
   Filesystem              kbytes       used      avail capacity Mounted on                  Vserver
   /vol/vol1/                  498073600    6380492  388158972      22%  ---                        vs1
   /vol/vol1/.snapshot        26214400      17364   26197036       0%  ---                        vs1
   2 entries were displayed.
   ```

3. If the volume does not have at least 1 MB (1,024 KB) of free space, create free space in the full volume either by deleting unnecessary data or by growing the size of the volume.

Related information

Clustered Data ONTAP 8.3 Logical Storage Management Guide

Verifying networking and storage status for MetroCluster configurations

Before and after performing a minor upgrade or downgrade in a MetroCluster configuration, you should verify the status of the LIFs, aggregates, and volumes for each cluster.

About this task

If you are performing a major upgrade from Data ONTAP 8.2, you do not need to complete this procedure.

Steps

1. Verify the LIF status:

   ```
   network interface show
   ```

 In normal operation, LIFs for source SVMs must be up and located on their home nodes. LIFs for destination SVMs are not required to be up or located on their home nodes. In switchover, all LIFs should be up, but they do not need to be located on their home nodes.
Example

cluster1::> network interface show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Logical Interface</th>
<th>Status</th>
<th>Admin/Oper</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Is Port Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>clus_mgmt</td>
<td>up/up</td>
<td></td>
<td>198.51.100.1/24</td>
<td>cluster1-01</td>
<td>e3a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-al_clus1</td>
<td>up/up</td>
<td></td>
<td>192.0.2.1/24</td>
<td>cluster1-01</td>
<td>e2a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-al_clus2</td>
<td>up/up</td>
<td></td>
<td>192.0.2.2/24</td>
<td>cluster1-01</td>
<td>e2b true</td>
</tr>
<tr>
<td></td>
<td>cluster1-a2_clus1</td>
<td>up/up</td>
<td></td>
<td>192.0.2.3/24</td>
<td>cluster1-02</td>
<td>e2a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-a2_clus2</td>
<td>up/up</td>
<td></td>
<td>192.0.2.4/24</td>
<td>cluster1-02</td>
<td>e2b true</td>
</tr>
<tr>
<td>vs1</td>
<td>cluster1-al_data1</td>
<td>up/up</td>
<td></td>
<td>198.51.100.8/24</td>
<td>cluster1-01</td>
<td>e3d true</td>
</tr>
<tr>
<td></td>
<td>cluster1-al_data2</td>
<td>up/up</td>
<td></td>
<td>198.51.100.9/24</td>
<td>cluster1-01</td>
<td>e3a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-cl_data3</td>
<td>up/up</td>
<td></td>
<td>198.51.100.10/24</td>
<td>cluster1-01</td>
<td>e3c true</td>
</tr>
<tr>
<td></td>
<td>cluster1-al_data4</td>
<td>up/up</td>
<td></td>
<td>198.51.100.11/24</td>
<td>cluster1-01</td>
<td>e3a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-a2_data1</td>
<td>up/up</td>
<td></td>
<td>198.51.100.12/24</td>
<td>cluster1-01</td>
<td>e3d true</td>
</tr>
<tr>
<td></td>
<td>cluster1-a2_data2</td>
<td>up/up</td>
<td></td>
<td>198.51.100.13/24</td>
<td>cluster1-01</td>
<td>e3a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-a2_data3</td>
<td>up/up</td>
<td></td>
<td>198.51.100.14/24</td>
<td>cluster1-01</td>
<td>e3c true</td>
</tr>
<tr>
<td></td>
<td>cluster1-a2_data4</td>
<td>up/up</td>
<td></td>
<td>198.51.100.15/24</td>
<td>cluster1-01</td>
<td>e3c true</td>
</tr>
<tr>
<td>vs2-mc</td>
<td>cluster1-b1_data1</td>
<td>up/down</td>
<td></td>
<td>198.51.100.16/24</td>
<td>cluster1-02</td>
<td>e3a true</td>
</tr>
<tr>
<td></td>
<td>cluster1-b1_data2</td>
<td>up/down</td>
<td></td>
<td>198.51.100.17/24</td>
<td>cluster1-02</td>
<td>e3a true</td>
</tr>
</tbody>
</table>
2. Verify the state of the aggregates:

```
storage aggregate show -state !online
```

This command displays any aggregates that are not online. In normal operation, all aggregates located at the local site must be online. However, if the MetroCluster configuration is in switchover, root aggregates at the disaster recovery site are permitted to be offline.

Example

This example shows a cluster in normal operation:

```
cluster1::> storage aggregate show -state !online
There are no entries matching your query.
```

Example

This example shows a cluster in switchover, in which the root aggregates at the disaster recovery site are offline:

```
cluster1::> storage aggregate show -state !online

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Size</th>
<th>Available</th>
<th>Used%</th>
<th>State</th>
<th>#Vols</th>
<th>Nodes</th>
<th>RAID Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggr0_b1</td>
<td>0B</td>
<td>0B</td>
<td>0%</td>
<td>offline</td>
<td>0</td>
<td>cluster2-01</td>
<td>raid_dp, mirror</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>degraded</td>
</tr>
<tr>
<td>aggr0_b2</td>
<td>0B</td>
<td>0B</td>
<td>0%</td>
<td>offline</td>
<td>0</td>
<td>cluster2-02</td>
<td>raid_dp, mirror</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>degraded</td>
</tr>
</tbody>
</table>
```

2 entries were displayed.

3. Verify the state of the volumes:

```
volume show -state !online
```

This command displays any volumes that are not online. In normal operation, all root and data volumes owned by the local cluster's SVMs must be online. However, if the MetroCluster configuration is in switchover, all volumes must be online.
Example

This example shows a cluster in normal operation, in which the volumes at the disaster recovery site are not online.

```
cluster1::> volume show -state !online
(volume show)
Vserver   Volume       Aggregate    State      Type       Size  Available Used%
--------- ------------ ------------ ---------- ---- ---------- ---------- ----- 
vs2-mc    vol1         aggr1_b1     -          RW            -          -     -
vs2-mc    root_vs2     aggr0_b1     -          RW            -          -     -
vs2-mc    vol2         aggr1_b1     -          RW            -          -     -
vs2-mc    vol3         aggr1_b1     -          RW            -          -     -
vs2-mc    vol4         aggr1_b1     -          RW            -          -     -
5 entries were displayed.
```

Related concepts

Upgrade requirements for MetroCluster configurations on page 33

Verifying that deduplicated volumes and aggregates contain sufficient free space

Before upgrading Data ONTAP, you must verify that any deduplicated volumes and the aggregates that contain them have sufficient free space for the deduplication metadata. If there is insufficient free space, deduplication will be disabled when the Data ONTAP upgrade is completed.

About this task

Each deduplicated volume must contain at least 4% free space. Each aggregate that contains a deduplicated volume must contain at least 3% free space.

Steps

1. Determine which volumes are deduplicated:

   ```
   volume show -is-sis-volume true
   ```

 Example

 This example displays a deduplicated volume and the aggregate that contains it.

   ```
   cluster1::> volume show -is-sis-volume true
   (volume show)
   Vserver   Volume       Aggregate    State      Type       Size  Available Used%
   --------- ------------ ------------ ---------- ---- ---------- ---------- ----- 
   vs1       vol_2        aggr_2       online     RW         20GB    18.74GB    6%
   ```

2. Determine the free space available on each volume that you identified:

   ```
   df -vserver Vserver_name -volume volume_name
   ```

 Each deduplicated volume must not contain more than 96% used capacity. If necessary, you can increase the sizes of any volumes that exceed this capacity.

Clustered Data ONTAP 8.3 Logical Storage Management Guide
Example

In this example, the capacity field displays the percentage of used space on the deduplicated volume identified earlier (vol_2):

```
cluster1::> df -vserver vs2 -volume vol_2
Filesystem              kbytes       used      avail     capacity  Mounted on
/vol/vol_2/              19456000     264000   19192000       1%  /
/vol/vol_2/.snapshot      1024          0       1024       0%  //.snapshot
2 entries were displayed.
```

3. Identify the free space available on each aggregate that contains a deduplicated volume:

```
df -A -aggregate aggregate_name
```

Each aggregate must not contain more than 97% used capacity. If necessary, you can increase the sizes of any aggregates that exceed this capacity.

Clustered Data ONTAP 8.3 Physical Storage Management Guide

Example

In this example, the capacity field displays the percentage of used space on the aggregate containing the deduplicated volume (aggr_2):

```
cluster1::> df -A -aggregate aggr_2
Aggregate               kbytes       used      avail     capacity
aggr_2                  344220000   20944000  323276000       6%
aggr_2/.snapshot         0          0          0       0%
2 entries were displayed.
```

Verifying the LIF failover configuration

Before you perform an upgrade, you must verify that the failover policies and failover groups are configured correctly.

Steps

1. Display the failover policy for each data port:

```
network interface show -role data -failover
```

Example

This example shows the default failover configuration for a two-node cluster with two data LIFs running Data ONTAP 8.2.x:

```
cluster1::> network interface show -role data -failover
Logical     Home            Failover     Failover
Vserver     Interface      Node:Port   Policy    Group
-----------  --------------- ----------- ---------- -------
vs0          lif0            node0:e0b   nextavail system-defined
```
The `Failover Targets` field shows a prioritized list of failover targets for each LIF. For example, if lif0 fails over from its home port (e0b on node0), it first attempts to fail over to port e0c on node0. If lif0 cannot fail over to e0c, it next attempts to fail over to port e0d on node0, and so on.

2. If you have LIFs on multiple IP subnets, verify that each LIF belongs to a failover group that contains ports on the same layer 2 broadcast domain.

A user-defined failover group must be configured for each VLAN or broadcast domain, and each LIF must subscribe to the corresponding failover group.

3. If the failover policy is set to `disabled` for any of the LIFs, use the `network interface modify command` to enable failover.

4. For each LIF, verify that the `Failover Targets` field includes data ports from a different node that will remain up while the LIF’s home node is being upgraded.

You can use the `network interface failover-groups create command` to add a failover target to the failover group.

5. Verify that the ports in each failover group have the same MTU value.

During the upgrade to the Data ONTAP 8.3 release family, Data ONTAP automatically creates broadcast domains based on your failover group configuration. This requires that the data ports in each failover group have the same MTU value as defined by RFC 1042, or the upgrade will fail.

Note: This requirement does not apply to the e0M port, which has a maximum MTU value of 1500. The upgrade will not fail if the e0M port has a different MTU value from the other ports in its failover group.

a. Determine the MTU value of each data and node management port in the cluster:

 `network port show`

Example

In this example, the e0a and e0b ports have different MTU values:
cluster1::> network port show

<table>
<thead>
<tr>
<th>Node</th>
<th>Port</th>
<th>Role</th>
<th>Link</th>
<th>MTU</th>
<th>Auto-Negot</th>
<th>Duplex</th>
<th>Speed (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>-----</td>
<td>------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Admin/Oper</td>
<td>Admin/Oper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Admin/Oper</td>
<td>Admin/Oper</td>
<td></td>
</tr>
<tr>
<td>node0</td>
<td>e0M</td>
<td>node-mgmt</td>
<td>up</td>
<td>1500</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/100</td>
</tr>
<tr>
<td></td>
<td>e0a</td>
<td>data</td>
<td>up</td>
<td>9000</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td>e0b</td>
<td>data</td>
<td>up</td>
<td>1500</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td>e1a</td>
<td>cluster</td>
<td>up</td>
<td>9000</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/10000</td>
</tr>
<tr>
<td></td>
<td>e1b</td>
<td>cluster</td>
<td>up</td>
<td>9000</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/10000</td>
</tr>
<tr>
<td>node1</td>
<td>e0M</td>
<td>node-mgmt</td>
<td>up</td>
<td>1500</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/100</td>
</tr>
<tr>
<td></td>
<td>e0a</td>
<td>data</td>
<td>up</td>
<td>9000</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td>e0b</td>
<td>data</td>
<td>up</td>
<td>1500</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td>e1a</td>
<td>cluster</td>
<td>up</td>
<td>9000</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/10000</td>
</tr>
<tr>
<td></td>
<td>e1b</td>
<td>cluster</td>
<td>up</td>
<td>9000</td>
<td>true/true</td>
<td>full/full</td>
<td>auto/10000</td>
</tr>
</tbody>
</table>

b. If any of the ports have different MTU values, verify that each failover group contains ports with the same MTU value:

network interface failover-groups show

Example

In this example, the clusterwide failover group contains all data and node management ports. However, this configuration will cause the upgrade to fail, because the e0a and e0b ports have different MTU values.

```
cluster1::> network interface failover-groups show

Failover Group               Node       Port
--------------------------------------------
clusterwide
    node0       e0M
    node0       e0a
    node0       e0b
    node1       e0M
    node1       e0a
    node1       e0b
```

c. If any failover groups contain data ports with multiple MTU values, do one of the following for each port:
Option	Description
Remove the port from its failover group and add it to a different failover group with the same MTU value. | a. Remove the port from its failover group:
```
network interface failover-groups delete -failover-group failover_group_name -node node_name -port port
```  
b. Add the port to a new failover group, or an existing failover group that contains ports with the same MTU value:
```
network interface failover-groups create -failover-group failover_group_name -node node_name -port port
```  
Update the port's MTU value to match the other ports in the failover group. | `network port modify -node node_name -port port -mtu MTU_size`

Related information

IETF RFC 1042: A Standard for the Transmission of IP Datagrams over IEEE 802 Networks
Clustered Data ONTAP 8.3 Network Management Guide

Verifying the SAN configuration

Upgrading in a SAN environment changes which paths are direct. Therefore, before performing an upgrade, you should verify that each host is configured with the correct number of direct and indirect paths, and that each host is connected to the correct LIFs.

Steps

1. On each host, verify that a sufficient number of direct and indirect paths are configured, and that each path is active.
 Each host must have a path to each node in the cluster.

2. Verify that each host is connected to a LIF on each node.
 You should record the list of initiators for comparison after the upgrade.

<table>
<thead>
<tr>
<th>For...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI</td>
<td><code>iscsi initiator show -fields igroup,initiator-name,tpgroup</code></td>
</tr>
<tr>
<td>FC</td>
<td><code>fcp initiator show -fields igroup,wwpn,lif</code></td>
</tr>
</tbody>
</table>
Verifying the system time

You should verify that NTP is configured, and that the time is synchronized across the cluster.

Steps

1. Verify that the cluster is associated with an NTP server:

<table>
<thead>
<tr>
<th>If you are running...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data ONTAP 8.2.x</td>
<td><code>system services ntp server show</code></td>
</tr>
<tr>
<td>Data ONTAP 8.3.x</td>
<td><code>cluster time-service ntp server show</code></td>
</tr>
</tbody>
</table>

2. Verify that each node has the same date and time:

 `cluster date show`

Example

```
cluster1::> cluster date show
Node      Date                Timezone
--------- ------------------- -------------------------
node0     4/6/2013 20:54:38   GMT
node1     4/6/2013 20:54:38   GMT
node2     4/6/2013 20:54:38   GMT
node3     4/6/2013 20:54:38   GMT
4 entries were displayed.
```

Related information

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

Ensuring that no jobs are running

You must verify the status of cluster jobs before upgrading or downgrading to a different Data ONTAP release. If any aggregate, volume, NDMP (dump or restore), or Snapshot jobs (such as create, delete, move, modify, replicate, and mount jobs) are running or queued, allow the jobs to finish successfully or stop the queued entries.

Steps

1. Review the list of any running or queued aggregate, volume, or Snapshot jobs:

 `job show`
Example

```
classroom::> job show

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>Vserver</th>
<th>Node</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>8629</td>
<td>Vol Reaper</td>
<td>cluster1</td>
<td>-</td>
<td>Queued</td>
</tr>
<tr>
<td>8630</td>
<td>Certificate Expiry Check</td>
<td>cluster1</td>
<td>-</td>
<td>Queued</td>
</tr>
<tr>
<td>8632</td>
<td>CLUSTER BACKUP AUTO daily</td>
<td>cluster1</td>
<td>-</td>
<td>Queued</td>
</tr>
<tr>
<td>8633</td>
<td>CLUSTER BACKUP AUTO weekly</td>
<td>cluster1</td>
<td>-</td>
<td>Queued</td>
</tr>
<tr>
<td>9944</td>
<td>SnapMirrorDaemon_7_2147484678</td>
<td>cluster1</td>
<td>node1</td>
<td>Dormant</td>
</tr>
<tr>
<td>18277</td>
<td>CLUSTER BACKUP AUTO 8hour</td>
<td>cluster1</td>
<td>-</td>
<td>Queued</td>
</tr>
<tr>
<td>18377</td>
<td>SnapMirror Service Job</td>
<td>cluster1</td>
<td>node0</td>
<td>Dormant</td>
</tr>
<tr>
<td>18379</td>
<td>Network Consistency Diagnostic</td>
<td>cluster1</td>
<td>node0</td>
<td>Queued</td>
</tr>
<tr>
<td>18385</td>
<td>Network Consistency Diagnostic</td>
<td>cluster1</td>
<td>node1</td>
<td>Queued</td>
</tr>
<tr>
<td>2 entries were displayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

2. Delete any running or queued aggregate, volume, or Snapshot copy jobs:

```
job delete -id job_id
```

Example

```
classroom::> job delete -id 8629
```

3. Ensure that no aggregate, volume, or Snapshot jobs are running or queued:

```
job show
```

Example

In this example, all running and queued jobs have been deleted.

```
classroom::> job show

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>Vserver</th>
<th>Node</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>9944</td>
<td>SnapMirrorDaemon_7_2147484678</td>
<td>cluster1</td>
<td>node1</td>
<td>Dormant</td>
</tr>
<tr>
<td>18377</td>
<td>SnapMirror Service Job</td>
<td>cluster1</td>
<td>node0</td>
<td>Dormant</td>
</tr>
<tr>
<td>2 entries were displayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Preparing Data ONTAP features for the upgrade

Some Data ONTAP features have configuration requirements that must be completed before the cluster can be upgraded.

Removing oversized local UNIX user and group names

Beginning with Data ONTAP 8.3, there is a limit of 64 characters for local UNIX user and group names. You can no longer create new user and group names with more than 64 characters, and you must remove existing user and group names with more than 64 characters before upgrading. Name mappings using oversized names will fail after upgrading.

Steps

1. Check the list of existing local UNIX users and groups for names that are longer than 64 characters:

 vserver services unix-user show

 vserver services unix-group show

2. Delete any users and groups with names longer than 64 characters:

 vserver services unix-user delete -vserver vserver_name -user user_name

 vserver services unix-group delete -vserver vserver_name -name group_name

3. Re-create any needed users or groups with names that are no longer than 64 characters:

 vserver services unix-user create -vserver vserver_name -user user_name -id user_ID -primary-gid primary_group_ID

 vserver services unix-group create -vserver vserver_name -name group_name -id group_ID

4. Verify that no oversized UNIX user and group names remain:

 vserver services unix-user show

 vserver services unix-group show

 After upgrading, if you receive an EMS message indicating that oversized names were detected, repeat these steps to identify, delete, and re-create any remaining oversized user and group names.

5. Modify any existing name mappings to use the new user and group names as needed.
Verifying that the netgroup file is present on all nodes

If you have loaded netgroups into Storage Virtual Machines (SVMs), before you upgrade or revert, you must verify that the netgroup file is present on each node. A missing netgroup file on a node can cause an upgrade or revert to fail.

About this task

For more information about netgroups and loading them from a URI, see the *Clustered Data ONTAP File Access Management Guide for NFS*.

Steps

1. Set the privilege level to advanced:

   ```
   set -privilege advanced
   ```

2. Display the netgroup status for each SVM:

   ```
   vserver services netgroup status
   ```

3. Return to the admin privilege level:

   ```
   set -privilege admin
   ```

4. Verify that for each SVM, each node shows the same netgroup file hash value.

 If this is the case, you can skip the next step and proceed with the upgrade or revert. Otherwise, proceed to the next step.

5. On any one node of the cluster, manually load the netgroup file to ensure that they are consistent across all nodes:

   ```
   vserver services netgroup load -vserver vserver_name -source uri
   ```

 This command downloads the netgroup file on all nodes. If a netgroup file already exists on a node, it is overwritten.

Converting the volume guarantee for volumes with a guarantee type of file

If your system includes volumes with a guarantee of *file* that contain space-reserved LUNs or files, and you need the reservations for those LUNs or files to be honored immediately after the upgrade is complete, you should change the space guarantee type of those volumes to *volume* before you upgrade.

About this task

This task is optional at this point in the upgrade process. You can choose to manually enable your disabled guarantees, if any, after the upgrade is complete. However, if you have critical workloads that use space-reserved LUNs or files in file-guaranteed volumes, you should complete this procedure before the upgrade.
The volume guarantee type of file is not supported for Data ONTAP 8.3 and later. Volumes with a volume guarantee of file are converted during the upgrade according to whether they contain any space-reserved LUNS or files:

- If the volume contains no space-reserved LUNs or files, its volume guarantee is converted to none
- If the volume contains space-reserved LUNs or files, its volume guarantee is converted to volume.

However, because there might not be enough free space available to honor the volume guarantee, the volume guarantee is initially disabled. You must enable it manually before the space-reserved LUN or file has the same space protections it had before the upgrade.

If any of the affected volumes contained free space or unreserved files before the upgrade, those volumes consume additional space from the aggregate when their guarantee is enabled.

Steps

1. Determine whether you have any volumes with a volume type of file:

   ```bash
   volume show -space-guarantee file
   ```

 All volumes on your cluster with a volume type of file are displayed.

2. If any of the volumes displayed contain space-reserved LUNs or files, and you need those reservations to be honored immediately after the upgrade is complete, update their volume guarantee to volume:

   ```bash
   volume modify -vserver vserver_name -volume volume_name -space-guarantee volume
   ```

3. If the volume modify command fails due to insufficient space, add storage to the aggregate or otherwise increase the free space available, and repeat the command.

Preparing firewall policies for a major upgrade

In Data ONTAP 8.3, the cluster firewall policy is no longer available. Any LIFs that are assigned to this policy will block access to management services, such as SSH and DNS. Therefore, before performing a major upgrade, you should ensure that all non-cluster LIFs use a firewall policy other than cluster.

Steps

1. Determine whether any non-cluster LIFs are using the cluster firewall policy:

   ```bash
   network interface show -role !cluster -firewall-policy cluster
   ```
Example

```bash
cluster1::> network interface show -role !cluster -firewall-policy cluster

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Logical Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Port</th>
<th>Current Is Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>lif1</td>
<td>up/up</td>
<td>192.0.2.128/24</td>
<td>node0</td>
<td>e0d</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>lif2</td>
<td>up/up</td>
<td>192.0.2.129/24</td>
<td>node1</td>
<td>e0d</td>
<td>true</td>
</tr>
</tbody>
</table>
```

2 entries were displayed.

2. Optional: If necessary, create new firewall policies for the affected LIFs.

<table>
<thead>
<tr>
<th>To create a...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>New firewall policy based on the cluster policy</td>
<td>`system services firewall policy clone -policy</td>
</tr>
<tr>
<td></td>
<td><code>cluster -new-policy-name policy_name</code></td>
</tr>
<tr>
<td>Custom firewall policy for each required service</td>
<td>`system services firewall policy create -policy</td>
</tr>
<tr>
<td></td>
<td><code>policy_name -service service -ip-list IP_address</code></td>
</tr>
<tr>
<td></td>
<td><code>-action allow</code></td>
</tr>
</tbody>
</table>

3. Change the firewall policy for the affected LIFs:

   ```bash
   network interface modify {-role !cluster -firewall-policy cluster} -firewall-policy policy
   ```

 This command selects each non-cluster LIF that is currently using the cluster firewall policy, and then changes the firewall policy to the policy that you specified.

Enabling and reverting LIFs to home ports

During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

About this task

The `network interface revert` command reverts a LIF that is not currently on its home port back to its home port, provided that the home port is operational. A LIF’s home port is specified when the LIF is created; you can determine the home port for a LIF by using the `network interface show` command.

Steps

1. Display the status of all LIFs:
   ```bash
   network interface show
   ```
Example

This example displays the status of all LIFs for a Storage Virtual Machine (SVM, formerly known as Vserver).

```
cluster1::> network interface show -vserver vs0

Logical | Status     | Network            | Current       | Current Is
------- | ---------- | ------------------ | ------------- | ------- ----
Vserver | Interface  | Admin/Oper | Address/Mask | Node | Port | Home
----------- ---------- ---------- ------------------ ------------- ------- ----
vs0         
data001     down/down  192.0.2.120/24     node0         e0e     true
data002     down/down  192.0.2.121/24     node0         e0f     true
data003     down/down  192.0.2.122/24     node0         e2a     true
data004     down/down  192.0.2.123/24     node0         e2b     true
data005     down/down  192.0.2.124/24     node0         e0e     false
data006     down/down  192.0.2.125/24     node0         e0f     false
data007     down/down  192.0.2.126/24     node0         e2a     false
data008     down/down  192.0.2.127/24     node0         e2b     false
```

8 entries were displayed.

If any LIFs appear with a Status Admin status of down or with an Is home status of false, continue with the next step.

2. Enable the data LIFs:

```
network interface modify {-role data} -status-admin up
```

Example

```
cluster1::> network interface modify {-role data} -status-admin up
8 entries were modified.
```

3. Revert LIFs to their home ports:

```
network interface revert *
```

Example

This command reverts all LIFs back to their home ports and changes all LIF home statuses to true.

```
cluster1::> network interface revert *
8 entries were acted on.
```

4. Verify that all LIFs are in their home ports:

```
network interface show
```

Example

This example shows that all LIFs for SVM vs0 are on their home ports.
Disabling automatic LIF rebalancing

By disabling automatic LIF rebalancing before performing a batch upgrade, you can ensure that the LIFs remain online during the entire upgrade procedure.

About this task

When automatic LIF rebalancing is enabled, LIFs can be migrated to a less-utilized port on another node based on the LIF failover configuration. However, because a batch upgrade enables you to upgrade multiple nodes concurrently, automatic LIF rebalancing could cause the LIFs to migrate to a node that is rebooting.

Steps

1. Set the privilege level to advanced:
   ```
   set -privilege advanced
   ```

2. View and record any LIFs that have automatic LIF rebalancing enabled:
   ```
   network interface show -allow-lb-migrate true
   ```

Example

```
cluster1::*> network interface show -allow-lb-migrate true

Logical Interface Admin/Oper Network Current Current Is
Vserver Status Address/Mask Node Port Home
----------- ---------- ---------- ------------------ ------------- ------- ----
vs0
data01 up/up 192.0.2.120/24 node0 e0e true
data02 up/up 192.0.2.121/24 node0 e0f true
data03 up/up 192.0.2.122/24 node0 e2a true
data04 up/up 192.0.2.123/24 node0 e2b true
data05 up/up 192.0.2.124/24 node1 e0e true
data06 up/up 192.0.2.125/24 node1 e0f true
data07 up/up 192.0.2.126/24 node1 e2a true
data08 up/up 192.0.2.127/24 node1 e2b true

8 entries were displayed.
```
4. Return to the admin privilege level:

   ```bash
   set -privilege admin
   ```

Preparing SVM networking for a major upgrade

Before performing a major upgrade from Data ONTAP 8.2, you must configure a data LIF for each data SVM that can reach all external servers. You must also ensure that failover groups and routes are configured to enable these LIFs to reach all external servers throughout the upgrade.

Before you begin

- If the cluster has separate management and data networks, and if the external servers are only accessible from node management LIFs, then the cluster should be running Data ONTAP 8.2.2 GA or later.

 Starting with Data ONTAP 8.2.2 GA, you can configure the data LIFs needed for external connectivity on node management ports.

 Attention: If the cluster does not meet this requirement and you do not want to upgrade to Data ONTAP 8.2.2 GA, then you must wire a data port on each of the first two nodes to a network that can reach the external servers.

- You must have a permanent IP address available for each SVM management LIF that you plan to create.

 If you cannot configure existing data LIFs for external server connectivity, you need to create new SVM management LIFs.

About this task

You must perform this procedure before installing the target Data ONTAP software images. The image installation will not succeed until all of the data LIFs needed for external server connectivity, failover groups, and routes have been configured.

After a node is upgraded to Data ONTAP 8.3, SVMs can only initiate connections to the following external servers through their own LIFs:

- DNS, NIS, and LDAP servers
- Active Directory servers
- Kerberos servers
- Domain Controllers
- iSNS server
- Policy server (if you are using FPolicy)
Steps

1. Display the data SVMs in the cluster:

 \texttt{vserver show -type data -admin-state running}

 You must configure an existing data LIF or create an SVM management LIF for each SVM in the cluster.

Example

```
cluster1::> vserver show -type data -admin-state running

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Type</th>
<th>State</th>
<th>Volume</th>
<th>Aggregate</th>
<th>Service Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data</td>
<td>running</td>
<td>vs0_root</td>
<td>aggr1</td>
<td>file, file</td>
</tr>
<tr>
<td>vs1</td>
<td>data</td>
<td>running</td>
<td>vs1_root</td>
<td>aggr3</td>
<td>file file</td>
</tr>
<tr>
<td>vs2</td>
<td>data</td>
<td>running</td>
<td>vs2_root</td>
<td>aggr2</td>
<td>ldap file</td>
</tr>
</tbody>
</table>

3 entries were displayed.
```

2. For each SVM, determine which external services the SVM is using.

You should record the IP address of each external server that is configured for this SVM.

<table>
<thead>
<tr>
<th>To check for this external service...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>\texttt{vserver services dns show -vserver Vserver_name -state enabled -fields name-servers}</td>
</tr>
<tr>
<td>NIS</td>
<td>\texttt{vserver services nis-domain show -vserver Vserver_name -active true -fields servers}</td>
</tr>
<tr>
<td>LDAP</td>
<td>a. Find the list of client configurations: \texttt{vserver services ldap show -vserver Vserver_name -client-enabled true -fields client-config} \n\n\n</td>
</tr>
</tbody>
</table>
To check for this external service... Enter this command...

LDAP (preferred servers)

a. Find the list of client configurations:

```
vserver services ldap show -vserver Vserver_name -client-enabled true -fields client-config
```

b. Display the servers in each client configuration:

```
vserver services ldap client show -vserver Vserver_name -client-config client_config_name -client-enabled true -fields preferred-ad-servers
```

Kerberos

```
vserver services kerberos-realm show
```

Active Directory

```
vserver services kerberos-realm show -fields adserver-ip
```

Admin server

```
vserver services nfs kerberos-realm show -fields adminserver-ip
```

Password server

```
vserver services nfs kerberos-realm show -fields passwordserver-ip
```

Domain Controller (preferred)

```
vserver cifs domain preferred-dc show -vserver Vserver_name -fields preferred-dc
```

Domain Controller (discovered)

```
vserver cifs domain discovered-servers show -vserver Vserver_name -preference preferred|favored|adequate|unknown -fields address
```

iSNS

```
vserver iscsi isns show -vserver Vserver_name
```

Policy server (primary)

```
vserver fpolicy policy external-engine show -vserver Vserver_name -fields primary-servers
```

Policy server (secondary)

```
vserver fpolicy policy external-engine show -vserver Vserver_name -fields secondary-servers
```

3. Display the existing data LIFs for each SVM:

```
network interface show -role data
```

Example

```
cluster1::> network interface show -role data

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Interface</th>
<th>Logical</th>
<th>Status</th>
<th>Network</th>
<th>Current Node</th>
<th>Current Port</th>
<th>Current Is Home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Upgrading Data ONTAP clusters | 61
4. For each SVM, determine which data LIF or LIFs to use for external server connectivity.

If the SVM cannot reach all of its configured external servers from a single LIF, you must configure multiple data LIFs for external server connectivity. For example, if the external servers are on multiple, disconnected networks, you should configure a separate LIF to reach the servers on each disconnected network.

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SVM has a data LIF with a network path to each of its configured external servers</td>
<td>Record the data LIF. You can modify this LIF for external server connectivity.</td>
</tr>
<tr>
<td>None of the data LIFs have a network path to the external servers</td>
<td>Choose an IP address for a new SVM management LIF. The IP address must be on a subnet that enables the LIF to reach each of the external servers.</td>
</tr>
</tbody>
</table>

Note: If the external servers use both IPv4 and IPv6 addresses, you must choose both an IPv4 address and an IPv6 address.

5. Determine which node you plan to upgrade first.

All of the SVM data LIFs that you will configure for external connectivity must be hosted on the first node that you upgrade. When you install the Data ONTAP 8.3 image on this node, the image installation will not succeed unless Data ONTAP can verify that these LIFs are located on the node.

6. Configure a failover group for the data LIFs.

You must configure a failover group to ensure that the data LIFs are located on the correct ports during the upgrade. When you configure the data LIFs for external connectivity, you assign them to this failover group.

a. Determine whether an appropriate failover group exists for the data LIFs needed for external connectivity:

 network interface failover-groups show

 The LIFs must belong to a failover group that includes ports on the first node to be upgraded and its HA partner. If the data ports are on different VLANs or broadcast domains, a separate failover group should exist for each VLAN or broadcast domain.
Example

In this example, the LIFs can use the clusterwide failover group, because it only contains ports on the first HA pair:

<table>
<thead>
<tr>
<th>Failover Group</th>
<th>Node</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>clusterwide</td>
<td>node0</td>
<td>e0a</td>
</tr>
<tr>
<td></td>
<td>node0</td>
<td>e0b</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>e0a</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>e0b</td>
</tr>
</tbody>
</table>

4 entries were displayed

b. If no appropriate failover groups exist, use the network interface failover-groups create command to create a new failover group.

The failover group should include the data ports on the first node to be upgraded and its HA partner. If the data ports are on different VLANs or broadcast domains, you should create a separate failover group for each VLAN or broadcast domain.

Example

In this example, a new failover group is created with all of the data ports on the first node and its HA partner:

<table>
<thead>
<tr>
<th>Failover Group</th>
<th>Node</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>lif_sufficiency</td>
<td>node0</td>
<td>e0a</td>
</tr>
<tr>
<td></td>
<td>node0</td>
<td>e0b</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>e0a</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>e0b</td>
</tr>
</tbody>
</table>

4 entries were displayed

7. For each SVM, configure a data LIF for external server connectivity.
To... | Do this...
---|---
Use an existing data LIF for external server connectivity | Modify the data LIF:
```
network interface modify -vserver Vserver_name -lif LIF_name -home-node first_node_to_upgrade -home-port port -auto-revert true -failover-group failover_group_name -failover-policy nextavail
```
This command modifies the LIF to be located on the first node to be upgraded, to automatically revert back to the home node as soon as it boots Data ONTAP 8.3, and to use the failover group that you previously configured.

Create a new SVM management LIF | Create a new LIF:
```
network interface create -vserver Vserver_name -lif LIF_name -data-protocol none -role data -home-node first_node_to_upgrade -home-port port -address IP_address -netmask netmask_address -status-admin up -auto-revert true -failover-group failover_group_name -failover-policy nextavail
```
This command creates an SVM management LIF on the first node to be upgraded. The LIF is set to automatically revert so that it immediately reverts back to the home node as soon as the node boots Data ONTAP 8.3, and a failover group is assigned so that the LIF only fails over to a port on the first HA pair.

Note: If the external servers use IPv4 addresses, you must create the LIF with an IPv4 address. If they use IPv6 addresses, you must create the LIF with an IPv6 address. If they use both IPv4 and IPv6 addresses, you must create two LIFs for the SVM: one with an IPv4 address, and another with an IPv6 address.

8. For each data LIF that you configured, verify that the LIF has a default route to the subnet on which the external servers reside.

a. Find the routing group that the data LIF is associated with:
```
network interface show -vserver Vserver_name -lif data_LIF_name -fields routing-group
```

Example
```
cluster1::> network interface show -vserver vs0 -lif datalif1 -fields routing-group

vserver lif routing-group
----------- -----------
vs0 datalif1 d203.0.113.1/24
```

b. Display the routes in the routing group:
network routing-group route show -vserver Vserver_name -routing-group routing-group_name

Example

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Group</th>
<th>Destination</th>
<th>Gateway</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>d203.0.113.1/24</td>
<td>0.0.0.0/0</td>
<td>198.51.100.5</td>
<td>20</td>
</tr>
</tbody>
</table>

c. If the external servers reside on a different subnet from the data LIF that you configured, and a default route does not exist, create a new route to the subnet's gateway:

network routing-groups route create -vserver Vserver_name -routing-group routing-group_name -destination 0.0.0.0/0 -gateway gateway_address

Example

cluster1::> network routing-groups route create -vserver vs0 -routing-group d203.0.113.1/24 -destination 0.0.0.0/0 -gateway 198.51.100.5

Related concepts

SVM networking considerations for major upgrades on page 29

Related tasks

Installing Data ONTAP software images for a major upgrade on page 70

Before performing a major upgrade to Data ONTAP 8.3, you must install the software image on the first node to verify that each SVM will be able to reach its external servers during the upgrade. After the image installation succeeds, you install the software image on the remaining nodes.

Removing FlexCache volumes

Before upgrading to Data ONTAP 8.3, you must identify and remove any FlexCache volumes.

About this task

FlexCache volumes are not supported in Data ONTAP 8.3. If you upgrade to Data ONTAP 8.3 with any FlexCache volumes, they are taken offline automatically.

Steps

1. Identify any FlexCache volumes:
volume flexcache show

Example

cluster1::> volume flexcache show

--------------------Cache-------------- Conn.- -----Origin-----------
Vserver Volume Aggregate Size State Available Status Volume Aggregate State
------- ------ --------- ----- ------ --------- ------ ------ --------- -----
vs1 dst_cache_01 node01_aggr 20MB online 19.91MB ok dst node02_aggr online
 dst_cache_02 node02_aggr 20MB online 19.91MB ok dst node02_aggr online

2. Delete each FlexCache volume:

volume flexcache delete -vserver vserver_name -origin-volume volume_name

Example

cluster1::> volume flexcache delete -vserver vs1 -origin-volume dst

Successfully deleted cache volume "dst_cache_01".
Successfully deleted cache volume "dst_cache_02".
The origin volume "dst" is no longer cached in the cluster.

Identifying active CIFS sessions that should be terminated

Before performing a nondisruptive upgrade or downgrade, you should identify and gracefully terminate any CIFS sessions that are not continuously available.

About this task

Continuously available CIFS shares, which are accessed by Hyper-V clients using the SMB3 protocol, do not need to be terminated before upgrading or downgrading.

Steps

1. Identify any established CIFS sessions that are not continuously available:

vserver cifs session show -continuously-available !Yes -instance

This command displays detailed information about any CIFS sessions that have no continuous availability.
Example

```bash
cluster1::> vserver cifs session show -continuously-available !Yes -instance

     Node: node1
  Vserver: vs1
      Session ID: 1
Connection ID: 4160072788
Incoming Data LIF IP Address: 198.51.100.5
   Workstation IP address: 203.0.113.20
  Authentication Mechanism: NTLMv2
  Windows User: CIFSLAB\user1
        UNIX User: nobody
     Open Shares: 1
      Open Files: 2
        Open Other: 0
     Connected Time: 8m 39s
     Idle Time: 7m 45s
     Protocol Version: SMB2_1
Continuously Available: No
1 entry was displayed.
```

Each of the sessions identified by this command should be terminated before proceeding with the Data ONTAP upgrade or downgrade.

2. If necessary, identify the files that are open for each CIFS session that you identified:

```bash
vserver cifs session file show -session-id session_ID
```

Example

```bash
cluster1::> vserver cifs session file show -session-id 1

     Node:       node1
  Vserver:    vs1
     Connection: 4160072788
         Session: 1
     File    File      Open Hosting                               Continuously Available
         ID      Type      Mode Volume          Share                 -------------
------- --------- ---- --------------- --------------------- ------------
1       Regular   rw   vol10           homedirshare          No
Path: \TestDocument.docx
2       Regular   rw   vol10           homedirshare          No
Path: \file1.txt
2 entries were displayed.
```

Related concepts

Considerations for session-oriented protocols on page 198
Preparing all load-sharing mirrors for a major upgrade

Before performing a major upgrade from Data ONTAP 8.2, you should move all of the load-sharing mirror source volumes to an aggregate on the node that you will upgrade last. This ensures that load-sharing mirror destination volumes are the same or later versions of Data ONTAP.

Steps

1. Record the locations of all load-sharing mirror source volumes.
 Knowing where the load-sharing mirror source volumes came from will help facilitate returning them to their original locations after the major upgrade.

2. Determine the node and aggregate to which you will move the load-sharing mirror source volumes.

3. Move the load-sharing mirror source volumes to the node and aggregate by using the `volume move start` command.

Preparing SnapMirror relationships for a nondisruptive upgrade or downgrade

You must suspend SnapMirror operations before performing a nondisruptive upgrade or downgrade of Data ONTAP.

Steps

1. Use the `snapmirror show` command to determine the destination path for each SnapMirror relationship.

2. For each destination volume, suspend future SnapMirror transfers:
 `snapmirror quiesce -destination-path destination`
 If there are no active transfers for the SnapMirror relationship, this command sets its status to Quiesced. If the relationship has active transfers, the status is set to Quiescing until the transfer is completed, and then the status becomes Quiesced.

Example

This example quiesces transfers involving the destination volume `vol1` from SVM `vs0.example.com`:

```
cluster1::> snapmirror quiesce -destination-path vs0.example.com:vol1
```

3. Verify that all SnapMirror relationships are quiesced:
 `snapmirror show -status !Quiesced`
 This command displays any SnapMirror relationships that are not quiesced.
Example

This example shows that all SnapMirror relationships are quiesced:

```
cluster1::> snapmirror show -status !Quiesced
There are no entries matching your query.
```

4. If any SnapMirror relationships are currently transferring, do one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait for the transfers to complete before performing the Data ONTAP upgrade.</td>
<td>Once each transfer completes, the relationship changes to Quiesced status.</td>
</tr>
<tr>
<td>Stop the transfers by entering the following command:</td>
<td>This command stops the SnapMirror transfer and restores the destination volume to the last Snapshot copy that was successfully transferred. The relationship is set to Quiesced status.</td>
</tr>
<tr>
<td><code>snapmirror abort</code> <code>-destination-path destination -h</code></td>
<td>Note: You must use the –foreground true parameter if you are aborting load-sharing mirror transfers.</td>
</tr>
</tbody>
</table>

Related concepts

Upgrade requirements for SnapMirror on page 31

Related information

Clustered Data ONTAP 8.3 Data Protection Guide

Obtaining Data ONTAP software images

You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

About this task

To upgrade, revert, or downgrade the cluster to the target release of Data ONTAP, you need access to software images. Software images, firmware version information, and the latest firmware for your platform model are available on the NetApp Support Site. Note the following important information:

- Software images are specific to platform models. Be sure to obtain the correct image for your cluster.
Software images include the latest version of system firmware that was available when a given version of Data ONTAP was released.

Steps

1. Locate the target Data ONTAP software in the **Software Downloads** area of the NetApp Support Site.

2. Copy the software image (for example, `830_q_image.tgz`) from the NetApp Support Site to the directory on the HTTP or FTP server from which the image will be served.

Related information

NetApp Downloads: Software

Installing Data ONTAP software images for a major upgrade

Before performing a major upgrade to Data ONTAP 8.3, you must install the software image on the first node to verify that each SVM will be able to reach its external servers during the upgrade. After the image installation succeeds, you install the software image on the remaining nodes.

Before you begin

- You must have prepared the SVM networking for a major upgrade by creating the necessary SVM management LIFs, failover groups, and routes.

- You must have obtained the Data ONTAP software images.

About this task

You do not need to perform this procedure if you are using the automated method to perform a minor NDU or downgrade. In these cases, the `cluster image update` command automatically distributes and installs the target Data ONTAP image on each node in the cluster during the upgrade or downgrade.

When you install the software image on the first node, Data ONTAP checks your networking configuration to ensure that it satisfies the following conditions:

- Each SVM will be able to reach its external servers after the upgrade is complete.

- The first node to be upgraded hosts sufficient LIFs to enable each SVM to reach its external servers through the node.

- The second node to be upgraded (the first node's high-availability partner) is capable of hosting sufficient LIFs if the first node unexpectedly goes out of service during the upgrade.

This check is only performed when you install the software image on the first node. After the image installation succeeds on the first node and the SVM networking configuration is verified, the check will not be run when you install the software image on the remaining nodes.
Steps

1. Install the software image on the first node to be upgraded:

```
system node image update -node node_name -package location -replace-package true
```

You must install the software image on the same node on which you created the SVM management LIFs. This command downloads the software image and checks the networking configuration. If the networking configuration is validated, then the image is installed on the node. Otherwise, the command fails and provides a list of preconditions that you must address.

Note: The `system node image update` command might time out before the networking configuration has been validated. If the command output indicates that time expired, you should make the required networking configuration changes and then reenter the command to complete the remaining networking validation checks.

Example

In this example, the image installation fails because the first node does not host sufficient LIFs to ensure connectivity throughout the upgrade:

```
cluster1::> system node image update -node node0 -package http://www.example.com/
downloads/x86-64/830_image.tgz -replace-package true
Software update started on node node0. Updating image2 with package http://
www.example.com/downloads/x86-64/830_image.tgz.
Downloading package. This may take up to 10 minutes. 
99% downloaded
100% downloaded
Download complete.
Listing package contents.
Decompressing package contents.
Invoking script (validation phase).
Mode of operation is UPDATE
Current image is image1
Alternate image is image2
Package MD5 checksums pass
Versions are compatible
Available space on boot device is 1563 MB
Required space on boot device is 475 MB
Kernel binary matches install machine type
Checking ALL Vservers for sufficiency LIFs.
Running in upgrade mode.
Checking Vserver(s) (vs0 vs1) for sufficiency LIFs.
After upgrade, Server DNS Server 198.51.100.1 WILL BE UNREACHABLE from Vserver vs1.
```

**
* *** FAILURES FOUND. ***
* You must correct these failures to avoid service disruptions. *
* One way to avoid failures in most environments is to create a *
* Vserver management LIF, one for each Vserver, that has connectivity to all *
* external servers (infrastructure servers such as DNS/NIS/LDAP). *
* Add a route for this LIF, if necessary, to provide connectivity to servers. *
* This LIF's home-node should be the first node that will upgrade to 8.3.0. *
* The LIF should have a failover group that includes ONLY the home node *
* and its HA partner. It should have auto-revert enabled. *
* (Failover-group, failover-policy, and auto-revert may be set to other *
* values as desired AFTER the cluster upgrade is complete.)

```
2. Make any required networking configuration changes, and then repeat Step 1.

3. Verify that the software image is downloaded and installed on the first node:

   **system node image show-update-progress -node node_name**

   This command displays the current status of the software image download and installation. You should continue to run this command until the first node reports a Run Status of Exited, and an Exit Status of Success.
Example

In this example, the software image has been downloaded and installed successfully on the first node:

```
cluster1::> system node image show-update-progress -node node0
There is no update/install in progress
Status of most recent operation:
 Run Status: Exited
 Exit Status: Success
 Phase: Run Script
 Exit Message: Installation complete. image2 updated on node node0.
1 entry was acted on.
```

4. Install the software image on the remaining nodes:

```
system node image update -node * -package location -replace-package true -background true
```

This command downloads and installs the software image on all of the nodes simultaneously. To download and install the image on each node one at a time, do not specify the `-background` parameter.

5. Verify that the software image is downloaded and installed on each node:

```
system node image show-update-progress -node *
```

This command displays the current status of the software image download and installation. You should continue to run this command until all nodes report a Run Status of Exited, and an Exit Status of Success.

Example

This example shows a 2-node cluster in which the software image has been downloaded and installed successfully on both nodes:

```
cluster1::> system node image show-update-progress -node *
There is no update/install in progress
Status of most recent operation:
 Run Status: Exited
 Exit Status: Success
 Phase: Run Script
 Exit Message: Installation complete. image2 updated on node node0.
There is no update/install in progress
Status of most recent operation:
 Run Status: Exited
 Exit Status: Success
 Phase: Run Script
 Exit Message: Installation complete. image2 updated on node node1.
2 entries were acted on.
```

Related concepts

*SVM networking considerations for major upgrades* on page 29
Disabling the 32-bit capability

Before you can upgrade your cluster to Data ONTAP 8.3, you must remove all 32-bit data and disable the 32-bit capability. You must complete this task even if you have never created 32-bit aggregates on your cluster.

Before you begin

• You must have expanded all 32-bit aggregates on the cluster to the 64-bit format.
• All aggregates on the cluster must be online.

About this task

32-bit data can exist on your cluster even if you have expanded all of your aggregates to the 64-bit format.

Disabling the 32-bit capability (the last step of this task) should be done only when you are ready to install the new image and upgrade to the new version of Data ONTAP.

Steps

1. Enter the advanced privilege mode:
   ```bash
 set -privilege advanced
   ```

2. Check whether the 32-bit capability can be disabled:
   ```bash
 storage aggregate 64bit-upgrade 32bit-disable -check
   ```
   If the command output indicates that your cluster does not contain any 32-bit data, you can skip to step 4. Otherwise, proceed to the next step.

3. Take the appropriate action or actions depending on the output of the previous command:

<table>
<thead>
<tr>
<th>If the command output indicated that you have...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline aggregates or volumes</td>
<td>Bring them online and repeat the previous step.</td>
</tr>
<tr>
<td></td>
<td>You can use the <code>-force</code> parameter to disable the 32-bit capability with offline volumes or aggregate, but you might not be able to bring them online again after you upgrade.</td>
</tr>
<tr>
<td>32-bit data in one or more aggregates</td>
<td>Find and remove the 32-bit data and repeat the previous step.</td>
</tr>
</tbody>
</table>

4. Disable the 32-bit capability:
storage aggregate 64bit-upgrade 32bit-disable

The command output should indicate that your cluster does not contain any 32-bit data. If it does not, you must repeat this task.

5. Return to the administrative privilege level:

   set -privilege admin

Expanding an aggregate to the 64-bit format

If your system contains 32-bit aggregates, you must expand them to the 64-bit format before upgrading to Data ONTAP 8.3 or later versions, because those versions of Data ONTAP do not support the 32-bit format. This procedure is not supported for Data ONTAP 8.3 or later versions.

Before you begin

- If the aggregate contains destination volumes for a SnapMirror relationship with a 32-bit source volume, the aggregate containing the source volume must be expanded before expanding the aggregate containing the destination volume.

- All FlexCache volumes contained by the aggregate to be expanded must be destroyed before you initiate the expansion. FlexCache volumes are not supported for Data ONTAP 8.3.

About this task

For volumes in a SnapMirror relationship, the destination volume inherits the format of the source volume while the mirror is intact. If the aggregate you are expanding contains a destination volume whose source is a 32-bit volume and you break the mirror before expanding the aggregate, the destination volume will be expanded to the 64-bit format. However, if you reestablish the mirror and the source volume is still 32-bit, the destination volume returns to the 32-bit format. For this reason, you must expand the aggregate containing the source volume before reestablishing the SnapMirror relationship if you want to expand all 32-bit volumes in the aggregate to the 64-bit format.

Steps

1. Enter advanced privilege mode:

   set -privilege advanced

2. Initiate the expansion:

   storage aggregate 64bit-upgrade start -aggregate aggr_name

3. Depending on the result of the preceding step, take the appropriate action:

<table>
<thead>
<tr>
<th>If the command...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiates successfully</td>
<td>Proceed to the next step.</td>
</tr>
</tbody>
</table>
If the command... Then...
Indicates that one or more volumes could not be expanded because they did not have enough space Retry the command, adding the `grow-all` option.
Indicates that the expansion could not be completed for some other reason Take the appropriate action, based on the issue outlined in the error message.

4. Display the status of the expansion:

   `storage aggregate 64bit-upgrade status -aggregate aggr_name`

   The current status of the expansion is displayed. When the message indicates that there is no upgrade in progress, the expansion is complete.

5. Optional: Confirm that all volumes in the aggregate are 64-bit format:

   `volume show -aggregate aggr_name -fields block-type`

6. Return to administrative privilege mode:

   `set -privilege admin`

**Result**

The aggregate is expanded to the 64-bit format. Even if all volumes are expanded, however, some 32-bit data can remain in the Snapshot copies. The presence of 32-bit data prevents an upgrade or transition to Data ONTAP 8.3 or later.

**Finding and removing 32-bit data**

Even if you have expanded all of your aggregates to the 64-bit format, some 32-bit or mixed-format FlexVol volumes or Snapshot copies can remain. These volumes and Snapshot copies must be removed before your data can be accessed by a cluster running Data ONTAP 8.3 or later.

**Before you begin**

- You must have expanded all 32-bit aggregates on the cluster to the 64-bit format.

**About this task**

You must repeat the steps in this task for each aggregate that contains 32-bit data.

**Steps**

1. Enter advanced mode:

   `set -privilege advanced`
2. Display the format of all volumes in the aggregate:

   `storage aggregate 64bit-upgrade status -include-all-volumes -aggregate aggr_name`

   Each volume in the aggregate is displayed with its format.

3. For each 32-bit or mixed-format volume, determine the reason that the volume has not been expanded to the 64-bit format, and then take the appropriate action.

   If you cannot determine the reason that the volume was not expanded, retry the aggregate expansion.

<table>
<thead>
<tr>
<th>If the volume...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the destination of a</td>
<td>Expand the aggregate containing the source volume to the 64-bit format.</td>
</tr>
<tr>
<td>SnapMirror relationship</td>
<td></td>
</tr>
<tr>
<td>Is a read-only volume (but</td>
<td>Make the volume writeable and retry the expansion, or destroy the</td>
</tr>
<tr>
<td>not a SnapMirror destination)</td>
<td>volume.</td>
</tr>
<tr>
<td>Did not expand because of</td>
<td>Increase the free space in the volume or aggregate and retry the</td>
</tr>
<tr>
<td>insufficient free space in the</td>
<td>expansion.</td>
</tr>
<tr>
<td>volume or aggregate</td>
<td></td>
</tr>
</tbody>
</table>

   All 32-bit and mixed-format volumes in the aggregate are now 64-bit. You can confirm this by repeating the previous step.

4. Display all 32-bit Snapshot copies on the cluster:

   `volume snapshot show -fs-block-format !64-bit -fields fs-block-format`

5. Remove the 32-bit Snapshot copies by using the `volume snapshot delete` command.

   **Attention:** This action deletes the data in the Snapshot copies. Ensure that you do not need to retain the Snapshot copies before you delete them. Alternatively, you can wait for the 32-bit Snapshot copies to be aged out. The amount of time this takes depends on your Snapshot copy schedule.

   If a Snapshot copy is the base Snapshot copy for a FlexClone volume, you must split the FlexClone volume from its parent before you can remove the Snapshot copy.

   All 32-bit Snapshot copies are removed. You can confirm this by repeating the previous step.

6. Return to the administrative privilege level:

   `set -privilege admin`

---

**Performing the software upgrade**

To upgrade a cluster to a new Data ONTAP release, you must change the default boot image, choose an upgrade method, and then perform the steps for the upgrade method.
Related concepts

*Types of cluster upgrades* on page 21

**Upgrading a Data ONTAP cluster nondisruptively by using the rolling upgrade method**

The *rolling upgrade* method enables you to upgrade a cluster of two or more nodes nondisruptively. This method has several steps: initiating a failover operation on each node in an HA pair, updating the “failed” node, initiating giveback, and then repeating the process for each HA pair in the cluster.

**Before you begin**

You must have satisfied upgrade preparation requirements.

**About this task**

**Attention:** If you are performing a major upgrade, the first node to be upgraded must be the node on which you configured the data LIFs for external server connectivity and installed the first Data ONTAP image. If you upgrade a different node first, the SVMs might not be able to reach their external servers during the upgrade process.

**Steps**

1. If this is a four-node cluster, use the `cluster show` command at the advanced privilege level to determine which node holds epsilon.
   
   In a four-node cluster, the node that holds epsilon should be upgraded last. If the node that currently holds epsilon is not the node that you plan to upgrade last, you can use the `cluster modify` command to transfer epsilon to a different node.

2. *Upgrading the first node in an HA pair* on page 79
   
   You upgrade the first node in an HA pair by initiating a takeover by the node’s partner. The partner serves the node’s data while the first node is upgraded.

3. *Upgrading the second node in an HA pair* on page 85
   
   After upgrading the first node in an HA pair, you upgrade its partner by initiating a takeover on it. The first node serves the partner’s data while the partner node is upgraded.

4. Repeat Steps 2 and 3 for each additional HA pair.

**After you finish**

You should complete post-upgrade tasks.

**Related concepts**

*How epsilon affects the upgrade sequence for four-node clusters* on page 28
Upgrading the first node in an HA pair

You upgrade the first node in an HA pair by initiating a takeover by the node's partner. The partner serves the node's data while the first node is upgraded.

About this task

If you are performing a major upgrade, the first node to be upgraded must be the same node on which you configured the data LIFs for external connectivity and installed the first Data ONTAP image.

Steps

1. If this is the first node in the cluster to be upgraded, trigger an AutoSupport notification:

   ```
 autosupport invoke -node * -type all -message "Starting_NDU"
   ```

   This AutoSupport notification includes a record of the system status just prior to upgrade. It saves useful troubleshooting information in case there is a problem with the upgrade process.

   If your cluster is not configured to send AutoSupport messages, a copy of the notification is saved locally.

2. Set the Data ONTAP 8.3 software image to be the default image:

   ```
 system image modify {-node nodenameA -iscurrent false} -isdefault true
   ```

   This command uses an extended query to change the Data ONTAP 8.3 software image (which is installed as the alternate image) to be the default image for the node.

3. Verify that the Data ONTAP 8.3 software image is set as the default image:

   ```
 system image show
   ```

   Example

   This example shows that version 8.3.0 is set as the default image on the node:

   ```
 clust1::> system image show
 Is Is
 Node Image Default Current Version Install Date
 ------- ------ -------- ------- ----------- -------------------
 node0 image1 false true 8.2.1 5/10/2014 12:36:46
 image2 true false 8.3.0 8/27/2014 12:58:24
 node1 image1 true false 8.2.1 5/10/2014 12:37:22
 image2 true false 8.3.0 8/27/2014 12:59:26
 4 entries were displayed.
   ```

4. Disable automatic giveback on both nodes of the HA pair if it is enabled by entering the following command on each node:

   ```
 storage failover modify -node nodename -auto-giveback false
   ```
If the cluster is a two-node cluster, a message is displayed warning you that disabling automatic giveback prevents the management cluster services from going online in the event of an alternating-failure scenario. Enter \texttt{y} to continue.

5. Verify that automatic giveback is disabled for both nodes:

\texttt{storage failover show -node nodenameA,nodenameB -fields auto-giveback}

\textbf{Example}

```
cluster1::> storage failover show -node node0,node1 -fields auto-giveback
node auto-giveback
node0 false
node1 false
2 entries were displayed.
```

6. Determine whether the node to be upgraded is currently serving any clients by entering the following command twice:

\texttt{system node run -node nodenameA -command uptime}

The \texttt{uptime} command displays the total number of operations that the node has performed for NFS, CIFS, FC, and iSCSI clients since the node was last booted. For each protocol, you need to run the command twice to determine whether the operation counts are increasing. If they are increasing, the node is currently serving clients for that protocol. If they are not increasing, the node is not currently serving clients for that protocol.

\textbf{Note:} You should make a note of each protocol that has increasing client operations so that after the node is upgraded, you can verify that client traffic has resumed.

\textbf{Example}

This example shows a node with NFS, CIFS, FC, and iSCSI operations. However, the node is currently serving only NFS and iSCSI clients.

```
cluster1::> system node run -node node0 -command uptime
 2:58pm up 7 days, 19:16 800000260 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32810 iSCSI ops
cluster1::> system node run -node node0 -command uptime
 2:58pm up 7 days, 19:17 800001573 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32815 iSCSI ops
```

7. Migrate the data LIFs in one of the following ways:
If this node... | Description
---|---
Hosts the data LIFs that you configured for external server connectivity during the upgrade preparation | Do not migrate the data LIFs required for external server connectivity, but migrate any other data LIFs to the appropriate destination node:
```bash
network interface migrate -vserver Vserver_name -lif LIF_name -source-node nodenameA -destination_node node
```
**Attention:** The data LIFs required for external server connectivity will be migrated automatically when you initiate the takeover. Manually migrating these LIFs away from the first node can prevent them from automatically reverting to the node when it reboots, which can cause a temporary service disruption.

Does not host data LIFs configured for external server connectivity | Migrate all of the data LIFs away from the node:
```bash
network interface migrate-all -node nodenameA
```

8. Use the `network interface show` command to verify any LIFs that you migrated.

For more information about parameters you can use to verify LIF status, see the `network interface show` man page.

**Example**

This example shows that node0's data LIFs migrated successfully. For each LIF, the fields included in this example enable you to verify the LIF's home node and port, the current node and port to which the LIF migrated, and the LIF's operational and administrative status.

```bash
cluster1::> network interface show -data-protocol nfs|cifs -role data -home-node node0 -fields home-node,curr-node,curr-port,home-port,status-admin,status-oper
```

<table>
<thead>
<tr>
<th>home-node</th>
<th>curr-node</th>
<th>curr-port</th>
<th>home-port</th>
<th>status-admin</th>
<th>status-oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data001</td>
<td>node0</td>
<td>e0a</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>vs0</td>
<td>data002</td>
<td>node0</td>
<td>e0b</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>vs0</td>
<td>data003</td>
<td>node0</td>
<td>e0b</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>vs0</td>
<td>data004</td>
<td>node0</td>
<td>e0a</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

4 entries were displayed.

9. Initiate a takeover:

```bash
storage failover takeover -ofnode nodenameA
```

Do not specify the `-option immediate` parameter, because a normal takeover is required for the node that is being taken over to boot onto the new software image. If you did not manually migrate the LIFs away from the node, they automatically migrate to the node's HA partner to ensure that there are no service disruptions.

The first node boots up to the Waiting for giveback state.

**Note:** If AutoSupport is enabled, an AutoSupport message is sent indicating that the node is out of cluster quorum. You can safely ignore this notification and proceed with the upgrade.

10. Verify that the takeover was successful:

```bash
storage failover show
```
Example

This example shows that the takeover was successful. Node node0 is in the Waiting for giveback state, and its partner is in the In takeover state.

<table>
<thead>
<tr>
<th>Node</th>
<th>Partner</th>
<th>Takeover Possible</th>
<th>State Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>node1</td>
<td>-</td>
<td>Waiting for giveback (HA mailboxes)</td>
</tr>
<tr>
<td>node1</td>
<td>node0</td>
<td>false</td>
<td>In takeover</td>
</tr>
</tbody>
</table>

2 entries were displayed.

11. Wait at least 8 minutes to ensure the following conditions:
   - Client multipathing (if deployed) is stabilized.
   - Clients are recovered from the pause in I/O that occurs during takeover.
     The recovery time is client-specific and might take longer than 8 minutes, depending on the characteristics of the client applications.

12. Return the aggregates to the first node:
    ```
 storage failover giveback -of node nodenameA
    ```
    The giveback first returns the root aggregate to the partner node and then, after that node has finished booting, returns the non-root aggregates and any LIFs that were set to automatically revert. The newly booted node begins to serve data to clients from each aggregate as soon as the aggregate is returned.

13. Verify that all aggregates have been returned:
    ```
 storage failover show–giveback
    ```
    If the Giveback Status field indicates that there are no aggregates to give back, then all aggregates have been returned. If the giveback is vetoed, the command displays the giveback progress and which subsystem vetoed the giveback.

14. If any aggregates have not been returned, do the following:
   a. Review the veto workaround to determine whether you want to address the “veto” condition or override the veto.
      ```
 Clustered Data ONTAP 8.3 High-Availability Configuration Guide
      ```
   b. If necessary, address the “veto” condition described in the error message, ensuring that any identified operations are terminated gracefully.
   c. Reenter the `storage failover giveback` command.
      If you decided to override the “veto” condition, set the `-override-vetoes` parameter to `true`.

15. Wait at least 8 minutes to ensure the following conditions:
• Client multipathing (if deployed) is stabilized.
• Clients are recovered from the pause in I/O that occurs during giveback. The recovery time is client-specific and might take longer than 8 minutes, depending on the characteristics of the client applications.

16. Verify that the upgrade was completed successfully for the node:
   a. Set the privilege level to advanced:
      ```bash
 set -privilege advanced
      ```
   b. Ensure that upgrade status is complete for the node:
      ```bash
 system node upgrade-revert show -node nodenameA
      ```
      The status should be listed as complete.
      If the status is not complete, from the node, run the `system node upgrade-revert upgrade` command. If this command does not complete the node's upgrade, contact technical support immediately.
   c. Return to the admin privilege level:
      ```bash
 set -privilege admin
      ```

17. Revert the LIFs back to the node:
    ```bash
 network interface revert *
    ```
    This command returns the LIFs that were migrated away from the node.

**Example**

```
cluster1::> network interface revert *
8 entries were acted on.
```

18. Verify that the node's ports and LIFs are up and operational:
   a. Verify that the node's ports are up:
      ```bash
 network port show -node nodenameA
      ```
      If you are upgrading from the Data ONTAP 8.2 release family, you must enter this command on a node that has been upgraded to Data ONTAP 8.3.

**Example**

This example shows that all of the node's ports are up:

```
cluster1::> network port show -node node0

<table>
<thead>
<tr>
<th>Node</th>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Admin/Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>e0M</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/100</td>
</tr>
</tbody>
</table>
```
b. Verify that the node's data LIFs successfully reverted back to the node, and that they are up:

```
network interface show -data-protocol nfs|cifs -role data -curr-node nodenameA
```

**Example**

This example shows that all of the data LIFs hosted by the node have successfully reverted back to the node, and that their operational status is up:

```
cluster1::> network interface show -data-protocol nfs|cifs -role data -curr-node node0

Logical Status Network Current Current Is
Vserver Interface Admin/Oper Address/Mask Node Port Home
----------- ---------- ---------- ------------------ ------------- ------- ----
vs0 data001 up/up 192.0.2.120/24 node0 e0a true
data002 up/up 192.0.2.121/24 node0 e0b true
data003 up/up 192.0.2.122/24 node0 e0b true
data004 up/up 192.0.2.123/24 node0 e0a true
```

19. If you previously determined that this node serves clients, verify that the node is providing service for each protocol that it was previously serving:

```
system node run -node nodenameA -command uptime
```

The operation counts reset to zero during the upgrade.

**Example**

This example shows that the upgraded node has resumed serving its NFS and iSCSI clients:

```
cluster1::> system node run -node node0 -command uptime
3:15pm up 0 days, 0:16 129 NFS ops, 0 CIFS ops, 0 HTTP ops, 0 FCP ops, 2 iSCSI ops
```

**After you finish**

You should proceed to upgrade the node's HA partner as quickly as possible. If you must suspend the upgrade process for any reason, both nodes in the HA pair should be running the same Data ONTAP version.
Upgrading the partner node in an HA pair

After upgrading the first node in an HA pair, you upgrade its partner by initiating a takeover on it. The first node serves the partner's data while the partner node is upgraded.

Steps

1. Set the Data ONTAP 8.3 software image to be the default image:

   ```
 system image modify {-node nodenameB -iscurrent false} -isdefault true
   ```

   This command uses an extended query to change the Data ONTAP 8.3 software image (which is installed as the alternate image) to be the default image for the node.

2. Verify that the Data ONTAP 8.3 software image is set as the default image:

   ```
 system image show
   ```

Example

This example shows that version 8.3.0 is set as the default image on the node:

```
cluster1::> system image show

 Node Image Is Default Is Current Version Install Date
---------- ------- ------ ------- -------- ----------- -------------------
node0 image1 false false 8.2.1 5/10/2014 12:36:46
 image2 true true 8.3.0 8/27/2014 12:58:24
node1 image1 false true 8.2.1 5/10/2014 12:37:22
 image2 true false 8.3.0 8/27/2014 12:59:26
4 entries were displayed.
```

3. If you are upgrading a four-node cluster, and if this is the last node to be upgraded, then transfer epsilon to a node in the first HA pair.

   Transferring epsilon to a node in the first HA pair helps to prevent the cluster from falling out of quorum if another node unexpectedly goes out of service while the last node is being upgraded.

   a. Set the privilege level to advanced:

   ```
 set -privilege advanced
   ```

   b. Mark epsilon false on the node:

   ```
 cluster modify -node nodename -epsilon false
   ```

   c. Mark epsilon true on the first node that was upgraded:

   ```
 cluster modify -node nodename -epsilon true
   ```

   d. Return to the admin privilege level:

   ```
 set -privilege admin
   ```
4. Determine whether the node to be upgraded is currently serving any clients by entering the following command twice:

```
system node run -node nodenameB -command uptime
```

The `uptime` command displays the total number of operations that the node has performed for NFS, CIFS, FC, and iSCSI clients since the node was last booted. For each protocol, you need to run the command twice to determine whether the operation counts are increasing. If they are increasing, the node is currently serving clients for that protocol. If they are not increasing, the node is not currently serving clients for that protocol.

Note: You should make a note of each protocol that has increasing client operations so that after the node is upgraded, you can verify that client traffic has resumed.

Example

This example shows a node with NFS, CIFS, FC, and iSCSI operations. However, the node is currently serving only NFS and iSCSI clients.

```
cluster1::> system node run -node node1 -command uptime
2:58pm up 7 days, 19:16 800000260 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32810 iSCSI ops
```

```
cluster1::> system node run -node node1 -command uptime
2:58pm up 7 days, 19:17 800001573 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32815 iSCSI ops
```

5. Migrate the data LIFs in one of the following ways:

<table>
<thead>
<tr>
<th>If this node...</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosts the data LIFs that you configured for external server connectivity during the upgrade preparation</td>
<td>Do not migrate the LIFs required for external server connectivity, but migrate any other data LIFs to the appropriate destination node:</td>
</tr>
<tr>
<td></td>
<td><code>network interface migrate -vserver Vserver_name -lif LIF_name -source-node nodenameB -destination_node node</code></td>
</tr>
<tr>
<td></td>
<td><strong>Attention:</strong> The data LIFs required for external server connectivity will be migrated automatically when you initiate the takeover. Manually migrating these LIFs away from the first node can prevent them from automatically reverting to the node when it reboots, which can cause a temporary service disruption.</td>
</tr>
<tr>
<td>Does not host data LIFs configured for external server connectivity</td>
<td>Migrate all of the data LIFs away from the node:</td>
</tr>
<tr>
<td></td>
<td><code>network interface migrate-all -node nodenameB</code></td>
</tr>
</tbody>
</table>

6. Use the `network interface show` command to verify the status of any LIFs that you migrated.

For more information about parameters you can use to verify LIF status, see the `network interface show` man page.
Example

This example shows that node1’s data LIFs migrated successfully. For each LIF, the fields included in this example enable you to verify the LIF’s home node and port, the current node and port to which the LIF migrated, and the LIF’s operational and administrative status.

<table>
<thead>
<tr>
<th>vserver</th>
<th>lif</th>
<th>home-node</th>
<th>home-port</th>
<th>curr-node</th>
<th>curr-port</th>
<th>status-oper</th>
<th>status-admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data001</td>
<td>node1</td>
<td>e0a</td>
<td>node0</td>
<td>e0a</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>vs0</td>
<td>data002</td>
<td>node1</td>
<td>e0b</td>
<td>node0</td>
<td>e0b</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>vs0</td>
<td>data003</td>
<td>node1</td>
<td>e0b</td>
<td>node0</td>
<td>e0b</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>vs0</td>
<td>data004</td>
<td>node1</td>
<td>e0a</td>
<td>node0</td>
<td>e0a</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

4 entries were displayed.

7. Initiate a takeover by using one of the following commands:

<table>
<thead>
<tr>
<th>If you are upgrading from a...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data ONTAP 8.3.x release</td>
<td><code>storage failover takeover -ofnode nodenameB</code></td>
</tr>
<tr>
<td>Data ONTAP 8.2.x release</td>
<td><code>storage failover takeover -ofnode nodenameB -option allow-version-mismatch</code></td>
</tr>
</tbody>
</table>

The `allow-version-mismatch` option enables the HA pair to tolerate different Data ONTAP release family versions during a major release upgrade.

Do not specify the `-option immediate` parameter, because a normal takeover is required for the node that is being taken over to boot onto the new software image. If you did not manually migrate the LIFs away from the node, they automatically migrate to the node’s HA partner to ensure that there are no service disruptions.

The node that is taken over boots up to the **Waiting for giveback** state.

**Note:** If AutoSupport is enabled, an AutoSupport message is sent indicating that the node is out of cluster quorum. You can safely ignore this notification and proceed with the upgrade.

8. Verify that the takeover was successful:

`storage failover show`

If you are performing a major upgrade, with the first node running the newer version of Data ONTAP and the partner running an earlier Data ONTAP release family, the nodes are in a state of version mismatch. This means that normal high-availability functions such as NVRAM mirroring and automatic takeover are not in effect. You might see error messages indicating version mismatch and mailbox format problems. This is expected behavior; it represents a temporary state in a major nondisruptive upgrade and is not harmful. You should complete the upgrade procedure as quickly as possible; do not allow the two nodes to remain in a state of version mismatch longer than necessary.
Example

This example shows that the takeover was successful. Node node1 is in the Waiting for giveback state, and its partner is in the In takeover state.

```
cluster1::> storage failover show
<table>
<thead>
<tr>
<th>Node</th>
<th>Partner</th>
<th>Possible State</th>
<th>State Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>node1</td>
<td>false</td>
<td>Waiting for giveback (HA mailboxes)</td>
</tr>
<tr>
<td>node1</td>
<td>node0</td>
<td>-</td>
<td>In takeover</td>
</tr>
</tbody>
</table>
```

2 entries were displayed.

9. Wait at least 8 minutes to ensure the following conditions:

   - Client multipathing (if deployed) is stabilized.
   - Clients are recovered from the pause in I/O that occurs during takeover.
     The recovery time is client-specific and might take longer than 8 minutes, depending on the characteristics of the client applications.

10. Return the aggregates to the partner node:

    `storage failover giveback -ofnode nodenameB`

    The giveback first returns the root aggregate to the partner node and then, after that node has finished booting, returns the non-root aggregates and any LIFs that were set to automatically revert. The newly-booted node begins to serve data to clients from each aggregate as soon as the aggregate is returned.

11. Verify that all aggregates have been returned:

    `storage failover show-giveback`

    If the Giveback Status field indicates that there are no aggregates to give back, then all aggregates have been returned. If the giveback is vetoed, the command displays the giveback progress and which subsystem vetoed the giveback.

12. If any aggregates have not been returned, do the following:

    a. Review the veto workaround to determine if you want to address the “veto” condition or override the veto.

        *Clustered Data ONTAP 8.3 High-Availability Configuration Guide*

    b. If necessary, address the “veto” condition described in the error message, ensuring that any identified operations are terminated gracefully.

    c. Reenter the `storage failover giveback` command.

        If you decided to override the “veto” condition, set the `override-vetoes` parameter to true.

13. Wait at least 8 minutes to ensure the following conditions:
• Client multipathing (if deployed) is stabilized.

• Clients are recovered from the pause in I/O that occurs during giveback. The recovery time is client-specific and might take longer than 8 minutes, depending on the characteristics of the client applications.

14. Verify that the upgrade was completed successfully for the node:

   a. Set the privilege level to advanced:
      
      ```bash
 set -privilege advanced
      ```

   b. Ensure that upgrade status is complete for the node:
      
      ```bash
 system node upgrade-revert show -node nodenameB
      ```
      
      The status should be listed as `complete`.
      
      If the status is not `complete`, from the node, run the `system node upgrade-revert upgrade` command. If this command does not complete the node's upgrade, contact technical support immediately.

   c. Return to the admin privilege level:
      
      ```bash
 set -privilege admin
      ```

15. Revert the LIFs back to the node:

   ```bash
 network interface revert *
   ```

   This command returns the LIFs that were migrated away from the node.

   **Example**

   ```bash
 cluster1::> network interface revert *
 8 entries were acted on.
   ```

16. Verify that the node's ports and LIFs are up and operational:

   a. Verify that the node's ports are up:
      
      ```bash
 network port show -node nodenameB
      ```
      
      If you are upgrading from the Data ONTAP 8.2 release family, you must enter this command on a node that has been upgraded to Data ONTAP 8.3.

   **Example**

   This example shows that all of the node's data ports are up:

   ```bash
 cluster1::> network port show -node node1
<table>
<thead>
<tr>
<th>Node</th>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Admin/Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1</td>
<td>e0M</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/100</td>
</tr>
</tbody>
</table>
b. Verify that the node's data LIFs successfully reverted back to the node, and that they are up:

```
network interface show -data-protocol nfs|cifs -role data -curr-node nodenameB
```

Example

This example shows that all of the data LIFs hosted by the node have successfully reverted back to the node, and that their operational status is up:

```
cluster1::> network interface show -data-protocol nfs|cifs -role data -curr-node node1
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Logical Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Is</th>
<th>Port</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data001</td>
<td>up/up</td>
<td>192.0.2.120/24</td>
<td>node1</td>
<td>e0a</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data002</td>
<td>up/up</td>
<td>192.0.2.121/24</td>
<td>node1</td>
<td>e0b</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data003</td>
<td>up/up</td>
<td>192.0.2.122/24</td>
<td>node1</td>
<td>e0b</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data004</td>
<td>up/up</td>
<td>192.0.2.123/24</td>
<td>node1</td>
<td>e0a</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

4 entries were displayed.

17. If you previously determined that this node serves clients, verify that the node is providing service for each protocol that it was previously serving:

```
system node run -node nodenameB -command uptime
```

The operation counts reset to zero during the upgrade.

Example

This example shows that the upgraded node has resumed serving its NFS and iSCSI clients:

```
cluster1::> system node run -node node1 -command uptime
```

```
3:15pm up  0 days, 0:16 129 NFS ops, 0 CIFS ops, 0 HTTP ops, 0 FCP ops, 2 iSCSI ops
```

18. If this was the last node in the cluster to be upgraded, trigger an AutoSupport notification:

```
autosupport invoke -node * -type all -message "Finishing_NDU"
```

This AutoSupport notification includes a record of the system status just prior to upgrade. It saves useful troubleshooting information in case there is a problem with the upgrade process.

If your cluster is not configured to send AutoSupport messages, a copy of the notification is saved locally.

19. Confirm that the new Data ONTAP 8.3.x software is running on both nodes of the HA pair:

```
system node image show
```
Example

This example shows version 8.3.0 as the current version on both nodes:

```
cluster1::> system node image show

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Is Default</th>
<th>Is Current</th>
<th>Current Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node1</td>
<td>image1</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 12:59:26</td>
</tr>
</tbody>
</table>
```

20. Reenable automatic giveback on both nodes if it was previously disabled:

```
storage failover modify -node nodename -auto-giveback true
```

21. Verify that the cluster is in quorum and that services are running by using the `cluster show` and `cluster ring show` (advanced privilege level) commands.

You should do this before upgrading any additional HA pairs.

After you finish

Upgrade any additional HA pairs.

Upgrading a Data ONTAP cluster nondiserruptively by using the batch method

The *batch upgrade* method enables you to nondisruptively upgrade a cluster of eight or more nodes in a shorter amount of time than a rolling upgrade. This method involves dividing the cluster into two upgrade batches, upgrading a set of nodes in the first batch, upgrading their high-availability partners, and then repeating the process for the second batch.

Before you begin

- The cluster must be running Data ONTAP 8.3.
 - If you are upgrading from Data ONTAP 8.2, you must perform a rolling upgrade.
- You must have completed the upgrade preparation requirements and changed the default boot image.
- You must have determined the upgrade sequence for the batch upgrade.

About this task

Attention: Do not attempt to perform a batch upgrade by rebooting half of the nodes and then rebooting their high-availability partners. If you do, the cluster will lose quorum and stop serving data.
Steps

1. **Upgrading the first set of nodes in a batch of HA pairs** on page 92
 You upgrade the first set of nodes in a batch of HA pairs by initiating a takeover by the nodes' partners. The partners serve the nodes' data while the first set of nodes is upgraded.

2. **Upgrading the second set of nodes in a batch of HA pairs** on page 98
 You upgrade the partner nodes in a batch of HA pairs by initiating a takeover on the nodes. The first set of nodes serve the nodes' data while the partners are upgraded.

3. Repeat Steps 1-2 to upgrade the second batch.

After you finish
You should complete post-upgrade tasks.

Related tasks

Planning the upgrade sequence for a batch upgrade on page 35
 If you intend to perform a nondisruptive batch upgrade, you should plan the upgrade sequence before you upgrade Data ONTAP. By following the required sequence, you can ensure that the cluster remains up and continues serving data while you perform the NDU.

Upgrading the first set of nodes in a batch of HA pairs
You upgrade the first set of nodes in a batch of HA pairs by initiating a takeover by the nodes' partners. The partners serve the nodes' data while the first set of nodes is upgraded.

Steps

1. If this is the first set of nodes to be upgraded, trigger an AutoSupport notification:
   ```bash
   autosupport invoke -node * -type all -message "Starting_NDU"
   ```
 This AutoSupport notification includes a record of the system status just prior to upgrade. It saves useful troubleshooting information in case there is a problem with the upgrade process.
 If your cluster is not configured to send AutoSupport messages, a copy of the notification is saved locally.

2. For each node in the first set, set the Data ONTAP 8.3 software image to be the default image:
   ```bash
   system image modify {-node nodename -iscurrent false} -isdefault true
   ```
 This command uses an extended query to change the Data ONTAP 8.3 software image (which is installed as the alternate image) to be the default image for the node.

3. Verify that the Data ONTAP 8.3 software image is set as the default image:
   ```bash
   system image show
   ```
Example

This example shows that the target version is set as the default image on each of the nodes in the first set:

```
cluster1::> system image show

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Is Default</th>
<th>Current Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1</td>
<td>false</td>
<td>8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node1</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:37:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:59:26</td>
</tr>
<tr>
<td>node2</td>
<td>image1</td>
<td>false</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node3</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node4</td>
<td>image1</td>
<td>false</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node5</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node6</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node7</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node8</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node9</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node10</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td>node11</td>
<td>image1</td>
<td>true</td>
<td>true 8.3.x</td>
<td>5/10/2014 12:36:46</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false 8.3.y</td>
<td>8/27/2014 12:58:24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 entries were displayed.</td>
</tr>
</tbody>
</table>
```

4. Disable automatic giveback on the HA pairs in the first batch by entering the following command on each node:

```
storage failover modify -node nodename -auto-giveback false
```

5. Verify that automatic giveback is disabled for the nodes in the batch:

```
storage failover show -fields auto-giveback
```

Example

This example shows that automatic giveback has been disabled on all of the nodes in the batch:

```
cluster1::> storage failover show -fields auto-giveback

<table>
<thead>
<tr>
<th>Node</th>
<th>auto-giveback</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>false</td>
</tr>
<tr>
<td>node1</td>
<td>false</td>
</tr>
</tbody>
</table>
```
6. Determine whether the nodes to be upgraded are currently serving any clients by entering the following command twice for each node:

```
system node run -node nodename -command uptime
```

The `uptime` command displays the total number of operations that the node has performed for NFS, CIFS, FC, and iSCSI clients since the node was last booted. For each protocol, you need to run the command twice to determine whether the operation counts are increasing. If they are increasing, the node is currently serving clients for that protocol. If they are not increasing, the node is not currently serving clients for that protocol.

Note: You should make a note of each protocol that has increasing client operations so that after the node is upgraded, you can verify that client traffic has resumed.

Example

This example shows a node with NFS, CIFS, FC, and iSCSI operations. However, the node is currently serving only NFS and iSCSI clients.

```
cluster1::> system node run -node node0 -command uptime
  2:58pm up  7 days, 19:16 800000260 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32810 iSCSI ops
cluster1::> system node run -node node0 -command uptime
  2:58pm up  7 days, 19:17 800001573 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32815 iSCSI ops
```

7. Migrate LIFs away from the nodes that will be taken over by entering the following command for each node in the first set:

```
network interface migrate {-data-protocol nfs|cifs -role data -curr-node source_node} -dest-node partner_node
```

This command migrates the node's data LIFs to its high-availability partner, which takes over the node's storage while the node is upgraded. If the partner cannot host the node's data LIFs, such as if the partner does not have a port on the same broadcast domain, you can migrate the LIFs to any other node that remains up while the first node is upgraded.

Data LIFs for SAN protocols are not migrated. As long as these LIFs exist on each node in the cluster, data can be served through alternate paths during the upgrade process.

8. Verify that the LIFs migrated to the proper ports on the nodes' partners by entering the following command for each node's partner:

```
network interface show -data-protocol nfs|cifs -role data -curr-node partner_node
```
If desired, you can migrate a LIF to a different port on the partner node by using the `network interface migrate` command.

Example

This example shows that node0’s data LIFs were migrated to port e0b on its partner (node1):

```
cluster1::> network interface show -data-protocol nfs|cifs -role data -curr-node node1

Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
vs0         lif1       up/up      192.0.2.130/24     node1         e0b     true
              lif2       up/up      192.0.2.131/24     node1         e0b     false
              lif3       up/up      192.0.2.132/24     node1         e0b     true
vs1         lif1       up/up      192.0.2.133/24     node1         e0b     false
              lif2       up/up      192.0.2.134/24     node1         e0b     true
5 entries were displayed.
```

9. Initiate a takeover by entering the following command for each node in the first set:

```
storage failover takeover -ofnode nodename
```

Do not specify the `-option immediate` parameter, because a normal takeover is required for the nodes that are being taken over to boot onto the new software image.

The nodes boot up to the Waiting for giveback state.

Note: If AutoSupport is enabled, an AutoSupport message is sent indicating that the nodes are out of cluster quorum. You can safely ignore this notification and proceed with the upgrade.

10. Verify that the takeover was successful:

```
storage failover show
```

Example

This example shows that the takeover was successful. The first set of nodes (node0, node2, and node4) are in the Waiting for giveback state, and their partners are in the In takeover state.

```
cluster1::> storage failover show

Takeover       Node   Partner    Possible   State Description
--------------- -------- --------- ---------- -------------------------------------
              node0   node1     -          Waiting for giveback (HA mailboxes)
              node1   node0     false     In takeover
              node2   node3     -          Waiting for giveback (HA mailboxes)
              node3   node2     false     In takeover
              node4   node5     -          Waiting for giveback (HA mailboxes)
              node5   node4     false     In takeover
              node6   node7     true      Connected to node7
              node7   node6     true      Connected to node6
              node8   node9     true      Connected to node9
              node9   node8     true      Connected to node8
              node10  node11    true      Connected to node11
              node11  node10    true      Connected to node10
12 entries were displayed.
```
11. Wait at least 8 minutes to ensure the following conditions:
 - Client multipathing (if deployed) is stabilized.
 - Clients are recovered from the pause in I/O that occurs during takeover.
 The recovery time is client-specific and might take longer than 8 minutes depending on the
 characteristics of the client applications.

12. Return the aggregates to the nodes by entering the following command for each of the nodes' partners:

 \texttt{storage failover giveback -ofnode nodename}

 The giveback first returns the root aggregate to the partner nodes and then, after those nodes have
 finished booting, returns the non-root aggregates.

13. Verify that all aggregates have been returned:

 \texttt{storage failover show-giveback}

 If the Giveback Status field indicates that there are no aggregates to give back, then all
 aggregates have been returned. If the giveback is vetoed, the command displays the giveback
 progress and which subsystem vetoed the giveback.

14. If any aggregates have not been returned, do the following:
 a. Review the veto workaround to determine whether you want to address the “veto” condition
 or override the veto.

 \textit{Clustered Data ONTAP 8.3 High-Availability Configuration Guide}

 b. If necessary, address the “veto” condition described in the error message, ensuring that any
 identified operations are terminated gracefully.

 c. Reenter the \texttt{storage failover giveback} command.

 If you decided to override the “veto” condition, set the \texttt{-override-vetoes} parameter to
 \texttt{true}.

15. Wait at least 8 minutes to ensure the following conditions:
 - Client multipathing (if deployed) is stabilized.
 - Clients are recovered from the pause in I/O that occurs during giveback.
 The recovery time is client-specific and might take longer than 8 minutes depending on the
 characteristics of the client applications.

16. Verify that the upgrade was completed successfully for the nodes in the first set:
 a. Set the privilege level to advanced:

 \texttt{set -privilege advanced}
b. Ensure that upgrade status is complete for each node in the first set:

```
  system node upgrade-revert show -node nodename
```

The status should be listed as **complete**.

If the status is not **complete** for any node in the set, from the node, run the `system node upgrade-revert upgrade` command. If this command does not complete the node's upgrade, contact technical support immediately.

c. Return to the admin privilege level:

```
  set -privilege admin
```

17. Revert the LIFs back to the first set of nodes:

```
  network interface revert *
```

This command returns the LIFs that were migrated away from the nodes.

Example

```
cluster1::> network interface revert *
12 entries were acted on.
```

18. Verify that the nodes' ports and LIFs are up and operational by completing the following steps for each node in the first set:

a. Verify that the ports are up for each node in the first set:

```
  network port show -node nodename
```

Example

This example shows that all of a node's ports are up:

```
cluster1::> network port show -node node0

<table>
<thead>
<tr>
<th>Node</th>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Admin/Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>e0M</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/100</td>
</tr>
<tr>
<td></td>
<td>e0a</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td>e0b</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td>e1a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
</tr>
<tr>
<td></td>
<td>e1b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
</tr>
</tbody>
</table>

5 entries were displayed.
```

b. Verify that data LIFs successfully reverted back to each node in the first set, and that the LIFs are up:

```
  network interface show -data-protocol nfs|cifs -role data -curr-node nodename
```
Example

This example shows that all of the data LIFs hosted by a node have successfully reverted back to the node, and that they are up:

```
cluster1::> network interface show -data-protocol nfs|cifs -role data -curr-node node0
```

<table>
<thead>
<tr>
<th>Logical</th>
<th>Status</th>
<th>Network</th>
<th>Current</th>
<th>Current Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vserver</td>
<td>Interface</td>
<td>Admin/Oper Address/Mask</td>
<td>Node</td>
<td>Port</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>vs0</td>
<td>data001</td>
<td>up/up 192.0.2.120/24</td>
<td>node0</td>
<td>e0a</td>
</tr>
<tr>
<td></td>
<td>data002</td>
<td>up/up 192.0.2.121/24</td>
<td>node0</td>
<td>e0b</td>
</tr>
<tr>
<td></td>
<td>data003</td>
<td>up/up 192.0.2.122/24</td>
<td>node0</td>
<td>e0b</td>
</tr>
<tr>
<td></td>
<td>data004</td>
<td>up/up 192.0.2.123/24</td>
<td>node0</td>
<td>e0a</td>
</tr>
</tbody>
</table>

4 entries were displayed.

19. If you previously determined that any of the nodes in the first set serve clients, verify that each node is providing service for each protocol that it was previously serving:

```
system node run -node nodename -command uptime
```

The operation counts reset to zero during the upgrade.

Example

This example shows that an upgraded node has resumed serving its NFS and iSCSI clients:

```
cluster1::> system node run -node node0 -command uptime
3:15pm up 0 days, 0:16 129 NFS ops, 0 CIFS ops, 0 HTTP ops, 0 FCP ops, 2 iSCSI ops
```

After you finish

You should proceed to upgrade the nodes' HA partners as quickly as possible. If you must suspend the upgrade process for any reason, both nodes in the HA pairs should be running the same Data ONTAP version.

Upgrading the partner nodes in a batch of HA pairs

You upgrade the partner nodes in a batch of HA pairs by initiating a takeover on the nodes. The first set of nodes serve the nodes' data while the partners are upgraded.

Steps

1. For each of the partner nodes, set the Data ONTAP 8.3 software image to be the default image:

   ```
   system image modify {-node nodename -iscurrent false} -isdefault true
   ```

 This command uses an extended query to change the Data ONTAP 8.3 software image (which is installed as the alternate image) to be the default image for the node.

2. Verify that the Data ONTAP 8.3 software image is set as the default image:

   ```
   system image show
   ```
Example

This example shows that the target version is set as the default image for each of the partner nodes in the first batch:

```
cluster1::> system image show
Is      Is                Install
Node     Image   Default     Current Version     Date
-------- ------- ------- ------- ----------- -------------------
node0     image1  false   false    8.3.x     5/10/2014 12:36:46
          image2  true   true      8.3.y     8/27/2014 12:58:24
node1     image1  false   true      8.3.x     5/10/2014 12:37:22
          image2  true   false    8.3.y     8/27/2014 12:59:26
node2     image1  false   false    8.3.x     5/10/2014 12:36:46
          image2  true   true      8.3.y     8/27/2014 12:58:24
node3     image1  false   true      8.3.x     5/10/2014 12:36:46
          image2  true   false    8.3.y     8/27/2014 12:58:24
node4     image1  false   false    8.3.x     5/10/2014 12:36:46
          image2  true   true      8.3.y     8/27/2014 12:58:24
node5     image1  false   true      8.3.x     5/10/2014 12:36:46
          image2  true   false    8.3.y     8/27/2014 12:58:24
node6     image1  true    true      8.3.x     5/10/2014 12:36:46
          image2  true   false    8.3.y     8/27/2014 12:58:24
node7     image1  true    true      8.3.x     5/10/2014 12:36:46
          image2  false   false    8.3.y     8/27/2014 12:58:24
node8     image1  true    true      8.3.x     5/10/2014 12:36:46
          image2  false   false    8.3.y     8/27/2014 12:58:24
node9     image1  true    true      8.3.x     5/10/2014 12:36:46
          image2  false   false    8.3.y     8/27/2014 12:58:24
node10    image1  true    true      8.3.x     5/10/2014 12:36:46
          image2  false   false    8.3.y     8/27/2014 12:58:24
node11    image1  true    true      8.3.x     5/10/2014 12:36:46
          image2  false   false    8.3.y     8/27/2014 12:58:24
```

12 entries were displayed.

3. Determine whether the nodes to be upgraded are currently serving any clients by entering the following command twice for each node:

 `system node run --node nodename --command uptime`

The `uptime` command displays the total number of operations that the node has performed for NFS, CIFS, FC, and iSCSI clients since the node was last booted. For each protocol, you need to run the command twice to determine whether the operation counts are increasing. If they are increasing, the node is currently serving clients for that protocol. If they are not increasing, the node is not currently serving clients for that protocol.

Note: You should make a note of each protocol that has increasing client operations so that after the node is upgraded, you can verify that client traffic has resumed.
Example

This example shows a node with NFS, CIFS, FC, and iSCSI operations. However, the node is currently serving only NFS and iSCSI clients.

```
cluster1::> system node run -node node1 -command uptime
2:58pm up  7 days, 19:16 800000260 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32810 iSCSI ops

cluster1::> system node run -node node1 -command uptime
2:58pm up  7 days, 19:17 800001573 NFS ops, 1017333 CIFS ops, 0 HTTP ops, 40395 FCP ops, 32815 iSCSI ops
```

4. Migrate LIFs away from the nodes that will be taken over by entering the following command for each node in the partner set:

```
network interface migrate {-data-protocol nfs|cifs -role data -curr-node source_node} -dest-node partner_node
```

This command migrates the node's data LIFs to its high-availability partner, which takes over the node's storage while the node is upgraded. If the partner cannot host the node's data LIFs, such as if the partner does not have a port on the same broadcast domain, you can migrate the LIFs to any other node that remains up while the first node is upgraded.

Data LIFs for SAN protocols are not migrated. As long as these LIFs exist on each node in the cluster, data can be served through alternate paths during the upgrade process.

5. Verify that the LIFs migrated to the proper ports on the nodes' partners by entering the following command for each node's partner:

```
network interface show -data-protocol nfs|cifs -role data -curr-node partner_node
```

If desired, you can migrate a LIF to a different port on the partner node by using the network interface migrate command.

Example

This example shows that node1’s data LIFs were migrated to port e0b on its partner (node0):

```
cluster1::> network interface show -data-protocol nfs|cifs -role data -curr-node node0

Logical    Status     Network           Current       Current Is
Vserver    Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ------------------ ------------- ------- ----
vs0         lif1       up/up      192.0.2.130/24     node0         e0b     false
            lif2       up/up      192.0.2.131/24     node0         e0b     true
            lif3       up/up      192.0.2.132/24     node0         e0b     false
vs1         lif1       up/up      192.0.2.133/24     node0         e0b     true
            lif2       up/up      192.0.2.134/24     node0         e0b     false
5 entries were displayed.
```

6. Initiate a takeover by entering the following command for each node in the partner set:

```
storage failover takeover -ofnode nodename
```

Do not specify the -option immediate parameter, because a normal takeover is required for the node that is being taken over to boot onto the new software image.
The nodes that are taken over boot up to the **Waiting for giveback** state.

Note: If AutoSupport is enabled, an AutoSupport message is sent indicating that the nodes are out of cluster quorum. You can safely ignore this notification and proceed with the upgrade.

7. **Verify that the takeover was successful:**

   ```
   storage failover show
   ```

 If you are performing a major upgrade, with one set of nodes running the newer version of Data ONTAP and their partners running an earlier Data ONTAP release family, the nodes are in a state of version mismatch. This means that normal high-availability functions such as NVRAM mirroring and automatic takeover are not in effect. You might see error messages indicating version mismatch and mailbox format problems. This is expected behavior; it represents a temporary state in a major nondisruptive upgrade and is not harmful. You should complete the upgrade procedure as quickly as possible; do not allow the nodes to remain in a state of version mismatch longer than necessary.

 Example

 This example shows that the takeover was successful. The partner set of nodes (node1, node3, and node5) are in the **Waiting for giveback** state, and their partners are in the **In takeover** state.

   ```
   cluster1::> storage failover show
   
   +-----------------+-----------------+-----------------+--------------------------+
<table>
<thead>
<tr>
<th>Node</th>
<th>Partner</th>
<th>Possible State</th>
<th>State Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>node0</td>
<td>node1</td>
<td>false</td>
<td>In takeover</td>
</tr>
<tr>
<td>node1</td>
<td>node0</td>
<td>-</td>
<td>Waiting for giveback (HA mailboxes)</td>
</tr>
<tr>
<td>node2</td>
<td>node3</td>
<td>false</td>
<td>In takeover</td>
</tr>
<tr>
<td>node3</td>
<td>node2</td>
<td>-</td>
<td>Waiting for giveback (HA mailboxes)</td>
</tr>
<tr>
<td>node4</td>
<td>node5</td>
<td>false</td>
<td>In takeover</td>
</tr>
<tr>
<td>node5</td>
<td>node4</td>
<td>-</td>
<td>Waiting for giveback (HA mailboxes)</td>
</tr>
<tr>
<td>node6</td>
<td>node7</td>
<td>true</td>
<td>Connected to node7</td>
</tr>
<tr>
<td>node7</td>
<td>node6</td>
<td>true</td>
<td>Connected to node6</td>
</tr>
<tr>
<td>node8</td>
<td>node9</td>
<td>true</td>
<td>Connected to node9</td>
</tr>
<tr>
<td>node9</td>
<td>node8</td>
<td>true</td>
<td>Connected to node8</td>
</tr>
<tr>
<td>node10</td>
<td>node11</td>
<td>true</td>
<td>Connected to node11</td>
</tr>
<tr>
<td>node11</td>
<td>node10</td>
<td>true</td>
<td>Connected to node10</td>
</tr>
</tbody>
</table>
   +-----------------+-----------------+-----------------+--------------------------+
   12 entries were displayed.
   ```

8. **Wait at least 8 minutes to ensure the following conditions:**

 - Client multipathing (if deployed) is stabilized.
 - Clients are recovered from the pause in I/O that occurs during takeover.
 The recovery time is client-specific and might take longer than 8 minutes depending on the characteristics of the client applications.

9. Return the aggregates to the nodes by entering the following command for each of the nodes' partners:

   ```
   storage failover giveback –ofnode nodename
   ```
The giveback first returns the root aggregate to the partner nodes and then, after those nodes have finished booting, returns the non-root aggregates.

10. Verify that all aggregates have been returned:

 storage failover show-giveback

 If the Giveback Status field indicates that there are no aggregates to give back, then all aggregates have been returned. If the giveback is vetoed, the command displays the giveback progress and which subsystem vetoed the giveback.

11. If any aggregates have not been returned, do the following:

 a. Review the veto workaround to determine whether you want to address the “veto” condition or override the veto.

 Clustered Data ONTAP 8.3 High-Availability Configuration Guide

 b. If necessary, address the “veto” condition described in the error message, ensuring that any identified operations are terminated gracefully.

 c. Reenter the storage failover giveback command.

 If you decided to override the “veto” condition, set the -override-vetoes parameter to true.

12. Wait at least 8 minutes to ensure the following conditions:

 - Client multipathing (if deployed) is stabilized.
 - Clients are recovered from the pause in I/O that occurs during giveback.
 The recovery time is client-specific and might take longer than 8 minutes depending on the characteristics of the client applications.

13. Verify that the upgrade was completed successfully for the nodes in the partner set:

 a. Set the privilege level to advanced:

 set -privilege advanced

 b. Ensure that upgrade status is complete for each node in the partner set:

 system node upgrade-revert show -node nodename

 The status should be listed as complete.

 If the status is not complete for any node in the set, from the node, run the system node upgrade-revert upgrade command. If this command does not complete the node’s upgrade, contact technical support immediately.

 c. Return to the admin privilege level:

 set -privilege admin
14. Revert the LIFs back to the partner set of nodes:

```
network interface revert *
```

This command returns the LIFs that were migrated away from the nodes.

Example

```
cluster1::> network interface revert *
12 entries were acted on.
```

15. Verify that the nodes' ports and LIFs are up and operational by completing the following steps for each node that was upgraded:

 a. Verify that the ports are up for each node:

```
   network port show -node nodename
```

Example

This example shows that all of a node's ports are up:

```
cluster1::> network port show -node node1

<table>
<thead>
<tr>
<th>Speed (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin/Oper</td>
</tr>
</tbody>
</table>

+----+------+--------------+----------+----------+----------+---------+--------+------+
<table>
<thead>
<tr>
<th></th>
<th>Node</th>
<th>Port</th>
<th>IPspace</th>
<th>Broadcast Domain</th>
<th>Link</th>
<th>MTU</th>
<th>Admin/Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>node1</td>
<td>e0M</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e0a</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e0b</td>
<td>Default</td>
<td>-</td>
<td>up</td>
<td>1500</td>
<td>auto/1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e1a</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e1b</td>
<td>Cluster</td>
<td>Cluster</td>
<td>up</td>
<td>9000</td>
<td>auto/10000</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>5 entries were displayed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

 b. Verify that data LIFs successfully reverted back to each node in the first set, and that the LIFs are up:

```
   network interface show -data-protocol nfs|cifs -role data -curr-node nodename
```

Example

This example shows that all of the data LIFs hosted by a node have successfully reverted back to the node, and that they are up:

```
cluster1::> network interface show -data-protocol nfs|cifs -role data -curr-node node1

<table>
<thead>
<tr>
<th>Logical</th>
<th>Status</th>
<th>Network</th>
<th>Current</th>
<th>Current Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vserver</td>
<td>Interface</td>
<td>Admin/Oper</td>
<td>Address/Mask</td>
<td>Node</td>
</tr>
<tr>
<td>v0</td>
<td>data001</td>
<td>up/up</td>
<td>192.0.2.120/24</td>
<td>node0</td>
</tr>
<tr>
<td></td>
<td>data002</td>
<td>up/up</td>
<td>192.0.2.121/24</td>
<td>node0</td>
</tr>
<tr>
<td></td>
<td>data003</td>
<td>up/up</td>
<td>192.0.2.122/24</td>
<td>node0</td>
</tr>
<tr>
<td></td>
<td>data004</td>
<td>up/up</td>
<td>192.0.2.123/24</td>
<td>node0</td>
</tr>
<tr>
<td>4 entries were displayed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
16. If you previously determined that any of the partner nodes serve clients, verify that each node is providing service for each protocol that it was previously serving:

```
system node run -node nodename -command uptime
```

The operation counts reset to zero during the upgrade.

Example

This example shows that an upgraded node has resumed serving its NFS and iSCSI clients:

```
cluster1::> system node run -node node1 -command uptime
3:15pm up 0 days, 0:16 129 NFS ops, 0 CIFS ops, 0 HTTP ops, 0 FCP ops, 2 iSCSI ops
```

17. If this was the last set of nodes to be upgraded, trigger an AutoSupport notification:

```
autosupport invoke -node * -type all -message "Finishing_NDU"
```

This AutoSupport notification includes a record of the system status just prior to upgrade. It saves useful troubleshooting information in case there is a problem with the upgrade process.

If your cluster is not configured to send AutoSupport messages, a copy of the notification is saved locally.

18. Confirm that the new Data ONTAP 8.3.x software is running on all of the nodes in the first batch:

```
system node image show
```

Example

This example of a 12-node cluster shows version 8.3.0 as the current version on the first batch of nodes (node0 - node5):

```
cluster1::> system node image show

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Is Default</th>
<th>Is Current</th>
<th>Install Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node1</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node2</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node3</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node4</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node5</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node6</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node7</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
<tr>
<td>node8</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
</tr>
</tbody>
</table>
```
19. On each node in the first batch, reenable automatic giveback on the nodes if it was previously
disabled:

 storage failover modify –node nodename –auto-giveback true

20. Verify that the cluster is in quorum and that services are running by using the cluster show
and cluster ring show (advanced privilege level) commands.

You should do this before upgrading the second batch of nodes.

Upgrading a Data ONTAP cluster nondisruptively by using the automated
method (minor NDU only)

The automated NDU method validates the cluster components to ensure that the cluster can be
upgraded nondisruptively, installs the target Data ONTAP image on each node, and then, based on
the number of nodes in the cluster, executes either a rolling or batch upgrade in the background.

Before you begin

• You must have satisfied upgrade preparation requirements.

• The cluster must be running Data ONTAP 8.3.

• For each HA pair, each node should have one or more ports on the same broadcast domain.
When a set of nodes is upgraded during a batch upgrade, the LIFs are migrated to the HA partner
nodes. If the partners do not have any ports in the same broadcast domain, then the LIF migration
will fail.

Steps

1. Download the target Data ONTAP software package:

 cluster image package get –url location

 The software image package contains the target Data ONTAP image and firmware, and the set of
upgrade validation rules. This package is downloaded to the cluster package repository on the
root volume of one of the nodes in the cluster.
Example

```bash
cluster1::> cluster image package get -url http://www.example.com/software/8.3/image.tgz
Software get http://www.example.com/software/8.3/image.tgz started on node node0
Downloading package. This may take up to 10 minutes.
98% downloaded
There is no update/install in progress
Status of most recent operation:
Run Status: Working
Exit Status: Success
Phase: Download
Exit Message:
Processing Package.
Process package Complete
```

2. Verify that the software package is available in the cluster package repository:

```
cluster image package show-repository
```

Example

```bash
cluster1::> cluster image package show-repository
Package Version
-------------
8.3.0
```

3. Verify that the cluster is ready to be upgraded nondisruptively:

```
cluster image validate -version package_version_number
```

This command checks the cluster components to validate that the upgrade can be completed nondisruptively, and then provides the status of each check and any required action you must take before performing the software upgrade.

You can proceed to the next step after completing all identified required actions.

Example

```bash
cluster1::> cluster image validate -version 8.3.0
It can take several minutes to complete validation...
<table>
<thead>
<tr>
<th>Pre-update Check</th>
<th>Status</th>
<th>Error-Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate status</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CIFS status</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Cluster health</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk status</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>High Availability</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIF status</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
```
LIFs on home node OK
MetroCluster OK
configuration status OK
SnapMirror status OK
Volume status OK
mgmt epoch status OK
mgmt RDB ring status OK
vifmgr epoch status OK
vifmgr RDB ring OK
status
vldb epoch status OK
vldb RDB ring status OK
Overall Status OK
17 entries were displayed.

4. Optional: If desired, generate a software upgrade estimate:

 `cluster image update -version package_version_number -estimate-only`

 The software upgrade estimate displays details about each component to be updated, and the estimated duration of the upgrade.

5. Perform the software upgrade:

 `cluster image update -version package_version_number`

 This command validates that each cluster component is ready to be upgraded, installs the target Data ONTAP image on each node in the cluster, and then performs a nondisruptive upgrade in the background. If an issue is encountered, the update will pause and prompt you to take corrective action. You can use the `cluster image show-update-progress` command to view details about the issue. After correcting the issue, you can resume the update by using the `cluster image resume-update` command.

 If the cluster consists of 2 through 6 nodes, a rolling upgrade will be performed.

 If the cluster consists of 8 or more nodes, a batch upgrade will be performed by default. If desired, you can use the `-force-rolling` parameter to specify a rolling upgrade instead.

 After completing each takeover and each giveback, the upgrade will wait for 8 minutes to enable client applications to recover from the pause in I/O that occurs during the takeover and giveback. If your environment requires more or less time for client stabilization, you can use the `-stabilize-minutes` parameter to specify a different amount of stabilization time.

Example

 `cluster1::> cluster image update -version 8.3.0`

 Starting validation for this update. Please wait..

 It can take several minutes to complete validation...

<table>
<thead>
<tr>
<th>Non-Disruptive Check</th>
<th>Status</th>
<th>Error-Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate status</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CIFS status</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Cluster health</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Disk status</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
6. Optional: If necessary, manage the upgrade process by using the applicable command:

<table>
<thead>
<tr>
<th>To do this...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor the status and estimated duration of the upgrade</td>
<td>cluster image show-update-progress</td>
</tr>
<tr>
<td>View the log of each task that has executed during the upgrade</td>
<td>cluster image show-update-log</td>
</tr>
<tr>
<td>Pause the upgrade</td>
<td>cluster image pause-update</td>
</tr>
<tr>
<td>Resume a paused upgrade</td>
<td>cluster image resume-update</td>
</tr>
<tr>
<td>Cancel the upgrade</td>
<td>cluster image cancel-update</td>
</tr>
</tbody>
</table>

Note: You can only cancel an upgrade if it is currently paused.

7. Display the cluster update history to verify that the upgrade was completed successfully for each node:

```
cluster image show-update-history
```

Example

The Data ONTAP version numbers in the following example are provided for example purposes only:

```
cluster1::> cluster image show-update-history
Package    Start       Completion                Previous  Updated
Status     Version    Time        Time        Component ID  Version   Version
---------- ---------  ----------  ----------  ------------  --------- ---------
```
Upgrading a Data ONTAP cluster disruptively

If you can take your cluster offline to upgrade to a new Data ONTAP release, or if you have a single-node cluster, you can use the disruptive upgrade method. This method has several steps: disabling storage failover for each HA pair, rebooting each node in the cluster, and then reenabling storage failover.

Before you begin

- You must have satisfied upgrade preparation requirements.
- If you are operating in a SAN environment, all SAN clients must be shut down or suspended until the upgrade is complete. If SAN clients are not shut down or suspended prior to a disruptive upgrade, the client file systems and applications will suffer errors that might require manual recovery after the upgrade is completed.

About this task

In a disruptive upgrade, downtime is required because storage failover is disabled for each HA pair, and each node is updated. When storage failover is disabled, each node behaves as a single-node cluster; that is, system services associated with the node are interrupted for as long as it takes the system to reboot.

Steps

1. Set the Data ONTAP 8.3 software image to be the default image:

 `system image modify {-node * -iscurrent false} -isdefault true`

 This command uses an extended query to change the Data ONTAP 8.3 software image (which is installed as the alternate image) to be the default image for each node.

2. Verify that the Data ONTAP 8.3 software image is set as the default image:

 `system image show`

Example

This example shows that version 8.3.0 is set as the default image on both nodes:
3. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If the cluster consists of...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>One node</td>
<td>Continue to the next step.</td>
</tr>
</tbody>
</table>
| Two nodes | a. Disable cluster high availability:

   ```bash
   cluster ha modify -configured false
   ```  

 b. Disable storage failover for the HA pair:

   ```bash
   storage failover modify -node * -enabled false
   ```  

| More than two nodes | Disable storage failover for each HA pair in the cluster:

   ```bash
   storage failover modify -node * -enabled false
   ```

4. Reboot a node in the cluster:

```bash
system node reboot -node nodename
```

Attention: Do not reboot more than one node at a time.

The node boots the new Data ONTAP image. The Data ONTAP login prompt appears, indicating that the reboot process is complete.

5. After the node has rebooted with the new Data ONTAP image, confirm that the new software is running:

```bash
system node image show
```

Example

This example shows version Data ONTAP 8.3.0 as the current version on node0:

```bash
cluster1::> system node image show
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Is</th>
<th>Is</th>
<th>Current</th>
<th>Version</th>
<th>Install</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1 true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:52:22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>image2 false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:37:36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node1</td>
<td>image1 true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 13:55:22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>image2 false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 12:41:16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 entries were displayed.
6. Verify that the upgrade was completed successfully:
 a. Set the privilege level to advanced:
      ```
      set -privilege advanced
      ```
 b. Ensure that upgrade status is complete for each node:
      ```
      system node upgrade-revert show -node nodename
      ```
 The status should be listed as complete.
 If the upgrade is not successful, from the node, run the `system node upgrade-revert` command. If this command does not complete the node's upgrade, contact technical support immediately.
 c. Return to the admin privilege level:
      ```
      set -privilege admin
      ```

7. Repeat Steps 4 through 6 for each additional node.

8. If the cluster consists of two or more nodes, enable storage failover for each HA pair in the cluster:
   ```
   storage failover modify -node * -enabled true
   ```

9. If the cluster consists of only two nodes, enable cluster high availability:
   ```
   cluster ha modify -configured true
   ```

Completing post-upgrade tasks for cluster upgrades

After you upgrade a cluster to the latest version of Data ONTAP software, you must complete additional post-upgrade tasks.

Steps

1. **Verifying the cluster version** on page 113
 After all of the HA pairs have been upgraded, you must use the `version` command to verify that all of the nodes are running the target release.

2. **Verifying cluster health** on page 113
 Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

3. **Verifying storage health** on page 115
 Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

4. **Verifying that IPv6 LIFs can connect to external servers** on page 116
Data ONTAP 8.2.2 and earlier can only verify that each SVM can connect to its external servers through IPv4 addresses. Therefore, after upgrading to Data ONTAP 8.3, you should verify that each SVM can connect to an external server using an IPv6 address.

5. **Verifying networking and storage status for MetroCluster configurations** on page 117
 Before and after performing a minor upgrade or downgrade in a MetroCluster configuration, you should verify the status of the LIFs, aggregates, and volumes for each cluster.

6. **Enabling and reverting LIFs to home ports** on page 119
 During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

7. **Relocating moved load-sharing mirror source volumes** on page 121
 After successfully completing a nondisruptive upgrade, you can move load-sharing mirror source volumes back to the locations they were in originally before the upgrade.

8. **Resuming SnapMirror operations** on page 121
 After completing a nondisruptive upgrade or downgrade, you must resume any SnapMirror relationships that were suspended.

9. **Reenabling automatic LIF rebalancing** on page 122
 If you previously disabled automatic LIF rebalancing to perform a batch upgrade, you should reenable it after completing the upgrade.

10. **Verifying the SAN configuration after an upgrade** on page 123
 If you are upgrading in a SAN environment, then after the upgrade, you should verify that each initiator that was connected to a LIF before the upgrade has successfully reconnected to the LIF.

11. **Verifying NFS Kerberos configurations after upgrading** on page 123
 Beginning with Data ONTAP 8.3, Data ONTAP restricts the use of identical service principal names (SPNs) for NFS Kerberos configurations when used across multiple SVMs and deletes NFS Kerberos configurations that are no longer permitted. To avoid NFS client Kerberos authentication problems after upgrading, you must check whether your system is affected by this change and reconfigure accordingly.

12. **Verifying the networking configuration after a major upgrade** on page 124
 After completing a major upgrade to Data ONTAP 8.3, you should verify that the LIFs required for external server connectivity, failover groups, and broadcast domains are configured correctly for your environment.

13. **Enabling volume guarantees after the upgrade** on page 125
 If your cluster included FlexVol volumes with a guarantee of file before the upgrade, and those volumes contained space-reserved LUNs or files, the volumes have a disabled guarantee after the upgrade. To provide the same guarantee to those files and LUNs, you must enable the guarantee for those volumes.

14. **Configuring LDAP clients to use TLS for highest security** on page 126
 If you had previously configured LDAP clients to use LDAP over SSL/TLS for secure communications with LDAP servers, the LDAP client was able to use the less secure SSLv2
protocol. After upgrading to this release, if your environment supports it, you should disallow the use of SSLv2 to force the use of TLS for the highest level of security.

15. **When you need to update the Disk Qualification Package** on page 127
The Disk Qualification Package (DQP) adds full support for newly qualified drives. Before you update drive firmware or add new drive types or sizes to a cluster, you must update the DQP. A best practice is to also update the DQP regularly; for example, every quarter or semi-annually.

Verifying the cluster version

After all of the HA pairs have been upgraded, you must use the `version` command to verify that all of the nodes are running the target release.

About this task

The cluster version is the lowest version of Data ONTAP running on any node in the cluster.

Step

1. Verify that the cluster version is the target Data ONTAP release:

   ```
   version
   ```

 Example

   ```
   cluster1:~> version
   ```

 If the cluster version is not the target Data ONTAP release, use the `system node upgrade-revert upgrade` command to update the cluster version.

Verifying cluster health

Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

Steps

1. Verify that the nodes in the cluster are online and are eligible to participate in the cluster:

   ```
   cluster show
   ```
Example

```
cluster1::> cluster show
Node      Health  Eligibility
--------------------- ------- ------------
node0     true    true
node1     true    true
```

If any node is unhealthy or ineligible, check EMS logs for errors and take corrective action.

2. Set the privilege level to advanced:

```
set -privilege advanced
```

Enter y to continue.

3. Verify the configuration details for each RDB process.

You should verify the following configuration details:

- The relational database epoch and database epochs should match for each node.
- The per-ring quorum master should be the same for all nodes.
 Note that each ring might have a different quorum master.

<table>
<thead>
<tr>
<th>To display this RDB process...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management application</td>
<td><code>cluster ring show -unitname mgmt</code></td>
</tr>
<tr>
<td>Volume location database</td>
<td><code>cluster ring show -unitname vldb</code></td>
</tr>
<tr>
<td>Virtual-Interface manager</td>
<td><code>cluster ring show -unitname vifmgr</code></td>
</tr>
<tr>
<td>SAN management daemon</td>
<td><code>cluster ring show -unitname bcomd</code></td>
</tr>
</tbody>
</table>

Example

This example shows the volume location database process:

```
cluster1::*> cluster ring show -unitname vldb
Node      UnitName Epoch    DB Epoch DB Trnxs Master    Online
--------- -------- -------- -------- -------- --------- ---------
node0     vldb     154      154      14847    node0     master
node1     vldb     154      154      14847    node0     secondary
node2     vldb     154      154      14847    node0     secondary
node3     vldb     154      154      14847    node0     secondary
4 entries were displayed.
```

4. If you are operating in a SAN environment, verify that each node is in a SAN quorum:

```
event log show -messagename scsiblade.*
```
The most recent `scsiblade` event message for each node should indicate that the scsi-blade is in quorum.

Example

```
cluster1:~*> event log show -messagename scsiblade.*
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Node</th>
<th>Severity</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node0</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node1</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
</tbody>
</table>

5. Return to the admin privilege level:

```
set -privilege admin
```

Related information

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

Verifying storage health

Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

Steps

1. If you are preparing to upgrade, revert, or downgrade, verify disk status:

<table>
<thead>
<tr>
<th>To check for...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken disks</td>
<td>a. Display any broken disks:</td>
</tr>
<tr>
<td></td>
<td><code>storage disk show -state broken</code></td>
</tr>
<tr>
<td></td>
<td>b. Remove or replace any broken disks.</td>
</tr>
<tr>
<td>Disks undergoing maintenance or reconstruction</td>
<td>a. Display any disks in maintenance, pending, or reconstructing states:</td>
</tr>
<tr>
<td></td>
<td>`storage disk show -state maintenance</td>
</tr>
<tr>
<td></td>
<td>b. Wait for the maintenance or reconstruction operation to finish before proceeding.</td>
</tr>
</tbody>
</table>

2. Verify that all aggregates are online by displaying the state of physical and logical storage, including storage aggregates:

```
storage aggregate show -state !online
```

This command displays the aggregates that are *not* online. All aggregates must be online before and after performing a major upgrade or reversion.
3. Verify that all volumes are online by displaying any volumes that are not online:

```bash
volume show -state !online
```

All volumes must be online before and after performing a major upgrade or reversion.

Example

```
cluster1::> volume show -state !online
There are no entries matching your query.
```

Related information

- Clustered Data ONTAP 8.3 Logical Storage Management Guide
- Clustered Data ONTAP 8.3 Physical Storage Management Guide

Verifying that IPv6 LIFs can connect to external servers

Data ONTAP 8.2.2 and earlier can only verify that each SVM can connect to its external servers through IPv4 addresses. Therefore, after upgrading to Data ONTAP 8.3, you should verify that each SVM can connect to an external server using an IPv6 address.

About this task

If you upgraded from Data ONTAP 8.2.3 or later, you do not need to perform this procedure. These releases validate the IPv6 connectivity when you installed the target software image on the first node.

Steps

1. For each SVM, verify that its external servers are reachable from IPv6 addresses:

   ```bash
   vserver check lif-multitenancy run -vserver Vserver_name
   ```

 You can use the `-verbose` parameter (advanced privilege level) to display additional information about each connectivity test.

 Example

   ```bash
   cluster1::> vserver check lif-multitenancy run -vserver vs0
   SUCCESS: All external servers are reachable.
   ```

2. Make any required networking configuration changes, and then repeat Step 1.
Verifying networking and storage status for MetroCluster configurations

Before and after performing a minor upgrade or downgrade in a MetroCluster configuration, you should verify the status of the LIFs, aggregates, and volumes for each cluster.

About this task

If you are performing a major upgrade from Data ONTAP 8.2, you do not need to complete this procedure.

Steps

1. Verify the LIF status:

 `network interface show`

 In normal operation, LIFs for source SVMs must be up and located on their home nodes. LIFs for destination SVMs are not required to be up or located on their home nodes. In switchover, all LIFs should be up, but they do not need to be located on their home nodes.

Example

```
cluster1::> network interface show

Vserver      Logical Interface     Status     Network Address/Mask   Current Is  Current Port Home
----------- ---------- ---------- ------------------ ------------- ------- ----
Cluster
cluster1-a1_clus1
  up/up    192.0.2.1/24       cluster1-01
  e2a     true
cluster1-a1_clus2
  up/up    192.0.2.2/24       cluster1-01
  e2b     true
cluster1-a2_clus1
  up/up    192.0.2.3/24       cluster1-02
  e2a     true
cluster1-a2_clus2
  up/up    192.0.2.4/24       cluster1-02
  e2b     true
cluster1-01
  clus_mgmt    up/up    198.51.100.1/24    cluster1-01
  e3a     true
cluster1-a1_inet4_intercluster1
  up/up    198.51.100.2/24    cluster1-01
  e3c     true
cluster1-a1_inet4_intercluster2
  up/up    198.51.100.3/24    cluster1-01
cluster1-a2_inet4_intercluster1
  up/up    198.51.100.5/24    cluster1-02
  e3c     true
cluster1-a2_inet4_intercluster2
  up/up    198.51.100.6/24    cluster1-02
  e3d     true
cluster1-a2_mgmt1
  up/up    198.51.100.7/24    cluster1-02
  e0M     true
vs1
```
2. Verify the state of the aggregates:

storage aggregate show --state !online

This command displays any aggregates that are not online. In normal operation, all aggregates located at the local site must be online. However, if the MetroCluster configuration is in switchover, root aggregates at the disaster recovery site are permitted to be offline.

Example

This example shows a cluster in normal operation:

cluster1::> storage aggregate show --state !online
There are no entries matching your query.
Example

This example shows a cluster in switchover, in which the root aggregates at the disaster recovery site are offline:

```
cluster1::> storage aggregate show -state !online
```

```
Aggregate     Size Available Used% State    #Vols  Nodes            RAID Status
--------- -------- --------- ----- ------- ------ ---------------- ------------
aggr0_b1     0B        0B    0% offline      0 cluster2-01      raid_dp,
mirror       degraded
aggr0_b2     0B        0B    0% offline      0 cluster2-02      raid_dp,
mirror       degraded
```

2 entries were displayed.

3. Verify the state of the volumes:

```
volume show -state !online
```

This command displays any volumes that are not online. In normal operation, all root and data volumes owned by the local cluster’s SVMs must be online. However, if the MetroCluster configuration is in switchover, all volumes must be online.

Example

This example shows a cluster in normal operation, in which the volumes at the disaster recovery site are not online.

```
cluster1::> volume show -state !online
(volume show)
```

```
Vserver   Volume       Aggregate    State      Type       Size  Available Used%
--------- ------------ ------------ ---------- ---- ---------- ---------- ----- 
vs2-mc    vol1         aggr1_b1     -          RW            -          -     -
vs2-mc    root_vs2     aggr0_b1     -          RW            -          -     -
vs2-mc    vol2         aggr1_b1     -          RW            -          -     -
vs2-mc    vol3         aggr1_b1     -          RW            -          -     -
vs2-mc    vol4         aggr1_b1     -          RW            -          -     -
```

5 entries were displayed.

Enabling and reverting LIFs to home ports

During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

About this task

The network interface revert command reverts a LIF that is not currently on its home port back to its home port, provided that the home port is operational. A LIF’s home port is specified when the LIF is created; you can determine the home port for a LIF by using the network interface show command.
Steps

1. Display the status of all LIFs:

 network interface show

 Example

 This example displays the status of all LIFs for a Storage Virtual Machine (SVM, formerly known as Vserver).

   ```
   cluster1::> network interface show -vserver vs0
   Logical    Status     Network            Current       Current Is
   Interface  Admin/Oper Address/Mask       Node          Port    Home
   ----------- ---------- ---------- ------------------ ------------- ------- ----
   vs0              
   data001  down/down  192.0.2.120/24     node0         e0e     true
   data002  down/down  192.0.2.121/24     node0         e0f     true
   data003  down/down  192.0.2.122/24     node0         e2a     true
   data004  down/down  192.0.2.123/24     node0         e0e     false
   data005  down/down  192.0.2.124/24     node0         e0f     false
   data006  down/down  192.0.2.125/24     node0         e2a     false
   data007  down/down  192.0.2.126/24     node0         e0e     false
   data008  down/down  192.0.2.127/24     node0         e2b     false
   8 entries were displayed.
   ```

 If any LIFs appear with a Status Admin status of down or with an Is home status of false, continue with the next step.

2. Enable the data LIFs:

 network interface modify {-role data} -status-admin up

 Example

   ```
   cluster1::> network interface modify {-role data} -status-admin up
   8 entries were modified.
   ```

3. Revert LIFs to their home ports:

 network interface revert *

 Example

 This command reverts all LIFs back to their home ports and changes all LIF home statuses to true.

   ```
   cluster1::> network interface revert *
   8 entries were acted on.
   ```

4. Verify that all LIFs are in their home ports:

 network interface show
Example

This example shows that all LIFs for SVM vs0 are on their home ports.

```
cluster1::> network interface show -vserver vs0
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Logical Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Is Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data001</td>
<td>up/up</td>
<td>192.0.2.120/24</td>
<td>node0</td>
<td>e0e true</td>
</tr>
<tr>
<td></td>
<td>data002</td>
<td>up/up</td>
<td>192.0.2.121/24</td>
<td>node0</td>
<td>e0f true</td>
</tr>
<tr>
<td></td>
<td>data003</td>
<td>up/up</td>
<td>192.0.2.122/24</td>
<td>node0</td>
<td>e2a true</td>
</tr>
<tr>
<td></td>
<td>data004</td>
<td>up/up</td>
<td>192.0.2.123/24</td>
<td>node0</td>
<td>e2b true</td>
</tr>
<tr>
<td></td>
<td>data005</td>
<td>up/up</td>
<td>192.0.2.124/24</td>
<td>node1</td>
<td>e0e true</td>
</tr>
<tr>
<td></td>
<td>data006</td>
<td>up/up</td>
<td>192.0.2.125/24</td>
<td>node1</td>
<td>e0f true</td>
</tr>
<tr>
<td></td>
<td>data007</td>
<td>up/up</td>
<td>192.0.2.126/24</td>
<td>node1</td>
<td>e2a true</td>
</tr>
<tr>
<td></td>
<td>data008</td>
<td>up/up</td>
<td>192.0.2.127/24</td>
<td>node1</td>
<td>e2b true</td>
</tr>
</tbody>
</table>

8 entries were displayed.

Relocating moved load-sharing mirror source volumes

After successfully completing a nondisruptive upgrade, you can move load-sharing mirror source volumes back to the locations they were in originally before the upgrade.

Steps

1. Identify the location to which you are moving the load-sharing mirror source volume by using the record you created before moving the load-sharing mirror source volume.

 Preparing all load-sharing mirrors for a major upgrade on page 68

2. Move the load-sharing mirror source volume back to its original location by using the `volume move start` command.

Resuming SnapMirror operations

After completing a nondisruptive upgrade or downgrade, you must resume any SnapMirror relationships that were suspended.

Before you begin

Existing SnapMirror relationships must have been suspended by using the `snapmirror quiesce` command, and the cluster must have been nondisruptively upgraded or downgraded.

Steps

1. Resume transfers for each SnapMirror relationship that was previously quiesced:

 `snapmirror resume *`

 This command resumes the transfers for all quiesced SnapMirror relationships.

2. Verify that the SnapMirror operations have resumed:

 `snapmirror show`
Example

```
cluster1::> snapmirror show
```

<table>
<thead>
<tr>
<th>Source Path</th>
<th>Source Type</th>
<th>Destination Path</th>
<th>Destination Type</th>
<th>Mirror</th>
<th>Relationship Status</th>
<th>Total Progress</th>
<th>Healthy</th>
<th>Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1-vs1:dp_src1</td>
<td>DP</td>
<td>cluster1-vs2:dp_dst1</td>
<td>Snapmirrored</td>
<td>Idle</td>
<td>-</td>
<td>true</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>cluster1-vs1:xdp_src1</td>
<td>XDP</td>
<td>cluster1-vs2:xdp_dst1</td>
<td>Snapmirrored</td>
<td>Idle</td>
<td>-</td>
<td>true</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>cluster1://cluster1-vs1/ls Src1</td>
<td>LS</td>
<td>cluster1://cluster1-vs1/ls_mr1</td>
<td>Snapmirrored</td>
<td>Idle</td>
<td>-</td>
<td>true</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>cluster1://cluster1-vs1/ls_mr2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 entries were displayed.

For each SnapMirror relationship, verify that the Relationship Status is "Idle". If the status is "Transferring", wait for the SnapMirror transfer to complete, and then reenter the command to verify that the status has changed to "Idle".

After you finish

For each SnapMirror relationship that is configured to run on a schedule, you should verify that the first scheduled SnapMirror transfer completes successfully.

Reenabling automatic LIF rebalancing

If you previously disabled automatic LIF rebalancing to perform a batch upgrade, you should reenable it after completing the upgrade.

Steps

1. Set the privilege level to advanced:
   ```
   set -privilege advanced
   ```
2. Reenable automatic LIF rebalancing for each LIF as needed:
   ```
   network interface modify -vserver Vserver_name -lif LIF_name -allow-lb-migrate true
   ```
3. Return to the admin privilege level:
   ```
   set -privilege admin
   ```
Verifying the SAN configuration after an upgrade

If you are upgrading in a SAN environment, then after the upgrade, you should verify that each initiator that was connected to a LIF before the upgrade has successfully reconnected to the LIF.

Step

1. Verify that each initiator is connected to the correct LIF.

 You should compare the list of initiators to the list you made during the upgrade preparation.

```
<table>
<thead>
<tr>
<th>For...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI</td>
<td><code>iscsi initiator show -fields igroup,initiator-name,tpgroup</code></td>
</tr>
<tr>
<td>FC</td>
<td><code>fcp initiator show -fields igroup,wwpn,lif</code></td>
</tr>
</tbody>
</table>
```

Verifying NFS Kerberos configurations after upgrading

Beginning with Data ONTAP 8.3, Data ONTAP restricts the use of identical service principal names (SPNs) for NFS Kerberos configurations when used across multiple SVMs and deletes NFS Kerberos configurations that are no longer permitted. To avoid NFS client Kerberos authentication problems after upgrading, you must check whether your system is affected by this change and reconfigure accordingly.

About this task

In previous releases, Data ONTAP allowed multiple SVMs to share NFS Kerberos credentials for LIFs across multiple SVMs. This configuration is no longer allowed in Data ONTAP 8.3. If your system currently uses SPNs in a way that allows credential (KDC accounts and keys) sharing across multiple SVMs, Data ONTAP automatically disables NFS Kerberos on all such LIFs after upgrading.

When a node running Data ONTAP 8.3 reboots, it examines all existing NFS Kerberos configurations across all SVMs. If any LIF of one SVM shares the NFS Kerberos credential with a LIF on another SVM, Data ONTAP disables NFS Kerberos on both LIFs and creates an EMS message. The EMS message enables you to identify each LIF for which you need to reconfigure NFS Kerberos.

Steps

1. Check your EMS log for messages indicating which NFS Kerberos configurations were disabled.

2. In the EMS messages, identify each LIF whose NFS Kerberos configuration was disabled.

3. For each LIF, reconfigure NFS Kerberos by using the `vserver nfs kerberos interface enable` command.

 You must create the new NFS Kerberos configuration with new separate SPNs to regain NFS Kerberos functionality for those SVMs.
Verifying the networking configuration after a major upgrade

After completing a major upgrade to Data ONTAP 8.3, you should verify that the LIFs required for external server connectivity, failover groups, and broadcast domains are configured correctly for your environment.

About this task

In Data ONTAP 8.3, an SVM can connect to its external servers through any of its data LIFs regardless of which node hosts the LIF. Therefore, you should keep the data LIFs that you configured during the upgrade preparation to ensure that each SVM can reach each of its external servers. However, you can modify these LIFs to be located on any node in the cluster, and to not automatically revert.

Steps

1. Verify the broadcast domains:

 network port broadcast-domain show

 During the upgrade to the Data ONTAP 8.3 release family, Data ONTAP automatically creates broadcast domains based on the failover groups in the cluster. For each layer 2 network, you should verify that a broadcast domain exists, and that it includes all of the ports that belong to the network. If you need to make any changes, you can use the network port broadcast-domain commands.

 Example

<table>
<thead>
<tr>
<th>IPspace</th>
<th>Broadcast</th>
<th>Name</th>
<th>Domain Name</th>
<th>MTU</th>
<th>Port List</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>Cluster</td>
<td>9000</td>
<td>node0:e0a</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node0:e0b</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node1:e0a</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node1:e0b</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>Default</td>
<td>1500</td>
<td>node0:e0c</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node0:e0d</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node1:e0c</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node1:e0d</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bcast1</td>
<td>1500</td>
<td></td>
<td>node0:e0e</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>node0:e0f</td>
<td></td>
<td>complete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. If necessary, use the network interface modify command to change the LIFs that you configured for external server connectivity.
<table>
<thead>
<tr>
<th>To...</th>
<th>Enter this command...</th>
</tr>
</thead>
</table>
| Move the LIF to a different home node or port | a. Change the LIF's home node or port:
```bash
network interface modify -vserver Vserver_name -lif LIF_name -home-node node_name -home-port port
```
| | b. Revert the LIF to the new home node or port:
```bash
network interface revert -vserver Vserver_name -lif LIF_name
```
| Set the LIF not to revert automatically | network interface modify -vserver Vserver_name -lif LIF_name -auto-revert false
| Change the LIF to use any of the ports in its broadcast domain | network interface modify -vserver Vserver_name -lif LIF_name -failover-group failover_group_name -failover-policy policy

Before the upgrade, you created one or more failover groups consisting of ports on the first HA pair only. These failover groups were necessary to ensure that each SVM could contact its external servers during the upgrade process. However, after the upgrade is complete, the LIFs required for external server connectivity are no longer restricted to the first two nodes in the cluster; you can modify them to use any of the nodes and ports in the appropriate broadcast domains.

Related information

Clustered Data ONTAP 8.3 Network Management Guide

Enabling volume guarantees after the upgrade

If your cluster included FlexVol volumes with a guarantee of `file` before the upgrade, and those volumes contained space-reserved LUNs or files, the volumes have a disabled guarantee after the
upgrade. To provide the same guarantee to those files and LUNs, you must enable the guarantee for those volumes.

About this task

The volume guarantee type of `file` is not supported for Data ONTAP 8.3 and later. Volumes with a volume guarantee of `file` are converted during the upgrade according to whether they contain any space-reserved LUNS or files:

- If the volume contains no space-reserved LUNs or files, its volume guarantee is converted to `none`.
- If the volume contains space-reserved LUNs or files, its volume guarantee is converted to `volume`.

However, because there might not be enough free space available to honor the volume guarantee, the volume guarantee is initially disabled. You must enable it manually before the space-reserved LUN or file has the same space protections it had before the upgrade.

If any of the affected volumes contained free space or unreserved files before the upgrade, those volumes consume additional space from the aggregate when their guarantee is enabled.

Steps

1. Display the volumes with a disabled volume guarantee:
   ```
   volume show -space-guarantee volume -space-guarantee-enabled false
   ```

2. If no volumes are displayed, you are done with this task.

3. Enable the guarantees for the volumes with disabled volume guarantees:
   ```
   volume modify { -space-guarantee volume -space-guarantee-enabled false } -space-guarantee volume
   ```
 If there is sufficient free space available in the aggregate to honor the volume guarantees, the volume guarantees are enabled.

4. If there is insufficient free space in the aggregate to enable the volume guarantees, resize the volumes or add storage to the aggregate and retry the previous command.

Configuring LDAP clients to use TLS for highest security

If you had previously configured LDAP clients to use LDAP over SSL/TLS for secure communications with LDAP servers, the LDAP client was able to use the less secure SSLv2 protocol.
After upgrading to this release, if your environment supports it, you should disallow the use of SSLv2 to force the use of TLS for the highest level of security.

About this task

By default, LDAP communications between client and server applications are not encrypted. You can configure Data ONTAP LDAP clients to use LDAP over SSL/TLS by enabling the `-use-start-tls` parameter. If your environment supports TLS, you should disallow the use of SSL and enforce the use of TLS.

Steps

1. Verify that the LDAP servers in your environment support TLS.

 If they do not, do not proceed. You should upgrade your LDAP servers to a version that supports TLS.

2. Check which Data ONTAP LDAP client configurations have LDAP over SSL/TLS enabled:

   ```bash
   vserver services name-service ldap client -show
   ```

 If there are none, you can skip the remaining steps. However, you should consider using LDAP over SSL/TLS for better security.

3. For each LDAP client configuration, disallow SSL to enforce the use of TLS:

   ```bash
   vserver services name-service ldap client modify -vserver vserver_name -client-config ldap_client_config_name -allow-ssl false
   ```

4. Verify that the use of SSL is no longer allowed for any LDAP clients:

   ```bash
   vserver services name-service ldap client -show
   ```

Related information

Clustered Data ONTAP 8.3 File Access Management Guide for NFS

When you need to update the Disk Qualification Package

The Disk Qualification Package (DQP) adds full support for newly qualified drives. Before you update drive firmware or add new drive types or sizes to a cluster, you must update the DQP. A best practice is to also update the DQP regularly; for example, every quarter or semi-annually.

You need to download and install the DQP in the following situations:

- Whenever you add a new drive type or size to the node

 For example, if you already have 1-TB drives and add 2-TB drives, you need to check for the latest DQP update.

- Whenever you update the disk firmware

- Whenever newer disk firmware or DQP files are available
Whenever you upgrade to a new version of Data ONTAP.
The DQP is not updated as part of a Data ONTAP upgrade.

Related information

NetApp Downloads: Disk Qualification Package
NetApp Downloads: Disk Drive and Firmware
Reverting clusters to an earlier Data ONTAP release family

Transitioning a cluster to a release in an earlier Data ONTAP release family is referred to as a *reversion*. Reverting is always disruptive, and it requires planning, preparation, the reversion itself, and several post-reversion procedures.

The *revert_to* command modifies Data ONTAP on-disk structures to be compatible with the earlier target release and ensures that the cluster is prepared for the reversion.

Attention: Do not attempt to revert Data ONTAP by simply downloading and booting (or netbooting) a release in an earlier release family. If you do, you cannot boot the earlier target release. You must use the *clustershell system node revert-to* and *nodeshell revert_to* commands for the reversion process.

When to revert and when to call technical support

You can revert without assistance when reverting new or test clusters, but you should call technical support if you encounter problems during or after upgrading, or if you want to revert a production cluster.

You can revert to an earlier release family without assistance from technical support only in the following scenarios:

- You upgraded to a new release on a test cluster and you want to return to the original release when testing is completed.
- You are configuring a new cluster—running a later release of Data ONTAP and not yet in production—in an environment in which you have standardized on an earlier Data ONTAP release.

Do not attempt to revert Data ONTAP in a production environment without assistance. If you encounter any of the following circumstances, contact technical support immediately:

- The upgrade process fails and cannot finish.
- The upgrade process finishes, but the cluster is unusable in a production environment.
- The upgrade process finishes and the cluster goes into production, but you are not satisfied with its behavior.
- The upgrade process finishes for some but not all of the nodes, and you decide that you want to revert.
Cluster revert workflow

You can use the cluster revert workflow to plan the reversion, prepare for the reversion, perform the reversion, and complete post-reversion tasks.

Planning your reversion

Because new features are introduced in each release of Data ONTAP, you must understand reversion requirements and evaluate how they might impact your current configuration.

Steps

1. **Reviewing pre-reversion resources** on page 131
 Before upgrading Data ONTAP, you should review resources to understand issues you must resolve before upgrading, understand new system behavior in the target release, and confirm hardware support.

2. **Reviewing cluster reversion requirements** on page 131
Before reverting Data ONTAP, you must verify that your cluster meets the general reversion requirements. Some configurations and features also have requirements that you should understand.

Reviewing pre-reversion resources

Before upgrading Data ONTAP, you should review resources to understand issues you must resolve before upgrading, understand new system behavior in the target release, and confirm hardware support.

Steps

1. Review the *Release Notes* for the target release.

 Find the Release Notes for your version of Data ONTAP 8

 The “Important cautions” section describes potential issues that you should be aware of before upgrading to the new release. The “New and changed features” and “Known problems and limitations” sections describe new system behavior after upgrading to the new release.

2. Confirm that your hardware platform is supported in the target release.

 NetApp Hardware Universe

3. Confirm that your cluster and management switches are supported in the target release.

 You must verify that the NX-OS (cluster network switches), IOS (management network switches), and reference configuration file (RCF) software versions are compatible with the version of Data ONTAP to which you are reverting.

 NetApp Downloads: Cisco Ethernet Swtich

4. If your cluster is configured for SAN, confirm that the SAN configuration is fully supported.

 All SAN components—including target Data ONTAP software version, host OS and patches, required Host Utilities software, and adapter drivers and firmware—should be supported.

 NetApp Interoperability Matrix Tool

Reviewing cluster reversion requirements

Before reverting Data ONTAP, you must verify that your cluster meets the general reversion requirements. Some configurations and features also have requirements that you should understand.

Reversion process considerations

You need to consider the revert issues and limitations before beginning a Data ONTAP reversion.

- Clusters can be reverted from Data ONTAP 8.3.x to 8.2.1 or later.
- Reversion is disruptive.
No client access can occur during the reversion. If you are reverting a production cluster, be sure to include this disruption in your planning.

- Reversion affects all nodes in the cluster.
 The reversion affects all nodes in the cluster; however, the reversion must be performed and completed on each HA pair before other HA pairs are reverted.

- The reversion is complete when all nodes are running the new target release.
 When the cluster is in a mixed-version state, you should not enter any commands that alter the cluster operation or configuration except as necessary to satisfy reversion requirements; monitoring operations are permitted.

 Attention: If you cannot complete the reversion for any reason, contact technical support immediately. If you have reverted some, but not all of the nodes, do not attempt to upgrade the cluster back to the source release.

- When you revert a node, it clears the cached data in a Flash Cache module.
 Because there is no cached data in the Flash Cache module, the node serves initial read requests from disk, which results in decreased read performance during this period. The node repopulates the cache as it serves read requests.

- A LUN that is backed up to tape running on Data ONTAP 8.3 can be restored only to 8.3 and later releases and not to an earlier release.

Reversion requirements for SnapMirror and SnapVault relationships

The `system node revert-to` command notifies you of any SnapMirror and SnapVault relationships that need to be deleted or reconfigured for the reversion process to be completed. However, you should be aware of these requirements before you begin the reversion.

- All SnapVault and data protection mirror relationships must be quiesced and then broken.
 After the reversion is completed, you can resynchronize and resume these relationships if a common Snapshot copy exists.

- SnapVault relationships must not contain the following SnapMirror policy types:
 - `async-mirror`
 You must delete any relationship that uses this policy type.
 - `MirrorAndVault`
 If any of these relationships exist, you should change the SnapMirror policy to `mirror-vault`.

- All load-sharing mirror relationships and destination volumes must be deleted.
- SnapMirror relationships with FlexClone destination volumes must be deleted.
- Network compression must be disabled for each SnapMirror policy.
The all_source_snapshot rule must be removed from any async-mirror type SnapMirror policies.

Any currently running single file and Snapshot restore operations must be completed before the reversion can proceed.
You can either wait for the restore operation to finish, or you can abort it.

Any incomplete single file and Snapshot restore operations must be removed by using the snapmirror restore command.

Reversion considerations for an Infinite Volume

When reverting a cluster that contains an Infinite Volume from Data ONTAP 8.3.x to Data ONTAP 8.2.x, you must plan to create a namespace mirror constituent to protect the namespace constituent and to support incremental tape backup, if configured, after you complete the reversion.

All the Infinite Volumes in a cluster running Data ONTAP 8.2 or later must have a namespace mirror constituent to provide data protection for the namespace constituent. If the Infinite Volume has SnapDiff enabled and is configured for incremental tape backup, each node that the Infinite Volume spans requires a namespace mirror constituent, except the node with the namespace constituent.

The process of reverting to Data ONTAP 8.2.x removes the namespace mirror constituents and does not automatically re-create the namespace mirror constituents for the Infinite Volume. You must plan to create the namespace mirror constituents after you complete the reversion.

Before you revert an Infinite Volume with storage classes, you should identify the name of the aggregate on the node that contains the namespace mirror constituent. If the Infinite Volume with storage classes is configured for incremental tape backup, multiple nodes contain namespace mirror constituents, and you should identify the name of the aggregate on each node that contains a namespace mirror constituent. When you create namespace mirror constituents after the reversion, you must specify the name of the aggregate for each node on which to create the namespace mirror constituent.

Note: This requirement applies only to an Infinite Volume that uses storage classes.

Related tasks

Creating namespace mirror constituents for reverted Infinite Volumes on page 159

After reverting a cluster that contains an Infinite Volume to Data ONTAP 8.2.x, you must create one or more namespace mirror constituents. How you create the namespace mirror constituents depends on whether the Infinite Volume uses storage classes and is configured for tape backup.

Preparing to revert Data ONTAP clusters

Before reverting to an earlier Data ONTAP release family, you must verify that the cluster is ready to be reverted and make any required configuration changes.
Steps
1. **Verifying that the cluster is ready to be reverted** on page 134
 Before you perform the reversion, you should verify that your cluster configuration is healthy.

2. **Preparing to revert production clusters** on page 138
 If you are reverting a cluster that you have configured to serve data to clients in your environment, you must ensure that certain configurations are prepared for the reversion.

3. **Obtaining Data ONTAP software images** on page 145
 You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

4. **Installing Data ONTAP software images for a reversion** on page 145
 Before performing a reversion to Data ONTAP 8.2, you must install the target Data ONTAP software image on each node in the cluster.

Verifying that the cluster is ready to be reverted

Before you perform the reversion, you should verify that your cluster configuration is healthy.

Verifying cluster health

Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

Steps

1. Verify that the nodes in the cluster are online and are eligible to participate in the cluster:
   ```
   cluster show
   ```

 Example


   ```
   cluster1::> cluster show
   Node  Health  Eligibility
   -------------- ------- ------------
   node0      true    true
   node1      true    true
   ```

 If any node is unhealthy or ineligible, check EMS logs for errors and take corrective action.

2. Set the privilege level to advanced:
   ```
   set -privilege advanced
   ```

 Enter y to continue.

3. Verify the configuration details for each RDB process.
 You should verify the following configuration details:
• The relational database epoch and database epochs should match for each node.

• The per-ring quorum master should be the same for all nodes.
 Note that each ring might have a different quorum master.

<table>
<thead>
<tr>
<th>To display this RDB process...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management application</td>
<td><code>cluster ring show -unitname mgmt</code></td>
</tr>
<tr>
<td>Volume location database</td>
<td><code>cluster ring show -unitname vldb</code></td>
</tr>
<tr>
<td>Virtual-Interface manager</td>
<td><code>cluster ring show -unitname vifmgr</code></td>
</tr>
<tr>
<td>SAN management daemon</td>
<td><code>cluster ring show -unitname bcomd</code></td>
</tr>
</tbody>
</table>

Example

This example shows the volume location database process:

```
cluster1::*> cluster ring show -unitname vldb
```

<table>
<thead>
<tr>
<th>Node</th>
<th>UnitName</th>
<th>Epoch</th>
<th>DB Epoch</th>
<th>DB Trnxs</th>
<th>Master</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>master</td>
</tr>
<tr>
<td>node1</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
<tr>
<td>node2</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
<tr>
<td>node3</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
</tbody>
</table>

4 entries were displayed.

4. If you are operating in a SAN environment, verify that each node is in a SAN quorum:

```
event log show -messagename scsiblade.*
```

The most recent `scsiblade` event message for each node should indicate that the scsi-blade is in quorum.

Example

```
cluster1::*> event log show -messagename scsiblade.*
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Node</th>
<th>Severity</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node0</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node1</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
</tbody>
</table>

5. Return to the admin privilege level:

```
set -privilege admin
```
Verifying storage health

Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

Steps

1. If you are preparing to upgrade, revert, or downgrade, verify disk status:

<table>
<thead>
<tr>
<th>To check for...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken disks</td>
<td>a. Display any broken disks:</td>
</tr>
<tr>
<td></td>
<td>storage disk show -state broken</td>
</tr>
<tr>
<td></td>
<td>b. Remove or replace any broken disks.</td>
</tr>
<tr>
<td>Disks undergoing maintenance or</td>
<td>a. Display any disks in maintenance, pending, or reconstructing states:</td>
</tr>
<tr>
<td>reconstruction</td>
<td>storage disk show -state maintenance</td>
</tr>
<tr>
<td></td>
<td>b. Wait for the maintenance or reconstruction operation to finish before</td>
</tr>
<tr>
<td></td>
<td>proceeding.</td>
</tr>
</tbody>
</table>

2. Verify that all aggregates are online by displaying the state of physical and logical storage, including storage aggregates:

 storage aggregate show -state !online

 This command displays the aggregates that are not online. All aggregates must be online before and after performing a major upgrade or reversion.

 Example

 cluster1::> storage aggregate show -state !online
 There are no entries matching your query.

3. Verify that all volumes are online by displaying any volumes that are not online:

 volume show -state !online

 All volumes must be online before and after performing a major upgrade or reversion.

 Example

 cluster1::> volume show -state !online
 There are no entries matching your query.
Verifying the system time

You should verify that NTP is configured, and that the time is synchronized across the cluster.

Steps

1. Verify that the cluster is associated with an NTP server:

If you are running...	Enter this command...
 Data ONTAP 8.2.x | `system services ntp server show`
 Data ONTAP 8.3.x | `cluster time-service ntp server show`

2. Verify that each node has the same date and time:

 `cluster date show`

Example

```
cluster1::> cluster date show
Node      Date                Timezone
--------- ------------------- -------------------------
node0     4/6/2013 20:54:38   GMT
node1     4/6/2013 20:54:38   GMT
node2     4/6/2013 20:54:38   GMT
node3     4/6/2013 20:54:38   GMT
4 entries were displayed.
```
Preparing to revert production clusters

If you are reverting a cluster that you have configured to serve data to clients in your environment, you must ensure that certain configurations are prepared for the reversion.

Verifying that the netgroup file is present on all nodes

If you have loaded netgroups into Storage Virtual Machines (SVMs), before you upgrade or revert, you must verify that the netgroup file is present on each node. A missing netgroup file on a node can cause an upgrade or revert to fail.

About this task

For more information about netgroups and loading them from a URI, see the Clustered Data ONTAP File Access Management Guide for NFS.

Steps

1. Set the privilege level to advanced:

   ```
   set -privilege advanced
   ```

2. Display the netgroup status for each SVM:

   ```
   vserver services netgroup status
   ```

3. Return to the admin privilege level:

   ```
   set -privilege admin
   ```

4. Verify that for each SVM, each node shows the same netgroup file hash value.

 If this is the case, you can skip the next step and proceed with the upgrade or revert. Otherwise, proceed to the next step.

5. On any one node of the cluster, manually load the netgroup file to ensure that they are consistent across all nodes:

   ```
   vserver services netgroup load -vserver vserver_name -source uri
   ```

 This command downloads the netgroup file on all nodes. If a netgroup file already exists on a node, it is overwritten.

Configuring Storage Encryption with IPv4 key management servers

Storage Encryption does not support IPv6 networking in Data ONTAP versions earlier than 8.3. If you have configured the system to use Storage Encryption and configured Storage Encryption with IPv6 IP addresses for key management server communications, you must first configure Storage
Encryption with key management servers with IPv4 IP addresses instead; otherwise, the revert operation fails.

Steps

1. Obtain IPv4 SSL certificates for each key management server you want to use with Storage Encryption after reverting from Data ONTAP 8.3.

2. Rename each certificate file using the following naming convention:

 `key_management_server_ipaddress_CA.pem`

 `key_management_server_ipaddress` must be identical to the IP address of the key management server that you use to identify it when running the Storage Encryption setup wizard.

3. Copy the certificate files to a temporary location on the storage system.

 The easiest way to do this is to mount a data volume from a client and copy the certificate files from the client to a temporary directory on the mounted data volume.

4. Install the public certificate of the key management server at the storage system prompt:

 `security certificate install`

5. If you are linking multiple key management servers to the storage system, repeat the previous step for each public certificate of each key management server.

6. Run the Storage Encryption setup wizard:

 `key_manager setup`

7. Follow the instructions to configure Storage Encryption with the IPv4 key management servers.

8. Repeat steps 3 and higher for each node.

Reverting systems with deduplicated volumes

Before reverting from the Data ONTAP 8.3 release family, you must ensure that the volumes contain sufficient free space for the revert operation.

Before you begin

The volume must have enough space to accommodate the savings that were achieved through the inline detection of blocks of zeros. For information about the space required, contact technical support.

About this task

Reverting from a Data ONTAP 8.3 release family on a system that has deduplication enabled includes running advanced mode commands. You must contact technical support for assistance.

If you have enabled both deduplication and data compression on a volume that you want to revert, then you must revert data compression before reverting deduplication.
Steps

1. Use the `volume efficiency show` command with the `-fields` option to view the progress of efficiency operations running on the volumes.

 Example

 The following command displays the progress of efficiency operations:

   ```
   volume efficiency show -fields vserver,volume,progress
   ```

2. Use the `volume efficiency stop` command with the `-all` option to stop all active and queued deduplication operations.

 Example

 The following command stops all active and queued deduplication operations on volume VolA:

   ```
   volume efficiency stop -vserver vs1 -volume VolA -all
   ```

3. Use the `set -privilege advanced` command to log in at the advanced privilege level.

4. Use the `volume efficiency revert-to` command with the `-version` option to downgrade the efficiency metadata of a volume to a specific version of Data ONTAP.

 Example

 The following command reverts the efficiency metadata on volume VolA to the 8.2 version:

   ```
   volume efficiency revert-to -vserver vs1 -volume VolA -version 8.2
   ```

 Note: The `volume efficiency revert-to` command reverts volumes that are present on the node on which this command is executed. This command does not revert volumes across nodes.

5. Use the `volume efficiency show` command with the `-op-status` option to monitor the progress of the downgrade.

 Example

 The following command monitors and displays the status of the downgrade:

   ```
   volume efficiency show -vserver vs1 -op-status Downgrading
   ```

6. If the revert does not succeed, use the `volume efficiency show` command with the `-instance` option to see why the revert failed.

 Example

 The following command displays detailed information about all fields:

   ```
   volume efficiency show -vserver vs1 -volume vol1 - instance
   ```
7. After the revert operation is complete, return to the admin privilege level:

```bash
set -privilege admin
```

For more information about deduplication, see the *Clustered Data ONTAP Logical Storage Management Guide*.

Reverting systems with compressed volumes

Before reverting, you must ensure that the volumes contain sufficient free space for the revert operation.

Before you begin

All of the Snapshot copies that have compressed data must have been deleted, and the data in the volumes must have been decompressed.

About this task

Reverting on a system that has data compression enabled includes running advanced mode commands. You must contact technical support for assistance.

Steps

1. Use the `volume efficiency show` command with the `-fields` option to view the progress of efficiency operations running on the volumes.

 Example

 The following command displays the progress of efficiency operations:

   ```bash
   volume efficiency show -fields vserver,volume,progress
   ```

2. Use the `volume efficiency stop` command with the `-all` option to stop all active and queued data compression operations on the volume.

 Example

 The following command aborts both active and queued data compression operations on volume VolA:

   ```bash
   volume efficiency stop -vserver vs1 -volume VolA -all
   ```

3. Use the `set -privilege advanced` command to log in at the advanced privilege level.

4. Use the `volume efficiency revert-to` command with the `-version` option to downgrade the efficiency metadata of a volume in a Data ONTAP 8.2 release family.
Example

If you are reverting to Data ONTAP 8.2 release, the following command downgrades the efficiency metadata on volume VolA to the 8.2 version:

```bash
volume efficiency revert-to -vserver vs1 -volume VolA -version 8.2
```

Note: The `volume efficiency revert-to` command reverts volumes that are present on the node on which this command is executed. This command does not revert volumes across nodes.

5. Use the `volume efficiency show` command with the `-op-status` option to monitor the progress of the downgrade.

Example

The following command monitors and displays the status of the downgrade:

```bash
volume efficiency show -vserver vs1 -op-status Downgrading
```

6. If the revert does not succeed, use the `volume efficiency show` command with the `-instance` option to see why the revert failed.

Example

The following command displays detailed information about all fields:

```bash
volume efficiency show -vserver vs1 -volume vol1 -instance
```

7. After the revert operation is complete, use the `set -privilege admin` command to return to the admin privilege.

For more information about data compression, see the *Clustered Data ONTAP Logical Storage Management Guide*.

Reverting systems that have the SP automatic configuration enabled

If you have the SP automatic configuration enabled, you must disable the SP automatic configuration, delete subnets, and manually configure the SP network interface before reverting to the Data ONTAP 8.2 release family.

Steps

1. Disable the SP automatic configuration by using the `system service-processor network auto-configuration disable` command.

The SP automatic configuration has dependencies on subnets, which are not supported in releases prior to Data ONTAP 8.3 and are deleted prior to the reversion. Therefore, you must first disable the SP automatic configuration.

The `system service-processor network auto-configuration show` command displays the setup for the SP automatic configuration.
2. Delete subnets by using the `network subnet delete` command.

 If the SP automatic configuration is still enabled when you attempt to delete subnets, Data ONTAP prompts you to disable the SP automatic configuration.

3. Manually configure the SP network interface for each node in the cluster by using the `system service-processor network modify` command.

 After the SP automatic configuration is disabled, a manual configuration of the SP network interface is required. In case a node recovery becomes necessary, the SP is needed for assisting the recovery process. Failure to properly configure the SP network interface might affect the node’s ability to recover from a system error.

 When the SP automatic configuration is disabled, the SP port is set up to use IPv4 DHCP and disable IPv6 by default. If the DHCP server in your network is functioning properly, an IPv4 address is assigned to the SP port. You can use the IPv4 DHCP address or manually specify another address to use. The DHCP information for the SP is preserved even after the reversion.

Related information

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

Preparing Snapshot copies before reverting

Before reverting to an earlier Data ONTAP release, you must disable all Snapshot copy policies and delete any Snapshot copies that were created after upgrading to the current release.

Before you begin

If you are reverting in a SnapMirror environment, you must first have deleted the following mirror relationships:

- All load-sharing mirror relationships
- Any data protection mirror relationships that were created in Data ONTAP 8.3.x
- All data protection mirror relationships if the cluster was re-created in Data ONTAP 8.3.x

Steps

1. Disable Snapshot copy policies for all data SVMs:

   ```shell
   volume snapshot policy modify -vserver * -enabled false
   ```

2. Disable Snapshot copy policies for each node's aggregates:

 a. Identify the node's aggregates by using the `run -node nodename aggr status` command.

 b. Disable the Snapshot copy policy for each aggregate:

   ```shell
   run -node nodename aggr options aggr_name nosnap on
   ```
c. Repeat this step for each remaining node.

3. Disable Snapshot copy policies for each node's root volume:
 a. Identify the node's root volume by using the `run -node nodename vol status` command.
 You identify the root volume by the word `root` in the `Options` column of the `vol status` command output.

 Example

      ```
      vs1::> run -node node1 vol status
      Volume State       Status            Options
      vol0 online        raid_dp, flex     root, nvfail=on
      64-bit
      ```

 b. Disable the Snapshot copy policy on the root volume:
      ```
      run -node nodename vol options root_volume_name nosnap on
      ```
 c. Repeat this step for each remaining node.

4. Delete all Snapshot copies that were created after upgrading to the current release:
 a. Set the privilege level to advanced:
      ```
      set -privilege advanced
      ```
 b. Delete the node's newer-version Snapshot copies:
      ```
      volume snapshot prepare-for-revert -node nodename
      ```
 This command deletes the newer-version Snapshot copies on each data volume, root aggregate, and root volume.

 If any Snapshot copies cannot be deleted, the command fails and notifies you of any required actions you must take before the Snapshot copies can be deleted. You must complete the required actions and then rerun the `volume snapshot prepare-for-revert` command before proceeding to the next step.

 Example

      ```
      cluster1::*> volume snapshot prepare-for-revert -node node1
      Warning: This command will delete all Snapshot copies that have the format used by the current version of Data ONTAP. It will fail if any Snapshot copy polices are enabled, or if any Snapshot copies have an owner. Continue? {y|n}: y
      ```
 c. Verify that the Snapshot copies have been deleted:
      ```
      volume snapshot show -node nodename
      ```
If any newer-version Snapshot copies remain, force them to be deleted:

```
volume snapshot delete {-fs-version 8.3 -node nodename -is-constituent true} -ignore-owners -force
```

d. Repeat this step for each remaining node.
e. Return to the admin privilege level:

```
set -privilege admin
```

Obtaining Data ONTAP software images

You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

About this task

To upgrade, revert, or downgrade the cluster to the target release of Data ONTAP, you need access to software images. Software images, firmware version information, and the latest firmware for your platform model are available on the NetApp Support Site. Note the following important information:

- Software images are specific to platform models.
 Be sure to obtain the correct image for your cluster.

- Software images include the latest version of system firmware that was available when a given version of Data ONTAP was released.

Steps

1. Locate the target Data ONTAP software in the **Software Downloads** area of the NetApp Support Site.

2. Copy the software image (for example, `830_q_image.tgz`) from the NetApp Support Site to the directory on the HTTP or FTP server from which the image will be served.

Related information

NetApp Downloads: Software

Installing Data ONTAP software images for a reversion

Before performing a reversion to Data ONTAP 8.2, you must install the target Data ONTAP software image on each node in the cluster.

Before you begin

You must have obtained the Data ONTAP software images.
Steps

1. Choose one of the following options based on your requirements:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download, but not install, the software image</td>
<td><code>system node image get -node * -package location -replace-package true -background true</code></td>
</tr>
<tr>
<td></td>
<td>This command downloads the software image to all of the nodes simultaneously. To download the image to each node one at a time, do not specify the <code>-background</code> parameter.</td>
</tr>
<tr>
<td>Install a previously downloaded software image</td>
<td><code>system node image update -node * -package image_name -background true</code></td>
</tr>
<tr>
<td></td>
<td>Note the following considerations for this command:</td>
</tr>
<tr>
<td></td>
<td>• If you are unsure of the image name to install, you can view a list of previously downloaded software images by using the <code>system node image package show</code> command.</td>
</tr>
<tr>
<td></td>
<td>• This command installs the software image on all of the nodes simultaneously. To install the image on each node one at a time, do not specify the <code>-background</code> parameter.</td>
</tr>
<tr>
<td>Download and install the software image in the same operation</td>
<td><code>system node image update -node * -package location -replace-package true -background true</code></td>
</tr>
<tr>
<td></td>
<td>This command downloads and installs the software image on all of the nodes simultaneously. To download and install the image on each node one at a time, do not specify the <code>-background</code> parameter.</td>
</tr>
</tbody>
</table>

2. Verify that the software image is downloaded and installed on each node:

 `system node image show-update-progress -node *`

 This command displays the current status of the software image download and installation. You should continue to run this command until all nodes report a Run Status of Exited, and an Exit Status of Success.

Example

This example shows a 2-node cluster in which the software image has been downloaded and installed successfully on both nodes:

```
cluster1::> system node image show-update-progress -node *
There is no update/install in progress
Status of most recent operation:
  Run Status:    Exited
  Exit Status:   Success
  Phase:         Run Script
  Exit Message:  Installation complete. image2 updated on node node0.
```
Reverting a Data ONTAP cluster

To take the cluster offline to revert to an earlier Data ONTAP release, you must disable storage failover and the data LIFs, address reversion preconditions, revert the cluster and file system configurations on a node, and then repeat the process for each additional node in the cluster.

Before you begin

You must have satisfied reversion preparation requirements.

About this task

Reverting a cluster requires you to take the cluster offline for the duration of the reversion.

Steps

1. Verify that the target Data ONTAP software is installed:

 \texttt{system image show}

 Example

 This example shows that version 8.2.1 is installed as the alternate image on both nodes:

<table>
<thead>
<tr>
<th>Node</th>
<th>Is</th>
<th>Is</th>
<th>Current</th>
<th>Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td></td>
<td></td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 12:37:36</td>
</tr>
<tr>
<td></td>
<td>image1</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 13:52:22</td>
</tr>
<tr>
<td>node1</td>
<td></td>
<td></td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 12:41:16</td>
</tr>
<tr>
<td></td>
<td>image1</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 13:55:22</td>
</tr>
</tbody>
</table>

 4 entries were displayed.

2. Disable all of the data LIFs in the cluster:

 \texttt{network interface modify \{-role data\} \-status-admin down}

3. If the cluster consists of only two nodes, disable cluster HA:

 \texttt{cluster ha modify \-configured false}

4. Disable storage failover for the nodes in the HA pair from either node:
storage failover modify -node nodename -enabled false

You only need to disable storage failover once for the HA pair. When you disable storage failover for a node, storage failover is also disabled on the node's partner.

5. Log in to the node that you want to revert.
To revert a node, you must be logged in to the cluster through the node's node management LIF.

6. Set the node’s target Data ONTAP software image to be the default image:
 system image modify -node nodename -image target_image -isdefault true

7. Verify that the target Data ONTAP software image is set as the default image for the node that you are reverting:
 system image show

Example
This example shows that version 8.3.0 is set as the default image on node0:

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Default</th>
<th>Is</th>
<th>Current</th>
<th>Version</th>
<th>Install</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1</td>
<td>false</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 12:37:36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 13:52:22</td>
<td></td>
</tr>
<tr>
<td>node1</td>
<td>image1</td>
<td>true</td>
<td>true</td>
<td>8.3.0</td>
<td>8/27/2014 12:41:16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>false</td>
<td>8.2.1</td>
<td>5/10/2014 13:55:22</td>
<td></td>
</tr>
</tbody>
</table>

4 entries were displayed.

8. Set the privilege level to advanced:
 set -privilege advanced

9. If the cluster consists of only two nodes, verify that the node does not hold epsilon:
 a. Check whether the node currently holds epsilon:
 cluster show -node nodename

Example
This example shows that the node holds epsilon:

cluster1::*> cluster show -node node1

Node: node1
 UUID: 026efc12-ac1a-11e0-80ed-0f7eba8fc313
 Epsilon: true
 Eligibility: true
 Health: true

b. If the node holds epsilon, mark epsilon false on the node so that epsilon can be transferred to the node's partner:
Reverting clusters to an earlier Data ONTAP release family

cluster modify -node nodenameA -epsilon false

c. Transfer epsilon to the node's partner by marking epsilon true on the partner node:
 cluster modify -node nodenameB -epsilon true

10. Verify that the node is ready for reversion:

 system node revert-to -node nodename -check-only true -version 8.2

 The check-only parameter identifies any preconditions that must be addressed before reverting, such as the following examples:

 • Disabling storage failover
 • Disabling the Snapshot policy
 • Deleting Snapshot copies that were created after upgrading to the later release family

11. Verify that all of the preconditions have been addressed:

 system node revert-to -node nodename -check-only true -version 8.2

12. Revert the cluster configuration of the node:

 system node revert-to -node nodename -version 8.2

 The -version option refers to the target release family. For example, if the software you installed and verified is Data ONTAP 8.2.1, the correct value of the -version option is 8.2.

 The cluster configuration is reverted, and then you are logged out of the clustershell.

13. Log back in to the clustershell, and then switch to the nodeshell:

 run -node nodename

14. Revert the file system configuration of the node:

 revert_to 8.2

 This command verifies that the node's file system configuration is ready to be reverted, and then reverts it. If any preconditions are identified, you must address them and then reenter the revert_to command.

 When the command finishes, the LOADER prompt is displayed.

15. At the LOADER prompt, boot to the target release:

 boot_ontap

 You should wait until the login prompt is displayed before proceeding to the next step.

16. Repeat Steps 5 through 15 on the other node in the HA pair.

17. If the cluster consists of only two nodes, reenable cluster HA:

 cluster ha modify -configured true
18. Reenable storage failover on both nodes if it was previously disabled:

```
storage failover modify -node nodename -enabled true
```

19. Repeat Steps 4 through 18 for each additional HA pair in the cluster.

20. After all nodes have been reverted, reinstall the Data ONTAP 8.2 image as the alternate image on each node:

```
system image update -node * -package location -background true
```

You do not need to boot the image. Reinstalling the Data ONTAP 8.2 image puts the cluster in a state that is necessary for the SVM networking to be verified when you are ready to upgrade back to Data ONTAP 8.3.

Completing post-reversion tasks

After reverting to an earlier Data ONTAP release family, you might need to perform additional tasks to ensure cluster health and storage availability.

Steps

1. **Verifying cluster health** on page 151
 Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

2. **Verifying storage health** on page 153
 Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

3. **Enabling and reverting LIFs to home ports** on page 154
 During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

4. **Preparing Snapshot copies after reverting** on page 155
 After reverting to an earlier version of Data ONTAP, you must enable Snapshot copy policies to start creating Snapshot copies again.

5. **Verifying client access (CIFS and NFS)** on page 156
 For the configured protocols, test access from CIFS and NFS clients to verify that the cluster is accessible.

6. **Deleting the system SVM for the Cluster IP space** on page 156
 When you revert to Data ONTAP 8.2, IP spaces are removed. However, the system SVM for the Cluster IP space is not removed, and you must manually delete it.

7. **Verifying IPv6 firewall entries** on page 157
A reversion from Data ONTAP 8.3 might result in missing default IPv6 firewall entries for some services in firewall policies. You need to verify that the required firewall entries have been restored to your system.

8. Considerations for whether to manually update the SP firmware on page 158
 If the SP automatic update functionality is enabled (the default), downgrading or reverting to Data ONTAP 8.2.1 or later does not require a manual SP firmware update. The SP firmware is automatically updated to the newest compatible version that is supported by the Data ONTAP version you reverted or downgraded to.

9. Considerations for dump backups on page 158
 If you use the dump engine to back up FlexVol volumes, then after reverting to Data ONTAP 8.2, you must perform a baseline backup operation before you can perform any incremental backup operations.

10. Creating namespace mirror constituents for reverted Infinite Volumes on page 159
 After reverting a cluster that contains an Infinite Volume to Data ONTAP 8.2.x, you must create one or more namespace mirror constituents. How you create the namespace mirror constituents depends on whether the Infinite Volume uses storage classes and is configured for tape backup.

Verifying cluster health

Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

Steps

1. Verify that the nodes in the cluster are online and are eligible to participate in the cluster:

 `cluster show`

 Example

   ```
   cluster1::> cluster show
   +------------------+-+-----+
   | Node             | Health | Eligibility |
   +------------------+-+-----+
   | node0            | true  | true       |
   | node1            | true  | true       |
   ```

 If any node is unhealthy or ineligible, check EMS logs for errors and take corrective action.

2. Set the privilege level to advanced:

 `set -privilege advanced`

 Enter `y` to continue.

3. Verify the configuration details for each RDB process.

 You should verify the following configuration details:
- The relational database epoch and database epochs should match for each node.
- The per-ring quorum master should be the same for all nodes.
 Note that each ring might have a different quorum master.

To display this RDB process...

Enter this command...

<table>
<thead>
<tr>
<th>Management application</th>
<th><code>cluster ring show -unitname mgmt</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume location database</td>
<td><code>cluster ring show -unitname vldb</code></td>
</tr>
<tr>
<td>Virtual-Interface manager</td>
<td><code>cluster ring show -unitname vifmgr</code></td>
</tr>
<tr>
<td>SAN management daemon</td>
<td><code>cluster ring show -unitname bcomd</code></td>
</tr>
</tbody>
</table>

Example

This example shows the volume location database process:

```
cluster1::*> cluster ring show -unitname vldb
Node | UnitName | Epoch | DB Epoch | DB Trnxs | Master | Online
----- |--------- |------- |---------- |---------- |-------- |--------
node0 | vldb    | 154    | 154      | 14847     | node0   | master
node1 | vldb    | 154    | 154      | 14847     | node0   | secondary
node2 | vldb    | 154    | 154      | 14847     | node0   | secondary
node3 | vldb    | 154    | 154      | 14847     | node0   | secondary
```

4. If you are operating in a SAN environment, verify that each node is in a SAN quorum:

```
event log show -messagename scsiblade.*
```

The most recent `scsiblade` event message for each node should indicate that the scsi-blade is in quorum.

Example

```
cluster1::*> event log show -messagename scsiblade.*
Time | Node | Severity | Event
----- |------ |---------- |-------
8/13/2013 14:03:51 node0 | INFORMATIONAL | scsiblade.in.quorum: The scsi-blade ...
8/13/2013 14:03:51 node1 | INFORMATIONAL | scsiblade.in.quorum: The scsi-blade ...
```

5. Return to the admin privilege level:

```
set -privilege admin
```
Verifying storage health

Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

Steps

1. If you are preparing to upgrade, revert, or downgrade, verify disk status:

<table>
<thead>
<tr>
<th>To check for...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken disks</td>
<td>a. Display any broken disks:</td>
</tr>
<tr>
<td></td>
<td><code>storage disk show -state broken</code></td>
</tr>
<tr>
<td></td>
<td>b. Remove or replace any broken disks.</td>
</tr>
<tr>
<td>Disks undergoing maintenance or reconstruction</td>
<td>a. Display any disks in maintenance, pending, or reconstructing states:</td>
</tr>
<tr>
<td></td>
<td>`storage disk show -state maintenance</td>
</tr>
<tr>
<td></td>
<td>b. Wait for the maintenance or reconstruction operation to finish before proceeding.</td>
</tr>
</tbody>
</table>

2. Verify that all aggregates are online by displaying the state of physical and logical storage, including storage aggregates:

 `storage aggregate show -state !online`

 This command displays the aggregates that are not online. All aggregates must be online before and after performing a major upgrade or reversion.

 Example

   ```
   cluster1::> storage aggregate show -state !online
   There are no entries matching your query.
   ```

3. Verify that all volumes are online by displaying any volumes that are not online:

 `volume show -state !online`

 All volumes must be online before and after performing a major upgrade or reversion.

 Example

   ```
   cluster1::> volume show -state !online
   There are no entries matching your query.
   ```
Enabling and reverting LIFs to home ports

During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

About this task

The `network interface revert` command reverts a LIF that is not currently on its home port back to its home port, provided that the home port is operational. A LIF's home port is specified when the LIF is created; you can determine the home port for a LIF by using the `network interface show` command.

Steps

1. Display the status of all LIFs:

 `network interface show`

 Example

 This example displays the status of all LIFs for a Storage Virtual Machine (SVM, formerly known as Vserver).


   ```
   cluster1::> network interface show -vserver vs0
   Logical  Status     Network            Current     Current Is
   Vserver  Interface  Admin/Oper Address/Mask       Node      Port    Home
   ----------- ---------- ---------- ------------------ ------------- ------- ----
   vs0        data001  down/down  192.0.2.120/24     node0    e0e     true
   data002    down/down  192.0.2.121/24     node0    e0f     true
   data003    down/down  192.0.2.122/24     node0    e2a     true
   data004    down/down  192.0.2.123/24     node0    e2b     true
   data005    down/down  192.0.2.124/24     node0    e0e     false
   data006    down/down  192.0.2.125/24     node0    e0f     false
   data007    down/down  192.0.2.126/24     node0    e2a     false
   data008    down/down  192.0.2.127/24     node0    e2b     false
   8 entries were displayed.
   ```

 If any LIFs appear with a Status Admin status of down or with an Is home status of false, continue with the next step.

2. Enable the data LIFs:

 `network interface modify {-role data} -status-admin up`
Reverting clusters to an earlier Data ONTAP release family | 155

Example

```
cluster1::> network interface modify {-role data} -status-admin up
8 entries were modified.
```

3. Revert LIFs to their home ports:

```
network interface revert *
```

Example

This command reverts all LIFs back to their home ports and changes all LIF home statuses to true.

```
cluster1::> network interface revert *
8 entries were acted on.
```

4. Verify that all LIFs are in their home ports:

```
network interface show
```

Example

This example shows that all LIFs for SVM vs0 are on their home ports.

```
cluster1::> network interface show -vserver vs0
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Logical Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Port</th>
<th>Current Is Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data001</td>
<td>up/up</td>
<td>192.0.2.120/24</td>
<td>node0</td>
<td>e0e</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data002</td>
<td>up/up</td>
<td>192.0.2.121/24</td>
<td>node0</td>
<td>e0f</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data003</td>
<td>up/up</td>
<td>192.0.2.122/24</td>
<td>node0</td>
<td>e2a</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data004</td>
<td>up/up</td>
<td>192.0.2.123/24</td>
<td>node0</td>
<td>e2b</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data005</td>
<td>up/up</td>
<td>192.0.2.124/24</td>
<td>node1</td>
<td>e0e</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data006</td>
<td>up/up</td>
<td>192.0.2.125/24</td>
<td>node1</td>
<td>e0f</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data007</td>
<td>up/up</td>
<td>192.0.2.126/24</td>
<td>node1</td>
<td>e2a</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>data008</td>
<td>up/up</td>
<td>192.0.2.127/24</td>
<td>node1</td>
<td>e2b</td>
<td>true</td>
</tr>
</tbody>
</table>

8 entries were displayed.

Preparing Snapshot copies after reverting

After reverting to an earlier version of Data ONTAP, you must enable Snapshot copy policies to start creating Snapshot copies again.

About this task

You are reenabling the Snapshot schedules that you disabled before you reverted to an earlier version of Data ONTAP.

Steps

1. Enable Snapshot copy policies for all data SVMs:
volume snapshot policy modify -vserver * -enabled true

2. For each node, enable the Snapshot copy policy of the root volume by using the run -node nodename vol options root_vol_name nosnap off command.

Example

cluster1::> run -node node1 vol options vol0 nosnap off

3. For each node, enable the Snapshot copy policy of the aggregates by using the run -node nodename aggr options aggr_name nosnap off command.

Example

cluster1::> run -node node1 aggr options aggr0 nosnap off

Verifying client access (CIFS and NFS)

For the configured protocols, test access from CIFS and NFS clients to verify that the cluster is accessible.

Deleting the system SVM for the Cluster IP space

When you revert to Data ONTAP 8.2, IP spaces are removed. However, the system SVM for the Cluster IP space is not removed, and you must manually delete it.

Steps

1. Determine whether the Cluster SVM exists:

vserver show

Example

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Type</th>
<th>Admin State</th>
<th>Root Volume</th>
<th>Aggregate</th>
<th>Name Service</th>
<th>Name Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cluster1</td>
<td>admin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>node0</td>
<td>node</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>node1</td>
<td>node</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vs0</td>
<td>data</td>
<td>running</td>
<td>root</td>
<td>aggr1</td>
<td>file</td>
<td>file</td>
</tr>
</tbody>
</table>

2. Delete the Cluster SVM:

vserver delete -vserver Cluster
Verifying IPv6 firewall entries

A reversion from Data ONTAP 8.3 might result in missing default IPv6 firewall entries for some services in firewall policies. You need to verify that the required firewall entries have been restored to your system.

Steps

1. Verify that all firewall policies are correct by comparing them to the default policies:

   ```bash
   system services firewall policy show
   ```

Example

The following example shows the default policies:

```
cluster1::*> system services firewall policy show
Policy               Service    Action IP-List
---------------- ---------- ------ -----------------------
cluster             dns        allow  0.0.0.0/0
                        http      allow  0.0.0.0/0
                        https     allow  0.0.0.0/0
                        ndmp      allow  0.0.0.0/0
                        ntp       allow  0.0.0.0/0
                        rsh       allow  0.0.0.0/0
                        snmp      allow  0.0.0.0/0
                        ssh       allow  0.0.0.0/0
                        telnet    allow  0.0.0.0/0

   data
               dns        allow  0.0.0.0/0, ::/0
               http      deny   0.0.0.0/0, ::/0
               https     deny   0.0.0.0/0, ::/0
               ndmp      allow  0.0.0.0/0, ::/0
               ntp       deny   0.0.0.0/0, ::/0
               rsh       deny   0.0.0.0/0, ::/0
               snmp      deny   0.0.0.0/0, ::/0
               ssh       deny   0.0.0.0/0, ::/0
               telnet    deny   0.0.0.0/0, ::/0

   intercluster
               dns        deny   0.0.0.0/0
               http      deny   0.0.0.0/0
               https     deny   0.0.0.0/0
               ndmp      allow  0.0.0.0/0
               ntp       deny   0.0.0.0/0
               rsh       deny   0.0.0.0/0
               snmp      deny   0.0.0.0/0
               ssh       deny   0.0.0.0/0
               telnet    deny   0.0.0.0/0

   mgmt
               dns        allow  0.0.0.0/0, ::/0
               http      allow  0.0.0.0/0, ::/0
               https     allow  0.0.0.0/0, ::/0
```
2. Manually add any missing default IPv6 firewall entries by creating a new firewall policy:

```bash
system services firewall policy create
```

Example

```bash
cluster1::*> system services firewall policy create -policy newIPv6 -service ssh -action allow -ip-list ::/0
```

3. Apply the new policy to the LIF to allow access to a network service:

```bash
network interface modify
```

Example

```bash
cluster1::*> network interface modify -vserver VS1 -lif LIF1 -firewall-policy newIPv6
```

Considerations for whether to manually update the SP firmware

If the SP automatic update functionality is enabled (the default), downgrading or reverting to Data ONTAP 8.2.1 or later does not require a manual SP firmware update. The SP firmware is automatically updated to the newest compatible version that is supported by the Data ONTAP version you reverted or downgraded to.

If the SP automatic update functionality is disabled (not recommended), after the Data ONTAP revert or downgrade process is complete, you must manually update the SP firmware to a version that is supported for the Data ONTAP version you reverted or downgraded to.

Related information

- NetApp BIOS Service Processor Support Matrix
- NetApp Downloads: System Firmware and Diagnostics

Considerations for dump backups

If you use the dump engine to back up FlexVol volumes, then after reverting to Data ONTAP 8.2, you must perform a baseline backup operation before you can perform any incremental backup operations.
Creating namespace mirror constituents for reverted Infinite Volumes

After reverting a cluster that contains an Infinite Volume to Data ONTAP 8.2.x, you must create one or more namespace mirror constituents. How you create the namespace mirror constituents depends on whether the Infinite Volume uses storage classes and is configured for tape backup.

About this task

When an Infinite Volume is in a data protection mirror relationship, only the source read/write Infinite Volume requires a namespace mirror constituent to provide data protection for the namespace constituent. The destination read-only Infinite Volume does not require a namespace mirror constituent because the data protection mirror relationship for the Infinite Volume provides data protection. However, if the destination Infinite Volume is configured for incremental tape backup, you must reenable SnapDiff on the destination Infinite Volume to support incremental tape backup.

Choices

- Creating a namespace mirror constituent for a reverted Infinite Volume on page 159
- Reenabling SnapDiff for a reverted Infinite Volume configured for tape backup on page 160
- Creating a namespace mirror constituent for a reverted Infinite Volume with storage classes on page 161
- Reenabling SnapDiff for a reverted Infinite Volume with storage classes configured for tape backup on page 162

Creating a namespace mirror constituent for a reverted Infinite Volume

After reverting a cluster that contains an Infinite Volume, the namespace mirror constituent is removed. You must create a namespace mirror constituent for the Infinite Volume to provide data protection for the namespace constituent.

Before you begin

- All nodes in the cluster that contain the Infinite Volume must have been reverted to Data ONTAP 8.2.x.
- SnapDiff must be disabled for the Infinite Volume.
- The Infinite Volume must not use storage classes.

Steps

1. View the size of the namespace constituent on the Infinite Volume, and view the name of the aggregate that contains the namespace constituent by using the `volume show` command with the `-is-constituent true` parameter.
You require the size of the namespace constituent because the namespace mirror constituent will be the same size as the namespace constituent.

Example

In the following example, the namespace constituent is named `repo_vol_ns` and is 10 TB in size.

```
cluster1::> volume show -is-constituent true
Vserver Volume                 Aggregate State  Type  Size   Available Used%
------- ------------           --------- ------ ---- ----- --------- -----        
vs0     repo_vol_default_data0001 aggr1   online RW   50TB    35.0TB   30%
vs0     repo_vol_default_data0002 aggr2   online RW   50TB    34.0TB   32%
vs0     repo_vol_default_data0003 aggr3   online RW   50TB    35.5TB   29%
vs0     repo_vol_default_data0004 aggr4   online RW   50TB    36.5TB   27%
vs0     repo_vol_ns               aggr_ns online RW   10TB     8.4TB   16%
5 entries were displayed.
```

2. Increase the size of the Infinite Volume by the size of the namespace constituent by using the `volume modify` command.

Example

In the following example, the volume named `repo_vol` is increased by the size of the namespace constituent, which is 10 TB:

```
cluster1::> volume modify -vserver vs0 -volume repo_vol -size +10TB
```

A namespace mirror constituent is automatically created.

Reenabling SnapDiff for a reverted Infinite Volume configured for tape backup

After reverting a cluster that contains an Infinite Volume that is configured for tape backup, the namespace mirror constituents are removed. You must reenable SnapDiff to create namespace mirror constituents for the Infinite Volume to provide data protection for the namespace constituent and to support tape backup.

Before you begin

All nodes in the cluster that contain the Infinite Volume must have been reverted to Data ONTAP 8.2.x.

About this task

You cannot perform tape backup and restore operations until the namespace mirror constituents are created.
Step

1. Reenable SnapDiff for the Infinite Volume by using the `volume modify` command with the `-enable-snapdiff` parameter.

Example

In the following example, SnapDiff is reenabled for the Infinite Volume named repo_vol:

```
cluster1::> volume modify repo_vol -enable-snapdiff true
[Job 39] Job succeeded: Modified Infinite Volume successfully.
```

Namespace mirror constituents are created on all nodes, except the node with the namespace constituent. One namespace mirror constituent provides data protection for the namespace constituent, and the remaining namespace mirror constituents support incremental tape backup of the Infinite Volume.

Creating a namespace mirror constituent for a reverted Infinite Volume with storage classes

After reverting a cluster that contains an Infinite Volume with storage classes, the namespace mirror constituent is removed. You must create a namespace mirror constituent for the Infinite Volume to provide data protection for the namespace constituent by enabling and then disabling SnapDiff.

Before you begin

- All nodes in the cluster that contain the Infinite Volume must have been reverted to Data ONTAP 8.2.x.
- You must know the name of the aggregate on each node that you want to use for the namespace mirror constituent, and each aggregate must have 10 TB of free space.
 Each node that contains a data constituent requires a namespace mirror constituent to support SnapDiff, except the node with the namespace constituent.

About this task

You create a namespace mirror constituent by first enabling SnapDiff to create multiple namespace mirror constituents, and then disabling SnapDiff to remove all namespace mirror constituents, except one namespace mirror constituent. One namespace mirror constituent is retained to provide data protection for the namespace constituent.

Steps

1. Switch to advanced privilege by using the `set -privilege advanced` command.

2. Enable SnapDiff and specify the aggregates on the nodes to use for namespace mirror constituents by using the `volume modify` command with the `-enable-snapdiff` parameter.
Example

In the following example, you have identified an aggregate on each node, aggr9 and aggr13, to contain the namespace mirror constituents. You enable SnapDiff for the Infinite Volume with storage classes named repo_vol and specify two aggregates (one on each node):

```
cluster2::*> volume modify repo_vol -enable-snapdiff true -ns-mirror-aggr-list aggr9 aggr13
```

Namespace mirror constituents are created on all nodes with a data constituent, except the node with the namespace constituent.

3. Disable SnapDiff for the Infinite Volume by using the `volume modify` command with the `-disable-snapdiff` parameter.

Example

In the following example, SnapDiff is disabled for the Infinite Volume named repo_vol:

```
cluster1::*> volume modify repo_vol -enable-snapdiff false
[Job 50] Job succeeded: Modified Infinite Volume successfully.
```

All but one namespace mirror constituent are removed from the Infinite Volume. The remaining namespace mirror constituent provides data protection for the namespace constituent.

Reenabling SnapDiff for a reverted Infinite Volume with storage classes configured for tape backup

After reverting a cluster that contains an Infinite Volume with storage classes that is configured for tape backup, the namespace mirror constituents are removed. You must reenable SnapDiff to create namespace mirror constituents for the Infinite Volume to provide data protection for the namespace constituent and to support tape backup.

Before you begin

- All nodes in the cluster that contain the Infinite Volume with storage classes must have been reverted to Data ONTAP 8.2.x.
- You must know the name of the aggregate on each node that you want to use for the namespace mirror constituent, and each aggregate must have 10 TB of free space.

Each node that contains a data constituent requires a namespace mirror constituent to support SnapDiff, except the node with the namespace constituent.

About this task

You cannot perform tape backup and restore operations until the namespace mirror constituents are created.
Steps

1. Switch to advanced privilege by using the `set -privilege advanced` command.

2. Reenable SnapDiff and specify the aggregates on the nodes to use for namespace mirror constituents by using the `volume modify` command with the `-enable-snapdiff` parameter.

Example

In the following example, you have identified an aggregate on each node, aggr9 and aggr13, to contain the namespace mirror constituents. You reenable SnapDiff for the Infinite Volume with storage classes named `repo_vol` and specify two aggregates (one on each new node):

```
cluster2::*> volume modify repo_vol -enable-snapdiff true -ns-mirror-aggr-list aggr9 aggr13
```

Namespace mirror constituents are created on all nodes, except the node with the namespace constituent. One namespace mirror constituent provides data protection for the namespace constituent, and the remaining namespace mirror constituents support incremental tape backup of the Infinite Volume with storage classes.
Downgrading clusters to an earlier release in the same release family

Transitioning a cluster to an earlier release in the same Data ONTAP release family is referred to as a *downgrade*. Doing so requires preparation, downloading and booting the earlier release, and completing post-downgrade procedures.

Downgrading does not require modifications to Data ONTAP on-disk structures; you must simply obtain and boot the target release after verifying requirements and compatibility.

When to downgrade and when to call technical support

You can downgrade without assistance when downgrading new or test clusters, but you should call technical support if you encounter problems during or after upgrading, or if you want to downgrade a production cluster.

You can downgrade to an earlier release family without assistance from technical support only in the following scenarios:

- You upgraded to a new release on a test cluster and you want to return to the original release when testing is completed.
- You are configuring a new cluster—running a later release of Data ONTAP and not yet in production—in an environment in which you have standardized on an earlier Data ONTAP release.

Do not attempt to downgrade Data ONTAP in a production environment without assistance. If you encounter any of the following circumstances, contact technical support immediately:

- The upgrade process fails and cannot finish.
- The upgrade process finishes, but the cluster is unusable in a production environment.
- The upgrade process finishes and the cluster goes into production, but you are not satisfied with its behavior.
- The upgrade process finishes for some but not all of the nodes, and you decide that you want to downgrade.
Cluster downgrade workflow

You can use the cluster downgrade workflow to plan the downgrade, prepare for the downgrade, perform the downgrade, and complete post-downgrade tasks.

Planning your downgrade

Because new features are introduced in each release of Data ONTAP, you must understand downgrade requirements and evaluate how they might impact your current configuration.

Before proceeding with the downgrade, you should plan to do the following:

- Understand any requirements for downgrading to the target release from your existing software.
- Note any potential functionality changes to your cluster after the downgrade.
- Be prepared to address all points in the downgrade checklist.

Steps
1. Reviewing pre-downgrade resources on page 166
2. Downgrade process considerations on page 166
Reviewing pre-downgrade resources

Before downgrading Data ONTAP, you should review resources to understand issues you must resolve before downgrading, understand new system behavior in the prior release, and confirm hardware support.

Steps

 Find the Release Notes for your version of Data ONTAP 8

 The “Important cautions” section describes potential issues that you should be aware of before downgrading to the prior release. The “New and changed features” and “Known problems and limitations” sections describe new system behavior after downgrading to the prior release.

2. Confirm that your hardware platform is supported in the target release.

 NetApp Hardware Universe

3. Confirm that your cluster and management switches are supported in the target release.

 You must verify that the NX-OS (cluster network switches), IOS (management network switches), and reference configuration file (RCF) software versions are compatible with the version of Data ONTAP to which you are downgrading.

 NetApp Downloads: Cisco Ethernet Switch

4. If your cluster is configured for SAN, confirm that the SAN configuration is fully supported.

 All SAN components—including target Data ONTAP software version, host OS and patches, required Host Utilities software, and adapter drivers and firmware—should be supported.

 NetApp Interoperability Matrix Tool

Downgrade process considerations

You need to know about downgrade issues and limitations before downgrading clusters to an earlier version of Data ONTAP.

You should be aware of the following issues:

- After you upgrade clusters to Data ONTAP 8.3, you can downgrade to an earlier release in the Data ONTAP 8.3 release family.

 For example, you can downgrade from Data ONTAP 8.3.y to 8.3.x.

- Downgrading affects all nodes in the cluster.

 The downgrade must be performed on all nodes in the cluster; however, some of the procedures must be performed on each HA pair and completed on each set of nodes before other HA pairs are downgraded.
• You can downgrade Data ONTAP nondisruptively. During the downgrade process, the cluster remains online and continues to serve data.

• If your cluster serves CIFS clients, nondisruptive downgrades are supported for Hyper-V over SMB solutions. Hyper-V over SMB solutions enable Hyper-V and the contained virtual machines to remain online and to provide continuous availability during the Data ONTAP downgrade. For all other CIFS configurations, client sessions are terminated. You should direct users to end their sessions before you downgrade to prevent data loss.

• Data ONTAP clusters can operate for a limited time in a mixed version state, in which nodes in a cluster are running Data ONTAP versions from different release families; however, the upgrade is not complete until all nodes are running the new target release. When the cluster is in a mixed version state, you should not enter any commands that alter the cluster operation or configuration except as necessary to satisfy upgrade requirements. You should complete the upgrade as quickly as possible; do not allow the cluster to remain in a mixed version state longer than necessary.

Related information

Clustered Data ONTAP 8.3 File Access Management Guide for CIFS

Preparing for the Data ONTAP downgrade process

Before downgrading, you need to verify cluster health, verify aggregate and volume health, and install the target Data ONTAP image.

Steps

1. Verifying that the cluster is ready to be downgraded on page 167
 Before you perform the downgrade, you should verify that your cluster configuration is healthy.

2. Preparing Data ONTAP features for the downgrade on page 175
 If you are downgrading a cluster that you have configured to serve data to clients in your environment, you must ensure that certain configurations are prepared for the downgrade.

3. Obtaining Data ONTAP software images on page 180
 You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

Verifying that the cluster is ready to be downgraded

Before you perform the downgrade, you should verify that your cluster configuration is healthy.
Verifying cluster health

Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

Steps

1. Verify that the nodes in the cluster are online and are eligible to participate in the cluster:

 \texttt{cluster show}

 \textbf{Example}

 \begin{verbatim}
 cluster1::> cluster show
 Node Health Eligibility
 --------------------- ------- ------------
 node0 true true
 node1 true true
 \end{verbatim}

 If any node is unhealthy or ineligible, check EMS logs for errors and take corrective action.

2. Set the privilege level to advanced:

 \texttt{set -privilege advanced}

 Enter \texttt{y} to continue.

3. Verify the configuration details for each RDB process.

 You should verify the following configuration details:

 - The relational database epoch and database epochs should match for each node.
 - The per-ring quorum master should be the same for all nodes.

 Note that each ring might have a different quorum master.

 \begin{tabular}{|c|c|}
 \hline
 \textbf{To display this RDB process...} & \textbf{Enter this command...} \\
 \hline
 Management application & \texttt{cluster ring show -unitname mgmt} \\
 Volume location database & \texttt{cluster ring show -unitname vldb} \\
 Virtual-Interface manager & \texttt{cluster ring show -unitname vifmgr} \\
 SAN management daemon & \texttt{cluster ring show -unitname bcomd} \\
 \hline
 \end{tabular}

 \textbf{Example}

 This example shows the volume location database process:
cluster1::*> cluster ring show -unitname vldb

Node	UnitName	Epoch	DB Epoch	DB Trnxs	Master	Online
node0| vldb | 154 | 154 | 14847 | node0 | master |
node1| vldb | 154 | 154 | 14847 | node0 | secondary |
node2| vldb | 154 | 154 | 14847 | node0 | secondary |
node3| vldb | 154 | 154 | 14847 | node0 | secondary |

4 entries were displayed.

4. If you are operating in a SAN environment, verify that each node is in a SAN quorum:

 event log show -messagename scsiblade.*

The most recent scsiblade event message for each node should indicate that the scsi-blade is in quorum.

Example

cluster1::*> event log show -messagename scsiblade.*

<table>
<thead>
<tr>
<th>Time</th>
<th>Node</th>
<th>Severity</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node0</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node1</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
</tbody>
</table>

5. Return to the admin privilege level:

 set -privilege admin

Verifying storage health

Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

Steps

1. If you are preparing to upgrade, revert, or downgrade, verify disk status:

<table>
<thead>
<tr>
<th>To check for</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken disks</td>
<td>a. Display any broken disks:</td>
</tr>
<tr>
<td></td>
<td>storage disk show -state broken</td>
</tr>
<tr>
<td></td>
<td>b. Remove or replace any broken disks.</td>
</tr>
<tr>
<td>Disks undergoing maintenance or reconstruction</td>
<td>a. Display any disks in maintenance, pending, or reconstructing states:</td>
</tr>
<tr>
<td></td>
<td>storage disk show -state maintenance</td>
</tr>
<tr>
<td></td>
<td>b. Wait for the maintenance or reconstruction operation to finish before proceeding.</td>
</tr>
</tbody>
</table>
2. Verify that all aggregates are online by displaying the state of physical and logical storage, including storage aggregates:

```bash
storage aggregate show -state !online
```

This command displays the aggregates that are not online. All aggregates must be online before and after performing a major upgrade or reversion.

Example

```
cluster1::> storage aggregate show -state !online
There are no entries matching your query.
```

3. Verify that all volumes are online by displaying any volumes that are not online:

```bash
volume show -state !online
```

All volumes must be online before and after performing a major upgrade or reversion.

Example

```
cluster1::> volume show -state !online
There are no entries matching your query.
```

Related information

Clustered Data ONTAP 8.3 Logical Storage Management Guide
Clustered Data ONTAP 8.3 Physical Storage Management Guide

Verifying networking and storage status for MetroCluster configurations

Before and after performing a minor upgrade or downgrade in a MetroCluster configuration, you should verify the status of the LIFs, aggregates, and volumes for each cluster.

About this task

If you are performing a major upgrade from Data ONTAP 8.2, you do not need to complete this procedure.

Steps

1. Verify the LIF status:

```bash
network interface show
```

In normal operation, LIFs for source SVMs must be up and located on their home nodes. LIFs for destination SVMs are not required to be up or located on their home nodes. In switchover, all LIFs should be up, but they do not need to be located on their home nodes.
Example

```
cluster1::> network interface show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Port</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster1-a1_clus1</td>
<td>up/up</td>
<td>192.0.2.1/24</td>
<td>cluster1-01</td>
<td>e2a</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a1_clus2</td>
<td>up/up</td>
<td>192.0.2.2/24</td>
<td>cluster1-01</td>
<td>e2b</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_clus1</td>
<td>up/up</td>
<td>192.0.2.3/24</td>
<td>cluster1-02</td>
<td>e2a</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_clus2</td>
<td>up/up</td>
<td>192.0.2.4/24</td>
<td>cluster1-02</td>
<td>e2b</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-01</td>
<td>clus_mgmt</td>
<td>up/up</td>
<td>198.51.100.1/24</td>
<td>cluster1-01</td>
<td>e3a</td>
<td>true</td>
</tr>
<tr>
<td>cluster1-alinet4_intercluster1</td>
<td>up/up</td>
<td>198.51.100.2/24</td>
<td>cluster1-01</td>
<td>e3c</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-alinet4_intercluster2</td>
<td>up/up</td>
<td>198.51.100.3/24</td>
<td>cluster1-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster1-almgmt1</td>
<td>up/up</td>
<td>198.51.100.4/24</td>
<td>cluster1-01</td>
<td>e0M</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_alinet4_intercluster1</td>
<td>up/up</td>
<td>198.51.100.5/24</td>
<td>cluster1-02</td>
<td>e3c</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_alinet4_intercluster2</td>
<td>up/up</td>
<td>198.51.100.6/24</td>
<td>cluster1-02</td>
<td>e3d</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_mgmt1</td>
<td>up/up</td>
<td>198.51.100.7/24</td>
<td>cluster1-02</td>
<td>e0M</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a1_data1</td>
<td>up/up</td>
<td>198.51.100.8/24</td>
<td>cluster1-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster1-a1_data2</td>
<td>up/up</td>
<td>198.51.100.9/24</td>
<td>cluster1-01</td>
<td>e3d</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a1_data3</td>
<td>up/up</td>
<td>198.51.100.10/24</td>
<td>cluster1-01</td>
<td>e3c</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a1_data4</td>
<td>up/up</td>
<td>198.51.100.11/24</td>
<td>cluster1-01</td>
<td>e3a</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_data1</td>
<td>up/up</td>
<td>198.51.100.12/24</td>
<td>cluster1-01</td>
<td>e3d</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_data2</td>
<td>up/up</td>
<td>198.51.100.13/24</td>
<td>cluster1-01</td>
<td>e3a</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_data3</td>
<td>up/up</td>
<td>198.51.100.14/24</td>
<td>cluster1-01</td>
<td>e3c</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>cluster1-a2_data4</td>
<td>up/up</td>
<td>198.51.100.15/24</td>
<td>cluster1-01</td>
<td>e3c</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>vs1</td>
<td>cluster1-b1_data1</td>
<td>up/down</td>
<td>198.51.100.16/24</td>
<td>cluster1-02</td>
<td>e3a</td>
<td>true</td>
</tr>
<tr>
<td>cluster1-b1_data2</td>
<td>up/down</td>
<td>198.51.100.17/24</td>
<td>cluster1-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Downgrading clusters to an earlier release in the same release family
2. Verify the state of the aggregates:

 storage aggregate show -state !online

 This command displays any aggregates that are *not* online. In normal operation, all aggregates located at the local site must be online. However, if the MetroCluster configuration is in switchover, root aggregates at the disaster recovery site are permitted to be offline.

 Example

 This example shows a cluster in normal operation:

   ```
   cluster1::> storage aggregate show -state !online
   There are no entries matching your query.
   ```

 Example

 This example shows a cluster in switchover, in which the root aggregates at the disaster recovery site are offline:

   ```
   cluster1::> storage aggregate show -state !online
   Aggregate     Size Available Used% State   #Vols  Nodes            RAID Status
   --------- -------- --------- ----- ------- ------ ---------------- ------------
   aggr0_b1      0B        0B    0% offline      0 cluster2-01      raid_dp,     
                     mirror degraded
   aggr0_b2      0B        0B    0% offline      0 cluster2-02      raid_dp,     
                     mirror degraded
   2 entries were displayed.
   ```

3. Verify the state of the volumes:

 volume show -state !online

 This command displays any volumes that are *not* online. In normal operation, all root and data volumes owned by the local cluster's SVMs must be online. However, if the MetroCluster configuration is in switchover, all volumes must be online.
Example

This example shows a cluster in normal operation, in which the volumes at the disaster recovery site are not online.

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Volume</th>
<th>Aggregate</th>
<th>State</th>
<th>Type</th>
<th>Size</th>
<th>Available</th>
<th>Used%</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs2-mc</td>
<td>vol1</td>
<td>aggr1_b1</td>
<td>-</td>
<td>RW</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vs2-mc</td>
<td>root_vs2</td>
<td>aggr0_b1</td>
<td>-</td>
<td>RW</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vs2-mc</td>
<td>vol2</td>
<td>aggr1_b1</td>
<td>-</td>
<td>RW</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vs2-mc</td>
<td>vol3</td>
<td>aggr1_b1</td>
<td>-</td>
<td>RW</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>vs2-mc</td>
<td>vol4</td>
<td>aggr1_b1</td>
<td>-</td>
<td>RW</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

5 entries were displayed.

Verifying the system time

You should verify that NTP is configured, and that the time is synchronized across the cluster.

Steps

1. Verify that the cluster is associated with an NTP server:

<table>
<thead>
<tr>
<th>If you are running...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data ONTAP 8.2.x</td>
<td>system services ntp server show</td>
</tr>
<tr>
<td>Data ONTAP 8.3.x</td>
<td>cluster time-service ntp server show</td>
</tr>
</tbody>
</table>

2. Verify that each node has the same date and time:

 cluster date show

Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Date</th>
<th>Timezone</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>4/6/2013 20:54:38</td>
<td>GMT</td>
</tr>
<tr>
<td>node1</td>
<td>4/6/2013 20:54:38</td>
<td>GMT</td>
</tr>
<tr>
<td>node2</td>
<td>4/6/2013 20:54:38</td>
<td>GMT</td>
</tr>
<tr>
<td>node3</td>
<td>4/6/2013 20:54:38</td>
<td>GMT</td>
</tr>
</tbody>
</table>

4 entries were displayed.

Related information

Clustered Data ONTAP 8.3 System Administration Guide for Cluster Administrators

Ensuring that no jobs are running

You must verify the status of cluster jobs before upgrading or downgrading to a different Data ONTAP release. If any aggregate, volume, NDMP (dump or restore), or Snapshot jobs (such as
create, delete, move, modify, replicate, and mount jobs) are running or queued, allow the jobs to finish successfully or stop the queued entries.

Steps

1. **Review the list of any running or queued aggregate, volume, or Snapshot jobs:**

   ```
   job show
   ```

 Example

   ```
   cluster1::> job show
   Job ID Name                        Owning Vserver Node     State
   ------ -------------------- ---------- -------------- ----------
   8629   Vol Reaper           cluster1   -              Queued
   Description: Vol Reaper Job
   8630   Certificate Expiry Check
           cluster1   -              Queued
   Description: Certificate Expiry Check
   8632   CLUSTER BACKUP AUTO daily
           cluster1   -              Queued
   Description: Cluster Backup Job
   8633   CLUSTER BACKUP AUTO weekly
           cluster1   -              Queued
   Description: Cluster Backup Job
   9944   SnapMirrorDaemon_7_2147484678
           cluster1 node1          Dormant
   Description: Snapmirror Daemon for 7_2147484678
   18277  CLUSTER BACKUP AUTO 8hour
           cluster1   -              Queued
   Description: Cluster Backup Job
   18377  SnapMirror Service Job
           cluster1 node0          Dormant
   Description: SnapMirror Service Job
   18379  Network Consistency Diagnostic - weekly
           cluster1 node0          Queued
   Description: Network Consistency Checker
   18385  Network Consistency Diagnostic - weekly
           cluster1 node1          Queued
   Description: Network Consistency Checker
   9 entries were displayed
   ```

2. **Delete any running or queued aggregate, volume, or Snapshot copy jobs:**

   ```
   job delete -id job_id
   ```

 Example

   ```
   cluster1::> job delete -id 8629
   ```

3. **Ensure that no aggregate, volume, or Snapshot jobs are running or queued:**

   ```
   job show
   ```

 Example

 In this example, all running and queued jobs have been deleted.
Preparing Data ONTAP features for the downgrade

If you are downgrading a cluster that you have configured to serve data to clients in your environment, you must ensure that certain configurations are prepared for the downgrade.

Enabling and reverting LIFs to home ports

During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

About this task

The `network interface revert` command reverts a LIF that is not currently on its home port back to its home port, provided that the home port is operational. A LIF's home port is specified when the LIF is created; you can determine the home port for a LIF by using the `network interface show` command.

Steps

1. Display the status of all LIFs:

 `network interface show`

Example

This example displays the status of all LIFs for a Storage Virtual Machine (SVM, formerly known as Vserver).

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Logical Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Is Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs0</td>
<td>data001</td>
<td>down/down</td>
<td>192.0.2.120/24</td>
<td>node0</td>
<td>e0e true</td>
</tr>
<tr>
<td></td>
<td>data002</td>
<td>down/down</td>
<td>192.0.2.121/24</td>
<td>node0</td>
<td>e0f true</td>
</tr>
<tr>
<td></td>
<td>data003</td>
<td>down/down</td>
<td>192.0.2.122/24</td>
<td>node0</td>
<td>e2a true</td>
</tr>
<tr>
<td></td>
<td>data004</td>
<td>down/down</td>
<td>192.0.2.123/24</td>
<td>node0</td>
<td>e2b true</td>
</tr>
<tr>
<td></td>
<td>data005</td>
<td>down/down</td>
<td>192.0.2.124/24</td>
<td>node0</td>
<td>e0e false</td>
</tr>
<tr>
<td></td>
<td>data006</td>
<td>down/down</td>
<td>192.0.2.125/24</td>
<td>node0</td>
<td>e0f false</td>
</tr>
<tr>
<td></td>
<td>data007</td>
<td>down/down</td>
<td>192.0.2.126/24</td>
<td>node0</td>
<td>e2a false</td>
</tr>
<tr>
<td></td>
<td>data008</td>
<td>down/down</td>
<td>192.0.2.127/24</td>
<td>node0</td>
<td>e2b false</td>
</tr>
</tbody>
</table>

8 entries were displayed.
If any LIFs appear with a Status Admin status of down or with an Is home status of false, continue with the next step.

2. Enable the data LIFs:

```
network interface modify {-role data} -status-admin up
```

Example

```
cluster1::> network interface modify {-role data} -status-admin up
8 entries were modified.
```

3. Revert LIFs to their home ports:

```
network interface revert *
```

Example

This command reverts all LIFs back to their home ports and changes all LIF home statuses to true.

```
cluster1::> network interface revert *
8 entries were acted on.
```

4. Verify that all LIFs are in their home ports:

```
network interface show
```

Example

This example shows that all LIFs for SVM vs0 are on their home ports.

```
ccluster1::> network interface show -vserver vs0
Vserver Logical Interface Status Admin/Oper Network Address/Mask Current Node Current Port Current Is Home
----------- --------- ---------- ---------- ------------------ ------------- ------- ----
vs0        data001  up/up     192.0.2.120/24 node0     e0e     true
           data002  up/up     192.0.2.121/24 node0     e0f     true
           data003  up/up     192.0.2.122/24 node0     e2a     true
           data004  up/up     192.0.2.123/24 node0     e2b     true
           data005  up/up     192.0.2.124/24 node1     e0e     true
           data006  up/up     192.0.2.125/24 node1     e0f     true
           data007  up/up     192.0.2.126/24 node1     e2a     true
           data008  up/up     192.0.2.127/24 node1     e2b     true
8 entries were displayed.
```
Identifying active CIFS sessions that should be terminated

Before performing a nondisruptive upgrade or downgrade, you should identify and gracefully terminate any CIFS sessions that are not continuously available.

About this task

Continuously available CIFS shares, which are accessed by Hyper-V clients using the SMB3 protocol, do not need to be terminated before upgrading or downgrading.

Steps

1. Identify any established CIFS sessions that are not continuously available:

 vserver cifs session show -continuously-available !Yes -instance

 This command displays detailed information about any CIFS sessions that have no continuous availability.

 Example

 cluster1::> vserver cifs session show -continuously-available !Yes -instance

 Node: node1
 Vserver: vs1
 Session ID: 1
 Connection ID: 4160072788
 Incoming Data LIF IP Address: 198.51.100.5
 Workstation IP address: 203.0.113.20
 Authentication Mechanism: NTLMv2
 Windows User: CIFSLAB\user1
 UNIX User: nobody
 Open Shares: 1
 Open Files: 2
 Open Other: 0
 Connected Time: 8m 39s
 Idle Time: 7m 45s
 Protocol Version: SMB2_1
 Continuously Available: No
 1 entry was displayed.

 Each of the sessions identified by this command should be terminated before proceeding with the Data ONTAP upgrade or downgrade.

2. If necessary, identify the files that are open for each CIFS session that you identified:

 vserver cifs session file show -session-id session_ID
Example

```bash
cluster1::> vserver cifs session file show -session-id 1

Node:       node1
Vserver:    vs1
Connection: 4160072788
Session:    1

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Mode</th>
<th>Volume</th>
<th>Share</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regular</td>
<td>rw</td>
<td>vol10</td>
<td>homedirshare</td>
<td>No</td>
</tr>
<tr>
<td>Path: \TestDocument.docx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regular</td>
<td>rw</td>
<td>vol10</td>
<td>homedirshare</td>
<td>No</td>
</tr>
<tr>
<td>Path: \file1.txt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 entries were displayed.
```

Checking for back-end configuration errors

Before downgrading a storage system that uses array LUNs to an earlier release of Data ONTAP, you need to run the `storage errors show` command to determine whether there are any back-end configuration errors.

Steps

1. Enter the following command:

   ```bash
   storage array config show
   ```

2. Based on the result of Step 1, proceed with one of the following options:

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the <code>storage array config show</code> output does not instruct you to run <code>storage errors show</code></td>
<td>Proceed with downgrading</td>
</tr>
<tr>
<td>If the <code>storage array config show</code> output does instruct you to run <code>storage errors show</code></td>
<td>Continue to the next step</td>
</tr>
</tbody>
</table>

You are instructed to run the `storage errors show` command if Data ONTAP detects a back-end configuration error that would prevent Data ONTAP and the back-end storage array from operating together properly.

3. Enter the following command:

   ```bash
   storage errors show
   ```

 The `storage errors show` command provides details, at the array LUN level, as the following example shows:
Fix the problem indicated by `storage errors show`, then downgrade your system.

The *FlexArray Virtualization Installation Requirements and Reference Guide* contains explanations about errors shown in the `storage errors show` output and provides information about how to fix them.

Preparing SnapMirror relationships for a nondisruptive upgrade or downgrade

You must suspend SnapMirror operations before performing a nondisruptive upgrade or downgrade of Data ONTAP.

Steps

1. Use the `snapmirror show` command to determine the destination path for each SnapMirror relationship.

2. For each destination volume, suspend future SnapMirror transfers:

   ```bash
   snapmirror quiesce -destination-path destination
   ```

 If there are no active transfers for the SnapMirror relationship, this command sets its status to **Quiesced**. If the relationship has active transfers, the status is set to **Quiescing** until the transfer is completed, and then the status becomes **Quiesced**.

Example

This example quiesces transfers involving the destination volume `vol1` from SVM `vs0.example.com`:

```
cluster1::> snapmirror quiesce -destination-path vs0.example.com:vol1
```

3. Verify that all SnapMirror relationships are quiesced:

   ```bash
   snapmirror show -status !Quiesced
   ```

 This command displays any SnapMirror relationships that are *not* quiesced.

Example

This example shows that all SnapMirror relationships are quiesced:
4. If any SnapMirror relationships are currently transferring, do one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait for the transfers to complete before performing the Data ONTAP upgrade.</td>
<td>Once each transfer completes, the relationship changes to Quiesced status.</td>
</tr>
<tr>
<td>Stop the transfers by entering the following command:</td>
<td>This command stops the SnapMirror transfer and restores the destination volume to the last Snapshot copy that was successfully transferred. The relationship is set to Quiesced status.</td>
</tr>
<tr>
<td><code>snapmirror abort -destination-path destination -h</code></td>
<td>Note: You must use the –foreground true parameter if you are aborting load-sharing mirror transfers.</td>
</tr>
</tbody>
</table>

Related information

Clustered Data ONTAP 8.3 Data Protection Guide

Obtaining Data ONTAP software images

You must copy a software image from the NetApp Support Site to an HTTP or FTP server on your network so that nodes can access the images.

About this task

To upgrade, revert, or downgrade the cluster to the target release of Data ONTAP, you need access to software images. Software images, firmware version information, and the latest firmware for your platform model are available on the NetApp Support Site. Note the following important information:

- Software images are specific to platform models. Be sure to obtain the correct image for your cluster.
- Software images include the latest version of system firmware that was available when a given version of Data ONTAP was released.

Steps

1. Locate the target Data ONTAP software in the **Software Downloads** area of the NetApp Support Site.
2. Copy the software image (for example, 830_q_image.tgz) from the NetApp Support Site to the directory on the HTTP or FTP server from which the image will be served.

Related information

NetApp Downloads: Software

Performing the software downgrade

To downgrade a cluster to an earlier Data ONTAP release in the same release family, you must install target images, address downgrade issues, and change the default boot image.

Before you begin

You must complete the downgrade preparation phase before you perform the downgrade procedures.

About this task

You can perform either a nondisruptive downgrade, in which the cluster remains online and continues to serve data during the downgrade, or a disruptive downgrade, in which the cluster is taken offline.

Choices

- **Downgrading a Data ONTAP cluster nondisruptively** on page 181

 To nondisruptively downgrade a cluster within the Data ONTAP 8.3 release family, you use the `cluster image update` command to install the target Data ONTAP image on each node, and then downgrade the cluster.

- **Downgrading a Data ONTAP cluster disruptively** on page 185

 If you can take your cluster offline to downgrade Data ONTAP, or if you have a single-node cluster, you can use the disruptive downgrade method. This method has several steps: disabling storage failover for each HA pair, updating the software on each node in the cluster, and then reenabling storage failover.

Downgrading a Data ONTAP cluster nondisruptively

To nondisruptively downgrade a cluster within the Data ONTAP 8.3 release family, you use the `cluster image update` command to install the target Data ONTAP image on each node, and then downgrade the cluster.

Before you begin

- You must have satisfied downgrade preparation requirements.
- The cluster must consist of at least two nodes.
- For each HA pair, each node should have one or more ports on the same broadcast domain.
When a set of nodes is downgraded during a batch downgrade, the LIFs are migrated to the HA partner nodes. If the partners do not have any ports in the same broadcast domain, then the LIF migration will fail.

Steps

1. Download the target Data ONTAP software package:

   ```
   cluster image package get -url location
   ```

 The software package contains the target Data ONTAP image and firmware, and the set of downgrade validation rules. This package is downloaded to the cluster package repository on the root volume of one of the nodes in the cluster.

 Example

   ```
   cluster1::> cluster image package get -url http://www.example.com/software/8.3/image.tgz
   Software get http://www.example.com/software/8.3/image.tgz started on node node0
   Downloading package. This may take up to 10 minutes.
   98% downloaded
   There is no update/install in progress
   Status of most recent operation:
   Run Status: Working
   Exit Status: Success
   Phase: Download
   Exit Message: Processing Package.
   Process package Complete
   ```

2. Verify that the software package is available in the cluster package repository:

   ```
   cluster image package show-repository
   ```

 Example

   ```
   cluster1::> cluster image package show-repository
   Package Version
   ---------------
   8.3.0
   ```

3. Verify that the cluster is ready to be downgraded nondisruptively:

   ```
   cluster image validate -version package_version_number
   ```

 This command checks the cluster components to validate that the downgrade can be completed nondisruptively, and then provides the status of each check and any required action you must take before performing the software downgrade.

 You can proceed to the next step after completing all identified required actions.
Example

```
cluster1::> cluster image validate -version 8.3.0

It can take several minutes to complete validation...

Pre-update Check         Status      Error-Action
------------------------  ---------   -------------------------------------------
Aggregate status         OK
CIFS status              OK
Cluster health           OK
Disk status              OK
High Availability status OK
LIF status               OK
LIFs on home node        OK
MetroCluster configuration status OK
SnapMirror status        OK
Volume status            OK
mgmt epoch status        OK
mgmt RDB ring status     OK
vifmgr epoch status      OK
vifmgr RDB ring status   OK
vldb epoch status        OK
vldb RDB ring status     OK
Overall Status           OK
17 entries were displayed.
```

4. Optional: If desired, generate a software downgrade estimate:

```
cluster image update -version package_version_number -estimate-only
```

The software downgrade estimate displays details about each component to be updated, and the estimated duration of the downgrade.

5. Perform the software downgrade:

```
cluster image update -version package_version_number
```

This command validates that each cluster component is ready to be downgraded, installs the target Data ONTAP image on each node in the cluster, and then performs a nondisruptive downgrade in the background. If an issue is encountered, the update will pause and prompt you to take corrective action. You can use the `cluster image show-update-progress` command to view details about the issue. After correcting the issue, you can resume the update by using the `cluster image resume-update` command.

If the cluster consists of 2 through 6 nodes, a rolling downgrade will be performed.

If the cluster consists of 8 or more nodes, a batch downgrade will be performed by default. If desired, you can use the `-force-rolling` parameter to specify a rolling downgrade instead.

After completing each takeover and each giveback, the downgrade will wait for 8 minutes to enable client applications to recover from the pause in I/O that occurs during the takeover and giveback. If your environment requires more or less time for client stabilization, you can use the `-stabilize-minutes` parameter to specify a different amount of stabilization time.
Example

```
class1::> cluster image update -version 8.3.0
Starting validation for this update. Please wait..

It can take several minutes to complete validation...
Non-Disruptive Check     Status     Error-Action
---------------------     ---------   -------------------------------------------
Aggregate status         OK
CIFS status              OK
Cluster health status    OK
Disk status              OK
High Availability status OK
LIF status               OK
LIFs on home node        OK
MetroCluster configuration status OK
SnapMirror status        OK
Volume status            OK
mgmt epoch status        OK
mgmt RDB ring status     OK
vifmgr epoch status      OK
vifmgr RDB ring status   OK
vldb epoch status        OK
vldb RDB ring status     OK
Overall Status           OK
17 entries were displayed.
```

Would you like to proceed with update? {y|n}: y
Starting update...

6. Optional: If necessary, manage the downgrade process by using the applicable command:

<table>
<thead>
<tr>
<th>To do this...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor the status and estimated duration of the</td>
<td><code>cluster image show-update-progress</code></td>
</tr>
<tr>
<td>downgrade</td>
<td></td>
</tr>
<tr>
<td>View the log of each transaction that has executed</td>
<td><code>cluster image show-update-log</code></td>
</tr>
<tr>
<td>during the downgrade</td>
<td></td>
</tr>
<tr>
<td>Pause the downgrade</td>
<td><code>cluster image pause-update</code></td>
</tr>
<tr>
<td>Resume a paused downgrade</td>
<td><code>cluster image resume-update</code></td>
</tr>
<tr>
<td>Cancel the downgrade</td>
<td><code>cluster image cancel-update</code></td>
</tr>
</tbody>
</table>

7. Display the cluster update history to verify that the downgrade was completed successfully for each node:

```
class image show-update-history
```
Example

The Data ONTAP version numbers in the following example are provided for example purposes only:

```
cluster1::> cluster image show-update-history
```

<table>
<thead>
<tr>
<th>Status</th>
<th>Version</th>
<th>Start</th>
<th>Completion</th>
<th>Previous</th>
<th>Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>8.3.x</td>
<td>11/18/2014</td>
<td>11/18/2014 15:20:51 node0</td>
<td>8.3.y</td>
<td>8.3.x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>successful</td>
<td>8.3.x</td>
<td>11/18/2014</td>
<td>11/18/2014 15:20:51 node1</td>
<td>8.3.y</td>
<td>8.3.x</td>
</tr>
</tbody>
</table>

2 entries were displayed.

Downgrading a Data ONTAP cluster disruptively

If you can take your cluster offline to downgrade Data ONTAP, or if you have a single-node cluster, you can use the disruptive downgrade method. This method has several steps: disabling storage failover for each HA pair, updating the software on each node in the cluster, and then reenabling storage failover.

Before you begin

- You must have satisfied downgrade preparation requirements.
- If you are operating in a SAN environment, all SAN clients must be shut down or suspended until the downgrade is complete.
 If SAN clients are not shut down or suspended prior to a disruptive downgrade, the client file systems and applications will suffer errors that might require manual recovery after the downgrade is completed.

About this task

During a disruptive downgrade, each node acts as a single-node cluster. Any failures in the node will cause a data outage.

Steps

1. Verify that the target Data ONTAP 8.3 software is installed:

   ```
   system node image show
   ```

Example

This example shows that version 8.3.x is installed as the alternate image on both nodes:

```
cluster1::> system node image show
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Default</th>
<th>Current Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>Is</td>
<td>Is</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Change the current default boot image to 8.3.x:

```bash
system image modify {-node * -iscurrent false} -isdefault true
```

This command identifies any functionality in the current release that is not supported in the earlier release. If any of these conditions are found, you must address them according to the instructions provided in the command output before you can proceed.

Example

This example shows that the default boot image will be changed to 8.3.x:

```bash
cluster1::> system image modify {-node * -iscurrent false} -isdefault true
2 entries were modified.
```

3. Redisplay the default boot image:

```bash
system node image show
```

Example

This example shows version 8.3.x as the default image on both nodes:

```bash
cluster1::> system node image show
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Is Default</th>
<th>Current Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1</td>
<td>false</td>
<td>true</td>
<td>8.3.y 11/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>false</td>
<td>8.3.x 11/27/2014 13:55:22</td>
</tr>
<tr>
<td>node1</td>
<td>image1</td>
<td>true</td>
<td>false</td>
<td>8.3.y 11/27/2014 13:55:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>false</td>
<td>true</td>
<td>8.3.x 11/27/2014 13:41:16</td>
</tr>
</tbody>
</table>

4 entries were displayed.

4. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If the cluster consists of...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>One node</td>
<td>Continue to the next step.</td>
</tr>
<tr>
<td>Two nodes</td>
<td>a. Disable cluster high availability:</td>
</tr>
<tr>
<td></td>
<td><code>clustering ha modify -configured false</code></td>
</tr>
<tr>
<td></td>
<td>b. Disable storage failover for the HA pair:</td>
</tr>
<tr>
<td></td>
<td><code>storage failover modify -node * -enabled false</code></td>
</tr>
</tbody>
</table>
If the cluster consists of... | Do this...
-----------------------------|----------------------------------
More than two nodes | Disable storage failover for each HA pair in the cluster:

```
storage failover modify -node * -enabled false
```

5. Reboot a node in the cluster:

```
system node reboot -node nodename
```

Attention: Do not reboot more than one node at a time.

The node boots the new Data ONTAP image. The Data ONTAP login prompt appears, indicating that the reboot process is complete.

6. When the node has rebooted with the new Data ONTAP image, confirm that the new Data ONTAP 8.3.x software is running:

```
system node image show
```

Example

This example shows version 8.3.x as the current version on node0:

<table>
<thead>
<tr>
<th>Node</th>
<th>Image</th>
<th>Default</th>
<th>Current Version</th>
<th>Install Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>image1</td>
<td>false</td>
<td>false</td>
<td>11/27/2014 13:52:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>true</td>
<td>8/27/2014 12:37:36</td>
</tr>
<tr>
<td>node1</td>
<td>image1</td>
<td>false</td>
<td>true</td>
<td>11/27/2014 13:55:22</td>
</tr>
<tr>
<td></td>
<td>image2</td>
<td>true</td>
<td>false</td>
<td>8/27/2014 12:41:16</td>
</tr>
</tbody>
</table>

7. Repeat Steps 5 through 6 for each additional node.

8. Enable storage failover for each HA pair in the cluster:

```
storage failover modify -node * -enabled true
```

9. If the cluster consists of two nodes, enable cluster high availability:

```
cluster ha modify -configured true
```

Completing post-downgrade tasks

After you downgrade the cluster to an earlier version of Data ONTAP 8.x, you should ensure that the cluster is functioning correctly.

Steps

1. **Verifying cluster health** on page 188
Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

2. **Verifying storage health** on page 190
 Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

3. **Verifying networking and storage status for MetroCluster configurations** on page 191
 Before and after performing a minor upgrade or downgrade in a MetroCluster configuration, you should verify the status of the LIFs, aggregates, and volumes for each cluster.

4. **Enabling and reverting LIFs to home ports** on page 193
 During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

5. **Verifying client access (CIFS and NFS)** on page 195
 For the configured protocols, test access from CIFS and NFS clients to verify that the cluster is accessible.

6. **Resuming SnapMirror operations** on page 195
 After completing a nondisruptive upgrade or downgrade, you must resume any SnapMirror relationships that were suspended.

7. **Considerations for whether to manually update the SP firmware** on page 196
 If the SP automatic update functionality is enabled (the default), downgrading or reverting to Data ONTAP 8.2.1 or later does not require a manual SP firmware update. The SP firmware is automatically updated to the newest compatible version that is supported by the Data ONTAP version you reverted or downgraded to.

Verifying cluster health

Before and after you upgrade, revert, or downgrade a cluster, you should verify that the nodes are healthy and eligible to participate in the cluster, and that the cluster is in quorum.

Steps

1. Verify that the nodes in the cluster are online and are eligible to participate in the cluster:

   ```
   cluster show
   ```

 Example

   ```
   cluster1:~> cluster show
   Node     Health  Eligibility
   ------------------------
   node0     true    true
   node1     true    true
   ```

 If any node is unhealthy or ineligible, check EMS logs for errors and take corrective action.
2. Set the privilege level to advanced:

```bash
set -privilege advanced
```
Enter `y` to continue.

3. Verify the configuration details for each RDB process.
 You should verify the following configuration details:
 - The relational database epoch and database epochs should match for each node.
 - The per-ring quorum master should be the same for all nodes.
 Note that each ring might have a different quorum master.

<table>
<thead>
<tr>
<th>To display this RDB process...</th>
<th>Enter this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management application</td>
<td><code>cluster ring show -unitname mgmt</code></td>
</tr>
<tr>
<td>Volume location database</td>
<td><code>cluster ring show -unitname vldb</code></td>
</tr>
<tr>
<td>Virtual-Interface manager</td>
<td><code>cluster ring show -unitname vifmgr</code></td>
</tr>
<tr>
<td>SAN management daemon</td>
<td><code>cluster ring show -unitname bcomd</code></td>
</tr>
</tbody>
</table>

Example

This example shows the volume location database process:

```
cluster1::*> cluster ring show -unitname vldb
```

```
<table>
<thead>
<tr>
<th>Node</th>
<th>UnitName</th>
<th>Epoch</th>
<th>DB Epoch</th>
<th>DB Trnxs</th>
<th>Master</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>master</td>
</tr>
<tr>
<td>node1</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
<tr>
<td>node2</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
<tr>
<td>node3</td>
<td>vldb</td>
<td>154</td>
<td>154</td>
<td>14847</td>
<td>node0</td>
<td>secondary</td>
</tr>
</tbody>
</table>
```

4 entries were displayed.

4. If you are operating in a SAN environment, verify that each node is in a SAN quorum:
   ```bash
   event log show -messagename scsiblade.*
   ```
 The most recent `scsiblade` event message for each node should indicate that the scsi-blade is in quorum.

Example

```
cluster1::*> event log show -messagename scsiblade.*
```

```
<table>
<thead>
<tr>
<th>Time</th>
<th>Node</th>
<th>Severity</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node0</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
<tr>
<td>8/13/2013 14:03:51</td>
<td>node1</td>
<td>INFORMATIONAL</td>
<td>scsiblade.in.quorum: The scsi-blade ...</td>
</tr>
</tbody>
</table>
```
5. Return to the admin privilege level:
   ```bash
   set -privilege admin
   ```

Verifying storage health

Before and after you upgrade, revert, or downgrade a cluster, you should verify the status of your disks, aggregates, and volumes.

Steps

1. If you are preparing to upgrade, revert, or downgrade, verify disk status:

<table>
<thead>
<tr>
<th>To check for…</th>
<th>Do this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken disks</td>
<td>a. Display any broken disks:</td>
</tr>
</tbody>
</table>
 | | ```bash
 | | storage disk show -state broken |
 | | b. Remove or replace any broken disks. |
 | Disks undergoing maintenance or | a. Display any disks in maintenance, pending,|
 | reconstruction | reconstructing states: |
 | | ```bash
 | | storage disk show -state maintenance|pending|reconstructing |
 | | b. Wait for the maintenance or reconstruction operation to finish before proceeding.|

2. Verify that all aggregates are online by displaying the state of physical and logical storage, including storage aggregates:

   ```bash
   storage aggregate show -state !online
   ```

 This command displays the aggregates that are not online. All aggregates must be online before and after performing a major upgrade or reversion.

 Example

   ```bash
   cluster1::> storage aggregate show -state !online
   There are no entries matching your query.
   ```

3. Verify that all volumes are online by displaying any volumes that are not online:

   ```bash
   volume show -state !online
   ```

 All volumes must be online before and after performing a major upgrade or reversion.

 Example

   ```bash
   cluster1::> volume show -state !online
   There are no entries matching your query.
   ```
Verifying networking and storage status for MetroCluster configurations

Before and after performing a minor upgrade or downgrade in a MetroCluster configuration, you should verify the status of the LIFs, aggregates, and volumes for each cluster.

About this task

If you are performing a major upgrade from Data ONTAP 8.2, you do not need to complete this procedure.

Steps

1. Verify the LIF status:

```
network interface show
```

In normal operation, LIFs for source SVMs must be up and located on their home nodes. LIFs for destination SVMs are not required to be up or located on their home nodes. In switchover, all LIFs should be up, but they do not need to be located on their home nodes.

Example

```
cluster1::> network interface show

Logical     Status     Network             Current    Current Is
Vserver     Interface  Admin/Oper  Address/Mask      Node       Port  Home
----------- ---------- ---------- ------------------ ------------- ------- ----
Cluster     ----------- ---------- ---------- ------------------ ------------- ------- ----
cluster1-a1_clus1
up/up    192.0.2.1/24       cluster1-01
cluster1-a1_clus2
up/up    192.0.2.2/24       cluster1-01
e2b     true
cluster1-a2_clus1
up/up    192.0.2.3/24       cluster1-02
e2a     true
cluster1-a2_clus2
up/up    192.0.2.4/24       cluster1-02
e2b     true
cluster1-01
clus_mgmt  up/up    198.51.100.1/24    cluster1-01
e3a     true
cluster1-al_inet4_intercluster1
up/up    198.51.100.2/24    cluster1-01
e3c     true
cluster1-al_inet4_intercluster2
up/up    198.51.100.3/24    cluster1-01
cluster1-al_mgmt1
up/up    198.51.100.4/24    cluster1-01
e0M     true
cluster1-a2_inet4_intercluster1
up/up    198.51.100.5/24    cluster1-02
e3c     true
cluster1-a2_inet4_intercluster2
up/up    198.51.100.6/24    cluster1-02
```

Downgrading clusters to an earlier release in the same release family | 191
2. Verify the state of the aggregates:

 `storage aggregate show -state !online`

 This command displays any aggregates that are *not* online. In normal operation, all aggregates located at the local site must be online. However, if the MetroCluster configuration is in switchover, root aggregates at the disaster recovery site are permitted to be offline.

 Example

 This example shows a cluster in normal operation:
Example

This example shows a cluster in switchover, in which the root aggregates at the disaster recovery site are offline:

```
cluster1::> storage aggregate show -state !online
There are no entries matching your query.
```

```
Example

This example shows a cluster in switchover, in which the root aggregates at the disaster recovery site are offline:

```
cluster1::> storage aggregate show -state !online
Aggregate Size Available Used% State #Vols Nodes RAID Status
--------- -------- --------- ----- ------- ------ ---------------- ------------
aggr0_b1 0B 0B 0% offline 0 cluster2-01 raid_dp, mirror degraded
aggr0_b2 0B 0B 0% offline 0 cluster2-02 raid_dp, mirror degraded
2 entries were displayed.
```

3. Verify the state of the volumes:

```
volume show -state !online
```

This command displays any volumes that are not online. In normal operation, all root and data volumes owned by the local cluster's SVMs must be online. However, if the MetroCluster configuration is in switchover, all volumes must be online.

```
Example

This example shows a cluster in normal operation, in which the volumes at the disaster recovery site are not online.

```
cluster1::> volume show -state !online
(volume show)
Vserver   Volume       Aggregate    State      Type       Size  Available Used%
--------- ------------ ------------ ---------- ---- ---------- ---------- ----- 
vs2-mc    vol1         aggr1_b1     -          RW            -          -     -
vs2-mc    root_vs2     aggr0_b1     -          RW            -          -     -
vs2-mc    vol2         aggr1_b1     -          RW            -          -     -
vs2-mc    vol3         aggr1_b1     -          RW            -          -     -
vs2-mc    vol4         aggr1_b1     -          RW            -          -     -
5 entries were displayed.
```

Enabling and reverting LIFs to home ports

During a reboot, some LIFs might have been migrated to their assigned failover ports. Before and after you upgrade, revert, or downgrade a cluster, you must enable and revert any LIFs that are not on their home ports.

About this task

The network interface revert command reverts a LIF that is not currently on its home port back to its home port, provided that the home port is operational. A LIF's home port is specified...
when the LIF is created; you can determine the home port for a LIF by using the `network interface show` command.

Steps

1. **Display the status of all LIFs:**
   ```
   network interface show
   ```

 Example

 This example displays the status of all LIFs for a Storage Virtual Machine (SVM, formerly known as Vserver).

   ```
   cluster1::> network interface show \-vserver vs0
   Logical     Status     Network            Current       Current Is
   Interface   Admin/Oper Address/Mask       Node          Port    Home
   ----------- ---------- ---------- ------------------ ------------- ------- ----
   Vserver     ----------- ---------- ---------- ------------------ ------------- ------- ----
   vs0
   data001    down/down  192.0.2.120/24     node0         e0e     true
   data002    down/down  192.0.2.121/24     node0         e0f     true
   data003    down/down  192.0.2.122/24     node0         e2a     true
   data004    down/down  192.0.2.123/24     node0         e2b     true
   data005    down/down  192.0.2.124/24     node0         e0e     false
   data006    down/down  192.0.2.125/24     node0         e0f     false
   data007    down/down  192.0.2.126/24     node0         e2a     false
   data008    down/down  192.0.2.127/24     node0         e2b     false
   8 entries were displayed.
   ```

 If any LIFs appear with a Status Admin status of `down` or with an Is home status of `false`, continue with the next step.

2. **Enable the data LIFs:**
   ```
   network interface modify \{-role data\} \-status-admin up
   ```

 Example

   ```
   cluster1::> network interface modify \{-role data\} \-status-admin up
   8 entries were modified.
   ```

3. **Revert LIFs to their home ports:**
   ```
   network interface revert *
   ```

 Example

 This command reverts all LIFs back to their home ports and changes all LIF home statuses to `true`.

   ```
   cluster1::> network interface revert *
   8 entries were acted on.
   ```

4. **Verify that all LIFs are in their home ports:**
network interface show

Example

This example shows that all LIFs for SVM vs0 are on their home ports.

```
cluster1::> network interface show -vserver vs0

Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
vs0
  data001      up/up    192.0.2.120/24     node0         e0e     true
  data002      up/up    192.0.2.121/24     node0         e0f     true
  data003      up/up    192.0.2.122/24     node0         e2a     true
  data004      up/up    192.0.2.123/24     node0         e2b     true
  data005      up/up    192.0.2.124/24     node1         e0e     true
  data006      up/up    192.0.2.125/24     node1         e0f     true
  data007      up/up    192.0.2.126/24     node1         e2a     true
  data008      up/up    192.0.2.127/24     node1         e2b     true
```

Verifying client access (CIFS and NFS)

For the configured protocols, test access from CIFS and NFS clients to verify that the cluster is accessible.

Resuming SnapMirror operations

After completing a nondisruptive upgrade or downgrade, you must resume any SnapMirror relationships that were suspended.

Before you begin

Existing SnapMirror relationships must have been suspended by using the snapmirror quiesce command, and the cluster must have been nondisruptively upgraded or downgraded.

Steps

1. Resume transfers for each SnapMirror relationship that was previously quiesced:

 `snapmirror resume *`

 This command resumes the transfers for all quiesced SnapMirror relationships.

2. Verify that the SnapMirror operations have resumed:

 `snapmirror show`

Example

```
cluster1::> snapmirror show

Source            Destination  Mirror  Relationship  Total             Last
Path        Type  Path         State   Status        Progress  Healthy Updated
----------- ---- ------------ ------- -------------- --------- ------- --------
```

Downgrading clusters to an earlier release in the same release family | 195
For each SnapMirror relationship, verify that the Relationship Status is "Idle". If the status is "Transferring", wait for the SnapMirror transfer to complete, and then reenter the command to verify that the status has changed to "Idle".

After you finish

For each SnapMirror relationship that is configured to run on a schedule, you should verify that the first scheduled SnapMirror transfer completes successfully.

Considerations for whether to manually update the SP firmware

If the SP automatic update functionality is enabled (the default), downgrading or reverting to Data ONTAP 8.2.1 or later does not require a manual SP firmware update. The SP firmware is automatically updated to the newest compatible version that is supported by the Data ONTAP version you reverted or downgraded to.

If the SP automatic update functionality is disabled (not recommended), after the Data ONTAP revert or downgrade process is complete, you must manually update the SP firmware to a version that is supported for the Data ONTAP version you reverted or downgraded to.

Related information

- NetApp BIOS Service Processor Support Matrix
- NetApp Downloads: System Firmware and Diagnostics
Optimal service availability during upgrades

Service availability during Data ONTAP upgrades can be optimized through planning and configuration. In many cases, upgrades can be completely nondisruptive from a client perspective.

How upgrades impact service availability

You can review the factors that can affect the availability of cluster services before you begin the upgrade.

The following factors impact service availability:

• The types of protocols used and services licensed, and their susceptibility to timeout errors

• Whether you need to make decisions about Data ONTAP issues and new features between or within release families
 Upgrading between Data ONTAP release families involves more steps and is potentially more disruptive than upgrades within a release family.

• Whether a system firmware update is required
 Some system firmware updates require a system halt and reboot. This can disrupt services in upgrades when downtime is scheduled, but it does not affect services in nondisruptive upgrades.

• The types of applications in use and their susceptibility to timeout errors
 The availability of client applications during upgrades depends on features, protocols, and configuration. See your application documentation for more information.

 Note: All hardware and software upgrades in any storage solution are potentially at least somewhat disruptive to cluster services. Make sure that you review upgrade options carefully to determine the best method of upgrading for maintaining optimal service availability.

Considerations for services and protocols during upgrades

In general, services based on stateless protocols—such as NFSv3, FC, and iSCSI—are less susceptible to service interruptions during upgrades than session-oriented protocols—such as CIFS and NDMP.

During an upgrade, each node in the cluster must be rebooted (by initiating an HA configuration takeover and giveback) to load the new software. Services based on stateless protocols usually remain available during the nondisruptive upgrade.

Stateless protocols usually include a timeout procedure. For example, if a message is sent and receipt is not acknowledged within a timeout period, a transmission error is assumed to have occurred. In a cluster, if the client's timeout period is greater than the disruption period on the cluster (for example,
the amount of time a reboot or HA configuration giveback takes), the client does not perceive a disruption of cluster services.

In session-oriented protocols, there is no concept of timeout to protect the service from disruption. If session-oriented cluster services are disrupted, state information about any operation in progress is lost and the user must restart the operation.

Considerations for stateless protocols

Configurations that include client connections using stateless NAS and SAN protocols generally do not experience adverse effects during upgrades if the clients are configured according to recommended guidelines.

If you are using stateless protocols, consider the following:

- **NFS hard mounts**
 No adverse behavior is experienced on the clients during upgrade. Clients might receive some messages similar to the following until the node reboots:

 NFS server not responding, retrying

 In general, read/write directories should be hard-mounted. Hard mounts are the default type of mount.

- **NFS soft mounts**
 You should not use soft mounts when there is a possibility of frequent NFS timeouts. Race conditions can occur as a result of these timeouts, which can lead to data corruption. Furthermore, some applications cannot properly handle errors that occur when an NFS operation reaches a timeout using soft mounts.

 Situations that can cause frequent timeouts include nondisruptive upgrades or any takeover or giveback event in an HA configuration.

 In general, soft mounts should be used only when reading solely from a disk; even then, understand that any soft mount is unreliable.

- **SAN protocols**
 No adverse behavior is experienced on FC or iSCSI clients if they are configured according to the recommended guidelines listed in the Interoperability Matrix.

Related information

NetApp Interoperability Matrix Tool

Considerations for session-oriented protocols

Clusters and session-oriented protocols might cause adverse effects on clients and applications in certain areas during upgrades.

If you are using session-oriented protocols, consider the following:

- **CIFS**
Hyper-V over SMB supports nondisruptive operations (NDOs). If you configured a Hyper-V over SMB solution, Hyper-V and the contained virtual machines remain online and provide continuous availability during the Data ONTAP upgrade.

For all other CIFS configurations, client sessions are terminated. You should direct users to end their sessions before you upgrade.

- **NFSv4.x**
 NFSv4.x clients will automatically recover from connection losses experienced during the upgrade using normal NFSv4.x recovery procedures. Applications might experience a temporary I/O delay during this process.

- **NDMP**
 State is lost and the client user must retry the operation.

- **Backups and restores**
 State is lost and the client user must retry the operation.

 Attention: Do not initiate a backup or restore during or immediately before an upgrade. Doing so might result in data loss.

- **Applications** (for example, Oracle or Exchange)
 Effects depend on the applications. For timeout-based applications, you might be able to change the timeout setting to longer than the Data ONTAP reboot time to minimize adverse effects.

How firmware is updated during the Data ONTAP upgrade

Because upgrading Data ONTAP includes upgrading your firmware, you do not need to update firmware manually. When you perform a Data ONTAP upgrade, the firmware for your cluster included with the Data ONTAP upgrade package is copied to each node's boot device, and the new firmware is installed automatically.

Firmware for the following components is updated automatically if the version in your cluster is older than the firmware that is bundled with the Data ONTAP upgrade package:

- **System and diagnostics**:
 - BIOS
 - Flash Cache
 - Service Processor (SP)

- **Disk**

- **Disk shelf**

If desired, you can also update firmware manually in between Data ONTAP upgrades.
Understanding background disk firmware updates

When a node reboots and there is new disk firmware present, the affected drives are automatically and sequentially taken offline, and the node responds normally to read and write requests.

If any request affects an offline drive, the read requests are satisfied by reconstructing data from other disks in the RAID group, while write requests are written to a log. When the disk firmware update is complete, the drive is brought back online after resynchronizing any write operations that took place while the drive was offline.

During a background disk firmware update, the node functions normally. You see status messages as disks are taken offline to update firmware and brought back online when the firmware update is complete. Background disk firmware updates proceed sequentially for active data disks and for spare disks. Sequential disk firmware updates ensure that there is no data loss through double-disk failure.

Offline drives are marked with the annotation `offline` in the `nodeshell vol status -r` command output. While a spare disk is offline, it cannot be added to a volume or selected as a replacement drive for reconstruction operations. However, a disk would normally remain offline for a very short time (a few minutes at most) and therefore would not interfere with normal cluster operation.

The background disk firmware update is completed unless the following conditions are encountered:

- Degraded aggregates are on the node.
- Disks needing a firmware update are present in an aggregate or plex that is in an offline state.

Automatic background disk firmware updates resume when these conditions are addressed.

Related information

- NetApp Downloads: System Firmware and Diagnostics
- NetApp Downloads: Disk Drive and Firmware
- NetApp Downloads: Disk Shelf Firmware

Clustered Data ONTAP 8.3 Physical Storage Management Guide
Upgrading Data ONTAP Edge storage systems

You must perform a few additional preparatory steps to upgrade Data ONTAP Edge storage systems to the latest version of Data ONTAP software.

Data ONTAP Edge systems run standard Data ONTAP software, but, like some of the hardware platforms that run Data ONTAP, the image you must download is unique.

Important: Data ONTAP Edge 7-Mode systems cannot be upgraded with clustered Data ONTAP software.

Upgrade process overview for Data ONTAP Edge storage systems

Before beginning to upgrade Data ONTAP software, you should plan the upgrade and familiarize yourself with the required steps.

1. Plan your upgrade by familiarizing yourself with requirements and issues before you upgrade:
 - Review the Release Notes for your upgrade target release.
 - Understand any requirements for upgrading to the target release from your existing software.
 - Create a back-out plan, in the unlikely event that you need to revert or downgrade to the Data ONTAP release that was running on your system before the upgrade.
 - Be prepared to note any potential changes to your system after the upgrade.
 - If you run the SnapMirror software, identify storage systems with destination and source volumes.

2. If necessary, perform any required preparatory procedures before upgrading to the new Data ONTAP release:
 - Verify that any versions of VMware vSphere are compatible with your upgrade target release. If the new version of Data ONTAP software requires new vSphere software, upgrade the vSphere software first.
 For more information about software compatibility, see the Release Notes and the Interoperability Matrix for your Data ONTAP upgrade target release.
 - Ensure that you have a current Snapshot copy of the root volume of any system being upgraded.

3. Obtain the appropriate software image from the NetApp Support Site.
4. Copy the image to your storage system or to an HTTP or FTP server on your network.

5. Install the Data ONTAP software image on your storage system.
 Extract the system files from the software image you copied to your system.

6. Download the new Data ONTAP system files to the boot device.
 The upgrade process is finished when your system reboots with the new version of Data ONTAP.

7. Verify that the version of dvadmin (the Data ONTAP-v administration tool) is compatible with your upgrade target release. dvadmin 1.3 is required when using Data ONTAP 8.3 software.
 See the Release Notes and the Interoperability Matrix for your Data ONTAP upgrade target release.
 If you need to upgrade dvadmin, you should install the upgrade after the new version of Data ONTAP has been installed. For dvadmin upgrade instructions, see the Data ONTAP-v Administration Tool Installation Guide.

8. Verify that your systems are operating as expected after the upgrade.
 Before returning storage systems to production, you should check the status of configured functionalities and reenable any functionality that was suspended before the upgrade.

Related information

Download Software: support.netapp.com/NOW/cgi-bin/software
NetApp Interoperability Matrix: support.netapp.com/NOW/products/interoperability

Recommendations for Data ONTAP Edge systems upgrading to this release

You should follow these simple guidelines to ensure your storage system upgrade is successful.

- Review the "Important cautions" section of the Release Notes for this Data ONTAP release. It contains important information that could affect the behavior of your system during and after upgrading.

- Upgrade during non-peak hours.

- Avoid performing a quota initialization prior to upgrading. If a quota initialization is in process prior to upgrading, wait for the initialization to finish.

Preparing for a Data ONTAP Edge system upgrade

Before installing the latest Data ONTAP release on your storage system, you need to verify some information and complete a few tasks.

Steps

1. Verify that your system meets the minimum requirements.
For more information about system requirements, see the *Release Notes* for your Data ONTAP upgrade target release.

2. Create a backup of Data ONTAP-v system information by entering the following dvadmin command:

   ```bash
   vm config backup vm_name backup_name
   ```

 The backup includes the virtual machine configuration and all information on the Data ONTAP-v system disks.

3. Connect to the storage system and confirm that all paths to disks are visible to the system by entering the following Data ONTAP command:

   ```bash
   storage disk show
   ```

4. Confirm that there are no failed disks:

   ```bash
   storage disk show -state broken
   ```

5. Verify that all aggregates are online:

   ```bash
   storage aggr show
   ```

6. Ensure that a recent cluster configuration backup file has been created and uploaded to a remote server. You can use the `system configuration backup` command at the advanced privilege level for this purpose. This information can be used to recover the cluster’s configuration if the node is corrupted.

7. Ensure that you have a current Snapshot copy of the root volume of any system being upgraded. For more information about creating Snapshot copies, see the *Clustered Data ONTAP Data Protection Guide*.

8. If you are running SnapMirror, identify storage systems with destination volumes and upgrade them before upgrading storage systems with source volumes.

Obtaining software images for Data ONTAP Edge systems

You must have access to software images to upgrade the storage system to the latest release of Data ONTAP. Software images are available on the NetApp Support Site.

You can copy software images to an HTTP or FTP server on your network; Data ONTAP Edge storage systems can then access the images by using the `system node image` command.

Software images are specific to storage system models. You must obtain the correct image for your system.

Related information

Download Software: support.netapp.com/NOW/cgi-bin/software
Copying the software image to an HTTP or FTP server

If you have an HTTP or FTP server that is accessible to your storage system, you can copy Data ONTAP software images to that server. This task prepares the HTTP or FTP server to serve software images to storage systems in your environment.

Steps

1. Locate the Data ONTAP software in the Data ONTAP Edge Software Downloads area of the NetApp Support Site.

2. Copy the software image (for example, 830_v_image.tgz) from the NetApp Support Site to the directory on the HTTP or FTP server from which the file will be served.

Copying the software image from the HTTP or FTP server to the storage system

You can copy software images to the /etc/software directory of your storage system if you plan to perform the installation later. If you want to copy the image and perform the installation in one step, see the section on Installing Software Images.

Step

1. Enter the following command from the storage system console:

 `system node image get -package url`

 `url` is the URL that provides the location of the package to be fetched. Standard URL schemes, including HTTP, FTP, TFTP and FILE, are accepted.

 Use the following URL syntax if you need to specify a user name, password, host, and port to access files on the HTTP server using Basic Access Authentication (RFC2617):

 `http://username:password@host:port/path`

Example

In the following example, the `system node image get` command copies the file 830_v_image.tgz to the storage system:

```
system node image get -package http://www.example.com/downloads/x86-64/830_v_image.tgz
```

You see a message similar to the following:

```
software: copying to /etc/software/830_v_image.tgz
software: 100% file read from location.
software: /etc/software/830_v_image.tgz has been copied.
```
Software image installation on Data ONTAP Edge systems

You use the system node image update command to extract and install new Data ONTAP software images on your storage system.

You must know the location of and have access to the software image. The system node image update command requires one of the following as an argument:

- The path to a software image in a mounted file system in the form file://localhost/path_to_file.
 For example: file://localhost/mroot/etc/software/830_v_image.tgz.

- The URL that provides the location of the package to be downloaded.
 Standard URL schemes, including HTTP, FTP, and TFTP are accepted.

The system node image update command enables you to perform several operations at one time. For example, you can use a single command to copy an image from the HTTP server, extract and install the system files, download the files to the boot device, and reboot your system.

For more information about the system node image update command and its options, see the appropriate man page.

Installing software images

You can install software from an HTTP or FTP server or from a software image you copied to the storage system.

Step

1. From the storage system prompt, install the software image:

 system node image update -package {url|file_name} options

 - url is the URL of the HTTP or FTP server, subdirectory, and file name.
 - file_name is the name of the file you copied to the /etc/software directory.
 - options are one or more of the following:

 - The -replace-package option overwrites the existing image in the /etc/software directory when you install software from an HTTP server.
 - The -setdefault option specifies whether to set the newly updated image as the default image, that is, the image that runs the next time the node is restarted.
Example

The following command updates the software image on the current node from a software package located at ftp://ftp.example.com/downloads/830_v_image.tgz:

```
```

Verifying Data ONTAP Edge system status after an upgrade

You should verify that upgraded systems are functioning as expected before returning them to production. This entails verifying the status of configured functionality and reenabling any functionality that was suspended before the upgrade.

About this task

You should perform these tasks on each system that was upgraded.

Steps

1. Verify that the intended target release is installed and running:

 `version`

2. Confirm that all paths to disks are visible to the system:

 `storage disk show`

3. Confirm that there are no failed disks:

 `storage disk show -broken`

4. Verify that all aggregates are online:

 `storage aggr show`

5. Confirm that network interfaces are online:

 `network port show`

6. If you quiesced SnapMirror transfers, enter the following command for each destination volume to resume them:

 `snapmirror resume destination`

After you finish

If the new Data ONTAP version requires that you upgrade the dvadmin software, you should install the new Data ONTAP-v Installer virtual machine and dvadmin software at this time. See the *Data ONTAP-v Administration Tool Installation Guide* for upgrade instructions.
Copyright information

Copyright © 1994–2015 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).
Trademark information

Cisco and the Cisco logo are trademarks of Cisco in the U.S. and other countries. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.
How to send comments about documentation and receive update notification

You can help us to improve the quality of our documentation by sending us your feedback. You can receive automatic notification when production-level (GA/FCS) documentation is initially released or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email to doccomments@netapp.com. To help us direct your comments to the correct division, include in the subject line the product name, version, and operating system.

If you want to be notified automatically when production-level documentation is released or important changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.
• Telephone: +1 (408) 822-6000
• Fax: +1 (408) 822-4501
• Support telephone: +1 (888) 463-8277
Index

32-bit aggregates
 expanding to the 64-bit format 75
32-bit capability
 disabling before upgrade 74
32-bit data
 considerations regarding, for upgrades 30
 finding and removing, after expanding to 64-bit 76
64-bit
 finding and removing 32-bit data after expanding to 76
64-bit aggregates
 expanding 32-bit aggregates to 75

A
aggregates
 deduplicated, verifying space for 46
 disabling 32-bit capability before performing cluster upgrades 74
 expanding to the 64-bit format 75
 finding and removing 32-bit data after expanding to 64-bit 76
 verifying health of 41, 115, 136, 153, 169, 190
automated upgrades
 definition of nondisruptive cluster 21
 performing nondisruptive cluster 105
automatic configuration
 SP, reverting systems that have it enabled 142

B
back-end configurations
 finding errors before downgrading 178
background disks
 understanding firmware updates for 200
back-out plans
 for Data ONTAP Edge upgrades 201
backups
 post-reversion considerations for dump 158
batch upgrades
 definition of nondisruptive cluster 21
 disabling automatic LIF rebalancing before 58
 process for cluster 91
 reenabling automatic LIF rebalancing after 122
upgrading the first set of nodes in a batch of HA pairs 92
upgrading the set of partner nodes in a batch of HA pairs 98
verifying cluster version 113

C
checklists
 for upgrade 8
CIFS
 considerations for avoiding interruptions during upgrades 198
 identifying active sessions before downgrading 66, 177
 identifying active sessions before upgrading 66, 177
 verifying client access for 156, 195
cluster downgrades
 issues to know before performing 166
cluster HA
 verifying status of 39
cluster health
 verifying 40, 113, 134, 151, 168, 188
Cluster IP space
 deleting the system SVM for 156
cluster reversions
 overview of 129
cluster upgrades
 firmware components that are updated automatically during Data ONTAP 199
 performing nondisruptive, using automated method 105
 process for nondisruptive batch method for 91
 requirements for 27
cluster version
 verifying after upgrade 113
clusters
 downgrade process for 181
 downgrade workflow for 165
downgrades
 completing post-downgrade tasks 187
to earlier release in same release family,
 overview of 164
downgrading disruptively 185
downgrading nondisruptively 181
ensuring that no jobs are running before upgrading or downgrading 51, 173
how epsilon affects the upgrade sequence of four-node 28
introduction to performing software upgrades 77
introduction to planning for reversions of 130
introduction to preparing features for downgrade 175
introduction to preparing features for reversion 138
introduction to preparing to revert 133
introduction to reversion requirements for 131
introduction to upgrade requirements for 26
introduction to verifying health of, before a downgrade 167
introduction to verifying health of, before a reversion 134
overview of reversion to an earlier release family 129
preparation for upgrades 38
preparing features before upgrade 53
reversion issues and limitations to consider before reverting 131
revert workflow for 130
reverting 147
upgrade workflow for 7
upgrades, planning 24
upgrades, process overview 7
upgrading disruptively 109
upgrading nondisruptively in SnapMirror environments 68, 179
verifying CIFS and NFS client access for 156, 195
verifying health 40, 113, 134, 151, 168, 188
verifying health of before an upgrade 38
verifying that system time is synchronized 51, 137, 173
verifying upgrade limits for 34
command
software update, for installing software images on Data ONTAP Edge systems 205
comments
how to send feedback about documentation 209
compressed volumes
reverting systems with 141
Config Advisor
checking for common configuration errors with 38
downloading and running 38
configuration requirements
for cluster upgrades 27
configurations
checking for errors in back-end 178
SAN, verifying after upgrade 123
SAN, verifying prior to upgrade 50
configured clusters
introduction to preparing features for downgrading 175
introduction to preparing features for reverting 138
considerations
cluster downgrade 166
D
data
finding and removing 32-bit, after expanding to 64-bit 76
Data ONTAP
overview of reversion to an earlier release family 129
overview of upgrade process 7
Data ONTAP Edge
recommendations for upgrading 202
upgrade overview 201
upgrade planning 23, 202
upgrade process overview 201
verifying system status after upgrade 206
Data ONTAP Edge software images
introduction to obtaining 203
Data ONTAP software images
command for installing on Data ONTAP Edge systems 205
obtaining 69, 145, 180
Data ONTAP-v software images
copying from the HTTP or FTP server to the storage system 204
installing from HTTP or FTP servers 205
Data ONTAP-v system files
copying the software image to HTTP or FTP servers 204
data protection mirror relationships
considerations when upgrading Infinite Volumes 32
deduplicated volumes
reverting systems with 139
deduplication
verifying space for before upgrading 46
disk firmware
understanding background updates for 200
Disk Qualification Package
when you need to update 127
disk shelves
how firmware updates are handled during Data ONTAP upgrades 199
disks
how firmware updates are handled during Data ONTAP upgrades 199
understanding background firmware updates for 200
verifying health of 41, 115, 136, 153, 169, 190
when you need to update the Disk Qualification Package for 127
disruptive downgrades
 See downgrades
disruptive upgrades
 definition of cluster 21
 procedure for cluster 109
documentation
 how to receive automatic notification of changes to 209
 how to send feedback about 209
downgrades
 completing post-downgrade tasks 187
 considerations for whether to manually update the SP firmware 158, 196
disruptive, performing 185
 enabling and reverting LIFs to home ports, before and after 56, 119, 154, 175, 193
 finding back-end configuration errors before downgrading 178
 introduction to preparing features for 175
 introduction to verifying the cluster is ready for 167
 issues to know before performing cluster 166
 nondisruptive, performing 181
 obtaining Data ONTAP software images 69, 145, 180
 overview of, to earlier release in same release family 164
 process for 181
 requirements for planning 165
 reviewing resources before performing 166
 verifying MetroCluster configuration networking and storage status before 43, 117, 170, 191
 when to call technical support 164
 workflow for cluster 165
DQP
 See Disk Qualification Package
dump backups
 post-reversion considerations for 158
dump operations
 verifying job status before upgrading or downgrading 51, 173
E
epsilon
effect on the upgrade sequence for four-node clusters 28
errors
 finding before downgrading 178
 expanding
 aggregates to the 64-bit format 75
F
failover
 LIF, verifying configuration of 47
 failover groups
 verifying before an upgrade 47
features
 introduction to preparing for downgrade 175
 introduction to preparing for reversion 138
 preparing before upgrade 53
feedback
 how to send comments about documentation 209
files
 netgroup, verifying presence on all nodes before upgrade or revert 54, 138
firewall policies
 preparing before a major upgrade 55
 verifying that IPv6 entries are restored after reverting 157
firmware
 components that are updated automatically during Data ONTAP upgrades 199
 considerations for whether to manually update the SP 158, 196
firmware updates
 understanding background disk 200
Flash Cache
 how firmware updates are handled during Data ONTAP upgrades 199
FlexCache volumes
 removing before upgrade 65
FlexVol volumes
 finding and removing 32-bit, after expanding aggregates to 64-bit 76
 guarantee, enabling after upgrade to Data ONTAP 8.3 125
 guarantees, converting from type file before upgrading to Data ONTAP 8.3 54
four-node clusters
 how epsilon affects the upgrade sequence of 28
free space
 ensuring adequate volume, prior to upgrades 42
FTP servers
 copying the Data ONTAP-v software image to 204
 installing Data ONTAP-v software images from 205
local UNIX groups
- removing oversized names 53

local UNIX users
- removing oversized names 53

LUNs
- ensuring adequate free space in volumes prior to upgrades 42

M

major upgrades
- installing software images before 70
- preparing SVM networking prior to 59
- verifying networking after 124
- verifying that SVMs can connect to external servers after 116

MCC
- See MetroCluster configurations

MetroCluster configurations
- upgrade requirements for 33
- verifying networking and storage status before upgrading or downgrading 43, 117, 170, 191

mirrors, load-sharing
- preparing for major upgrade 68
- relocating after a major upgrade 121

mixed version requirements
- for cluster upgrades 27

mixed-format volumes
- finding and removing after expanding aggregates to 64-bit 76

N

namespace constituents
- order of upgrading nodes with 32

namespace mirror constituents
- considerations for creating after reverting 133
- creating for an Infinite Volume after reverting 159
- creating for an Infinite Volume with storage classes after reverting 161
- creating for tape backup of an Infinite Volume after reverting 160
- creating for tape backup of an Infinite Volume with storage classes after reverting 162
- order of upgrading nodes with 32

NDMP
- considerations for avoiding interruptions during upgrades 198

NDUs
- See nondisruptive upgrades

NetApp Support Site
- introduction to obtaining Data ONTAP software images from 203
- obtaining Data ONTAP Edge software images 201
- obtaining Data ONTAP software images 69, 145, 180

netgroups
- verifying file is present on all nodes before upgrade or revert 54, 138

networking
- preparing SVM, for major upgrade 59
- SVM considerations for major upgrades 29
- verifying after a major upgrade 124

networking status
- verifying MetroCluster configuration, before upgrading or downgrading 43, 117, 170, 191

NFS
- protocol considerations for upgrades 198
- verifying client access for 156, 195
- verifying Kerberos configurations after upgrading 123

nodes
- order of upgrading for Infinite Volumes 32
- planning sequence for batch upgrades 35
- upgrading the first node in an HA pair using the rolling method 79
- upgrading the first set of nodes in a batch of HA pairs using the batch method 92
- upgrading the partner node in an HA pair using the rolling method 85
- upgrading the set of partner nodes in a batch of HA pairs using the batch method 98
- verifying netgroup file is present on all, before upgrade or revert 54, 138

nondisruptive downgrades
- See downgrades

nondisruptive upgrades
- about optimizing service availability during 197
- batch method for cluster 91
- batch, planning sequence for 35
- considerations for avoiding service interruptions during 197
- guidelines for estimating the duration of 28
- resuming SnapMirror operations after 121, 195
- rolling upgrade method for 78
- SnapMirror environment, steps for 68, 179
- types and methods of cluster 21
- using automated method for cluster 105
O
overview
 downgrade to earlier release in same release family 164
 upgrade process 7

P
partitioning
 root-data, upgrade considerations for 31
performance baselines
 establishing with Perfstat before upgrade 37
performing upgrades
 introduction to, for cluster software 77
Perfstat
 creating performance baseline with, before upgrading 37
planning
 requirements for downgrades 165
 reversions for clusters that contain Infinite Volumes 133
 reversions, introduction to 130
 upgrades 24
 upgrades for clusters that contain Infinite Volumes 32
 upgrades with Upgrade Advisor 23
policies
 firewall, preparing before a major upgrade 55
ports
 verifying failover groups for 47
post-downgrade tasks
 completing 187
post-reversion tasks
 introduction to completing 150
post-upgrade tasks
 verifying Data ONTAP Edge system status 206
pre-downgrades
 reviewing resources for 166
pre-upgrades
 reviewing resources for 26, 131
production clusters
 introduction to preparing features for downgrade 175
 introduction to preparing features for reversion 138
protocols
 considerations for avoiding interruptions during upgrades 197
 considerations for session-oriented 198
 upgrade considerations for stateless 198

R
release families
 impact of upgrades on service availability 197
release requirements
 for cluster upgrades 27
requirements
 downgrade planning 165
 for cluster upgrades 27
 MetroCluster configuration upgrade 33
 SnapMirror upgrade 31
 verifying job status before upgrading or downgrading 51, 173
resources
 reviewing before downgrading 166
 reviewing before upgrading 26, 131
restore operations
 verifying job status before upgrading or downgrading 51, 173
reversion issues
 considerations before reverting 131
 considerations for Infinite Volumes 133
 verifying that IPv6 firewall entries are restored 157
reversions
 enabling and reverting LIFs to home ports, after 56, 119, 154, 175, 193
 installing software images prior to 145
 introduction to completing tasks after finishing 150
 introduction to planning for 130
 introduction to preparing features for 138
 introduction to preparing for cluster 133
 introduction to requirements for cluster 131
 introduction to verifying the cluster is ready for 134
 obtaining Data ONTAP software images 69, 145, 180
 procedure for 147
 SnapMirror requirements for 132
 workflow for cluster 130
reversions, cluster
 overview of 129
reverting
 systems that have the SP automatic configuration enabled 142
 systems with compressed volumes 141
 systems with deduplicated volumes 139
reverting to a previous release
 issues and limitations to consider before 131
 preparing Snapshot copies after 155
 preparing Snapshot copies before 143
 when to call technical support 129
reverts
considerations for whether to manually update the SP firmware 158, 196
verifying that netgroup file is present on all nodes before 54, 138
rolling upgrades
definition of nondisruptive cluster 21
process for 78
upgrading the first node in an HA pair 79
upgrading the partner node in an HA pair 85
verifying cluster version 113
root-data partitioning
upgrade considerations for 31

S
SAN
ensuring adequate space in volumes prior to upgrades 42
protocol considerations for upgrades 198
verifying configuration after upgrade 123
verifying configuration prior to upgrade 50
servers
copying the Data ONTAP-v software image to HTTP or FTP 204
service availability
about optimizing during upgrades 197
considerations for avoiding interruptions during upgrades 197
impact of upgrades on 197
Service Processors
See SPs
session-oriented protocols
considerations for avoiding service interruptions during upgrades 198
single-node clusters
upgrading disruptively 109
SnapDiff
reenabling for a reverted Infinite Volume 160
reenabling for a reverted Infinite Volume with storage classes 162
SnapMirror environments
identifying destination volumes 201
resuming operations after NDU 121, 195
reversion requirements for 132
upgrade requirements for 31
upgrading nondisruptively 68, 179
Snapshot copies
deleting before reverting systems with compressed data 141
finding and removing 32-bit, after expanding aggregates to 64-bit 76
preparing after reverting 155
preparing before reverting 143
upgrade planning 201
SnapVault environments
reversion requirements for 132
software images
command for installing on Data ONTAP Edge systems 205
copying 204
Data ONTAP-v, copying from the HTTP or FTP server to the storage system 204
installing before a major upgrade 70
installing before a reversion 145
installing Data ONTAP-v, from HTTP or FTP servers 205
introduction to obtaining for Data ONTAP Edge 203
obtaining 69, 145, 180
software update command
for installing software images on Data ONTAP Edge systems 205
SPs
considerations for whether to manually update the firmware 158, 196
how firmware updates are handled during Data ONTAP upgrades 199
reverting systems that have the automatic configuration enabled 142
SSL
configuring LDAP clients to use TLS instead 126
stateless protocols
avoiding service interruptions during upgrades 198
status
verifying disk, aggregate, and volume 41, 115, 136, 153, 169, 190
storage
verifying health 41, 115, 136, 153, 169, 190
storage classes
creating namespace mirror constituents for a reverted Infinite Volume with 159, 161
reenabling SnapDiff for a reverted Infinite Volume with 162
Storage Encryption
configuring with IPv4 key management servers before reverting 138
storage failover
verifying status of 39
storage status
verifying MetroCluster configuration, before upgrading or downgrading 43, 117, 170, 191
storage systems
 compatibility with Data ONTAP 201
storage systems using array LUNs
 finding errors before downgrading 178
suggestions
 how to send feedback about documentation 209
support
 when to call during downgrade 164
 when to call during revert 129
SVMs
 major upgrade networking considerations for 29
 preparing networking for a major upgrade 59
 system, deleting for the Cluster IP space 156
 verifying IPv6 connectivity to external servers 116
 verifying networking for 70
 verifying that netgroup file is present on all nodes before upgrade or revert 54, 138
system files
 Data ONTAP-v, copying software image to HTTP or FTP servers 204
 Data ONTAP-v, installing 205
system firmware
 components that are updated automatically during Data ONTAP upgrades 199
system limits
 verifying before a cluster upgrade 34
system status
 verifying Data ONTAP Edge, after upgrade 206
system time
 verifying 51, 137, 173

T

tape backup and restore
 creating namespace mirror constituents for Infinite Volumes after reverting 160
 creating namespace mirror constituents for Infinite Volumes with storage classes after reverting 162
tasks
 introduction to completing post-reversion 150
technical support
 when to call during downgrade 164
 when to call during revert 129
TLS
 configuring LDAP clients to use 126
 reverting LIFs to home ports 56, 119, 154, 175, 193
twitter

how to receive automatic notification of documentation changes 209

U

UNIX
 removing oversized local user and group names 53
updates
 understanding background disk firmware 200
upgrade
 enabling volume guarantees after 125
Upgrade Advisor tool
 planning your upgrade with 23
upgrades
 about maintaining service availability during 197
 batch, planning sequence for 35
 checklist for 8
 considerations for avoiding service interruptions 197
 considerations regarding 32-bit data 30
 considerations with session-oriented protocols 198
 considerations with stateless protocols 198
 creating performance baseline before 37
 disabling 32-bit capability before performing cluster 74
 enabling and reverting LIFs to home ports, before and after 56, 119, 154, 175, 193
 ensuring adequate volume space prior to 42
 guidelines for estimating the duration of 28
 how epsilon affects sequence of four-node cluster 28
 impact on service availability 197
 introduction to performing cluster software 77
 introduction to requirements for cluster 26
 major, installing software images before 42
 major, SVM networking considerations for 29
 major, verifying networking after 124
 obtaining Data ONTAP software images 69, 145, 180
 performing nondisruptive cluster, using automated method 105
 planning for 24
 planning with Upgrade Advisor 23
 preparation for 38
 preparing for Data ONTAP Edge system 202
 procedure for disruptive cluster 109
 process for nondisruptive batch method for cluster 91
 process overview 7
recommendations for Data ONTAP Edge systems
reenabling automatic LIF rebalancing after batch
removing FlexCache volumes before
requirements for cluster
requirements for MetroCluster configurations
requirements for SnapMirror
reviewing resources before performing
root-data partitioning considerations for SnapMirror environment, nondisruptive steps
types of nondisruptive and disruptive cluster
upgrading the first node in an HA pair using the rolling method
upgrading the first set of nodes in a batch of HA pairs using the batch method
upgrading the partner node in an HA pair using the rolling method
upgrading the set of partner nodes in a batch of HA pairs using the batch method
verifying cluster version
verifying LIF failover configuration for
verifying limits for cluster
verifying MetroCluster configuration networking and storage status before
verifying NFS Kerberos configurations after
verifying SAN configuration after
verifying SAN configuration prior to
verifying system status after Data ONTAP Edge upgrade
verifying that netgroup file is present on all nodes before
verifying the cluster is ready for
upgrades, cluster workflow for
upgrades, major
preparing firewall policies before
upgrades, nondisruptive rolling upgrade method for
upgrades, rolling process for
users local UNIX, removing oversized names
utilities checking for common configuration errors with Config Advisor
downloading and running Config Advisor

V
volumes deduplicated, verifying space for
ensuring adequate space, prior to upgrades
finding and removing 32-bit and mixed-format, after expanding aggregates to 64-bit
FlexCache, removing before upgrade
guarantees, converting from type file before upgrading to Data ONTAP 8.3
reverting systems with compressed
verifying health of
verifying volume status before upgrading or downgrading

Vservers See SVMs

W
workflows for cluster downgrades
for cluster reversions
for cluster upgrades